Supporting Information for

A Kinetic Description of How Interfaces Accelerate Reactions in Micro-compartments

Kevin R. Wilson,^{1,*} Alexander M. Prophet,^{1,2} Grazia Rovelli,¹ Megan D. Willis,¹ Rebecca J. Rapf,¹ and Michael I. Jacobs³

¹Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley CA, 94720, USA ²Department of Chemistry, University of California, Berkeley CA, 94720, USA

³Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

*Corresponding author: Kevin R. Wilson (email: krwilson@lbl.gov)

ORCID: Kevin R. Wilson, 0000-0003-0264-0872

This file contains supplementary Tables S1 and S2 and Figure S1-S7

Table S1: Computed fraction of molecules at the surface of a sphere with radius, R, compared with the reactangular prism simulation geometry.

Rectangular Prism			Sphere			
R (µm)	Surface #	Bulk #	$f_{surface}$	Surface #	Bulk #	$f_{surface}$
1	1.66	3.011	0.554	2.09 x 10 ⁷	3.78 x 10 ⁷	0.554
10	1.66	30.11	0.0554	2.09 x 10 ⁹	3.78 x 10 ¹⁰	0.0554
100	1.66	301.1	5.54 x 10 ⁻³	2.09 x 10 ¹¹	3.78 x 10 ¹³	5.54 x 10 ⁻³
1000	1.66	3011	5.54 x 10 ⁻⁴	2.09 x 10 ¹³	3.78 x 10 ¹⁶	5.54 x 10 ⁻⁴
10000	1.66	30110	5.54 x 10 ⁻⁵	2.09 x 10 ¹⁵	3.78 x 10 ¹⁹	5.54 x 10 ⁻⁵

Table S2: The set of elementary reaction and diffusion steps and rate coefficients used in stochastic simulations 1 and 2.

	Elementary Step	Simulation 1	Simulation 2		
No.	Surface	Rate	Rate	units	Ref.
	Compartment	Coefficient	Coefficient		
1	Amine + Site \rightarrow Amine_ads	0.066	See Sim. 1	M ⁻¹ s ⁻¹	1
2	Amine_ads \rightarrow Amine + Site	1.10 x 10 ⁻³	See Sim. 1	S ⁻¹	1
3	Aldehyde + Site \rightarrow Aldehyde_ads	0.120	See Sim. 1	M ⁻¹ s ⁻¹	1
4	Aldehyde_ads \rightarrow Aldehyde + Site	8.0 x 10 ⁻⁴	See Sim. 1	S ⁻¹	1
5	Imine + Site \rightarrow Imine_ads	0.120	See Sim. 1	M ⁻¹ s ⁻¹	1
6	Imine_ads \rightarrow Imine + Site	2	See Sim. 1	S ⁻¹	2, a
7	Amine_ads + Aldehyde_Ads \rightarrow Imine_ads + Site	1.54 x 10 ⁻³	3.22 x 10 ⁻³	M ⁻¹ s ⁻¹	3
8	Imine $ads \rightarrow Amine ads + Aldehyde Ads$	1.52 x 10 ⁻³	See Sim. 1	s-1	2

	Diffusion Pathways	Diffusion Coefficient	Diffusion Coefficient		
9	Amine (Bulk) ↔ Amine (Surface)	5.02 x 10 ⁻⁶	See Sim.1	cm ² s ⁻¹	2
10	Aldehyde (Bulk) ↔ Aldehyde (Surface)	4.46 x 10 ⁻⁶	See Sim.1	cm ² s ⁻¹	2
11	Imine (Bulk) \leftrightarrow Imine (Surface)	2.39 x 10 ⁻⁶	See Sim. 1	cm ² s ⁻¹	2
	Rully	Rate	Rata		

	Bulk	Rate	Rate			
	Compartment	Coefficient	Coefficient			
12	Amine + Aldehyde \rightarrow Imine	2.60 x 10 ⁻⁵	See Sim.1	M ⁻¹ s ⁻¹	2	
13	Imine \rightarrow Amine + Aldehyde	1.52 x 10 ⁻³	See Sim. 1	S ⁻¹	2	

^a The value of this rate coefficient is selected to produce simulation results consistent with the experimental observations in Ref.²

Figure S1: Imine concentration vs. reaction time measured in a bulk solution. Points are data reproduced from Ref. ² and the line is a fit from simulations in order to constrain the forward and reverse rates for the bulk reaction (Steps 12 and 13 Table 2).

Figure S2: Event fraction in the surface (top) and bulk (bottom) compartments as a function of reaction step number (see Table 2) for R=8.4 μ m and R = 10 cm.

Figure S3: Sensitivity of simulated K_{eq}^{obs} vs. R⁻¹ for [amine]=[aldehyde] = 15mM. Lines represent different simulated values for the surface forward rate coefficient for imine synthesis (Step 7, Table S2). These rate coefficients are expressed as multiples of the bulk value (k_b) (see Step 12, Table S2).

Figure S4: Bulk and surface event fractions as a function of radius for simulation 2 ([amine]=[aldehyde] =15 mM). Lines are guides for the eye.

Figure S5: K_{eq}^{obs} vs. R⁻¹ and concentration for [amine]=[aldehyde]. Comparison of experimental data from Ref. ², results from simulation 2 and predictions from Eq. (15). $K_{eq}^{B} = 0.017 \text{ M}^{-1}$ and is shown in the figure as a gray line.

Figure S6: Surface concentrations of (A) adsorbed amine and aldehyde and (B) fraction of occupied surface sites vs. bulk concentration for $R = 8.4 \mu m$. Simulation 2 results (points) are compared with predictions from Eqs. (31) and (25).

Figure S7: K_{eq}^{obs} vs. R⁻¹ for non-stoichiometric reactant concentrations (i.e. [amine] \neq [aldehyde]): simulation 2 (points) and prediction (lines) from Eq. (15).

Supporting References

1. Tomoaia, G.; Tomoaia-Cotisel, A.; Tomoaia-Cotisel, M.; Mocanu, A., Kinetic study of adsorption of some biocompounds at the oil/water interface. Cent. Eur. J. Chem. 2005, 3, (2), 347-360.

2. Fallah-Araghi, A.; Meguellati, K.; Baret, J.-C.; Harrak, A. E.; Mangeat, T.; Karplus, M.; Ladame, S.; Marques, C. M.; Griffiths, A. D., Enhanced Chemical Synthesis at Soft Interfaces: A Universal Reaction-Adsorption Mechanism in Microcompartments. Phys. Rev. Lett. 2014, 112, (2), 028301.

3. Meguellati, K.; Fallah-Araghi, A.; Baret, J.-C.; El Harrak, A.; Mangeat, T.; Marques, C. M.; Griffiths, A. D.; Ladame, S., Enhanced imine synthesis in water: from surfactant-mediated catalysis to host–guest mechanisms. *Chem. Commun.* **2013**, *49*, (96), 11332-11334.