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Computational Methodology

Pseudopotential plane-wave density functional theory (DFT),1 as implemented in the Vi-

enna Ab initio Simulation Package (VASP) code,2–5 was used in this study to evaluate the

structural and dynamical properties of Bi2Sn2O7.

The projector augmented wave (PAW) method6,7 was used to model the nuclei and core

electrons, with the Bi 6s26p35d10, Sn 5s25p24d10 and O 2s22p4 electrons included in the

valence region. Electron exchange and correlation was modelled using the revised version

of the Perdew-Burke-Ernzerhof generalized gradient approximation (GGA) functional for

solids, PBEsol.8 Convergence of the total energy per atom was checked with respect to both

the plane-wave kinetic-energy cutoff and the k-point sampling using a convergence criterion

of ∆E ≈ 1 meV per atom, resulting in a cutoff of 650 eV, increased by 1.3 × to avoid Pulay

stress,9 and Γ-centred Monkhorst-Pack k-meshes10 with 3×3×3, 2×2×3, 2×2×1 and 3×3×2

subdivisions for the γ, β, αold and αnew structures, respectively. The atomic positions, cell

shapes and volumes were relaxed until the forces acting on the ions converged to < 10−4 eV/Å.

The equilibrium geometries were found to be in excellent agreement with experiment,11–13

with < 1 % deviation on the optimised lattice parameters.

For lattice-dynamics calculations we used the supercell finite-displacement method14,15 to

calculate the second order interatomic force constants (IFCs), using the Phonopy package16,17

and a finite-displacement step of 10−2 Å. The IFCs were used to compute the athermal (0 K)

harmonic phonon dispersion curves and inspect them for imaginary modes. The presence of

imaginary modes indicates that the structure is a local energy maximum on the structural

potential-energy surface (PES) and thus that spontaneous atomic displacements, without

any energetic barriers, convert the structure to a more stable phase. Imaginary modes at the

Γ wavevector (the Brillouin zone centre) indicate distortions that are commensurate with

the primitive unit cell, i.e. that the lower-energy structure does not require a change in

the cell volume. Imaginary modes at other high-symmetry q-points - i.e. zone boundary

phase transitions - indicate distortions that are commensurate with supercell expansions of
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the primitive cell and for which the lower-energy structure therefore requires an expansion

of the cell volume.

The eigenvectors of the imaginary harmonic modes lead to lower-energy structures via

continuous collective atomic displacements. "Following" the imaginary modes, i.e. mapping

the potential energy as a function of distortion amplitude along the eigenvector, can be used

to characterise the PES and locate the energy minimum along the mode. The Cartesian

displacement Xj of the jth atom along a phonon mode with amplitude Q is obtained from

the real part of the eigenvector according to Eq. (1).

Xj =
Q√
Namj

Re[exp(iϕ)ejexp(q.rjl)] (1)

Q is the normal-mode coordinate (distortion amplitude). rjl and mj are respectively the

position and mass of the jth atom in the lth unit cell, and Na is the total number of atoms

in the supercell. ej is the jth component of the phonon-mode eigenvector. ϕ is an arbitrary

phase factor and is set to zero by default. (A non-zero ϕ would shift the displacements by

part of a wave period, and provided the chosen supercell expansion is commensurate with

the wavevector q this should not change the energy.)

In our work, the mode following was performed using the ModeMap code,18 which can be

used to prepare sequences of structures diplaced along the modes and to characterise and

analyse the resulting mode PES. The code uses Phonopy to create modulated structures with

displacements over a range of amplitudes along one or two phonon modes frozen in (i.e. 1D

or 2D maps).

In order to locate the global energy minimum on the Bi2Sn2O7 PES, we begin with

a force-constant calculation on the high-symmetry, high-temperature γ structure using a

2×2×2 supercell expansion of the primitive cell. γ-Bi2Sn2O7 has multiple imaginary modes

in the phonon dispersion, and we tracked the routes from all these modes until each branch

terminated in a dynamically-stable structure with no imaginary modes in the dispersion.

This is an entirely first-principles approach that requires only the coordinates of the high-
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temperature/high-symmetry phase as input and can identify both the (meta-)stable end

points and the intermediate structures connecting them. The workflow of this method is

outlined in Figure S1.

Figure S1: Overview of our ab intio lattice dynamics approach to exploring the struc-
tural potential-energy surface (PES) of Bi2Sn2O7. Starting from the high-symmetry/high-
temperature γ phase, which has multiple imaginary modes in the harmonic phonon disper-
sion, we perform one-dimensional displacements along each independent imaginary mode to
locate the energy minimum. The minima along the mode PES curves are optimised and
symmetrised, and the phonon dispersion curves of the optimised structures are evaluated
to assess the dynamical stability. This process is repeated iteratively until each branch
terminates in a dynamically-stable structure with no imaginary modes in the dispersion.

Single-point energy calculations are performed on the distorted structures to generate

PES maps showing the change in energy as a function of Q along the imaginary harmonic

modes. The PES curves associated with these modes are anharmonic and typically take the

form of a double well (DW) potential-energy curve.
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The minimum-energy structure from the DW PES is identified and relaxed. This addi-

tional relaxation is required for the following two reasons. Firstly, the harmonic approxi-

mation only takes into account the local curvature of the PES at the initial geometry, and

the minimum of the DW, away from this geometry, may not always correspond to an energy

minimum or maximum with net zero forces on the atoms. Where this is the case, the addi-

tional relaxation step speeds up locating stationary points on the PES. Secondly, distortions

along the harmonic modes do not allow for relaxation of the cell shape and volume, which

may further lower the energy.

After relaxation, the structures are symmetrised to a tolerance of 1×10−3 Å. This corrects

for small numerical inaccuracies in the DFT optimisations and also allows us to reduce the

cell size if the structure found by the mode mapping is a supercell or conventional cell of

a smaller primitive. Where this is the case, identifying the primitive cell can make the

subsequent phonon calculations less computationally demanding. Given our relatively loose

symmetry tolerance, a single-point calculation was performed on each symmetrised structure

and compared to the relaxed, unsymmetrised structure to confirm that the total energy and

pressure were the same to within 0.1 meV per atom and 0.1 kbar, respectively.

Force calculations are then performed on the symmetrised structures to evaluate the har-

monic phonon dispersion curves and classify the structures as dynamically stable or unstable

(i.e. energy minima or maxima). If the dispersion has imaginary-mode instabilities, the pro-

cedure for mapping the imaginary frequency modes is repeated. For structures with multiple

instabilities, each independent (non-degenerate) instability is tracked independently. The

mode following is repeated iteratively until it terminates at a structure with no instabilities.

The principal advantage of our method is that it is "guided" by the imaginary harmonic

modes from the initial structure, via continuous distortions, to local energy minima. How-

ever, we only consider distortions along single imaginary modes at any given step, whereas

coupling between modes may produce combinations of distortions that lead to different min-

ima. A case in point are degenerate imaginary modes, for which any linear combination of
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modes is a valid harmonic eigenvector but may not lead directly to the nearest local mini-

mum on the PES. This is partially mitigated in our procedure by the relaxation step after

mode following. Also, since we only follow imaginary modes, each mode mapping step can

only lead "downhill" in energy, and the method is therefore not guaranteed to explore the

full extent of the PES. Despite these downsides, however, the method is an efficient means to

explore the PES of complex multernary structures, and successfully identifies the known β

and αnew polymorphs of Bi2Sn2O7 together with several new metastable phases and energetic

maxima along the transition pathways connecting them.
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1D Vs. 2D Mode-Mapping for Doubly-Degenerate Modes

The "mode-mapping" approach assumes that the PES along each phonon mode is indepen-

dent and that the harmonic eigenvectors are a good approximation to the true anharmonic

motion. These assumptions break down in the case of N -fold degenerate modes because

linear combinations of the N mode eigenvectors are also valid harmonic eigenvectors (i.e.

arbitrary rotations of the basis spanned by the N eigenvectors are possible). The result

is that the true minima may not lie along the mode eigenvectors, and locating them in

principle requires the full N -dimensional space spanned by the eigenvectors to be mapped

out. However, this can be a very computationally-intensive procedure, and in this study

we therefore adopted the pragmatic alternative of mapping the individual modes, selecting

the lowest-energy structure, and performing a subsequent relaxation. This approach was

explicitly verified for several of the structures with doubly-degenerate imaginary modes by

comparing the relaxed structure obtained from the 1D mode mapping with that obtained

by mapping the 2D PES spanned by both modes (Figure S2).

(a) 2D-PES along modes 1 and 2
at X
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(b) DW along mode 1 at X (c) P212121 (19), 44 atoms

Figure S2: (a) Potential-energy surface (PES) along the doubly-degenerate imaginary
modes at the X wavevector in the phonon dispersion of γ-Bi2Sn2O7. Although the min-
ima on the full 2D PES in (a) do not line up with the Q1 and Q2 axes corresponding to
the individual mode eigenvectors, an equivalent structure (c) is obtained by relaxing the
lowest-energy structure from the 1D slice of the PES shown in (b).

8



Phonon Dispersion Curves of the Ima2 and Cc Struc-

tures from the Γ-Point Instability in γ-Bi2Sn2O7

Starting from the Γ-point instability in γ-Bi2Sn2O7, we obtained the αnew phase in three

mode-mapping steps via two intermediate Ima2 and Cc structures. Figure S3 and Figure S4

show the structures together with the phonon dispersion curves and the double-well potential-

energy surfaces along the imaginary modes followed to the next mapping step.

(a) Ima2, 44 atoms
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(b) Phonon dispersion of
Ima2 structure

−4 −2 0 2 4
QΓ [amu

1
2 Å]

0.00

0.25

0.50

0.75

1.00

Δ
U
(Q

Γ)
[m

eV
at
om

−
1 ]

(c) DW along mode 1 at Γ

Figure S3: (a) Optimised and symmetrised Ima2 structure obtained by mapping the Γ-
point imaginary modes in γ-Bi2Sn2O7 (Bi - orange, Sn - blue, O/O′ - black). (b) Phonon
dispersion. (c) Double-well (DW) PES spanned by the imaginary mode at Γ in (b).

(a) Cc, 44 atoms
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(b) Phonon dispersion of Cc
(44 atoms) structure
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(c) DW along mode 1 at V

Figure S4: (a) Optimised and symmetrised Cc structure obtained from the minimum of
the double-well potential-energy surface (DW PES) in Figure S3c. (b) Phonon dispersion.
(c) DW PES spanned by the imaginary mode at V in (b). The minimum-energy structure
on the PES in (c) corresponds to the αnew-phase.13
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Phonon Dispersion Curve of the P212121 Structure from

the X-point Instability in γ-Bi2Sn2O7 using Different Su-

percell Expansions

Mapping the instabilities at X and W in γ-Bi2Sn2O7 led to two new metastable structures.

As shown in Figure S5, the dispersion of the P212121 δ-Bi2Sn2O7 structure obtained with

a 2 × 2 × 1 supercell expansion shows imaginary modes at the qZ = (0, 0, 1
2
) wavevector.

However, the supercell is not commensurate with this q-point, and thus the frequencies

cannot be evaluated exactly and are obtained by Fourier interpolation. When the supercell

is increased to a 2 × 2 × 2 expansion, which is commensurate with Z, this imaginary mode

disappears, but an acoustic branch along the Γ→ Z path becomes imaginary. Since this is not

present using the smaller supercell, we also consider this to be an interpolation artefact. This

could in principle be tested by performing calculations with a larger supercell expansion, but

the required supercell would contain at least 704 atoms, making the calculation infeasible.
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Figure S5: Phonon dispersion curves of the P212121 structure (denoted δ-Bi2Sn2O7 in the
text) obtained using 2 × 2 × 1 (solid green) and 2 × 2 × 2 (dashed orange) supercell
expansions with 176 and 352 atoms respectively.
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Phonon Dispersion Curve of the R3c Structure from the

L-point Instability in γ-Bi2Sn2O7

Starting from the L-point instability in γ-Bi2Sn2O7, we again obtain the αnew phase, this

time in two mode mapping steps via an intermediate R3c structure shown in Figure S6.
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(a) DW along mode 1 at L (b) R3c, 132 atoms
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Figure S6: (a) Double-well potential-energy surface (DW PES) along the imaginary mode
at L in the phonon dispersion curve of γ-Bi2Sn2O7. (b) Optimised and symmetrised R3c
structure obtained as the minimum of the PES in (a). (c) Phonon dispersion of the structure
in (b) showing several imaginary modes. (d) DW PES curves spanned by the two imaginary
modes at Γ in (c), the minima of which lead to αnew after relaxation.
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Mapping the Instabilities in the Intermediate Structures

We also mapped the instabilities in the intermediate Ima2 and R3c structures obtained by

mapping the Γ- and L-point instabilities in γ-Bi2Sn2O7, respectively.

Ima2 Structure

Figure S7 shows the transition pathways from the imaginary modes at X and R in the

dispersion of the Ima2 structure. The dispersion has imaginary modes at the R, Γ, X and

T wavevectors. Following the imaginary mode at X leads to a Pna21 structure equivalent to

that obtained via the W-point instability in γ-Bi2Sn2O7 (denoted ϵ-Bi2Sn2O7 in the text).

Following the modes at Γ and R both lead to αnew. Following the mode at T does not lower

the energy, and the imaginary frequency is therefore an interpolation artefact.
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Phonon dispersion of Ima2 structure DW along mode 1 at X

DW along mode 1 at R

Pna21 (33), 44 atoms

Cc (9), 88 atoms

Figure S7: Transition pathways from the imaginary modes at X and R in the phonon
dispersion of the intermediate Ima2 structure (top left). Following the mode at X leads to
ϵ-Bi2Sn2O7 (Pna21; top row). Following the mode at R leads to αnew (bottom row).
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R3c Structure

The R3c structure has imaginary modes at all the high-symmetry q-points in the Brillouin

zone, viz. Γ, Z, F and L (Figure S6c).

Mapping the instabilities at Γ and Z lead to the new structural model suggested for the

α phase (i.e. αnew).13 Mapping the F-point instability leads to the P21/c structure shown in

Figure S8b. The phonon dispersion curve of the P21/c structure (Figure S8c) has imaginary

modes at Γ and Y. Mapping the Y-point mode does not lead to a DW and so the imaginary

frequency is an interpolation artefact, while mapping the Γ-point instability (Figure S8d)

leads to the structural model of the intermediate-temperature β phase proposed by Lewis et

al.13

Mapping the L-point instability leads to a P1 structure (Figures S9a and S9b). The

phonon dispersion of this structure shows several imaginary modes across the Brillouin zone.

Mapping the instability at Γ leads to αnew, while the instabilities at Z, V and R lead to the

P21/c structure shown in Figure S8b, which ultimately leads to the β phase.13 The other

instabilities lead to P1 structures (Figure S10) – the instabilities at U and X led to the

same structure, while the instabilities at Y and T lead to two distinct additional structures.

The phonon calculations on these phases were done using a 1×1×1 supercell (i.e. the unit

cell), and thus only the Γ-point instabilities are meaningful as other wavevectors are not

commensurate with the unit cell. The position of these structures on the tree diagram (Figure

5 in text) suggests they would eventually lead to the α or β phases, which in turn suggests

either a large number of stationary points on the structural PES close to these polymorphs,

or that there are multiple minima on the PES corresponding to these polymorphs.
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Figure S8: (a) Double-well potential-energy surface (DW PES) obtained by mapping the
first imaginary mode at the F point in the phonon dispersion of the R3c structure (Fig-
ure S6c). (b) Relaxed and symmetrised P21/c structure from the minimum in (a). (c)
Phonon dispersion of the structure in (b). (d) DW PES along the Γ-point instability in the
P21/c dispersion in (c), the minimum of which leads to the β structure identified by Lewis
et al.13
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Figure S9: (a) Double-well potential-energy surface (DW PES) obtained by mapping the
imaginary mode at the L point in the phonon dispersion curve of the R3c structure (Fig-
ure S6c). (b) Relaxed and symmetrised P1 structure from the minimum in (a).
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Figure S10: Unique P1 structures obtained by mapping the instabilities at X, U, Y and T
in the phonon dispersion of the P1 structure (Figure S9b).
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Phonon Instabilities in β-Bi2Sn2O7
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(a) Phonon dispersion of β
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(e) Phonon dispersion of ζ

Figure S11: The phonon dispersion of the intermediate-temperature β polymorph of
Bi2Sn2O7 (a) has imaginary modes at Γ, Y and S. The double-well potential-energy sur-
face (DW PES) spanned by the instabilities at Γ and Y (b and c) lead to the opti-
mised/symmetrised Cc structure shown in (d), which we denote ζ-Bi2Sn2O7, with a very
shallow well depth of ∼ 7× 10−3 meV per atom relative to the saddle point at Q = 0. The
phonon dispersion of the ζ structure in (e) shows that this structure is dynamically stable.
The instability at S in the β dispersion did not lead to a lower-energy minimum and was
therefore identified as an interpolation artefact.

16



Analysis of the Isotropic Temperature Factors from XRD

Measurements

Figure S12: Isotropic temperature factors of the Bi atoms extracted from Rietveld analysis
of 81 powder diffraction patterns collected while warming Bi2Sn2O7 from 313 to 1103 K
(Bruker d8 diffractometer, Anton Paar HTK1200 furnace, Cu Kα radiation, 12-120 degree
data collection). In the α phase all 4 Bi sites have similar isotropic temperature factors. In
the β phase the temperature factors of Bi4 and Bi5 are significantly higher than Bi1-Bi3
and comparable to those of the single unique Bi in the γ phase. The temperature factors
of the Sn sites show a smooth increase with temperature, as do those of the internal Al2O3
standard used for temperature and intensity calibration. Both phases are included in the
refinements close to the phase transition temperatures. Data values are only plotted where
phases are present at >5% weight fraction.
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Eigenvectors of the Modes in the γ-to-α Phase Transi-

tion

(a) (b) (c)

Figure S13: Phonon mode eigenvectors of the imaginary harmonic modes defining one
of the transition pathways from the Γ-point instability in γ-Bi2Sn2O7 to the αnew phase.
(a) Atomic displacements associated with one of the Γ-point instabilities in the γ phase,
shown in the conventional unit cell. (b) Atomic displacements associated with the Γ-point
instability in the Ima2 structure, shown in a 2×2×2 supercell. (c) Atomic displacements
associated with the V-point instability in the Cc structure (44 atoms), shown in a 2×2×2
supercell. In each image the Bi, Sn and O/O′ atoms are shown in orange, blue and black
respectively. The eigenvectors indicate coupled rotations of Bi and O atoms, in accordance
with previous reports of the transitions between polymorphs being driven by rotations of the
Bi4O′ tetrahedra. All three images are shown along the [010] direction and were generated
using the ascii-phonons software.19
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