Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Electrophilic Fluoroalkylthiolation Induced Diastereoselective and Stereospecific 1,2-Metalate Migration of Alkenylboronate Complexes

Feng Shen,[†]Long $Lu^{\perp,*}$ and Qilong Shen^{†,*}

 [†]Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032
[⊥]Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032

E-mail: shenql@sioc.ac.cn; lulong@sioc.ac.cn

Table of Contents

1.	General information	S2
2.	General procedure for reaction of lithium vinyl boronate with reagent 2a	.S3
3.	General procedure for the lithiation-borylation of 2,4,6-Triisopropylbenzoat	.S22
4.	General procedure for synthesis of α -chiral ketones by stereospe	cific
	1,2-migration	.S25
5.	General procedure for reaction of lithium vinyl boronate	with
	N-Trifluoromethylthiosaccharin 7	.S29
6.	Preparation of difluoromethylthiolated derivative of PF-4191834 by conjuncti	ive
	cross-coupling	.S37
7.	References	S39
8.	X-ray structure of 3s	.S40
9.	¹ H, ¹⁹ F, ¹³ C, ¹¹ B NMR and HPLC spectra of corresponding compound 3a-r , 4	4a-f,
	5a-c, 6a-c, 8a-j, 11 and 12	.S57

General information.

All solvents were purified by standard method. ¹H, ¹³C and ¹⁹F NMR spectra were acquired on 300, 400, 500 MHz; 101, 126 MHz; 282, 376 MHz; 128 MHz spectrometer (300, 400, 500 MHz for ¹H; 101, 126 MHz for ¹³C; 282, 376 MHz for ¹⁹F; 128 MHz for ¹¹B). ¹H NMR and ¹³C NMR chemical shifts were determined relative to internal standard TMS at δ 0.0 ppm and ¹⁹F NMR chemical shifts were determined relative to CFCl₃ as inter standard. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. All reactions were monitored by TLC or ¹⁹F NMR. Flash column chromatograph was carried out using 300-400 mesh silica gel at medium pressure.

Materials. All reagents were received from commercial sources. Solvents were freshly dried and degassed according to the purification handbook *Purification of Laboratory Chemicals* before using.

General Procedure for Reaction of Lithium aryl vinyl Boronate with Reagent 2a General Procedure 1a (GP1a)

$$\begin{array}{c} & & \\ & &$$

An oven-dried, 25 mL Schlenk flask equipped with a stir bar, septum, and digital thermocouple probe was charged with Et₂O (2.0 mL) and vinyl pinacol boronate (47 mg, 0.30 mmol). The mixture was cooled to 0 °C. A solution of phenyl lithium in THF (195 μ L, 2.0 M, 0.39 mmol, 1.3 equiv.) was added dropwise. The resulting solution was stirred at 0 °C for 15 min, then warmed to room temperature for additional 15 min. The solvent was carefully removed under reduced pressure, affording the lithium phenyl vinyl boronate complex as a white solid, which was used directly without further purification. To the solid was added CH₃CN (3.0 mL) and reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.). This mixture was stirred at room temperature for 12 h. The solvent was removed under reduced pressure, the residue was purified by silica gel chromatography (Eluent: ethyl acetate/petroleum ether = 1:50, R_f = 0.5) to give compound **3a** as a yellow oil (68 mg, 72% yield).

General Procedure 1b (GP1b)

$$\begin{array}{c} R_{3}-Br \\ 1.1equiv \end{array} \xrightarrow{t^{B}\text{BuLi} (2.2 \text{ equiv})} \\ \hline Et_{2}\text{O}, -78 \ ^{\circ}\text{C}, \ 30 \ \text{min} \end{array} \xrightarrow{-78 \ ^{\circ}\text{C} \text{ to } rt} \begin{array}{c} R_{1} \\ R_{2} \\ \hline R_{3} \\ \hline R_{2} \\ \hline R_{3} \\ \hline R_{3} \\ \hline R_{3} \\ \hline CH_{3}\text{CN, RT, 12 h} \\ \hline R_{2} \\ \hline R_{2} \\ \hline R_{2} \\ \hline R_{3} \\ \hline R_{2} \\ \hline R_{3} \\ \hline R_{2} \\ \hline R_{3} \\ \hline$$

An oven-dried, 25-mL Schlenk flask equipped with a stir bar, septum, and digital thermocouple probe was charged with Et₂O (2.0 mL) and 4-bromoanisole (62 mg, 0.33 mmol, 1.1 equiv.). The resulting solution was cooled to -78 °C. A solution of ^tBuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.) was added dropwise. The -78 °C for mixture was stirred at 30 min. solution А of 3,6-dihydro-2H-pyran-4-boronic acid pinacol ester (63 mg, 0.30 mmol, 1.0 equiv.) in Et₂O (2.0 mL) was added dropwise. The mixture was stirred at -78 °C for 15 min, then warmed to room temperature for another 15 min. The solvent was carefully removed under reduced pressure, affording lithium aryl vinyl boronate complex as a white solid, which was used directly without further purification. To the solid was

added CH₃CN (3.0 mL) and reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.). This mixture was stirred at room temperature for 12 h. The solvent was removed under reduced pressure, the residue was purified by silica gel chromatography (Eluent: ethyl acetate/petroleum ether = 1:20, $R_f = 0.4$) to give compound **3c** as a yellow oil (61 mg, 51% yield).

General Procedure 1c (GP1c)

$$\begin{array}{c} (R_1 \\ R_2 \end{array}^{\text{Bpin}} + R_3 \text{Li} \\ R_2 \end{array}^{\text{Bpin}} + R_3 \text{Li} \end{array} \xrightarrow{\text{Et}_2 \text{O}, \ 0 \ ^\circ \text{C} \ \text{to} \ \text{RT}} \left(\begin{array}{c} R_3 \\ \oplus \\ R_2 \end{array}^{\text{Bpin}} \\ R_2 \end{array}^{\text{Bpin}} \\ (R_2 \\ R_2 \end{array}^{\text{Bpin}} \\ (R_3 \\ R_2 \end{array}^{\text{Bpin}} \\ (R_3 \\ R_2 \\ R_2 \end{array}^{\text{Bpin}} \\ (R_3 \\ R_2 \\ R_2 \\ R_3 \\ R_2 \\ (R_3 \\ R_2 \\ R_2 \\ R_3 \\ R_2 \\ (R_3 \\ R_2 \\ (R_3 \\ R_2 \\ R_3 \\ R_2 \\ (R_3 \\$$

An oven-dried, 25 mL Schlenk flask equipped with a stir bar, septum, and digital thermocouple probe was charged with Et₂O (2.0 mL) and vinyl pinacol boronate (47 mg, 0.30 mmol). The mixture was cooled to 0 °C. A solution of phenyl lithium in THF (195 μ L, 2.0 M, 0.39 mmol, 1.3 equiv.) was added dropwise. The resulting solution was stirred at 0 °C for 15 min, then warmed to room temperature for additional 15 min. The solvent was carefully removed under reduced pressure, affording the lithium phenyl vinyl boronate complex as a white solid, which was used directly without further purification. To the solid was added CH₃CN (3.0 mL) and reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.). This mixture was stirred at room temperature for 12 h.

The solvent was removed under reduced pressure, then NaBO₃ (0.90 mmol, 3.0 equiv.) and THF/H₂O (v/v = 1:1, 6.0 mL) was added. The reaction was allowed to stir at room temperature for 6 h. Half of the solvent was removed under reduced pressure. The aqueous layer was extracted with ethyl acetate (10 mL × 3), and the combined organic layers were dried over magnesium sulfate, filtered, and concentrated. The residue was purified by silica gel chromatography (Eluent: ethyl acetate/petroleum ether = 1:5, $R_f = 0.5$) to give compound **4a** as a yellow oil (43 mg, 71%).

2-(2-(Difluoromethylthio)-1-phenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3a

Prepared according to *GP1a* using pinacol vinyl boronate (47 mg, 0.30 mmol, 1.0 equiv.), phenyl lithium in THF (195 μ L, 2.0 M, 0.39 mmol, 1.3 equiv.) and reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.) to give compound **3a** as a yellow oil (68 mg, 72%). Eluent: ethyl acetate/petroleum ether (1:50, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.16 (m, 5 H), 6.74 (t, J = 56.6 Hz, 1 H), 3.31 – 3.19 (m, 1 H), 3.18 – 3.07 (m, 1 H), 2.67 (t, J = 8.1 Hz, 1 H), 1.24 (s, 6 H), 1.20 (s, 6 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.26 (dd, J = 233.4, 46.2 Hz), -93.03 (dd, J = 233.4, 46.5 Hz); ¹³C NMR (151 MHz, CDCl₃, signal of carbon adjacent to boron missing) δ 140.46, 128.63, 128.40, 120.98 (t, J = 272.2 Hz), 83.95, 30.41, 24.61, 24.56; ¹¹B NMR (128 MHz, CDCl₃) δ 32.58 (s) ppm. IR (KBr): $v_{max} = 3058, 3022, 2977, 2930, 1599, 1494, 1469, 1446, 1380, 1372, 1327, 1273, 1210, 1166, 1140, 1069, 1031, 979, 960, 909, 858, 775, 759, 737, 699, 672 cm⁻¹. MS (EI): m/z (%) 314, 279 (100). HRMS: Calcd for C₁₅H₂₁F₂SO₂¹⁰B: 313.1360; Found: 313.1368.$

(±)-2-((3*R*,4*R*)-3-(difluoromethylthio)-4-phenyltetrahydro-2*H*-pyran-4-yl)-4,4,5,5 -tetramethyl-1,3,2-dioxaborolane 3b

Prepared according to *GP1a* using 3,6-dihydro-2*H*-pyran-4-boronic acid pinacol ester (63 mg, 0.30 mmol, 1.0 equiv.), phenyl lithium in THF (195 μ L, 2.0 M, 0.39 mmol, 1.3 equiv.) and reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.) to give compound **3b** as a yellow oil (80 mg, 72%). Eluent: ethyl acetate/petroleum ether (1:20, $R_f = 0.5$). ¹H **NMR** (400 MHz, CDCl₃) δ 7.89 – 7.81 (m, 2 H), 7.45 – 7.30 (m, 3 H), 6.52 (t, *J* = 56.3 Hz, 1 H), 4.51 (dd, *J* = 11.4, 1.7 Hz, 1 H), 4.03 (td, *J* = 11.3, 2.3 Hz, 1 H), 3.77 – 3.65 (m, 2 H), 3.36 (d, *J* = 1.7 Hz, 1 H), 2.53 (ddd, *J* = 14.3, 11.5, 4.8 Hz, 1 H), 1.70

(dd, J = 14.1, 1.7 Hz, 1 H), 1.49 (s, 3 H), 1.33 (s, 3 H), 1.29 (s, 3 H), 1.19 (s, 3 H); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -92.03 (dd, J = 239.9, 55.8 Hz), -93.33 (dd, J = 239.8, 56.8 Hz); ¹³**C NMR** (101 MHz, CDCl₃, signal of sp^3 carbon and sp^2 carbon adjacent to boron were missing) δ 134.08, 130.00, 127.34, 120.06 (dd, J = 275.0, 272.7 Hz), 79.97, 77.18, 68.82, 62.51, 43.53, 32.37, 26.34, 25.09, 25.05, 23.17; ¹¹**B NMR** (128 MHz, CDCl₃) δ 34.26 (s) ppm. **IR** (KBr): $v_{max} = 2977$, 2867, 1465, 1434, 1390, 1375, 1337, 1302, 1213, 1158, 1143, 1108, 1057, 1030, 980, 949, 890, 862, 852, 775, 758, 731, 698 cm⁻¹. **MS** (ESI): 393 (M+Na⁺). **HRMS** (ESI) for C₁₈H₂₉¹⁰BF₂O₃NS (M+NH₄⁺): Calcd: 387.1960; Found: 387.1956.

(±)-2-((3*R*,4*R*)-3-(difluoromethylthio)-4-(4-methoxyphenyl)tetrahydro-2*H*-pyran-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3c

Prepared according to GP1b using 4-bromoanisole (62 mg, 0.33 mmol, 1.1 equiv.), ^tBuLi 1.3 in hexane (0.50)mL, M, 0.66 mmol, 2.2 equiv.), 3,6-dihydro-2H-pyran-4-boronic acid pinacol ester (63 mg, 0.30 mmol, 1.0 equiv.) and reagent 2a (100 mg, 0.450 mmol, 1.50 equiv.) to give compound 3c as a yellow oil (61 mg, 51%). Eluent: ethyl acetate/petroleum ether (1:20, $R_f = 0.4$). ¹H NMR $(400 \text{ MHz}, \text{CDCl}_3) \delta 7.95 \text{ (d, } J = 8.7 \text{ Hz}, 2 \text{ H}), 6.89 \text{ (d, } J = 8.8 \text{ Hz}, 2 \text{ H}), 6.49 \text{ (t, } J =$ 56.3 Hz, 1 H), 4.56 (d, J = 11.2 Hz, 1 H), 4.05 (td, J = 11.7, 2.0 Hz, 1 H), 3.83 (s, 3 H), 3.77 (dd, J = 11.4, 1.8 Hz, 1 H), 3.71 (dd, J = 11.0, 3.3 Hz, 1 H), 3.35 (d, J = 1.8 Hz, 1 H)H), 2.55 (ddd, J = 14.2, 12.0, 4.9 Hz, 1 H), 1.65 (dd, J = 14.2, 1.7 Hz, 1 H), 1.47 (s, 3 H), 1.33 (s, 3 H), 1.27 (s, 3 H), 1.15 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.40 (dd, J = 240.7, 55.9 Hz), -93.45 (dd, J = 240.8, 57.2 Hz); ¹³C NMR (101 MHz, CDCl₃, signal of sp^3 carbon and sp^2 carbon adjacent to boron was missing) δ 161.49, 137.09, 120.08 (dd, J = 275.3, 272.5 Hz), 112.84, 79.77, 77.22, 68.77, 62.53, 55.02, 43.62, 32.38, 26.44, 25.07, 25.03, 23.03; ¹¹**B** NMR (128 MHz, CDCl₃) δ 43.25 (s) ppm. **IR** (KBr): v_{max} = 2978, 1722, 1604, 1511, 1455, 1410, 1390, 1361, 1275, 1248,

1179, 1143, 1091, 1066, 1031, 982, 963, 850, 829, 776, 734, 672 cm⁻¹. **MS** (ESI): 423 (M+Na⁺). **HRMS** (ESI) for $C_{19}H_{31}{}^{10}BF_2O_4NS$ (M+NH₄⁺): Calcd: 417.2066; Found: 417.2062.

(±)-2-((3*R*,4*R*)-3-(difluoromethylthio)-4-(4-fluorophenyl)tetrahydro-2*H*-pyran-4yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3d

Prepared according to GP1b using 4-bromofluorobenzene (58 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), 3,6-dihydro-2H-pyran-4-boronic acid pinacol ester (63 mg, 0.30 mmol, 1.0 equiv.) and reagent 2a (100 mg, 0.450 mmol, 1.50 equiv.) to give compound 3d as a yellow oil (90 mg, 74%). Eluent: ethyl acetate/petroleum ether (1:20, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (dd, J = 8.4, 6.3 Hz, 2 H), 7.03 (t, J = 8.7 Hz, 2 H), 6.51 (t, J = 56.1 Hz, 1 H), 4.54 (d, J = 11.4 Hz, 1 H), 4.05 (td, J = 11.5, 2.1 Hz, 1 H), 3.78 -3.67 (m, 2 H), 3.36 (d, J = 1.8 Hz, 1 H), 2.49 (ddd, J = 14.2, 11.9, 4.9 Hz, 1 H), 1.67 $(dd, J = 14.0, 1.7 Hz, 1 H), 1.48 (s, 3 H), 1.33 (s, 3 H), 1.29 (s, 3 H), 1.16 (s, 3 H); {}^{19}F$ **NMR** (376 MHz, CDCl₃) δ -91.95 (dd, J = 239.6, 55.8 Hz, 1 F), -93.37 (dd, J = 239.6, 56.5 Hz, 1 F), -109.62 – -110.24 (m, 1 F); ¹³C NMR (101 MHz, CDCl₃, signal of sp³ carbon and sp^2 carbon adjacent to boron was missing) δ 164.33 (d, J = 250.5 Hz), 136.97 (d, J = 7.9 Hz), 119.95 (t, J = 273.9 Hz), 114.37 (d, J = 19.8 Hz), 80.14, 77.34, 68.82, 62.42, 43.33, 32.21, 26.37, 25.06, 25.01, 23.07; ¹¹**B NMR** (128 MHz, CDCl₃) δ 43.98 (s) ppm. IR (KBr): $v_{max} = 2978$, 2869, 1595, 1508, 1465, 1369, 1394, 1334, 1273, 1231, 1161, 1142, 1100, 1056, 1016, 912, 865, 832, 745 cm⁻¹. MS (ESI): 411 (M+Na⁺). HRMS (ESI) for C₁₈H₂₈¹⁰BF₃O₃NS (M+NH₄⁺): Calcd: 405.1866; Found: 405.1862.

(±)-2-((3*R*,4*R*)-4-(4-chlorophenyl)-3-(difluoromethylthio)tetrahydro-2*H*-pyran-4yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3e

Prepared according to GP1b using 4-bromochlorobenzene (63 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), 3,6-dihydro-2H-pyran-4-boronic acid pinacol ester (63 mg, 0.30 mmol, 1.0 equiv.) and reagent 2a (100 mg, 0.450 mmol, 1.50 equiv.) to give compound 3e as a vellow oil (85 mg, 68%). Eluent: ethyl acetate/petroleum ether (1:20, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 8.3 Hz, 2 H), 7.32 (d, J = 8.3 Hz, 2 H), 6.52 (t, J =56.0 Hz, 1 H), 4.53 (dd, J = 11.4, 1.7 Hz, 1 H), 4.04 (td, J = 11.4, 2.1 Hz, 1 H), 3.71 (ddd, *J* = 7.9, 6.7, 2.0 Hz, 2 H), 3.36 (d, *J* = 1.9 Hz, 1 H), 2.47 (ddd, *J* = 14.1, 11.8, 4.9 Hz, 1 H), 1.67 (dd, J = 14.1, 1.8 Hz, 1 H), 1.48 (s, 3 H), 1.32 (s, 3 H), 1.29 (s, 3 H), 1.17 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.74 (dd, J = 239.0, 55.8 Hz), -93.36 (dd, J = 239.0, 56.1 Hz); ¹³C NMR (101 MHz, CDCl₃, signal of sp^3 carbon and sp^2 carbon adjacent to boron was missing) δ 136.43, 135.82, 127.58, 119.89 (dd, J = 274.5, 273.3 Hz), 80.24, 77.32, 68.81, 62.37, 43.18, 32.10, 26.32, 25.04, 24.99, 23.06; ¹¹**B** NMR (128 MHz, CDCl₃) δ 44.21 (s) ppm. IR (KBr): $v_{max} = 2978$, 2868, 1586, 1489, 1463, 1391, 1360, 1334, 1302, 1235, 1143, 1092, 1055, 1015, 913, 890, 774, 744 cm⁻¹. MS (ESI): 427 (M+Na⁺). HRMS (ESI) for C₁₈H₂₈¹⁰BF₂O₃NSC1 (M+NH₄⁺): Calcd: 421.1570; Found: 421.1567.

(±)-2-((3*R*,4*R*)-4-(4-bromophenyl)-3-(difluoromethylthio)tetrahydro-2*H*-pyran-4yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3f

Prepared according to *GP1b* using 4-bromo-1,2,3,6-tetrahydropyran (54 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), 4-bromophenylboronic acid pinacol ester (85 mg, 0.30 mmol, 1.0 equiv.) and reagent

2a (100 mg, 0.450 mmol, 1.50 equiv.) to give compound **3f** as a yellow oil (75 mg, 56%). Eluent: ethyl acetate/petroleum ether (1:20, $R_f = 0.5$). ¹**H** NMR (400 MHz, CDCl₃) δ 7.74 (d, J = 8.1 Hz, 2 H), 7.48 (d, J = 8.1 Hz, 2 H), 6.52 (t, J = 56.0 Hz, 1 H), 4.53 (d, J = 11.3 Hz, 1 H), 4.03 (t, J = 10.5 Hz, 1 H), 3.71 (t, J = 9.6 Hz, 2 H), 3.36 (s, 1 H), 2.46 (td, J = 14.2, 4.7 Hz, 1 H), 1.67 (d, J = 14.1 Hz, 1 H), 1.48 (s, 3 H), 1.32 (s, 3 H), 1.28 (s, 3 H), 1.16 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.69 (dd, J = 239.0, 55.8 Hz), -93.34 (dd, J = 239.1, 56.1 Hz); ¹³C NMR (101 MHz, CDCl₃, signal of *sp*³ carbon and *sp*² carbon adjacent to boron was missing) δ 135.94, 130.52, 125.09, 119.85 (t, J = 273.5 Hz), 80.26, 77.32, 68.81, 62.35, 43.09, 32.05, 26.31, 25.02, 24.99, 23.05; ¹¹B NMR (128 MHz, CDCl₃) δ 45.69 (s) ppm. IR (KBr): $v_{max} = 2978$, 2868, 1722, 1588, 1490, 1389, 1359, 1331, 1269, 1214, 1142, 1088, 1058, 1011, 950, 889, 857, 822, 776, 723, 650 cm⁻¹. HRMS (ESI) for C₁₈H₂₈¹⁰BBrF₂O₃NS (M+NH₄⁺): Calcd: 465.1065; Found: 465.1067.

(±)-2-((3*R*,4*R*)-3-(difluoromethylthio)-4-(4-(trifluoromethyl)phenyl)tetrahydro-2 *H*-pyran-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3g

Prepared according to *GP1b* using 4-bromobenzotrifluoride (68 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), 3,6-dihydro-2*H*-pyran-4-boronic acid pinacol ester (63 mg, 0.30 mmol, 1.0 equiv.) and reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.) to give compound **3g** as a yellow oil (85 mg, 62%). Eluent: ethyl acetate/petroleum ether (1:20, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.92 (d, J = 7.9 Hz, 2 H), 7.59 (d, J = 8.0 Hz, 2 H), 6.54 (t, J = 55.7 Hz, 1 H), 4.52 (d, J = 10.0 Hz, 1 H), 4.04 (td, J = 11.4, 1.9 Hz, 1 H), 3.77 – 3.67 (m, 2 H), 3.39 (d, J = 1.5 Hz, 1 H), 2.46 (ddd, J = 14.1, 11.7, 4.8 Hz, 1 H), 1.72 (d, J = 12.7 Hz, 1 H), 1.50 (s, 3 H), 1.33 (s, 3 H), 1.30 (s, 3 H), 1.20 (s, 3 H); ¹⁹F NMR (376 MHz, cdcl₃) δ -62.95 (s, 3 F), -91.56 (dd, J = 238.4, 55.8 Hz, 1 F), -93.33 (dd, J = 238.4, 55.7 Hz, 1 F); ¹³C NMR (101 MHz, CDCl₃, signal of *sp*³ carbon and *sp*²

carbon adjacent to boron was missing) δ 133.96, 131.42 (dd, J = 64.4, 32.3 Hz), 123.99 (q, J = 3.7 Hz), 119.86 (t, J = 273.9 Hz), 80.52, 77.38, 68.84, 62.32, 43.05, 32.01, 26.27, 25.07, 24.99, 23.13; ¹¹**B** NMR (128 MHz, CDCl₃) δ 44.71 (s) ppm. IR (KBr): $v_{max} = 2979$, 2930, 2850, 1617, 1372, 1326, 1272, 1239, 1213, 1166, 1125, 1071, 1018, 851, 831, 782 cm⁻¹. MS (ESI): 456 (M+NH₄⁺). HRMS (ESI) for C₁₉H₂₈¹⁰BF₅O₃NS (M+NH₄⁺): Calcd: 455.1834; Found: 455.1828.

(±)-2-((3*R*,4*R*)-3-(difluoromethylthio)-4-(naphthalen-2-yl)tetrahydro-2*H*-pyran-4 -yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3h

Prepared according to GP1b using 2-bromonaphthalene (68 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), 3,6-dihydro-2H-pyran-4-boronic acid pinacol ester (63 mg, 0.30 mmol, 1.0 equiv.) and reagent 2a (100 mg, 0.450 mmol, 1.50 equiv.) to give compound 3h as a yellow oil (79 mg, 63%). Eluent: ethyl acetate/petroleum ether (1:20, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1 H), 7.94 (d, J = 8.3 Hz, 1 H), 7.91 – 7.85 (m, 1 H), 7.85 - 7.77 (m, 2 H), 7.48 (pd, J = 6.9, 3.5 Hz, 2 H), 6.49 (t, J = 56.2 Hz, 1 H), 4.54(dd, J = 11.4, 1.9 Hz, 1 H), 4.07 (td, J = 11.3, 2.2 Hz, 1 H), 3.80 – 3.69 (m, 2 H), 3.44 (t, J = 11.1 Hz, 1 H), 2.67 (ddd, J = 14.1, 11.5, 4.7 Hz, 1 H), 1.78 (dd, J = 14.1, 1.8 Hz, 1 H), 1.53 (s, 3 H), 1.36 (s, 3 H), 1.31 (s, 3 H), 1.22 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.81 (dd, J = 239.1, 55.8 Hz), -93.36 (dd, J = 239.0, 56.4 Hz); ¹³C NMR (101 MHz, CDCl₃, signal of sp^3 carbon and sp^2 carbon adjacent to boron was missing) δ 135.39, 134.22, 132.60, 130.46, 128.86, 127.49, 126.82, 126.48, 125.68, 120.01 (dd, J = 275.0, 272.9 Hz), 80.16, 77.28, 68.88, 62.53, 43.50, 32.47, 26.41, 25.13, 25.08, 23.17; ¹¹**B** NMR (128 MHz, CDCl₃) δ 44.72 (s) ppm. IR (KBr): v_{max} = 3055, 2977, 2867, 1466, 1369, 1351, 1319, 1301, 1277, 1236, 1193, 1142, 1132, 1104, 1056, 1017, 982, 962, 893, 877, 747 cm⁻¹. MS (ESI): 443 (M+Na⁺). HRMS (ESI) for

C₂₂H₃₁¹⁰BF₂O₃NS (M+NH₄⁺): Calcd: 437.2117; Found: 437.2113.

(±)-2-((3*R*,4*R*)-4-(3,5-di-*tert*-butylphenyl)-3-(difluoromethylthio)tetrahydro-2*H*-p yran-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3i

Prepared according to GP1b using 3,5-di-tert-butylbromobenzene (89 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), 3,6-dihydro-2*H*-pyran-4-boronic acid pinacol ester (63 mg, 0.30 mmol, 1.0 equiv.) and reagent 2a (100 mg, 0.450 mmol, 1.50 equiv.) to give compound 3i as a yellow oil (69 mg, 48%). Eluent: ethyl acetate/petroleum ether (1:20, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.67 (s, 2 H), 7.46 (d, *J* = 1.7 Hz, 1 H), 6.49 (t, *J* = 57.0 Hz, 1 H), 4.47 (d, J = 11.4 Hz, 1 H), 4.01 (t, J = 10.6 Hz, 1 H), 3.66 (dd, J = 16.4, 11.9 Hz, 2 H), 3.31 (s, 1 H), 2.57 - 2.45 (m, 1 H), 1.71 (d, J = 14.1 Hz, 1 H), 1.49 (s, 3 H), 1.34 - 1001.28 (m, 24 H), 1.21 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.60 (dd, J = 218.7, 33.1 Hz), -93.34 (dd, J = 218.6, 34.0 Hz); ¹³C NMR (101 MHz, CDCl₃, signal of sp^3 carbon and sp^2 carbon adjacent to boron was missing) δ 149.30, 128.12, 124.08, 120.43 (t, *J* = 273.7 Hz), 79.82, 77.14, 69.02, 62.87, 44.47, 34.93, 33.05, 31.58, 26.39, 25.28, 25.24, 23.55; ¹¹B NMR (128 MHz, CDCl₃) δ 45.10 (s) ppm. IR (KBr): v_{max} = 2964, 2868, 1595, 1467, 1426, 1391, 1369, 1306, 1266, 1248, 1216, 1144, 1057, 1027, 963, 852, 715 cm⁻¹. MS (ESI): 505 (M+Na⁺). HRMS (ESI) for C₂₆H₄₅¹⁰BF₂O₃NS (M+NH₄⁺): Calcd: 499.3212; Found: 499.3211.

(±)-2-((3*R*,4*S*)-4-butyl-3-(difluoromethylthio)tetrahydro-2*H*-pyran-4-yl)-4,4,5,5-t etramethyl-1,3,2-dioxaborolane 3j

Prepared according to *GP1a* using 3,6-dihydro-2*H*-pyran-4-boronic acid pinacol ester (63 mg, 0.30 mmol, 1.0 equiv.), n-butyl lithium in hexane (165 µL, 2.0 M, 0.330

mmol, 1.10 equiv.) and reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.) to give compound **3j** as a yellow oil (50 mg, 46%). Eluent: ethyl acetate/petroleum ether (1:20, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 6.79 (t, J = 56.1 Hz, 1 H), 4.42 (d, J = 11.4 Hz, 1 H), 3.94 (t, J = 11.1 Hz, 1 H), 3.68 (d, J = 8.4 Hz, 2 H), 3.23 (s, 1 H), 2.12 – 2.00 (m, 1 H), 1.45 (d, J = 14.3 Hz, 1 H), 1.40 – 0.94 (m, 18 H), 0.89 (t, J = 6.8 Hz, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.07 (d, J = 55.9 Hz), -92.45 (d, J = 56.2 Hz); ¹³C NMR (101 MHz, CDCl₃, signal of *sp*³ carbon adjacent to boron was missing) δ 120.32 (t, J = 273.2 Hz), 78.47, 76.95, 68.84, 62.64, 43.45, 31.59, 26.15, 26.09, 25.55, 25.26, 25.13, 23.50, 14.06; ¹¹B NMR (128 MHz, CDCl₃) δ 49.53 (s) ppm. IR (KBr): $v_{max} = 2955$, 2868, 1465, 1390, 1367, 1322, 1300, 1237, 1151, 1101, 1059, 1024, 913, 774, 745 cm⁻¹. MS (ESI): 373 (M+Na⁺). HRMS (ESI) for C₁₆H₃₃¹⁰BF₂O₃NS (M+NH₄⁺): Calcd: 367.2273; Found: 367.2269.

(±)-5-((3*R*,4*R*)-3-(difluoromethylthio)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2 -yl)tetrahydro-2*H*-pyran-4-yl)-1-methyl-1H-indole 3k

Prepared according to *GP1b* using 5-bromo-1-methyl-1*H*-indole (70 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), 3,6-dihydro-2*H*-pyran-4-boronic acid pinacol ester (63 mg, 0.30 mmol, 1.0 equiv.) and reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.) to give compound **3k** as a brown oil (63 mg, 48%). Eluent: ethyl acetate/petroleum ether (1:10, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1 H), 7.86 (d, J = 8.5 Hz, 1 H), 7.30 (d, J = 8.5 Hz, 1 H), 7.03 (d, J = 3.1 Hz, 1 H), 6.56 – 6.51 (m, 1 H), 6.47 (t, J = 56.1 Hz, 1 H), 4.56 (d, J = 11.3 Hz, 1 H), 4.06 (dd, J = 16.1, 6.6 Hz, 1 H), 3.83 – 3.67 (m, 5 H), 3.39 (s, 1 H), 2.72 (ddd, J = 14.4, 11.9, 4.8 Hz, 1 H), 1.71 (d, J = 14.2 Hz, 1 H), 1.50 (s, 3 H), 1.36 (s, 3 H), 1.28 (s, 3 H), 1.18 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.60 (dd, J = 241.2, 56.0 Hz), -93.50 (dd, J = 241.2, 57.4 Hz); ¹³C NMR (101 MHz, CDCl₃, signal of *sp*³ carbon and *sp*² carbon adjacent to boron was missing) δ 138.02, 129.20, 128.87,

128.33, 127.87, 120.21 (dd, J = 275.5, 272.3 Hz), 108.12, 102.03, 79.72, 77.17, 68.80, 62.69, 43.97, 32.80, 32.72, 26.54, 25.11, 25.09, 23.08; ¹¹B NMR (128 MHz, CDCl₃) δ 44.54 (s) ppm. IR (KBr): $v_{max} = 2976$, 2869, 1607, 1514, 1465, 1437, 1389, 1368, 1333, 1279, 1248, 1143, 1099, 1057, 1012, 981, 910, 959, 882, 852, 801, 772, 730 cm⁻¹. MS (ESI): 424 (M+H⁺). HRMS (ESI) for C₂₁H₂₉¹⁰BF₂NO₃S (M+H⁺): Calcd: 423.1960; Found: 423.1956.

(±)-2-((3*R*,4*R*)-4-(benzo[b]thiophen-5-yl)-3-(difluoromethylthio)tetrahydro-2*H*-p yran-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3l

Prepared according to GP1b using 5-bromothianaphthene (70 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), 3,6-dihydro-2H-pyran-4-boronic acid pinacol ester (63 mg, 0.30 mmol, 1.0 equiv.) and reagent 2a (100 mg, 0.450 mmol, 1.5 equiv.) to give compound 3l as a yellow oil (90 mg, 70%). Eluent: ethyl acetate/petroleum ether (1:10, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1 H), 7.86 (s, 2 H), 7.40 (d, J = 5.4 Hz, 1 H), 7.37 (d, J = 5.4Hz, 1 H), 6.50 (t, J = 56.2 Hz, 1 H), 4.54 (dd, J = 11.4, 1.9 Hz, 1 H), 4.06 (td, J = 11.4, 2.2 Hz, 1 H), 3.82 – 3.69 (m, 2 H), 3.41 (d, J = 1.9 Hz, 1 H), 2.63 (ddd, J = 14.1, 11.6, 4.8 Hz, 1 H), 1.74 (dd, J = 14.1, 1.8 Hz, 1 H), 1.51 (s, 3 H), 1.35 (s, 3 H), 1.30 (s, 3 H), 1.20 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.90 (dd, J = 239.3, 55.8 Hz), -93.34 (dd, J = 239.4, 56.5 Hz); ¹³C NMR (101 MHz, CDCl₃, signal of sp^3 carbon and sp^2 carbon adjacent to boron was missing) δ 141.67, 138.93, 130.31, 129.84, 125.85, 124.41, 121.39, 120.00 (dd, *J* = 275.1, 272.9 Hz), 80.12, 77.26, 68.85, 62.53, 43.49, 32.52, 26.42, 25.08, 25.05, 23.11; ¹¹**B** NMR (128 MHz, CDCl₃) δ 45.34 (s) ppm. **IR** (KBr): v_{max} = 2977, 2931, 1722, 1599, 1507, 1425, 1372, 1354, 1330, 1269, 1219, 1190, 1143, 1080, 1027, 981, 964, 851, 799, 775, 708 cm⁻¹. MS (ESI): 449 (M+Na⁺). HRMS (ESI) for C₂₀H₂₉¹⁰BF₂O₃NS₂ (M+NH₄⁺): Calcd: 443.1681; Found: 443.1677.

(±)-2-((3*R*,4*R*)-4-(benzofuran-5-yl)-3-(difluoromethylthio)tetrahydro-2*H*-pyran-4 -yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3m

Prepared according to GP1b using 5-bromo-1-benzofuran (65 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), 3,6-dihydro-2*H*-pyran-4-boronic acid pinacol ester (63 mg, 0.30 mmol, 1.0 equiv.) and reagent 2a (100 mg, 0.450 mmol, 1.50 equiv.) to give the product as a yellow oil (96 mg, 78%). Eluent: ethyl acetate/petroleum ether (1:10, $R_f = 0.3$). ¹H NMR (400 MHz, CDCl₃) δ 8.20 (s, 1 H), 7.88 (dd, J = 8.5, 1.2 Hz, 1 H), 7.60 (d, J = 2.2 Hz, 1 H), 7.48 (d, J = 8.5 Hz, 1 H), 6.79 (dd, J = 2.2, 0.9 Hz, 1 H), 6.49 (t, J = 56.4 Hz, 1 H), 4.55 (dd, J = 11.4, 1.7 Hz, 1 H), 4.06 (td, J = 11.4, 2.2 Hz, 1 H), 3.81 – 3.67 (m, 2 H), 3.39 (d, J = 1.9 Hz, 1 H), 2.62 (ddd, J = 14.2, 11.6, 4.8 Hz, 1 H), 1.72 (dd, J = 14.2, 1.8 Hz, 1 H), 1.50 (s, 3 H), 1.35 (s, 3 H), 1.29 (s, 3 H), 1.19 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.13 (dd, J = 240.1, 55.9 Hz), -93.35 (dd, J = 240.1, 56.9 Hz); ¹³C **NMR** (101 MHz, CDCl₃, signal of sp^3 carbon and sp^2 carbon adjacent to boron was missing) δ 156.25, 144.82, 130.91, 128.39, 126.73, 120.04 (dd, J = 275.2, 272.6 Hz), 110.43, 106.89, 80.03, 77.23, 68.82, 62.53, 43.60, 32.57, 26.43, 25.07, 25.03, 23.09; ¹¹**B** NMR (128 MHz, CDCl₃) δ 44.86 (s) ppm. IR (KBr): $v_{max} = 2977$, 2868, 1723, 1609, 1537, 1430, 1371, 1354, 1337, 1261, 1230, 1143, 1131, 1110, 1057, 1028, 981, 963, 911, 899, 877, 849, 804, 773, 740, 685 cm⁻¹. MS (ESI): 428 (M+NH₄⁺). HRMS (ESI) for C₁₈H₂₈¹⁰BF₂O₃NSCl (M+NH₄⁺): Calcd: 428.1909; Found: 428.1905.

(±)-2-((3*R*,4*R*)-3-(difluoromethylthio)-4-phenyltetrahydro-2*H*-thiopyran-4-yl)-4,4 ,5,5-tetramethyl-1,3,2-dioxaborolane 3n

Prepared according to GP1a using 3,6-dihydro-2H-thiopyran-4-ylboronic acid pinacol ester (68 mg, 0.30 mmol, 1.0 equiv.), phenyl lithium in THF (195 µL, 2.0 M, 0.390 mmol, 1.30 equiv.) and reagent 2a (100 mg, 0.450 mmol, 1.50 equiv.) to give compound **3n** as a yellow oil (65 mg, 55%). Eluent: ethyl acetate/petroleum ether $(1:20, R_f = 0.5)$. ¹**H NMR** (400 MHz, CDCl₃) δ 7.94 (d, J = 6.9 Hz, 2 H), 7.39 (d, J =6.4 Hz, 1 H), 7.34 (t, J = 6.5 Hz, 2 H), 6.36 (t, J = 56.7 Hz, 1 H), 4.03 (d, J = 13.3 Hz, 1 H), 3.69 (s, 1 H), 3.33 (t, J = 12.7 Hz, 1 H), 2.54 (t, J = 13.3 Hz, 1 H), 2.39 (d, J =12.9 Hz, 1 H), 2.18 (d, J = 12.7 Hz, 1 H), 2.09 (d, J = 14.1 Hz, 1 H), 1.48 (s, 3 H), 1.32 (s, 3 H), 1.29 (s, 3 H), 1.15 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.27 (dd, J = 240.2, 57.4 Hz), -93.26 (dd, J = 240.2, 55.7 Hz); ¹³C NMR (101 MHz, CDCl₃, signal of sp^3 carbon and sp^2 carbon adjacent to boron was missing) δ 134.94, 130.43, 127.27, 119.98 (dd, J = 276.0, 272.4 Hz), 80.03, 77.22, 42.17, 31.56, 31.12, 26.28, 25.02, 24.94, 23.16, 21.17; ¹¹**B** NMR (128 MHz, CDCl₃) δ 44.24 (s) ppm. IR (KBr): $v_{max} = 2978, 2927, 1597, 1434, 1375, 1367, 1338, 1275, 1261, 1219, 1145, 1072, 1054,$ 1019, 976, 932, 883, 861, 771, 698, 665 cm⁻¹. MS (ESI): 387 (M+H⁺). HRMS (ESI) for C₁₈H₂₆¹⁰BF₂O₂S₂ (M+H⁺): Calcd: 386.1466; Found: 386.1464.

(±)-(3*R*,4*R*)-3-(difluoromethylthio)-4-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxabo rolan-2-yl)-1-tosylpiperidine 30

Prepared according to *GP1a* using 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) -1-tosyl-1,2,3,6-tetrahydropyridine (109 mg, 0.300 mmol, 1.00 equiv.), phenyllithium in THF (195 μ L, 2.0 M, 0.390 mmol, 1.30 equiv.) and reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.) to give compound **3o** as a yellow oil (103 mg, 64%). Eluent: ethyl acetate/petroleum ether (1:10, R_f = 0.3). ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.81 (m, 2 H), 7.68 (d, *J* = 8.2 Hz, 2 H), 7.44 – 7.29 (m, 5 H), 6.49 (t, *J* = 56.7 Hz, 1 H), 3.63 (d, *J* = 11.3 Hz, 1 H), 3.54 – 3.48 (m, 3 H), 2.89 (dd, *J* = 16.5, 6.8 Hz, 1 H), 2.54 – 2.40 (m, 4 H), 1.84 (d, *J* = 14.1 Hz, 1 H), 1.43 (s, 3 H), 1.29 (s, 3 H), 1.12 (s, 3 H),

1.08 (s, 3 H); ¹⁹**F** NMR (376 MHz, cdcl₃) δ -92.53 (dd, J = 238.8, 55.9 Hz), -93.55 (dd, J = 238.8, 56.2 Hz); ¹³**C** NMR (101 MHz, CDCl₃, signal of *sp*³ carbon and *sp*² carbon adjacent to boron was missing) δ 143.41, 134.49, 133.96, 130.33, 129.58, 127.70, 127.35, 119.70 (t, J = 274.5 Hz), 80.01, 77.35, 48.10, 42.32, 40.36, 31.24, 26.31, 24.97, 24.78, 23.00, 21.54; ¹¹**B** NMR (128 MHz, CDCl₃) δ 45.18 (s) ppm. **IR** (KBr): $v_{max} = 2981, 1462, 1434, 1391, 1343, 1280, 1238, 1155, 1090, 1045, 1018, 956, 913, 881, 773, 746, 709, 695 cm⁻¹.$ **MS**(ESI): 524 (M+H⁺).**HRMS**(ESI) for C₂₅H₃₃¹⁰BF₂NO₄S₂ (M+H⁺): Calcd: 523.1943; Found: 523.1938.

2-(1-(Benzo[b]thiophen-5-yl)-2-(difluoromethylthio)ethyl)-4,4,5,5-tetramethyl-1,3 ,2-dioxaborolane 3p

Prepared according to *GP1b* using 5-bromothianaphthene (1.2 g, 5.5 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), pinacol vinylboronate (0.77 g, 5.0 mmol, 1.0 equiv.) and reagent **2a** (1.7 g, 7.5 mmol, 1.5 equiv.) to give compound **3p** as a yellow solid (1.38 g, 75%). Eluent: ethyl acetate/petroleum ether (1:20, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 1 H), 7.67 (d, J = 1.4 Hz, 1 H), 7.41 (d, J = 5.4 Hz, 1 H), 7.28 (d, J = 5.4 Hz, 1 H), 7.21 (dd, J = 8.3, 1.6 Hz, 1 H), 6.77 (t, J = 56.8 Hz, 1 H), 3.31 (dd, J = 13.0, 8.4 Hz, 1 H), 3.18 (dd, J = 13.1, 8.5 Hz, 1 H), 2.78 (t, J = 8.4 Hz, 1 H), 1.24 (s, 6 H), 1.20 (s, 6 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -92.20 (dd, J = 229.1, 42.0 Hz), -92.96 (dd, J = 229.1, 42.0 Hz); ¹³C NMR (101 MHz, CDCl₃, signal of *sp*³ carbon adjacent to boron was missing) δ 140.10, 137.74, 136.56, 126.59, 124.94, 123.74, 123.21, 122.58, 120.96 (t, J = 272.5 Hz), 84.01, 30.59 (t, J = 2.6 Hz), 24.60, 24.57 ppm. IR (KBr): $v_{max} = 2977$, 1438, 1420, 1354, 1329, 1260, 1143, 1069, 818, 784, 713 cm⁻¹. MS (DART): 388 (M+NH4⁺). HRMS (DART) for C₁₇H₂₅¹⁰BF₂O₂NS₂ (M+NH4⁺): Calcd: 387.1419; Found:387.1412.

2-(2-(Difluoromethylthio)-1,1-diphenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaboro lane 3q

Prepared according to *GP1a* using 1-phenylvinylboronic acid, pinacol ester (69 mg, 0.30 mmol, 1.0 equiv.), phenyl lithium in THF (195 µL, 2.0 M, 0.390 mmol, 1.30 equiv.) and reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.) to give compound **3q** as a yellow oil (73 mg, 62%). Eluent: ethyl acetate/petroleum ether (1:20, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, J = 4.2 Hz, 8 H), 7.21 (dq, J = 8.7, 4.3 Hz, 2 H), 6.16 (t, J = 58.4 Hz, 1 H), 3.59 (s, 2 H), 1.17 (s, 12 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -93.29 (d, J = 58.4 Hz); ¹³C NMR (101 MHz, CDCl₃, signal of *sp*³ carbon and adjacent to boron was missing) δ 143.72, 129.24, 128.1, 126.32, 121.27 (t, J = 272.0 Hz), 84.32, 36.58, 24.32; ¹¹B NMR (128 MHz, CDCl₃) δ 32.63 (s) ppm. IR (KBr): $v_{max} = 2954, 2924, 2852, 1495, 1462, 1444, 1377, 1027, 896, 772, 697 cm⁻¹. MS (ESI): 408 (M+NH₄⁺). HRMS (ESI) for C₂₁H₂₉¹⁰BF₂NO₂S (M+H⁺): Calcd: 407.2011; Found:407.2008.$

(±)-(1*S*,2*R*,3*R*,5*R*)-8-benzyl-2-(difluoromethylthio)-3-phenyl-3-(4,4,5,5-tetrameth yl-1,3,2-dioxaborolan-2-yl)-8-azabicyclo[3.2.1]octane 3s

Prepared according to *GP1a* using 8-(phenylmethyl)-3-(4,4,5,5-tetramethyl-1,3,2 -dioxaborolan-2-yl)-8-azabicyclo[3.2.1]oct-2-ene (98 mg, 0.30 mmol, 1.0 equiv.), phenyl lithium in THF (195 µL, 2.0 M, 0.390 mmol, 1.30 equiv.) and reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.) to give compound **3r** as a white solid (62 mg, 43%). Eluent: ethyl acetate/petroleum ether (1:5, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, J = 7.3 Hz, 2 H), 7.41 – 7.26 (m, 7 H), 7.12 (d, J = 6.7 Hz, 1 H), 6.78 (t, J =56.1 Hz, 1 H), 4.14 – 3.86 (m, 3 H), 3.61 (s, 1 H), 3.09 (s, 1 H), 2.95 – 2.82 (m, 1 H), 1.75 – 1.61 (m, 1 H), 1.55 – 1.41 (m, 1 H), 1.37 (s, 2 H), 1.24 (s, 6 H), 1.15 (s, 6 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.83 (d, J = 217.9 Hz), -94.28 (dd, J = 241.2, 61.7 Hz); ¹³C NMR (101 MHz, CDCl₃, signal of *sp*³ carbon and adjacent to boron was missing) δ 143.64, 135.31, 130.72, 128.76, 128.61, 128.50, 127.22, 124.70, 121.62 (t, J = 273.9 Hz), 80.66, 72.72, 60.41, 55.99, 55.16, 48.05, 31.65, 30.55, 27.72, 26.73; ¹¹B NMR (128 MHz, CDCl₃) δ 15.86 (s) ppm. IR (KBr): $v_{max} = 2971$, 2928, 1495, 1456, 1385, 1372, 1325, 1191, 1179, 1134, 1100, 1076, 1042, 1001, 911, 861, 768, 758, 734, 704, 626 cm⁻¹. MS (ESI): 486 (M+H⁺). HRMS (ESI) for C₂₇H₃₅¹⁰BF₂NO₂S (M+H⁺): Calcd: 485.2480; Found: 485.2479.

2-(Difluoromethylthio)-1-phenylethanol 4a

Prepared according to *GP1c* pinacol vinylboronate (47 mg, 0.30 mmol, 1.0 equiv.), phenyl lithium in THF (195 µL, 2.0 M, 0.390 mmol, 1.30 equiv.), reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.) and NaBO₃ (74 mg, 0.90 mmol, 3.0 equiv.) to give compound **4a** as a yellow oil (43 mg, 71%). Eluent: ethyl acetate/petroleum ether (1:5, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.29 (m, 5 H), 6.86 (t, J = 56.6 Hz, 1 H), 5.00 – 4.84 (m, 1 H), 3.15 (dd, J = 14.2, 3.9 Hz, 1 H), 3.03 (dd, J = 14.2, 8.8 Hz, 1 H), 2.54 (d, J = 3.1 Hz, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.98 (dd, J = 220.1, 33.8 Hz), -92.71 (dd, J = 220.2, 34.2 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 141.91, 128.69, 128.31, 125.77, 120.50 (t, J = 273.3 Hz), 73.65, 36.26 (t, J = 2.4 Hz) ppm. IR (KBr): $v_{max} = 3395$, 2928, 1436, 1423, 1325, 1236, 1144, 1051, 1021, 897, 817, 765, 743, 703 cm⁻¹. MS (EI): m/z (%) 204, 107 (100), 79. HRMS: Calcd for C₉H₁₀F₂SO: 204.0420; Found:204.0423.

1-(Difluoromethylthio)-2-phenylpropan-2-ol 4b

Prepared according to *GP1c* using isopropenyl boronic acid pinacol ester (51 mg, 0.30 mmol, 1.0 equiv.), phenyl lithium in THF (195 μ L, 2.0 M, 0.390 mmol, 1.30 equiv.), reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.) and NaBO₃ (74 mg, 0.90 mmol, 3.0

equiv.) to give the product as a yellow oil (40 mg, 61%). Eluent: ethyl acetate/petroleum ether (1:5, $R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.17 (m, 5 H), 6.70 (t, J = 57.0 Hz, 1 H), 3.31 (d, J = 13.9 Hz, 1 H), 3.16 (d, J = 13.9 Hz, 1 H), 2.44 (s, 1 H), 1.67 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.64 (dd, J = 242.9, 57.3 Hz), -92.50 (dd, J = 242.9, 56.8 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 145.71, 128.49, 127.47, 124.72, 120.30 (t, J = 273.3 Hz), 73.50, 41.36, 29.03 ppm. IR (KBr): $v_{max} = 3445$, 2979, 1494, 1446, 1376, 1326, 1248, 1215, 1182, 1062, 1027, 943, 914, 767, 699 cm⁻¹. MS (EI): m/z (%) 218, 121 (100), 77. HRMS: Calcd for C₁₀H₁₂F₂SO: 218.0577; Found:218.0571.

2-(Difluoromethylthio)-2-methyl-1-phenylpropan-1-ol 4c

Prepared according to *GP1c* using 2,2-dimethylethenylboronic acid pinacol ester (55 mg, 0.30 mmol, 1.0 equiv.), phenyl lithium in THF (195 µL, 2.0 M, 0.390 mmol, 1.30 equiv.), reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.) and NaBO₃ (74 mg, 0.90 mmol, 3.0 equiv.) to give compound **4c** as a yellow oil (32 mg, 45%). Eluent: ethyl acetate/petroleum ether (1:5, R_f = 0.6). ¹**H** NMR (400 MHz, CDCl₃) δ 7.45 – 7.32 (m, 5 H), 7.14 (t, *J* = 56.9 Hz, 1 H), 4.79 (s, 1 H), 2.82 – 2.50 (m, 1 H), 1.42 (s, 3 H), 1.30 (s, 3 H); ¹⁹**F** NMR (376 MHz, CDCl₃) δ -89.54 (dd, *J* = 254.5, 57.5 Hz), -91.25 (dd, *J* = 254.6, 56.4 Hz); ¹³**C** NMR (101 MHz, CDCl₃) δ 139.32, 128.42, 128.12, 128.04, 121.46 (dd, *J* = 269.5, 268.5 Hz), 81.35, 27.37, 23.62 ppm. **IR** (KBr): v_{max} = 3445, 2973, 1453, 1389, 1300, 1125, 1053, 1026, 912, 791, 748, 702 cm⁻¹. MS (EI): m/z (%) 232, 107 (100), 79. **HRMS**: Calcd for C₁₁H₁₄F₂SO: 232.0733; Found: 232.0735. (**±**)-(**1***R*,**2***R*)-**2-cyclopentyl-2-(difluoromethylthio)-1-phenylethanol 4d**

mmol, 1.0 equiv.), phenyl lithium in THF (195 μL, 2.0 M, 0.390 mmol, 1.30 equiv.), reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.) and NaBO₃ (74 mg, 0.90 mmol, 3.0 equiv.) to give compound **4d** as a yellow oil (32 mg, 45%). Eluent: ethyl acetate/petroleum ether (1:5, $R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.29 (m, 5 H), 6.65 (dd, J = 60.3, 55.8 Hz, 1 H), 4.72 (d, J = 6.8 Hz, 1 H), 3.27 (t, J = 6.1 Hz, 1 H), 2.68 (s, 1 H), 2.03 – 1.88 (m, 1 H), 1.79 (d, J = 7.7 Hz, 1 H), 1.71 (dd, J = 16.5, 12.6 Hz, 1 H), 1.64 (s, 2 H), 1.54 (dd, J = 13.4, 6.7 Hz, 1 H), 1.53 – 1.41 (m, 2 H), 1.31 – 1.16 (m, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -88.99 (dd, J = 245.0, 60.3 Hz), -92.88 (dd, J = 245.0, 55.8 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 141.59, 128.53, 128.16, 126.44, 120.85 (dd, J = 276.1, 269.8 Hz), 76.24, 58.02, 40.62, 31.11, 29.15, 25.49, 25.18 ppm. IR (KBr): $v_{max} = 3439$, 2954, 2868, 1452, 1323, 1296, 1190, 1064, 1028, 771, 732, 700 cm⁻¹. MS (EI): m/z (%) 272, 107 (100), 79. HRMS: Calcd for C₁₄H₁₈F₃SO: 272.1046; Found: 272.1042.

(±)-(1S,2S)-2-(difluoromethylthio)-1,5-diphenylpentan-1-ol 4e

Prepared according to *GP1c* using (E)-4,4,5,5-tetramethyl-2-(5-phenylpent-1-enyl) -1,3,2-dioxaborolane (82 mg, 0.30 mmol, 1.0 equiv.), phenyl lithium in THF (195 µL, 2.0 M, 0.390 mmol, 1.30 equiv.), reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv) and NaBO₃ (74 mg, 0.90 mmol, 3.0 equiv.) to give compound **4e** as a yellow oil (65 mg, 70%). Eluent: ethyl acetate/petroleum ether (1:5, $R_f = 0.7$). ¹**H NMR** (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5 H), 7.24 (dd, J = 10.1, 4.6 Hz, 2 H), 7.16 (t, J = 7.3 Hz, 1 H), 7.09 (d, J = 7.1 Hz, 2 H), 6.73 (dd, J = 59.5, 55.7 Hz, 1 H), 4.64 (dd, J = 7.2, 3.2 Hz, 1 H), 3.29 – 3.19 (m, 1 H), 2.67 – 2.54 (m, 2 H), 2.52 – 2.42 (m, 1 H), 1.96 – 1.81 (m, 1 H), 1.77 – 1.56 (m, 2 H), 1.52 – 1.39 (m, 1 H); ¹⁹**F NMR** (376 MHz, CDCl₃) δ -89.41 (dd, J = 246.0, 59.6 Hz), -92.50 (dd, J = 246.0, 55.7 Hz); ¹³**C NMR** (101 MHz, CDCl₃) δ 141.71, 141.09, 128.50, 128.31, 128.30, 128.27, 126.63, 125.80, 120.68 (dd, J = 275.6, 270.1 Hz), 76.88, 52.27, 35.18, 31.30, 28.40 ppm. **IR** (KBr): v_{max} = 3434, 3061, 3026, 2930, 2859, 1494, 1452, 1324, 1189, 1059, 1027, 913, 794, 769, 750, 700 cm⁻¹. **MS** (ESI): 340 (M+NH₄⁺). **HRMS** (ESI) for C₁₈H₂₈¹⁰BF₂O₃NSCl (M+NH₄⁺): Calcd: 340.1541; Found: 340.1538.

(±)-(1R,2S)-2-(difluoromethylthio)-1,5-diphenylpentan-1-ol 4f

Prepared according to *GP1c* using (Z)-4,4,5,5-tetramethyl-2-(5-phenylpent-1-enyl) -1,3,2-dioxaborolane (82 mg, 0.30 mmol, 1.0 equiv.), phenyl lithium in THF (195 µL, 2.0 M, 0.390 mmol, 1.30 equiv.), reagent **2a** (100 mg, 0.450 mmol, 1.50 equiv.) and NaBO₃ (74 mg, 0.90 mmol, 3.0 equiv.) to give compound **4f** as a yellow oil (69 mg, 74%). Eluent: ethyl acetate/petroleum ether (1:5, $R_f = 0.7$). ¹**H** NMR (400 MHz, CDCl₃) δ 7.39 – 7.26 (m, 5 H), 7.23 (t, J = 7.3 Hz, 2 H), 7.15 (t, J = 7.3 Hz, 1 H), 7.07 (d, J = 7.0 Hz, 2 H), 6.74 (dd, J = 57.4, 56.3 Hz, 1 H), 5.00 (t, J = 3.7 Hz, 1 H), 3.41 (dt, J = 10.4, 3.6 Hz, 1 H), 2.63 – 2.43 (m, 2 H), 2.40 (d, J = 4.0 Hz, 1 H), 1.96 – 1.81 (m, 1 H), 1.74 – 1.58 (m, 2 H), 1.52 – 1.38 (m, 1 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -90.16 (dd, J = 243.7, 57.6 Hz), -92.24 (dd, J = 243.7, 56.1 Hz); ¹³C NMR (101 MHz, CDCl₃) δ 141.84, 140.62, 128.31, 128.30, 128.28, 127.93, 126.38, 125.75, 120.65 (t, J= 272.0 Hz), 76.66, 50.59, 35.21, 28.65, 28.27 ppm. IR (KBr): $v_{max} = 3445$, 3207, 2938, 2860, 1495, 1452, 1342, 1054, 1027, 913, 792, 747, 700 cm⁻¹. MS (ESI): 340 (M+NH4⁺). HRMS (ESI) for C₁₈H₂₈¹⁰BF₂O₃NSCl (M+NH4⁺): Calcd: 340.1541; Found: 340.1538.

General Procedure for the Lithiation-Borylation of 2,4,6-Tri*iso*propylbenzoates^[1] *General Procedure 2 (GP2)*

s-Butyl lithium (3.3 mL, 1.3 N, 4.2 mmol, 1.2 equiv.) was added dropwise to a solution of the benzoate (0.91 g, 3.5 mmol, 1.0 equiv) and (+)-sparteine (0.98 g, 4.2 mmol, 1.2 equiv.) in Et₂O (20.0 mL) at -78 °C. The resulting mixture was stirred at -78 °C for 5 h, followed by addition of 4,4,5,5-tetramethyl-2-(2-methylpropyl) -1,3,2-dioxaborolane (0.77 g, 4.2 mmol, 1.2 equiv.) dropwise. The mixture was further stirred at -78 °C for 1 h and was then allowed to warm up to room temperature and refluxed for 16 h. After cooling to room temperature, water (20.0 mL) was added, the organic layers were separated and the aqeous layer was extracted with Et₂O (20.0 mL × 3). The combined organic layers were washed with HCl (10 mL, 1.0 N), NaOH (10 mL, 1.0 N), water and brine, and dried over anhydrous MgSO4. The solvente was removed in vacuo and the residue was purified by flash column chromatography to give the corresponding boronic piconal ester **5a**.

Racemic boronic esters were obtained by using TMEDA instead of (+)-sparteine.

(S)-4,4,5,5-tetramethyl-2-(5-methyl-1-phenylhexan-3-yl)-1,3,2-dioxaborolane 5a

Prepared according to *GP2* using s-butyl lithium (3.3 mL, 1.3 N, 4.2 mmol, 1.2 equiv.) benzoate (0.91 g, 3.5 mmol, 1.0 equiv.), (+)-sparteine (0.98 g, 4.2 mmol, 1.2 equiv.) and 4,4,5,5-tetramethyl-2-(2-methylpropyl)-1,3,2-dioxaborolane (0.77 g, 4.2 mmol, 1.2 equiv.) to give the desired boronic ester **5a** as a colorless oil (225 mg, 21%). Eluent: ethyl acetate/petroleum ether (1:100, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.12 (m, 5 H), 2.68 – 2.52 (m, 2 H), 1.75 – 1.61 (m, 2 H), 1.44 – 1.33 (m, 1 H), 1.26 (s, 12 H), 1.18 – 1.07 (m, 1 H), 0.93 (d, J = 6.6 Hz, 2 H), 0.90 – 0.82 (m, 6 H); ¹³C NMR (151 MHz, CDCl₃, signal of *sp*³ carbon adjacent to boron was missing) δ 143.10, 128.35, 128.20, 125.51, 82.88, 40.49, 35.66, 33.75, 27.27, 24.86, 24.78, 23.05, 22.55; ¹¹**B** NMR (193 MHz, CDCl₃) δ 33.75 (s) ppm. IR (KBr): $v_{max} = 2977$, 2953, 2926, 2867, 1454, 1379, 1370, 1317, 1251, 1165, 1144, 698 cm⁻¹. MS (EI): m/z (%) 302, 174, 155, 91 (100). HRMS: Calcd for C₁₉H₃₁¹⁰BO₂: 301.2453; Found:301.2451. HPLC (C1, 0.46 × 25 cm, 5 µm, carbon dioxide/isopropanol = 95/5 (v/v %), flow 2.0 mL/min, UV detection at 214 nm, 2000 psi, 40 °C), retion time = 6.06 min (major) and 7.32 min (minor). [α]_D²⁰ = -16.46 (c = 0.130 g/100 mL, CH₃Cl). ee = 94%.

(R)-4,4,5,5-tetramethyl-2-(1-phenylhept-6-en-3-yl)-1,3,2-dioxaborolane 5b

Prepared according to GP2 using s-butyl lithium (3.2 mL, 1.3 N, 4.1 mmol, 1.2 equiv.), the benzoate (0.90 g, 3.4 mmol, 1.0 equiv.), (+)-sparteine (0.96 g, 4.1 mmol, 1.2 equiv.) and 2-but-3-enyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (0.75 g, 4.1 mmol, 1.2 equiv.) to give the desired boronic ester **5b** as a colorless oil (150 mg, 15%). Eluent: ethyl acetate/petroleum ether (1:100, $R_f = 0.5$). ¹H NMR (600 MHz, CDCl₃) δ 7.28 - 7.24 (m, 2 H), 7.27 - 7.25 (m, 3 H), 5.81 (ddt, J = 16.9, 10.2, 6.7 Hz, 1 H), 5.01 - 4.90 (m, 2 H), 2.67 - 2.54 (m, 2 H), 2.13 - 2.01 (m, 2 H), 1.78 - 1.72 (m, 1 H), 1.70 – 1.63 (m, 1 H), 1.60 – 1.54 (m, 1 H), 1.52 – 1.45 (m, 1 H), 1.26 (s, 12 H), 1.10 – 1.05 (m, 1 H); ¹³C NMR (151 MHz, CDCl₃, signal of sp³ carbon adjacent to boron was missing) δ 142.99, 139.10, 128.36, 128.20, 125.54, 114.27, 82.96, 35.54, 33.36, 33.34, 30.50, 24.84, 24.81; ¹¹**B** NMR (193 MHz, CDCl₃) δ 34.29 (s) ppm. IR (KBr): $v_{max} = 3025, 2977, 2925, 2855, 1496, 1454, 1409, 1380, 1371, 1317, 1263, 1233, 1214,$ 1165, 1144, 966, 908, 851, 747, 698 cm⁻¹. **MS** (EI): m/z (%) 300, 172, 155, 91 (100). **HRMS**: Calcd for $C_{19}H_{29}^{10}BO_2$: 299.2297; Found: 299.2301. **HPLC** (ODH, 0.46 × 25 cm, 5 μ m, hexane/isopropanol = 9/1 (v/v %), flow 0.7 mL/min, UV detection at 214 nm), retion time = 8.71 min (major) and 10.98 min (minor). $[\alpha]_D^{20} = -7.73$ (c = $0.150 \text{ g/100 mL}, \text{CH}_3\text{Cl}). \text{ ee} = 91\%.$

(S)-2-(1-cyclopropyl-3-phenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 5c

Prepared according to GP2 using s-butyl lithium (4.6 mL, 1.3 N, 6.0 mmol, 1.2 equiv.), the benzoate (1.3 g, 5.0 mmol, 1.0 equiv.), (+)-sparteine (1.4 g, 6.0 mmol, 1.2 equiv.) and cyclopropylboronic acid pinacol ester (1.0 g, 6.0 mmol, 1.2 equiv.) to give the desired boronic ester 5c as a colorless oil (280 mg, 19%). Eluent: ethyl acetate/petroleum ether (1:100, $R_f = 0.5$). ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.24 (m, 2 H), 7.20 - 7.14 (m, 3 H), 2.64 (td, J = 8.3, 4.0 Hz, 2 H), 1.90 - 1.75 (m, 2 H), 1.27 (s, 12 H), 0.71 (ddt, J = 9.6, 8.1, 4.8 Hz, 1 H), 0.49 – 0.36 (m, 3 H), 0.13 – 0.08 (m, 1 H), 0.04 (td, J = 9.0, 4.1 Hz, 1 H); ¹³C NMR (126 MHz, CDCl₃, signal of sp^3 carbon adjacent to boron was missing) & 143.11, 128.36, 128.19, 125.51, 82.97, 35.78, 33.70, 24.84, 23.84, 12.45, 5.29, 3.49; ¹¹**B** NMR (160 MHz, CDCl₃) δ 33.49 (s) ppm. **IR** (KBr): v_{max} = 33025, 2977, 2926, 2857, 1496, 1454, 1378, 1370, 1318, 1270, 1242, 1214, 1165, 1144, 1106, 1014, 967, 848, 747, 698 cm⁻¹. MS (EI): m/z (%) 286, 201, 158, 91 (100). HRMS: Calcd for C₁₈H₂₇¹⁰BO₂: 285.2140; Found:285.2148. HPLC (C-1, 0.46×25 cm, 5 µm, carbon dioxide/isopropanol = 95/5 (v/v %), flow 2.0 mL/min, UV detection at 214 nm, 2000 psi, 40 °C), retion time = 7.66 min (major) and 9.40 min (minor). $[\alpha]_D^{20} = -8.75$ (c = 0.160 g/100 mL, CH₃Cl). ee = 96%.

General Procedure for Synthesis of α-Chiral Ketones by Stereospecific 1,2-Migration.

General Procedure 3 (GP3)

An oven-dried, 25-mL Schlenk flask equipped with a stir bar, septum, and digital thermocouple probe was charged with Et₂O (2.0 mL) and vinyl bromide (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.). The mixture was cooled to -78 °C. A solution of 'BuLi (1.3 M in hexane, 0.55 mL, 0.72 mmol, 2.4 equiv.) was added dropwise. The mixture was stirred at -78 °C for 30 min. (S)-4,4,5,5-Tetramethyl-2-(5-methyl -1-phenylhexan-3-yl)-1,3,2-dioxaborolane (91 mg, 0.30 mmol, 1.0 equiv.) was added dropwise. The resulting mixture was stirred at -78 °C for 15 min, then warmed to room temperature for another 15 min. The solvent was carefully removed under reduced pressure to give the corresponding vinylboronate complex as a white solid, which was used directly without further purification. To the solid was added CH₃CN (3.0 mL) and reagent 2a (100 mg, 0.45 mmol, 1.5 equiv.). This mixture was stirred at room temperature for 12 h. The solvent was removed under reduced pressure, then NaBO₃ (74 mg, 0.90 mmol, 3.0 equiv.) and THF/H₂O (v/v = 1:1, 6.0 mL) was added. The mixture was stirred at room temperature for 6 h. Half of the solvent was removed under reduced pressure. The aqueous layer was extracted with ethyl acetate (10 mL \times 3), and the combined organic layers were dried over anhydrous magnesium sulfate, filtered, and concentrated. To the residue was added acetone (5.0 mL) and Jone's reagent (3.0 N, 2.5 mL, 0.45 mmol, 1.5 equiv.) at 0 °C. The mixture was stirred at 0 °C for 1 h. The reaction was quenched by the addition of EtOH (2.0 mL). the solvente was removed in vacuo and the residue was purified by flash column chromatography (Eluent: ethyl acetate/petroleum ether = 1:10, $R_f = 0.5$) to give compound 6a as a colorless oil (45 mg, 50%)..

(S)-1-(difluoromethylthio)-5-methyl-3-phenethylhexan-2-one 6a

Prepared according to GP3 using vinyl bromide (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.), 'BuLi (1.3 M in hexane, 0.55 mL, 0.72 mmol, 2.4 equiv.), (S)-4,4,5,5-tetramethyl-2-(5-methyl-1-phenylhexan-3-yl)-1,3,2-dioxaborolane (91 mg, 0.30 mmol, 1.0 equiv.), reagent 2a (100 mg, 0.45 mmol, 1.5 equiv.), NaBO₃ (74 mg, 0.90 mmol, 3.0 equiv.) and Jone's reagent (3.0 N, 0.15 mL, 0.45 mmol, 1.5 equiv.) to give compound **6a** as a colorless oil (45 mg, 50%). Eluent: ethyl acetate/petroleum ether (1:10, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.29 (t, J = 7.5 Hz, 2 H), 7.20 (t, J = 7.1 Hz, 1 H), 7.15 (d, J = 7.5 Hz, 2 H), 6.86 (t, J = 56.5 Hz, 1 H), 3.74 – 3.61 (m, 2 H), 2.80 – 2.71 (m, 1 H), 2.65 – 2.50 (m, 2 H), 1.96 (dt, *J* = 14.7, 8.4 Hz, 1 H), 1.80 -1.70 (m, 1 H), 1.59 - 1.48 (m, 2 H), 1.37 - 1.25 (m, 1 H), 0.89 (d, J = 6.3 Hz, 3 H), 0.87 (d, J = 6.2 Hz, 3 H); ¹³C NMR (151 MHz, CDCl₃) δ 207.07, 141.21, 128.49, 128.32, 126.13, 119.46 (t, J = 273.9 Hz), 48.55, 40.76, 36.50, 33.42, 33.27, 25.99, 22.66, 22.50; ¹⁹F NMR (376 MHz, CDCl₃) δ -94.01 (d, J = 56.5 Hz) ppm. IR (KBr): $v_{max} = 2956, 2930, 2869, 1713, 1454, 1326, 1063, 1029, 749, 700 \text{ cm}^{-1}$. MS (EI): m/z (%) 300, 203, 196, 91 (100). HRMS: Calcd for C₁₆H₂₂F₂SO: 300.1359; Found: 300.1352. HPLC (AY3, 0.46×15 cm, 3 μ m, hexane/isopropanol = 95/5 (v/v %), flow 0.7 mL/min, UV detection at 214 nm), retion time = 4.58 min (minor) and 4.84 min (major). $[\alpha]_D^{20} = -11.80$ (c = 0.100 g/100 mL, CH₃Cl). ee = 95%.

(R)-1-(difluoromethylthio)-3-phenethylhept-6-en-2-one 6b

Prepared according to *GP3* using vinyl bromide (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.), 'BuLi (1.3 M in hexane, 0.55 mL, 0.72 mmol, 2.4 equiv.), (R)-4,4,5,5-tetramethyl-2-(1-phenylhept-6-en-3-yl)-1,3,2-dioxaborolane (90 mg, 0.30 mmol, 1.0 equiv.), reagent **2a** (100 mg, 0.45 mmol, 1.5 equiv.), NaBO₃ (74 mg, 0.90 mmol, 3.0 equiv.) and Jone's reagent (3.0 N, 0.15 mL, 0.45 mmol, 1.5 equiv.) to give

compound **6b** as a colorless oil (40 mg, 45%). Eluent: ethyl acetate/petroleum ether (1:10, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.12 (m, 5 H), 6.86 (t, J = 56.4 Hz, 1 H), 5.73 (ddt, J = 16.9, 10.3, 6.7 Hz, 1 H), 5.06 – 4.94 (m, 2 H), 3.73 – 3.60 (m, 2 H), 2.79 – 2.68 (m, 1 H), 2.66 – 2.51 (m, 2 H), 2.06 – 1.95 (m, 2 H), 1.84 – 1.73 (m, 2 H), 1.62 – 1.54 (m, 2 H); ¹³C NMR (151 MHz, CDCl₃) δ 206.79, 141.13, 137.46, 128.51, 128.32, 126.16, 119.44 (t, J = 274.1 Hz), 49.59, 36.88, 33.33, 32.94, 31.27, 30.57; ¹⁹F NMR (376 MHz, CDCl₃) δ -93.94 (d, J = 56.4 Hz) ppm. IR (KBr): $v_{max} =$ 3063, 3027, 2928, 2859, 1712, 1641, 1496, 1454, 1392, 1326, 1205, 1062, 1029, 915, 750, 700 cm⁻¹. MS (EI): m/z (%) 298, 201, 131, 91 (100). HRMS: Calcd for C₁₆H₂₀F₂SO: 298.1203; Found: 298.1205. HPLC (ODH, 0.46 × 25 cm, 5 µm, hexane/isopropanol = 95/5 (v/v %), flow 0.7 mL/min, UV detection at 214 nm), retion time = 10.12 min (major) and 10.64 min (minor). [α]_D²⁰ = -6.67 (c = 0.120 g/100 mL, CH₃Cl). ee = 91%.

(S)-3-cyclopropyl-1-(difluoromethylthio)-5-phenylpentan-2-one 6c

Prepared according to *GP3* using vinyl bromide (1.0 M in THF, 0.36 mL, 0.36 mmol, 1.2 equiv.), 'BuLi (1.3 M in hexane, 0.55 mL, 0.72 mmol, 2.4 equiv.), (S)-2-(1-cyclopropyl-3-phenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (86 mg, 0.30 mmol, 1.0 equiv), reagent **2a** (100 mg, 0.45 mmol, 1.5 equiv.), NaBO₃ (74 mg, 0.90 mmol, 3.0 equiv.) and Jone's reagent (3.0 N, 0.15 mL, 0.45 mmol, 1.5 equiv.) to give compound 6c as a colorless oil (46mg, 54%). Eluent: ethyl acetate/petroleum ether (1:10, $R_f = 0.5$). ¹**H NMR** (500 MHz, CDCl₃) δ 7.32 – 7.25 (m, 2 H), 7.22 – 7.14 (m, 3 H), 6.86 (t, J = 56.5 Hz, 1 H), 3.82 (d, J = 16.6 Hz, 1 H), 3.72 (d, J = 16.6Hz, 1 H), 2.71 – 2.56 (m, 2 H), 2.20 – 2.09 (m, 1 H), 1.97 – 1.83 (m, 2 H), 0.88 – 0.81 (m, 1 H), 0.69 – 0.56 (m, 2 H), 0.27 (td, J = 9.4, 5.0 Hz, 1 H), 0.20 (td, J = 9.4, 5.0 Hz, 1 H); ¹³C **NMR** (126 MHz, CDCl₃) δ 205.98, 141.43, 128.45, 128.31, 126.04, 119.48 (t, J = 274.1 Hz), 55.32, 36.59, 33.41, 33.19, 13.70, 4.80, 4.38; ¹⁹F **NMR** (471 MHz, CDCl₃) δ -93.94 (d, J = 56.0 Hz) ppm. **IR** (KBr): v_{max} = 3082, 3026, 2925, 2861, 1713, 1496, 1454, 1394, 1326, 1175, 1062, 1027, 822, 751, 700 cm⁻¹. **MS** (EI): m/z (%) 284, 180 (100), 159, 117, 91. **HRMS**: Calcd for C₁₅H₁₈F₂S: 284.1046; Found: 284.1051. **HPLC** (ADH, 0.46 × 25 cm, 5 µm, hexane/isopropanol = 98/2 (v/v %), flow 0.7 mL/min, UV detection at 214 nm), retion time = 9.41 min (major) and 9.82 min (minor). $[\alpha]_D^{20} = 81.46$ (c = 0.110 g/100 mL, CH₃Cl). ee = 97%.

General Procedure for Reaction of Lithium vinyl Boronate with *N*-Trifluoromethylthiosaccharin 7

General Procedure 4a (GP4a)

$$\left(\begin{array}{c} R_{1} \\ R_{2} \end{array}^{Bpin} + R_{3}Li \end{array} \right) \xrightarrow{Et_{2}O, \ 0 \ ^{\circ}C \ to \ RT} \left(\begin{array}{c} R_{1} \\ R_{2} \end{array}^{Bpin} \xrightarrow{Bpin} \\ Li^{\oplus} \end{array} \right) \xrightarrow{O, O} \xrightarrow{S, N-SCF_{3}} \\ H_{3}CN, -40 \ ^{\circ}C, \ 12 \ h} \left(\begin{array}{c} R_{1} \\ R_{2} \end{array}^{B(pin)} \\ R_{2} \end{array} \right) \xrightarrow{R_{3}} \\ R_{2} \end{array} \right) \xrightarrow{S, N-SCF_{3}}$$

An oven-dried, 25-mL Schlenk flask equipped with a stir bar, septum, and digital thermocouple probe was charged with Et₂O (2.0 mL) and vinyl pinacol boranate (47 mg, 0.30 mmol, 1.0 equiv.). The resulting solution was cooled to 0 °C and a solution of phenyl lithium in THF (195 μ L, 2.0 M, 0.390 mmol, 1.30 equiv.) was added dropwise. The mixture was stirred at 0 °C for 15 min, then warmed to room temperature for additional 15 min. The solvent was carefully removed under reduced pressure, affording lithium phenyl vinyl boronate complex as a white solid, which was used directly without further purification. To the solid was added CH₃CN (3.0 mL) and the mixture was cooled to -40 °C. *N*-Trifluoromethylthiosaccharin 7 (128 mg, 0.450 mmol, 1.50 equiv.) was added. This reaction was stirred at -40 °C for 12 h. The solvent was removed under reduced pressure, the residue was purified by silica gel chromatography (Eluent: ethyl acetate/petroleum ether = 1:50, R_f = 0.6) to give compound **8a** as a yellow oil (76 mg, 76%).

General Procedure 4b (GP4b)

An oven-dried, 25-mL Schlenk flask equipped with a stir bar, septum, and digital thermocouple probe was charged with Et_2O (2.0 mL) and 4-bromochlorobenzene (63 mg, 0.33 mmol, 1.1 equiv.). The resulting solution was cooled to -78 °C. A solution of 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.) was added dropwise. The mixture was stirred at -78 °C for 30 min. A solution of pinacol vinylboronate (47 mg, 0.30 mmol, 1.0 equiv.) in Et_2O (2.0 mL) was added dropwise. The mixture was stirred

at -78 °C for 15 min, then warmed to room temperature for another 15 min. The solvent was carefully removed under reduced pressure, affording the corresponding lithium phenyl vinylboronate complex as a white solid, which was used directly without further purification. To the solid was added CH₃CN (3.0 mL) and cooled to -40 °C. *N*-Trifluoromethylthiosaccharin 7 (128 mg, 0.450 mmol, 1.50 equiv.) was added and the mixture was stirred for at -40 °C 12 h. The solvent was removed under reduced pressure, the residue was purified by silica gel chromatography to give compound **8b**.

4,4,5,5-Tetramethyl-2-(1-phenyl-2-(trifluoromethylthio)ethyl)-1,3,2-dioxaborolan e 8a

Prepared according to *GP4a* using pinacol vinyl boronate (47 mg, 0.30 mmol, 1.0 equiv.) phenyl lithium in THF (195 µL, 2.0 M, 0.390 mmol, 1.30 equiv.) and *N*-trifluoromethylthiosaccharin **7** (128 mg, 0.450 mmol, 1.50 equiv.) to give compound **8a** as a yellow oil (76 mg, 76%). Eluent: ethyl acetate/petroleum ether (1:50, $R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.27 (m, 2 H), 7.20 (dd, *J* = 7.6, 5.8 Hz, 3 H), 3.34 (dd, *J* = 12.9, 8.4 Hz, 1 H), 3.21 (dd, *J* = 12.9, 8.6 Hz, 1 H), 2.68 (t, *J* = 8.5 Hz, 1 H), 1.23 (s, 6 H), 1.20 (s, 6 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -41.14 (s); ¹³C NMR (101 MHz, CDCl₃, signal of *sp*³ carbon and adjacent to boron was missing) δ 139.91, 131.26 (q, *J* = 306.0 HZ), 128.71, 128.34, 126.40, 84.07, 32.82, 24.62, 24.52; ¹¹B NMR (128 MHz, CDCl₃) δ 32.86 (s) ppm. IR (KBr): $v_{max} = 2980$, 1372, 1329, 1141, 1112, 966, 848, 700 cm⁻¹. HRMS (ESI) for C₁₅H₂₄¹⁰BF₃NO₂S (M+ NH₄⁺): Calcd: 349.1604; Found: 349.1601.

2-(1-(4-Chlorophenyl)-2-(trifluoromethylthio)ethyl)-4,4,5,5-tetramethyl-1,3,2-dio xaborolane 8b

Prepared according to *GP4b* using 4-bromochlorobenzene (63 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), pinacol vinyl boronate (47 mg, 0.30 mmol, 1.0 equiv.) and *N*-trifluoromethylthiosaccharin **7** (128 mg, 0.450 mmol, 1.50 equiv.) to give compound **8b** as a yellow oil (93 mg, 83%). Eluent: ethyl acetate/petroleum ether (1:50, $R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃) δ 7.26 (d, *J* = 8.1 Hz, 2 H), 7.13 (d, *J* = 8.3 Hz, 2 H), 3.33 (dd, *J* = 12.9, 8.0 Hz, 1 H), 3.30 – 3.11 (m, 1 H), 2.66 (t, *J* = 8.4 Hz, 1 H), 1.23 (s, 6 H), 1.20 (s, 6 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -41.11 (s); ¹³C NMR (101 MHz, CDCl₃, signal of *sp*³ carbon and adjacent to boron was missing) δ 138.37, 132.22, 131.13 (q, *J* = 306.1 Hz), 129.67, 128.84, 84.21, 32.59, 24.60, 24.50; ¹¹B NMR (128 MHz, CDCl₃) δ 32.31 (s) ppm. IR (KBr): $v_{max} = 2980$, 2934, 1491, 1469, 1410, 1372, 1333, 1294, 1271, 1236, 1214, 1115, 1015, 966, 849, 828, 755 cm⁻¹. MS (EI): m/z (%) 366, 251, 138 (100). HRMS: Calcd for C₁₅H₁₉F₃SO₂¹⁰BCl: 365.0876; Found:365.0874.

4,4,5,5-Tetramethyl-2-(1-(4-(trifluoromethyl)phenyl)-2-(trifluoromethylthio)ethyl)-1,3,2-dioxaborolane 8c

Prepared according to *GP4b* using 4-bromobenzotrifluoride (68 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), pinacol vinyl boronate (47 mg, 0.30 mmol, 1.0 equiv.) and *N*-trifluoromethylthiosaccharin **7** (128 mg, 0.450 mmol, 1.50 equiv.) to give compound **8c** as a yellow oil (100 mg, 83%). Eluent: ethyl acetate/petroleum ether (1:50, $R_f = 0.6$). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 8.1 Hz, 2 H), 7.33 (d, *J* = 8.0 Hz, 2 H), 3.40 (dd, *J* = 13.1, 7.9 Hz, 1 H), 3.23 (dd, *J* = 13.1, 9.0 Hz, 1 H), 2.78 (t, *J* = 8.4 Hz, 1 H), 1.25 (s, 6 H), 1.22 (s, 6 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -41.14 (s, 3 F), -62.48 (s, 3 F); ¹³C NMR (101 MHz, CDCl₃, signal of *sp*³ carbon and adjacent to boron was missing) δ 144.11, 131.08 (q, *J* = 306.1 Hz), 128.73 (q, *J* = 32.4 Hz), 128.65, 125.64 (dd, *J* = 7.6, 3.8 Hz), 84.38, 32.34, 24.60, 24.51; ¹¹B NMR (128 MHz, CDCl₃) δ 32.21 (s) ppm. IR (KBr): $v_{max} = 2981$, 2935, 1618, 1373, 1325, 1272, 1237, 1214, 1113, 1069, 1018, 966, 850, 756

cm⁻¹. **MS** (DART): 418 (M+NH₄⁺). **HRMS** (DART) for C₁₆H₂₃¹⁰BF₆O₂NS (M+NH₄⁺): Calcd: 417.1478; Found: 417.1474.

4,4,5,5-Tetramethyl-2-(1-(3-((2-methyl-1,3-dioxolan-2-yl)methyl)phenyl)-2-(triflu oromethylthio)ethyl)-1,3,2-dioxaborolane 8d

Prepared according to GP4b using 2-(3-bromobenzyl)-2-methyl-1,3-dioxolane (85 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), boronate (47 mg, 0.30 mmol, 1.0 pinacol vinyl equiv.) and N-trifluoromethylthiosaccharin 7 (128 mg, 0.450 mmol, 1.50 equiv.) to give compound 8d as a yellow oil (100 mg, 77%). Eluent: ethyl acetate/petroleum ether (1:10, $R_f = 0.5$). ¹**H** NMR (400 MHz, CDCl₃) δ 7.20 (t, J = 7.4 Hz, 1 H), 7.12 (d, J =8.0 Hz, 2 H), 7.06 (d, J = 7.5 Hz, 1 H), 3.86 (d, J = 10.0 Hz, 2 H), 3.80 – 3.63 (m, 2 H), 3.35 (dd, J = 12.7, 8.1 Hz, 1 H), 3.22 (dd, J = 12.6, 9.1 Hz, 1 H), 2.89 (s, 2 H), 2.66 (t, J = 8.4 Hz, 1 H), 1.30 (s, 3 H), 1.23 (s, 6 H), 1.19 (s, 6 H); ¹⁹F NMR (376) MHz, CDCl₃) δ -41.13 (s); ¹³C NMR (101 MHz, CDCl₃, signal of sp³ carbon and adjacent to boron was missing) δ 139.35, 137.29, 131.26 (q, J = 305.8 Hz), 130.54, 128.66, 128.24, 126.43, 109.66, 83.98, 64.84, 64.82, 45.34, 32.86, 24.62, 24.50; ¹¹B **NMR** (128 MHz, CDCl₃) δ 32.99 (s) ppm. **IR** (KBr): v_{max} = 2980, 2934, 2883, 1443, 1372, 1332, 1270, 1214, 1114, 1049, 969, 848, 833, 709 cm⁻¹. HRMS (ESI) for $C_{20}H_{29}^{10}BF_{3}O_{4}S$ (M+H⁺): Calcd: 432.1863; Found: 432.1863.

2-(1-(Benzo[d][1,3]dioxol-5-yl)-2-(trifluoromethylthio)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8e

Prepared according to *GP4b* using 4-bromo-1,2-(methylenedioxy)benzene (67 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), pinacol vinyl boronate (47 mg, 0.30 mmol, 1.0 equiv.) and

N-trifluoromethylthiosaccharin **7** (128 mg, 0.450 mmol, 1.50 equiv.) to give compound **8e** as a yellow oil (87 mg, 77%). Eluent: ethyl acetate/petroleum ether (1:10, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 6.79 – 6.69 (m, 2 H), 6.65 (d, J = 7.9 Hz, 1 H), 5.93 (s, 2 H), 3.28 (dd, J = 12.8, 8.1 Hz, 1 H), 3.15 (dd, J = 12.8, 9.0 Hz, 1 H), 2.59 (t, J = 8.4 Hz, 1 H), 1.24 (s, 6 H), 1.21 (s, 6 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -41.11 (s); ¹³C NMR (101 MHz, CDCl₃) δ 147.85, 146.15, 133.58, 131.25 (d, J = 306.0 Hz), 121.45, 108.75, 108.48, 100.91, 84.09, 33.18, 24.63, 24.54; ¹¹B NMR (128 MHz, CDCl₃) δ 32.62 (s) ppm. IR (KBr): $v_{max} = 2978$, 2932, 1489, 1436, 1372, 1247, 1116, 1041, 967, 935, 854, 811, 756, 673 cm⁻¹. MS (DART): 394 (M+NH₄⁺). HRMS (DART) for C₁₆H₂₄¹⁰BF₃O₄NS (M+NH₄⁺): Calcd: 393.1502; Found: 393.1496.

4,4,5,5-Tetramethyl-2-(1-(naphthalen-2-yl)-2-(trifluoromethylthio)ethyl)-1,3,2-di oxaborolane 8f

Prepared according to *GP4b* using 2-bromonaphthalene (68 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), pinacol vinyl boronate (47 mg, 0.30 mmol, 1.0 equiv.) and *N*-trifluoromethylthiosaccharin 7 (128 mg, 0.450 mmol, 1.50 equiv.) to give compound **8f** as a yellow oil (98 mg, 85%). Eluent: ethyl acetate/petroleum ether (1:50, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.86 – 7.77 (m, 3 H), 7.64 (s, 1 H), 7.54 – 7.29 (m, 3 H), 3.43 (d, *J* = 8.1 Hz, 1 H), 3.39 – 3.24 (m, 1 H), 2.86 (s, 1 H), 1.23 (s, 6 H), 1.19 (s, 6 H); ¹³C NMR (101 MHz, CDCl₃, signal of *sp*³ carbon and adjacent to boron was missing) δ 137.36, 133.68, 132.20, 131.26 (d, *J* = 306.0 Hz), 130.39, 128.38, 127.60, 126.79, 126.60, 126.05, 125.47, 84.15, 32.61, 24.63, 24.54; ¹⁹F NMR (376 MHz, CDCl₃) δ -41.06 (s); ¹¹B NMR (128 MHz, CDCl₃) δ 33.09 (s) ppm. IR (KBr): v_{max} = 2978, 2931, 1477, 1439, 1381, 1372, 1333, 1271, 1326, 1213, 1141, 1112, 967, 855, 819, 746, 687 cm⁻¹. MS (DART): 400 (M+NH₄⁺). HRMS (DART) for C₁₉H₂₆¹⁰BF₃O₂NS (M+NH₄⁺): Calcd: 399.1760; Found:399.1754.

2-(1-(Benzofuran-5-yl)-2-(trifluoromethylthio)ethyl)-4,4,5,5-tetramethyl-1,3,2-dio

xaborolane 8g

Prepared according to *GP4b* using 5-bromo-1-benzofuran (65 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), pinacol vinyl boronate (47 mg, 0.30 mmol, 1.0 equiv.) and *N*-trifluoromethylthiosaccharin 7 (128 mg, 0.450 mmol, 1.50 equiv.) to give compound **8g** as a yellow oil (92 mg, 82%). Eluent: ethyl acetate/petroleum ether (1:20, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.58 (s, 1 H), 7.42 (dd, J = 4.7, 3.0 Hz, 2 H), 7.13 (d, J = 8.6 Hz, 1 H), 6.71 (d, J = 2.0 Hz, 1 H), 3.38 (dd, J = 12.8, 8.2 Hz, 1 H), 3.24 (dd, J = 12.8, 8.8 Hz, 1 H), 2.77 (t, J = 8.4 Hz, 1 H), 1.24 (s, 6 H), 1.20 (s, 6 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -41.07 (s); ¹³C NMR (101 MHz, CDCl₃, signal of *sp*³ carbon and adjacent to boron was missing) δ 153.84, 145.23, 134.35, 131.30 (q, J = 306.0 Hz), 127.87, 124.63, 120.77, 111.50, 106.50, 84.06, 33.36 (q, J = 1.2 Hz), 24.61, 24.52; ¹¹B NMR (128 MHz, CDCl₃) δ 32.97 (s) ppm. IR (KBr): $v_{max} = 2979$, 2933, 1536, 1467, 1445, 1372, 1329, 1263, 1214, 1111, 1032, 968, 883, 849, 813, 768, 755, 741, 698, 671, 642 cm⁻¹. MS (ESI): 373 (M+H⁺). HRMS (ESI) for C₁₇H₂₁¹⁰BF₃O₃NS (M+NH₄⁺): Calcd: 372.1287; Found: 372.1284.

2-(1-(Benzo[b]thiophen-5-yl)-2-(trifluoromethylthio)ethyl)-4,4,5,5-tetramethyl-1, 3,2-dioxaborolane 8h

Prepared according to *GP4b* using 5-bromothianaphthene (70 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), pinacol vinyl boronate (47 mg, 0.30 mmol, 1.0 equiv.) and *N*-trifluoromethylthiosaccharin 7 (128 mg, 0.450 mmol, 1.50 equiv.) to give compound **8h** as a yellow oil (102 mg, 88%). Eluent: ethyl acetate/petroleum ether (1:20, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.3 Hz, 1 H), 7.65 (s, 1 H), 7.41 (d, J = 5.4 Hz, 1 H), 7.27 (d, J = 5.4 Hz,

1 H), 7.19 (dd, J = 8.3, 1.3 Hz, 1 H), 3.41 (dd, J = 12.9, 8.2 Hz, 1 H), 3.27 (dd, J = 12.9, 8.8 Hz, 1 H), 2.80 (t, J = 8.5 Hz, 1 H), 1.23 (s, 6 H), 1.19 (s, 6 H); ¹⁹F NMR (376 MHz, CDCl₃)) δ -41.05 (s); ¹³C NMR (101 MHz, CDCl₃, signal of *sp*³ carbon and adjacent to boron was missing) δ 140.16, 137.93, 136.02, 131.28 (q, J = 306.0 Hz), 126.72, 124.82, 123.72, 123.21, 122.70, 84.12, 33.07, 24.61, 24.53; ¹¹B NMR (128 MHz, CDCl₃) δ 33.06 (s) ppm. IR (KBr): $v_{max} = 2978$, 1597, 1437, 1328, 1144, 1112, 1051, 897, 812, 755, 700 cm⁻¹. MS (DART): 406 (M+NH4⁺). HRMS (DART) for C₁₇H₂₄¹⁰BF₃O₂NS₂ (M+NH4⁺): Calcd: 405.1324; Found: 405.1319.

(±)-2-((1*R*,2*R*)-1-(benzo[b]thiophen-5-yl)-5-phenyl-2-(trifluoromethylthio)pentyl) -4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8i

Prepared according to GP4b using 5-bromothianaphthene (70 mg, 0.33 mmol, 1.1 equiv.), 'BuLi in hexane (0.50 mL, 1.3 M, 0.66 mmol, 2.2 equiv.), pinacol vinyl boronate (47 mg, 0.30 mmol, 1.0 equiv.) and N-trifluoromethylthiosaccharin 7 (128 mg, 0.450 mmol, 1.50 equiv.) to give compound 8i as a yellow oil (97 mg, 72%). Eluent: ethyl acetate/petroleum ether (1:20, $R_f = 0.5$). ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, J = 8.3 Hz, 1 H), 7.67 (s, 1 H), 7.42 (d, J = 5.4 Hz, 1 H), 7.28 (d, J = 5.4 Hz, 1 H), 7.25 - 7.20 (m, 1 H), 7.15 (t, J = 7.2 Hz, 2 H), 7.10 (d, J = 7.0 Hz, 1 H), 7.01 (d, J = 7.0 Hz, 2 H), 3.75 (ddd, J = 11.0, 7.6, 3.5 Hz, 1 H), 2.75 (d, J = 10.9 Hz, 1 H), 2.51 (ddd, J = 14.6, 8.7, 6.2 Hz, 1 H), 2.46 – 2.34 (m, 1 H), 1.83 – 1.61 (m, 3 H), 1.49 (dt, J = 14.3, 8.4 Hz, 1 H), 1.20 (s, 6 H), 1.17 (s, 6 H); ¹⁹F NMR (376 MHz, CDCl₃, signal of sp^3 carbon and adjacent to boron was missing) δ -38.51 (s); ¹³C NMR (101 MHz, CDCl₃) δ 141.87, 140.02, 137.89, 134.91, 131.12 (q, J = 306.8 Hz), 128.20, 128.15, 126.52, 125.79, 125.65, 124.21, 123.81, 122.42, 83.94, 49.09, 35.19, 33.10, 26.87, 24.62, 24.42; ¹¹B NMR (128 MHz, CDCl₃) δ 32.57 (s) ppm. IR (KBr): v_{max} = 2978, 2933, 1438, 1421, 1361, 1271, 1214, 1143, 1112, 1051, 968, 848, 754, 733, 712, 698 cm⁻¹. MS (ESI): 524 (M+NH₄⁺). HRMS (ESI) for C₂₆H₃₄¹⁰BF₃O₂NS₂ (M+NH₄⁺):

Calcd: 523.2107; Found: 523.2103.
Preparation of difluoromethylthiolated derivative of PF-4191834 by Conjunctive Cross-Coupling

5-(4-(3-Bromophenylthio)phenyl)-1-methyl-1*H*-pyrazole 11^[2]

Aryl boronic acids **9** (0.49 g, 2.4 mmol, 1.2 equiv), CuSO₄ (16 mg, 0.10 mmol, 5.0 mol%), NaHCO₃ (0.25 g, 3.0 mmol, 1.5 equiv.) were placed into an oven-dried Schlenk tube that was equipped with a stirring bar under an atmosphere of argon. 15 mL of Absolute methanol and S-3-bromophenyl benzenesulfonothioate **10** (0.66 g, 2.0 mmol, 1.0 equiv.) was added. The mixture was stirred at room temperature for 24 h. The solvent was removed under reduced pressure, the residue was purified by silica gel chromatography (Eluent: ethyl acetate/petroleum ether = 1:5, $R_f = 0.3$) to give compound **11** as a colorless oil (504 mg, 73%). ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.50 (m, 2 H), 7.42 – 7.36 (m, 5 H), 7.31 (d, J = 7.9 Hz, 1 H), 7.20 (t, J = 7.9 Hz, 1 H), 6.32 (d, J = 1.8 Hz, 1 H), 3.90 (s, 3 H); ¹³C NMR (101 MHz, CDCl₃) δ 142.54, 138.54, 137.40, 135.48, 133.54, 131.02, 130.54, 130.40, 129.73, 129.63, 129.43, 123.04, 106.14, 37.51 ppm. **IR** (KBr): $v_{max} = 3051$, 2945, 1602, 1573, 1558, 1481, 1458, 1422, 1396, 1334, 1274, 1251, 1177, 1091, 1081, 1067, 1015, 992, 978, 927, 871, 835, 777, 751, 702, 679, 647 cm⁻¹. **HRMS**: Calcd for C₁₆H₁₃N₂SBr: 343.9989.

(±)-5-(4-(3-((3*R*,4*R*)-3-(difluoromethylthio)-4-(4,4,5,5-tetramethyl-1,3,2-dioxabor olan-2-yl)tetrahydro-2*H*-pyran-4-yl)phenylthio)phenyl)-1-methyl-1*H*-pyrazole 12

Prepared according to *GP1b* using 5-(4-(3-bromophenylthio)phenyl) -1-methyl-1*H*-pyrazole **11** (114 mg, 0.33 mmol, 1.1 equiv.) 'BuLi (1.3 M in hexane,

0.50 mL, 0.66 mmol, 2.2 equiv.), 3,6-dihydro-2H-pyran-4-boronic acid pinacol ester (63 mg, 0.30 mmol, 1.0 equiv.) and reagent 2a (100 mg, 0.450 mmol, 1.50 equiv.). to give compound 12 as a yellow oil (195 mg, 70%). Eluent: ethyl acetate/petroleum ether (1:5, $R_f = 0.2$). ¹H NMR (300 MHz, CDCl₃) δ 7.91 (s, 1 H), 7.79 (d, J = 7.4 Hz, 1 H), 7.48 (d, J = 6.8 Hz, 2 H), 7.38 – 7.27 (m, 5 H), 6.49 (t, J = 56.3 Hz, 1 H), 6.28 (d, J = 1.7 Hz, 1 H), 4.50 (d, J = 11.3 Hz, 1 H), 4.01 (t, J = 10.5 Hz, 1 H), 3.88 (s, 3 H), 3.66 (t, J = 11.0 Hz, 2 H), 3.32 (s, 1 H), 2.48 - 2.33 (m, 1 H), 1.66 (d, J = 13.6 Hz), 1 H), 1.47 (s, 3 H), 1.31 (s, 3 H), 1.28 (s, 3 H), 1.18 (s, 3 H); ¹⁹F NMR (376 MHz, CDCl₃) δ -91.82 (dd, J = 240.3, 56.0 Hz), -93.19 (dd, J = 240.3, 56.6 Hz); ¹³C NMR (101 MHz, CDCl₃, signal of sp^3 carbon and sp^2 carbon adjacent to boron was missing) δ 142.76, 138.42, 138.02, 137.68, 133.75, 133.35, 132.95, 129.65, 129.13, 128.65, 128.45, 119.94 (t, *J* = 274 Hz), 105.95, 80.21, 77.17, 68.62, 62.24, 43.40, 37.39, 31.96, 26.17, 24.98, 24.90, 23.06; ¹¹**B** NMR (128 MHz, CDCl₃) δ 45.39 (s) ppm. IR (KBr): $v_{max} = 2977, 1722, 1586, 1477, 1401, 1372, 1353, 1325, 1271, 1223, 1142, 1113, 1089,$ 1067, 1026, 979, 963, 911, 862, 851, 837, 780, 732, 703 cm⁻¹. MS (ESI): 559 (M+H⁺). HRMS (ESI) for C₂₈H₃₄¹⁰BF₂N₂O₃S₂ (M+H⁺): Calcd: 558.2103; Found: 558.2096.

3-(Difluoromethylthio)dihydro-2H-pyran-4(3H)-one 13

An 25-mL Schlenk flask equipped with a stir bar, septum, and digital thermocouple probe was charged with **12** (55.7 mg, 0.100 mmol), NaBO₃ (24.5 mg, 0.300 mmol, 3.00 equiv.) and THF/H₂O (v/v = 1:1, 3.0 mL) was added. The reaction was allowed to stir at room temperature for 6 h. Half of the solvent was removed under reduced pressure. The aqueous layer was extracted with ethyl acetate (5 mL × 3), and the combined organic layers were dried over magnesium sulfate, filtered, and concentrated. The residue was purified by silica gel chromatography (Eluent: ethyl acetate/petroleum ether = 1:5, R_f = 0.5) to give compound **13** as a yellow oil (15.5 mg, 85%). ¹**H NMR** (400 MHz, CDCl₃) δ 6.90 (t, *J* = 56.1 Hz, 1 H), 4.40 (dd, *J* = 11.6, 5.7 Hz, 1 H), 4.26 – 4.13 (m, 1 H), 4.14 – 4.05 (m, 1 H), 3.87 (ddd, J = 11.5, 9.4, 4.1 Hz, 1 H), 3.78 (dd, J = 11.6, 8.8 Hz, 1 H), 2.80 (dt, J = 14.4, 4.2 Hz, 1 H), 2.76 – 2.62 (m, 1 H); ¹³**C NMR** (126 MHz, CDCl₃) δ 201.24, 119.38 (dd, J = 275.6, 273.8 Hz), 73.38, 68.40, 50.41, 41.95; ¹⁹**F NMR** (376 MHz, CDCl₃) δ -90.34 (dd, J = 242.3, 55.7 Hz), -92.80 (dd, J = 242.3, 56.4 Hz). **IR** (KBr): $v_{max} = 2976$, 2920, 2864, 1715, 1473, 1416, 1316, 1222, 113, 863, 776 cm⁻¹. **MS** (EI): m/z (%) 182, 124, 110 (100), 88. **HRMS**: Calcd for C₆H₈F₂SO₂: 182.0208; Found: 182.0207.

References

1. R. Larouche-Gauthier, T. G. Elford and V.K. Aggarwal, J. Am. Chem. Soc., 2011, 133, 16794.

2. S. Yoshida, Y. Sugimura, Y. Hazama, Y. Nishiyama, T. Yano, S. Shimizu, T. Hosoya, *Chem. Commun. 2015*, **51**, 16613.

Figure S1. X-ray Structure of 3s

Table S1. Crystal data and structure refinement for	mo_d8v18370_0m.	
Identification code	mo_d8v18370_0m	
Empirical formula	C27 H34 B F2 N O2 S	
Formula weight	485.42	
Temperature	296(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C 2/c	
Unit cell dimensions	a = 29.1214(7) Å	$\alpha = 90^{\circ}$.
	b = 10.5552(2) Å.	$\beta = 104.0720(10)^{\circ}.$
	c = 17.3216(4) Å	$\gamma = 90^{\circ}$.
Volume	5164.6(2) Å ³	
Ζ	8	
Density (calculated)	1.249 Mg/m ³	
Absorption coefficient	0.164 mm ⁻¹	
F(000)	2064	
Crystal size	0.20 x 0.16 x 0.11 mm ³	
Theta range for data collection	2.477 to 25.994°.	
Index ranges	-35<=h<=35, -13<=k<=13, -	-21<=l<=21
Reflections collected	37446	
Independent reflections	5055 [R(int) = 0.0692]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equival	lents
Max. and min. transmission	0.7456 and 0.5651	
Refinement method	Full-matrix least-squares on	F^2
Data / restraints / parameters	5055 / 0 / 312	
Goodness-of-fit on F ²	1.030	
Final R indices [I>2sigma(I)]	R1 = 0.0460, wR2 = 0.1292	
R indices (all data)	R1 = 0.0631, wR2 = 0.1459	
Extinction coefficient	0.0034(6)	
Largest diff. peak and hole	0.243 and -0.208 e.Å ⁻³	

	х	у	Ζ	U(eq)
S(1)	4484(1)	5258(1)	5459(1)	54(1)
F(1)	4500(1)	7118(2)	4466(1)	114(1)
F(2)	4443(1)	7700(2)	5622(2)	128(1)
N(1)	3264(1)	4439(1)	5624(1)	37(1)
O(1)	4021(1)	3186(1)	6109(1)	48(1)
O(2)	3401(1)	2022(1)	5357(1)	43(1)
B(1)	3630(1)	3225(2)	5435(1)	40(1)
C(1)	2881(1)	4550(2)	4871(1)	41(1)
C(2)	2733(1)	5943(2)	4816(1)	48(1)
C(3)	3179(1)	6656(2)	5257(1)	48(1)
C(4)	3544(1)	5624(2)	5580(1)	40(1)
C(5)	3848(1)	5290(2)	4987(1)	41(1)
C(6)	3668(1)	3993(2)	4632(1)	40(1)
C(7)	3136(1)	4165(2)	4222(1)	44(1)
C(8)	3102(1)	4255(2)	6370(1)	48(1)
C(9)	2787(1)	5250(2)	6597(1)	48(1)
C(10)	2300(1)	5121(2)	6368(1)	59(1)
C(11)	2007(1)	6048(3)	6551(2)	75(1)
C(12)	2197(1)	7108(3)	6958(2)	79(1)
C(13)	2679(1)	7234(2)	7209(1)	75(1)
C(14)	2974(1)	6308(2)	7036(1)	61(1)
C(15)	3917(1)	3464(2)	4028(1)	49(1)
C(16)	4134(1)	4233(3)	3570(1)	66(1)
C(17)	4333(1)	3728(3)	2985(2)	86(1)
C(18)	4320(1)	2464(4)	2849(2)	99(1)
C(19)	4102(1)	1682(3)	3289(2)	93(1)
C(20)	3902(1)	2183(2)	3867(1)	67(1)
C(21)	4126(1)	1902(2)	6345(1)	51(1)
C(22)	3651(1)	1177(2)	5977(1)	49(1)
C(23)	3345(1)	958(2)	6563(1)	63(1)
C(24)	3713(1)	-84(2)	5594(2)	74(1)
C(25)	4538(1)	1488(2)	6000(2)	83(1)
C(26)	4281(1)	1875(3)	7246(2)	82(1)

Table S2. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³)for mo_d8v18370_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(27)	4644(1)	6808(2)	5245(2)	74(1)
-------	---------	---------	---------	-------

S(1)-C(27)	1.764(2)
S(1)-C(5)	1.8337(17)
F(1)-C(27)	1.354(3)
F(2)-C(27)	1.356(3)
N(1)-C(8)	1.492(2)
N(1)-C(1)	1.500(2)
N(1)-C(4)	1.507(2)
N(1)-B(1)	1.748(2)
O(1)-B(1)	1.420(2)
O(1)-C(21)	1.427(2)
O(2)-B(1)	1.425(2)
O(2)-C(22)	1.449(2)
B(1)-C(6)	1.636(3)
C(1)-C(2)	1.529(2)
C(1)-C(7)	1.545(2)
C(1)-H(1)	0.9800
C(2)-C(3)	1.535(3)
C(2)-H(2A)	0.9700
C(2)-H(2B)	0.9700
C(3)-C(4)	1.529(2)
C(3)-H(3A)	0.9700
C(3)-H(3B)	0.9700
C(4)-C(5)	1.551(2)
C(4)-H(4)	0.9800
C(5)-C(6)	1.541(2)
C(5)-H(5)	0.9800
C(6)-C(15)	1.518(2)
C(6)-C(7)	1.549(2)
C(7)-H(7A)	0.9700
C(7)-H(7B)	0.9700
C(8)-C(9)	1.509(3)
C(8)-H(8A)	0.9700
C(8)-H(8B)	0.9700
C(9)-C(10)	1.383(3)
C(9)-C(14)	1.386(3)
C(10)-C(11)	1.383(3)

 Table S3. Bond lengths [Å] and angles [°] for mo_d8v18370_0m.

C(10)-H(10)	0.9300
C(11)-C(12)	1.366(4)
С(11)-Н(11)	0.9300
C(12)-C(13)	1.373(4)
С(12)-Н(12)	0.9300
C(13)-C(14)	1.380(3)
С(13)-Н(13)	0.9300
C(14)-H(14)	0.9300
C(15)-C(20)	1.380(3)
C(15)-C(16)	1.390(3)
C(16)-C(17)	1.390(3)
С(16)-Н(16)	0.9300
C(17)-C(18)	1.354(5)
С(17)-Н(17)	0.9300
C(18)-C(19)	1.378(5)
C(18)-H(18)	0.9300
C(19)-C(20)	1.380(3)
C(19)-H(19)	0.9300
C(20)-H(20)	0.9300
C(21)-C(26)	1.515(3)
C(21)-C(25)	1.531(3)
C(21)-C(22)	1.574(3)
C(22)-C(24)	1.517(3)
C(22)-C(23)	1.522(3)
C(23)-H(23A)	0.9600
C(23)-H(23B)	0.9600
C(23)-H(23C)	0.9600
C(24)-H(24A)	0.9600
C(24)-H(24B)	0.9600
C(24)-H(24C)	0.9600
C(25)-H(25A)	0.9600
C(25)-H(25B)	0.9600
C(25)-H(25C)	0.9600
C(26)-H(26A)	0.9600
C(26)-H(26B)	0.9600
C(26)-H(26C)	0.9600
C(27)-H(27)	0.9800

C(27)-S(1)-C(5)	100.28(11)
C(8)-N(1)-C(1)	116.04(14)
C(8)-N(1)-C(4)	116.19(14)
C(1)-N(1)-C(4)	100.84(12)
C(8)-N(1)-B(1)	113.76(13)
C(1)-N(1)-B(1)	104.62(12)
C(4)-N(1)-B(1)	103.66(12)
B(1)-O(1)-C(21)	109.58(14)
B(1)-O(2)-C(22)	109.85(13)
O(1)-B(1)-O(2)	108.43(15)
O(1)-B(1)-C(6)	120.42(15)
O(2)-B(1)-C(6)	119.16(15)
O(1)-B(1)-N(1)	105.73(14)
O(2)-B(1)-N(1)	112.23(14)
C(6)-B(1)-N(1)	88.07(12)
N(1)-C(1)-C(2)	105.57(14)
N(1)-C(1)-C(7)	103.05(13)
C(2)-C(1)-C(7)	112.67(15)
N(1)-C(1)-H(1)	111.7
C(2)-C(1)-H(1)	111.7
C(7)-C(1)-H(1)	111.7
C(1)-C(2)-C(3)	104.39(14)
C(1)-C(2)-H(2A)	110.9
C(3)-C(2)-H(2A)	110.9
C(1)-C(2)-H(2B)	110.9
C(3)-C(2)-H(2B)	110.9
H(2A)-C(2)-H(2B)	108.9
C(4)-C(3)-C(2)	105.21(15)
C(4)-C(3)-H(3A)	110.7
C(2)-C(3)-H(3A)	110.7
C(4)-C(3)-H(3B)	110.7
C(2)-C(3)-H(3B)	110.7
H(3A)-C(3)-H(3B)	108.8
N(1)-C(4)-C(3)	105.81(14)
N(1)-C(4)-C(5)	104.40(13)
C(3)-C(4)-C(5)	112.20(15)
N(1)-C(4)-H(4)	111.4
C(3)-C(4)-H(4)	111.4

C(5)-C(4)-H(4)	111.4
C(6)-C(5)-C(4)	105.77(13)
C(6)-C(5)-S(1)	111.84(11)
C(4)-C(5)-S(1)	112.72(12)
C(6)-C(5)-H(5)	108.8
C(4)-C(5)-H(5)	108.8
S(1)-C(5)-H(5)	108.8
C(15)-C(6)-C(5)	115.31(14)
C(15)-C(6)-C(7)	108.58(14)
C(5)-C(6)-C(7)	106.60(14)
C(15)-C(6)-B(1)	123.11(15)
C(5)-C(6)-B(1)	100.85(14)
C(7)-C(6)-B(1)	100.49(13)
C(1)-C(7)-C(6)	107.44(13)
C(1)-C(7)-H(7A)	110.2
C(6)-C(7)-H(7A)	110.2
C(1)-C(7)-H(7B)	110.2
C(6)-C(7)-H(7B)	110.2
H(7A)-C(7)-H(7B)	108.5
N(1)-C(8)-C(9)	118.38(15)
N(1)-C(8)-H(8A)	107.7
C(9)-C(8)-H(8A)	107.7
N(1)-C(8)-H(8B)	107.7
C(9)-C(8)-H(8B)	107.7
H(8A)-C(8)-H(8B)	107.1
C(10)-C(9)-C(14)	118.38(19)
C(10)-C(9)-C(8)	120.23(19)
C(14)-C(9)-C(8)	121.39(19)
C(9)-C(10)-C(11)	120.7(2)
С(9)-С(10)-Н(10)	119.7
С(11)-С(10)-Н(10)	119.7
C(12)-C(11)-C(10)	120.3(2)
С(12)-С(11)-Н(11)	119.8
С(10)-С(11)-Н(11)	119.8
C(11)-C(12)-C(13)	119.7(2)
С(11)-С(12)-Н(12)	120.1
С(13)-С(12)-Н(12)	120.1
C(12)-C(13)-C(14)	120.3(2)

C(12)-C(13)-H(13)	119.8
С(14)-С(13)-Н(13)	119.8
C(13)-C(14)-C(9)	120.5(2)
C(13)-C(14)-H(14)	119.7
C(9)-C(14)-H(14)	119.7
C(20)-C(15)-C(16)	116.9(2)
C(20)-C(15)-C(6)	120.21(18)
C(16)-C(15)-C(6)	122.65(19)
C(15)-C(16)-C(17)	121.4(3)
C(15)-C(16)-H(16)	119.3
C(17)-C(16)-H(16)	119.3
C(18)-C(17)-C(16)	120.4(3)
С(18)-С(17)-Н(17)	119.8
С(16)-С(17)-Н(17)	119.8
C(17)-C(18)-C(19)	119.5(2)
C(17)-C(18)-H(18)	120.3
C(19)-C(18)-H(18)	120.3
C(18)-C(19)-C(20)	120.2(3)
C(18)-C(19)-H(19)	119.9
C(20)-C(19)-H(19)	119.9
C(19)-C(20)-C(15)	121.6(3)
C(19)-C(20)-H(20)	119.2
C(15)-C(20)-H(20)	119.2
O(1)-C(21)-C(26)	107.62(18)
O(1)-C(21)-C(25)	106.90(17)
C(26)-C(21)-C(25)	109.3(2)
O(1)-C(21)-C(22)	103.96(14)
C(26)-C(21)-C(22)	114.94(18)
C(25)-C(21)-C(22)	113.52(19)
O(2)-C(22)-C(24)	107.98(17)
O(2)-C(22)-C(23)	108.62(15)
C(24)-C(22)-C(23)	108.09(18)
O(2)-C(22)-C(21)	103.54(14)
C(24)-C(22)-C(21)	114.60(17)
C(23)-C(22)-C(21)	113.68(17)
C(22)-C(23)-H(23A)	109.5
C(22)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5

C(22)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(22)-C(24)-H(24A)	109.5
C(22)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(22)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(21)-C(25)-H(25A)	109.5
C(21)-C(25)-H(25B)	109.5
H(25A)-C(25)-H(25B)	109.5
C(21)-C(25)-H(25C)	109.5
H(25A)-C(25)-H(25C)	109.5
H(25B)-C(25)-H(25C)	109.5
C(21)-C(26)-H(26A)	109.5
C(21)-C(26)-H(26B)	109.5
H(26A)-C(26)-H(26B)	109.5
C(21)-C(26)-H(26C)	109.5
H(26A)-C(26)-H(26C)	109.5
H(26B)-C(26)-H(26C)	109.5
F(1)-C(27)-F(2)	104.3(2)
F(1)-C(27)-S(1)	113.59(18)
F(2)-C(27)-S(1)	112.11(18)
F(1)-C(27)-H(27)	108.9
F(2)-C(27)-H(27)	108.9
S(1)-C(27)-H(27)	108.9

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
S(1)	35(1)	49(1)	77(1)	-5(1)	13(1)	-2(1)
F(1)	90(1)	107(1)	144(2)	46(1)	26(1)	-28(1)
F(2)	112(1)	57(1)	237(2)	-33(1)	81(2)	2(1)
N(1)	36(1)	39(1)	38(1)	4(1)	10(1)	4(1)
O(1)	40(1)	44(1)	54(1)	5(1)	-4(1)	-2(1)
O(2)	37(1)	39(1)	50(1)	2(1)	2(1)	2(1)
B(1)	33(1)	39(1)	45(1)	-2(1)	6(1)	3(1)
C(1)	32(1)	47(1)	44(1)	6(1)	7(1)	2(1)
C(2)	42(1)	50(1)	54(1)	16(1)	17(1)	12(1)
C(3)	51(1)	39(1)	60(1)	6(1)	22(1)	9(1)
C(4)	39(1)	37(1)	46(1)	-1(1)	12(1)	1(1)
C(5)	36(1)	41(1)	47(1)	3(1)	13(1)	3(1)
C(6)	35(1)	42(1)	43(1)	-2(1)	11(1)	3(1)
C(7)	39(1)	52(1)	41(1)	1(1)	7(1)	4(1)
C(8)	54(1)	49(1)	44(1)	8(1)	18(1)	7(1)
C(9)	58(1)	52(1)	39(1)	7(1)	20(1)	9(1)
C(10)	58(1)	67(1)	61(1)	5(1)	30(1)	3(1)
C(11)	68(2)	94(2)	76(2)	17(2)	41(1)	23(1)
C(12)	110(2)	78(2)	67(2)	18(1)	54(2)	40(2)
C(13)	121(2)	62(2)	49(1)	-4(1)	34(1)	15(1)
C(14)	77(2)	68(1)	39(1)	-4(1)	15(1)	7(1)
C(15)	38(1)	61(1)	47(1)	-7(1)	11(1)	4(1)
C(16)	62(1)	83(2)	60(1)	-7(1)	27(1)	-3(1)
C(17)	69(2)	132(3)	66(2)	-17(2)	35(1)	-11(2)
C(18)	81(2)	144(3)	83(2)	-48(2)	41(2)	3(2)
C(19)	97(2)	96(2)	92(2)	-42(2)	36(2)	6(2)
C(20)	70(2)	69(2)	66(1)	-21(1)	24(1)	2(1)
C(21)	37(1)	47(1)	64(1)	11(1)	2(1)	5(1)
C(22)	41(1)	38(1)	63(1)	9(1)	6(1)	6(1)
C(23)	51(1)	64(1)	72(1)	22(1)	11(1)	0(1)
C(24)	72(2)	42(1)	106(2)	-1(1)	15(1)	9(1)
C(25)	46(1)	75(2)	130(2)	7(2)	25(1)	13(1)
C(26)	66(2)	96(2)	69(2)	28(1)	-12(1)	-10(1)

Table S4. Anisotropic displacement parameters (Å² × 10³) for mo_d8v18370_0m. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	Х	У	Z	U(eq)
H(1)	2614	3988	4876	49
H(2A)	2475	6083	5070	57
H(2B)	2635	6214	4265	57
H(3A)	3291	7212	4896	58
H(3B)	3116	7158	5688	58
H(4)	3743	5854	6103	48
H(5)	3789	5921	4560	49
H(7A)	3096	4818	3817	53
H(7B)	3005	3380	3970	53
H(8A)	3381	4178	6807	58
H(8B)	2936	3452	6328	58
H(10)	2168	4403	6090	71
H(11)	1681	5948	6396	90
H(12)	1999	7743	7065	95
H(13)	2808	7946	7497	90
H(14)	3300	6394	7216	73
H(16)	4147	5103	3657	79
H(17)	4477	4262	2686	103
H(18)	4456	2126	2462	119
H(19)	4089	813	3195	111
H(20)	3754	1643	4155	81
H(23A)	3322	1731	6843	95
H(23B)	3486	313	6937	95
H(23C)	3035	692	6280	95
H(24A)	3409	-429	5345	112
H(24B)	3879	-660	5995	112
H(24C)	3892	40	5202	112
H(25A)	4442	1518	5429	124
H(25B)	4630	639	6168	124
H(25C)	4802	2048	6185	124
H(26A)	4558	2392	7421	123
H(26B)	4353	1019	7423	123

Table S5. Hydrogen coordinates (× 10⁴) and isotropic displacement parameters (Å² × 10 ³) for mo_d8v18370_0m.

H(26C)	4031	2196	7464	123
H(27)	4989	6891	5415	89

C(21)-O(1)-B(1)-O(2)	15.1(2)
C(21)-O(1)-B(1)-C(6)	-127.23(17)
C(21)-O(1)-B(1)-N(1)	135.61(14)
C(22)-O(2)-B(1)-O(1)	-1.14(19)
C(22)-O(2)-B(1)-C(6)	141.72(15)
C(22)-O(2)-B(1)-N(1)	-117.55(15)
C(8)-N(1)-B(1)-O(1)	-58.11(18)
C(1)-N(1)-B(1)-O(1)	174.27(13)
C(4)-N(1)-B(1)-O(1)	68.99(16)
C(8)-N(1)-B(1)-O(2)	59.91(19)
C(1)-N(1)-B(1)-O(2)	-67.70(17)
C(4)-N(1)-B(1)-O(2)	-172.98(14)
C(8)-N(1)-B(1)-C(6)	-179.23(14)
C(1)-N(1)-B(1)-C(6)	53.15(14)
C(4)-N(1)-B(1)-C(6)	-52.13(13)
C(8)-N(1)-C(1)-C(2)	84.54(17)
C(4)-N(1)-C(1)-C(2)	-41.88(16)
B(1)-N(1)-C(1)-C(2)	-149.25(13)
C(8)-N(1)-C(1)-C(7)	-157.08(14)
C(4)-N(1)-C(1)-C(7)	76.50(15)
B(1)-N(1)-C(1)-C(7)	-30.87(16)
N(1)-C(1)-C(2)-C(3)	28.36(18)
C(7)-C(1)-C(2)-C(3)	-83.38(18)
C(1)-C(2)-C(3)-C(4)	-3.39(19)
C(8)-N(1)-C(4)-C(3)	-86.77(17)
C(1)-N(1)-C(4)-C(3)	39.55(16)
B(1)-N(1)-C(4)-C(3)	147.67(14)
C(8)-N(1)-C(4)-C(5)	154.67(14)
C(1)-N(1)-C(4)-C(5)	-79.01(14)
B(1)-N(1)-C(4)-C(5)	29.11(15)
C(2)-C(3)-C(4)-N(1)	-22.55(18)
C(2)-C(3)-C(4)-C(5)	90.69(17)
N(1)-C(4)-C(5)-C(6)	8.22(17)
C(3)-C(4)-C(5)-C(6)	-105.88(16)
N(1)-C(4)-C(5)-S(1)	-114.28(12)
C(3)-C(4)-C(5)-S(1)	131.61(14)

Table S6. Torsion angles [°] for mo_d8v18370_0m.

145.84(15)
-95.13(15)
-179.93(14)
-56.87(18)
59.49(17)
-177.46(11)
-45.03(16)
78.03(14)
78.6(2)
-59.8(2)
-174.29(15)
-51.57(19)
170.06(14)
55.57(13)
-160.92(15)
60.71(18)
-53.78(13)
-6.04(18)
107.25(17)
173.39(15)
-61.80(17)
42.97(17)
-59.0(2)
59.3(2)
179.59(16)
93.3(2)
-86.9(2)
2.3(3)
-177.90(19)
0.2(3)
-2.1(4)
1.5(4)
1.0(3)
-2.9(3)
177.29(19)
158.70(18)
-81.8(2)
34.8(3)

C(5)-C(6)-C(15)-C(16)	-26.6(3)
C(7)-C(6)-C(15)-C(16)	92.9(2)
B(1)-C(6)-C(15)-C(16)	-150.42(19)
C(20)-C(15)-C(16)-C(17)	-0.9(3)
C(6)-C(15)-C(16)-C(17)	-175.8(2)
C(15)-C(16)-C(17)-C(18)	-0.1(4)
C(16)-C(17)-C(18)-C(19)	0.8(5)
C(17)-C(18)-C(19)-C(20)	-0.4(5)
C(18)-C(19)-C(20)-C(15)	-0.6(4)
C(16)-C(15)-C(20)-C(19)	1.2(3)
C(6)-C(15)-C(20)-C(19)	176.3(2)
B(1)-O(1)-C(21)-C(26)	-143.79(18)
B(1)-O(1)-C(21)-C(25)	98.9(2)
B(1)-O(1)-C(21)-C(22)	-21.5(2)
B(1)-O(2)-C(22)-C(24)	-133.41(17)
B(1)-O(2)-C(22)-C(23)	109.61(18)
B(1)-O(2)-C(22)-C(21)	-11.52(19)
O(1)-C(21)-C(22)-O(2)	19.82(19)
C(26)-C(21)-C(22)-O(2)	137.18(19)
C(25)-C(21)-C(22)-O(2)	-95.95(19)
O(1)-C(21)-C(22)-C(24)	137.17(19)
C(26)-C(21)-C(22)-C(24)	-105.5(2)
C(25)-C(21)-C(22)-C(24)	21.4(3)
O(1)-C(21)-C(22)-C(23)	-97.83(18)
C(26)-C(21)-C(22)-C(23)	19.5(2)
C(25)-C(21)-C(22)-C(23)	146.39(19)
C(5)-S(1)-C(27)-F(1)	-51.99(19)
C(5)-S(1)-C(27)-F(2)	65.9(2)

Symmetry transformations used to generate equivalent atoms:

B(pin) ↓____SCF₂H

1120.390	 ~24.558

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 2-(2-(difluoromethylthio)-1-phenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

¹³C NMR (101 MHz, CDCl₃) spectrum of (±)-2-((3*R*,4*R*)-3-(difluoromethylthio)-4-phenyltetrahydro-2*H*-pyran-4-yl)-4,4,5,5 -tetramethyl-1,3,2-dioxaborolane 3b

¹⁹F NMR (376 MHz, CDCl₃) spectrum of (±)-2-((3*R*,4*R*)-3-(difluoromethylthio)-4-phenyltetrahydro-2*H*-pyran-4-yl)-4,4,5,5 -tetramethyl-1,3,2-dioxaborolane 3b

¹⁹F NMR (376 MHz, CDCl₃) spectrum of (±)-2-((3R,4R)-3-(difluoromethylthio)-4-(4-methoxyphenyl)tetrahydro-2H-pyran-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3c

¹⁹F NMR (376 MHz, CDCl₃) spectrum of (±)-2-((3R,4R)-4-(4-chlorophenyl)-3-(difluoromethylthio)tetrahydro-2H-pyran-4yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3e

¹⁹F NMR (376 MHz, CDCl₃) spectrum of (±)-2-((3R,4R)-4-(4-bromophenyl)-3-(difluoromethylthio)tetrahydro-2H-pyran-4yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3f

(±)-2-((3*R*,4*R*)-3-(difluoromethylthio)-4-(4-(trifluoromethyl)phenyl)tetrahydro-2 *H*-pyran-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3g

130 110 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃) spectrum of $(\pm) - 2 - ((3R, 4R) - 3 - (difluoromethylthio) - 4 - (naphthalen - 2 - yl) tetrahydro - 2H - pyran - 2H -$ -yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3h

¹⁹F NMR (376 MHz, CDCl₃) spectrum of (±)-2-((3R,4R)-3-(difluoromethylthio)-4-(naphthalen-2-yl)tetrahydro-2H-pyran-4 -yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3h

 $(\pm) - 2 - ((3R, 4R) - 4 - (3, 5 - di - tert - butyl phenyl) - 3 - (difluoromethylthio) tetrahydro - 2H - park (1, 2) - 2H$ yran-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3i

¹⁹F NMR (376 MHz, CDCl₃) spectrum of (±)-2-((3R,4R)-4-(3,5-di-tert-butylphenyl)-3-(difluoromethylthio)tetrahydro-2H-p yran-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3i

140 120 100 80 60 40 20 0 -20 -40 -60 -80 -100 -130 f1 (ppm)

¹³C NMR (101 MHz, CDCl₃) spectrum of (±)-5-((3*R*,4*R*)-3-(difluoromethylthio)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2 -yl)tetrahydro-2*H*-pyran-4-yl)-1-methyl-1H-indole 3k

¹⁹F NMR (376 MHz, CDCl₃) spectrum of (±)-5-((3*R*,4*R*)-3-(difluoromethylthio)-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2 -yl)tetrahydro-2*H*-pyran-4-yl)-1-methyl-1H-indole 3k

¹H NMR (400 MHz, CDCl₃) spectrum of (±)-2-((3*R*,4*R*)-4-(benzo[b]thiophen-5-yl)-3-(difluoromethylthio)tetrahydro-2*H*-p yran-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3l

¹³C NMR (101 MHz, CDCl₃) spectrum of (±)-2-((3R,4R)-4-(benzo[b]thiophen-5-yl)-3-(difluoromethylthio)tetrahydro-2H-p yran-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3l

¹⁹F NMR (376 MHz, CDCl₃) spectrum of (±)-2-((3R,4R)-4-(benzo[b]thiophen-5-yl)-3-(difluoromethylthio)tetrahydro-2H-p yran-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3l

¹H NMR (400 MHz, CDCl₃) spectrum of (±)-2-((3*R*,4*R*)-4-(benzofuran-5-yl)-3-(difluoromethylthio)tetrahydro-2*H*-pyran-4 -yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3m

(±)-2-((3*R*,4*R*)-4-(benzofuran-5-yl)-3-(difluoromethylthio)tetrahydro-2*H*-pyran-4 -yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3m

¹⁹F NMR (376 MHz, CDCl₃) spectrum of (±)-2-((3*R*,4*R*)-4-(benzofuran-5-yl)-3-(difluoromethylthio)tetrahydro-2*H*-pyran-4 -yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3m

¹H NMR (400 MHz, CDCl₃) spectrum of (±)-2-((3*R*,4*R*)-3-(difluoromethylthio)-4-phenyltetrahydro-2*H*-thiopyran-4-yl)-4,4 ,5,5-tetramethyl-1,3,2-dioxaborolane 3n

¹⁹F NMR (376 MHz, CDCl₃) spectrum of (±)-2-((3*R*,4*R*)-3-(difluoromethylthio)-4-phenyltetrahydro-2*H*-thiopyran-4-yl)-4,4 ,5,5-tetramethyl-1,3,2-dioxaborolane 3n

¹⁹F NMR (376 MHz, CDCl₃) spectrum of (±)-(3R,4R)-3-(difluoromethylthio)-4-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxabo rolan-2-yl)-1-tosylpiperidine 30

¹³C NMR (101 MHz, CDCl₃) spectrum of x2-(2-(difluoromethylthio)-1,1-diphenylethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3q

S90

(±)-(1*S*,2*R*,3*R*,5*R*)-8-benzyl-2-(difluoromethylthio)-3-phenyl-3-(4,4,5,5-tetrameth yl-1,3,2-dioxaborolan-2-yl)-8-azabicyclo[3.2.1]octane 3s

¹⁹F NMR (376 MHz, CDCl₃) spectrum of (±)-(1*S*,2*R*,3*R*,5*R*)-8-benzyl-2-(difluoromethylthio)-3-phenyl-3-(4,4,5,5-tetrameth yl-1,3,2-dioxaborolan-2-yl)-8-azabicyclo[3.2.1]octane 3s

30 20 10 0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 f1 (ppm)

S96

¹⁹F NMR (376 MHz, CDCl₃) spectrum of 2-(difluoromethylthio)-2-methyl-1-phenylpropan-1-ol 4c

¹³C NMR (101 MHz, CDCl₃) spectrum of (±)-(1*S*,2*S*)-2-(difluoromethylthio)-1,5-diphenylpentan-1-ol 4e

¹H NMR (400 MHz, CDCl₃) spectrum of (*S*)-4,4,5,5-tetramethyl-2-(5-methyl-1-phenylhexan-3-yl)-1,3,2-dioxaborolane 5a

¹³C NMR (151 MHz, CDCl₃) spectrum of (*S*)-4,4,5,5-tetramethyl-2-(5-methyl-1-phenylhexan-3-yl)-1,3,2-dioxaborolane 5a

HPLC spectrum of (*S*)-4,4,5,5-tetramethyl-2-(5-methyl-1-phenylhexan-3-yl)-1,3,2-dioxaborolane 5a

HPLC (C1, 0.46×25 cm, 5 μ m, carbon dioxide/isopropanol = 95/5 (v/v %), flow 2.0 mL/min, UV detection at 214 nm, 2000 psi, 40 °C)

	SAMPLE		
	SAMPLE	INFORMATI	ON
	Sample Name: SF-10-36 PC1 9552142000240 Sample Type: Vial: 1:A,4 njection: 1 njection Volume: 2.00 ul Run Time: 10.0 Minutes Sample Set Name 20180716	Acquired By: Date Acquired: Acq. Method Set: Date Processed: Processing Method Channel Name: Proc. Chnl. Descr.	System 2018/7/16 16:00:33 CST chiral_isocratic 2018/7/17 14:34:52 CST 1 PDA Ch1 214 nm@1.2 nm PDA Ch1 214 nm@1.2 nm
And a state of the	0.50		
	0.45		
	040 W		
	90.99		
	0.00		
	0.30		Mar
A1.1	p 0.25		
	0.20		
	0.15		
	0.10		
	0.05		
			and in the second se
	4.00 6.00 8.00	10.00 12.00 Minutes	14.00 16.00 18.00 20
	Peak Results	100	
	1 6.065 2365741 370921 97.24		
	2 7.321 67093 8196 2.76		
		-	

¹³C NMR (151 MHz, CDCl₃) spectrum of (*R*)-4,4,5,5-tetramethyl-2-(1-phenylhept-6-en-3-yl)-1,3,2-dioxaborolane 5b

HPLC spectrum of (*R*)-4,4,5,5-tetramethyl-2-(1-phenylhept-6-en-3-yl)-1,3,2-dioxaborolane 5b

HPLC (ODH, 0.46 \times 25 cm, 5 μm , hexane/isopropanol = 9/1 (v/v %), flow 0.7 mL/min, UV detection at 214 nm)

000	Bayh					Bpin	2018-7-2		
202	2 SF-10-4	45 ODH	91 214	0.7	E		4		
Sam, Vial Sam, Cont Quar Recc Run	ple Name: Number: ole Type: rol Program: ntif. Method: rding Time: Time (min):	SF-10-45 BD6 unknown test-dad 20170608 2018-7-19 17.19	5 ODH 91 2 6 3 9 15:38	214 0.7		Injection Channe Wavele, Bandwid Dilution Sample Sample	n Volume: 1: ngth: 1th: Factor: Weight: Amount:	3.0 UV_VIS_2 214.0 4 1.0000 1.0000 1.0000	
600-	20180108 #2622 mAU	[modified by A	dministrator]				*	UV_VIS_2	
500-					1 - 8.707			WVL:214 nm	
400-								200	
- 300- -						*		p	
200-							• 1	të	
0			M	<u> </u>		2 - 10.980		à	
-100									
0.0	2.0	4.0	6.0	8.0	10.0	12.0	14.0	<u>min</u> 17.2	
No.	Ret.Time min 8.71	Peak I	Name	Height mAU	Area mAU*min	Rel.Area	Amount	Туре	
2 Total:	10.98	n.a.		18.787	4.563	4.35	n.a. <u>n.a.</u>	BMB* BMB	
					104.525	100.00	0.000		
					;				

¹³C NMR (126 MHz, CDCl₃) spectrum of (*S*)-2-(1-cyclopropyl-3-phenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 5c

HPLC spectrum of (*S*)-2-(1-cyclopropyl-3-phenylpropyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 5c

HPLC (C1, 0.46×25 cm, 5 µm, carbon dioxide/isopropanol = 95/5 (v/v %), flow 2.0 mL/min, UV detection at 214 nm, 2000 psi, 40 °C)

			SAMPLE	INFOR	MATIO	ИС		
Sample Sample Vial: Injection Injection Run Tim Sample	Name: S Type: : Volume: 2 e: Set Name 2	SF-10-39 PC1 1:A,2 1 2.00 ul 14.0 Minutes 20180716	955214200024	0 Acquire Date Ac Acq. Me Date Pr Process Channe Proc. Cl	d By: equired: ethod Set: ocessed: ing Method I Name: nnl. Descr:	System 2018/7/16 chiral_isoc 2018/7/17 1 PDA Ch1 2 PDA Ch1 2	15:35:32 CST ratic 14:33:18 CST 14 nm@1.2 nm 14 nm@1.2 nm	
0.50								
0.45								
0.40								
0.35								
0.30								
0.25			563				~	
0.20			7.6					
0.15					*			
0.10								
0.05				2			1	
0.00				9.39		20		
0.00	2.00	4.00	6.00 8.0	0 10.00 Minutes	12.00	14.00	16.00 18.00	20
	RT 4	ak Results Area Height %	Area		Va.			
	1 7.663 17	85769 222879	97.84					
	2 9.395	39355 3928	2.16					
						3		
				12				
					S.			

¹⁹F NMR (376 MHz, CDCl₃) spectrum of (*S*)-1-(difluoromethylthio)-5-methyl-3-phenethylhexan-2-one 6a

HPLC spectrum of (S)-1-(difluoromethylthio)-5-methyl-3-phenethylhexan-2-one 6a

HPLC (AY3, 0.46 \times 15 cm, 3 μ m, hexane/isopropanol = 95/5 (v/v %), flow 0.7 mL/min, UV detection at 214 nm)

30	20	10	0	-10	-30	-50	-70	-90	-110	-130	-150	-170	-190
							f	1 (ppm)					

HPLC spectrum of (*R*)-1-(difluoromethylthio)-3-phenethylhept-6-en-2-one 6b

HPLC (ODH, 0.46 \times 25 cm, 5 μm , hexane/isopropanol = 95/5 (v/v %), flow 0.7 mL/min, UV detection at 214 nm)

7752	7752 SF-12-6 ODH 955 214 0.7											
Samp, Vial N Samp, Contro Quant Recor Run T	e Name: umber: e Type: Il Program: if. Method: ding Time: ime (min):	SF-12-6 ODH 955 2 RD7 unknown test-dad4 20170608 2019-12-9 12:13 25.46	14 0.7		Injection V Channel: Wavelengt Bandwidth Dilution Fa Sample W Sample Ar	'olume: th: : ctor: 'eight: nount:	3.0 UV_VIS_2 214.0 4 1.0000 1.0000 1.0000					
250-2	0180108 #7752	[modified by Administrator]					UV_VIS_2					
200-	AU		1 - 10.117				WVL:214 nm					
- 150- -							~					
100-					4							
50-			2 - 10.640			>						
0			L M		* *	and the second	ð					
-50+0.0	2.5	5.0 7.5	10.0 12.5	15.0	17.5	20.0 22	.5 25.5					
No.	Ret.Time min	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре					
1 2 Total:	10.12	n.a. n.a.	202.781 8.623 211.403	43.308 <u>1.991</u> 45.298	95.61 <u>4.39</u> 100.00	n.a. n.a. 0.000	MB					
						5.						

HPLC spectrum of (S)-3-cyclopropyl-1-(difluoromethylthio)-5-phenylpentan-2-one 6c

HPLC (ADH, 0.46 \times 25 cm, 5 μm , hexane/isopropanol = 98/2 (v/v %), flow 0.7 mL/min, UV detection at 214 nm)

####	2-16D	AY ADH 982	214 0.7				
Sample I Vial Num Sample T Control P Quantif. I Recording Run Tima	Vame: ber: Fype: Program: Method: g Time: e (min):	12-16DAY ADH GC6 unknown 201701-4 201701 2019/12/20 12:05 17.40	982 214 0.7		Injectio Chann Wavel Bandw Dilution Sample Sample	on Volume: el: ength: idth: P Factor: Weight: A Mount:	3.0 UV_VIS_1 214 n.a. 1.0000 1.0000 1.0000
120 WXL-6	6 #10692 [m	odified by GC]	12-16DAY ADH	982 214 0.7		1	
100-				2 - 9.82	3		<u>UV_VIS_1</u> WVL:214 nm
80- 60-							
40-					*		
20-		Α		1-9413			
-20	20				5		min
No. D.		4.0 6.0	8.0	10.0	12.0	14.0	17.4
1 9	Time <u>nin</u> .41 n	Peak Name	Height mAU	Area mAU*min	Rel.Area %	Amount	Туре
2 9 Total:	.82 n	.a.	104.618 106.477	0.273 19.995 20.268	1.35 98.65 100.00	n.a. n.a. 0.000	BMB* BMB

¹H NMR (400 MHz, CDCl₃) spectrum of 4,4,5,5-tetramethyl-2-(1-phenyl-2-(trifluoromethylthio)ethyl)-1,3,2-dioxaborolane 8a

¹³C NMR (101 MHz, CDCl₃) spectrum of 4,4,5,5-tetramethyl-2-(1-phenyl-2-(trifluoromethylthio)ethyl)-1,3,2-dioxaborolane 8a

260	230	200	170	140	110 f1 (ppm)	80	60	40	20	0 -10	-40	
والمرادية ومعاملة والمراجعة والمحاوظات	وروار والمرور و				ay dis the stand of t							
						i l		l				
				ł								
				Í								
				į					I			
						I						
v												
B(pin)	CF3			139.911	126.400			~32.818	<24.043			

¹³C NMR (101 MHz, CDCl₃) spectrum of 2-(1-(4-chlorophenyl)-2-(trifluoromethylthio)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8b

¹H NMR (400 MHz, CDCl₃) spectrum of 4,4,5,5-tetramethyl-2-(1-(4-(trifluoromethyl)phenyl)-2-(trifluoromethylthio)ethyl)-1,3,2-dioxaborolane 8c

¹³C NMR (101 MHz, CDCl₃) spectrum of 4,4,5,5-tetramethyl-2-(1-(4-(trifluoromethyl)phenyl)-2-(trifluoromethylthio)ethyl)-1,3,2-dioxaborolane 8c

¹¹B NMR (128 MHz, CD₃Cl₃) spectrum of 4,4,5,5-tetramethyl-2-(1-(4-(trifluoromethyl)phenyl)-2-(trifluoromethylthio)ethyl)-1,3,2-dioxaborolane 8c

-32.214

B(pin)

F3C

¹H NMR (400 MHz, CDCl₃) spectrum of 4,4,5,5-tetramethyl-2-(1-(3-((2-methyl-1,3-dioxolan-2-yl)methyl)phenyl)-2-(trifluo romethylthio)ethyl)-1,3,2-dioxaborolane 8d

¹H NMR (400 MHz, CDCl₃) spectrum of 2-(1-(benzo[d][1,3]dioxol-5-yl)-2-(trifluoromethylthio)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8e

¹H NMR (400 MHz, CDCl₃) spectrum of 4,4,5,5-tetramethyl-2-(1-(naphthalen-2-yl)-2-(trifluoromethylthio)ethyl)-1,3,2-dio xaborolano 8f

(trifluoromethylthio)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8g

S138

S139

¹³C NMR (101 MHz, CDCl₃) spectrum of 2-(1-(benzo[b]thiophen-5-yl) -2-(trifluoromethylthio)ethyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8h

-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8i

¹⁹F NMR (376 MHz, CDCl₃) spectrum of ((±)-2-((1*R*,2*R*)-1-(benzo[b]thiophen-5-yl)-5-phenyl-2-(trifluoromethylthio)pentyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 8i

S144

¹³C NMR (101 MHz, CDCl₃) spectrum of (±)-5-(4-(3-((3*R*,4*R*)-3-(difluoromethylthio)-4-(4,4,5,5-tetramethyl-1,3,2-dioxabor olan-2-yl)tetrahydro-2*H*-pyran-4-yl)phenylthio)phenyl)-1-methyl-1*H*-pyrazole 12

S145

¹³C NMR (126 MHz, CDCl₃) spectrum of 3-(difluoromethylthio)dihydro-2*H*-pyran-4(3*H*)-one 13

