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Section S1: Parameters for simulations and experiments 

Table S1 lists the experimental conditions, molecular descriptors (Γ,𝜏𝜏, 𝛿𝛿), and experimental 
kinetic solvent parameters (𝜎𝜎exp) for the 76 reactant-solvent systems used for training the models 
in the main text, obtained from Ref. 1. Molecular descriptors were re-scaled between 0 to 1 by 
min-max scaling prior to training linear and neural network models, as discussed in the main text.  

Table S2 lists the number of cosolvent and water molecules used for the classical molecular 
dynamics (MD) simulations to generate the test set. The table also lists the experimental kinetic 
solvent parameters (𝜎𝜎𝑟𝑟; the superscript indicates the reactant). These parameters were calculated 
using reaction rates obtained from Refs. 2 and 3 and were used to test the generalizability of 
SolventNet to new solvents and reactants (Fig. 5 of the main text).  
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Table S1. Parameters used for model training. Molecular descriptors (Γ,𝜏𝜏, 𝛿𝛿) used for training 
linear and neural network models and experimental kinetic solvent parameters (𝜎𝜎exp) used as labels 
for 76 reactant-solvent systems, obtained from Ref. 1. Molecular simulations consist of a single 
reactant molecule in aqueous mixtures with cosolvents at a specified organic mass fraction (morg) 
and temperature, consistent with the experiments performed. For total number of solvent 
molecules in each system, please refer to the Supplementary Information of Ref. 1.  

Reactant Cosolvent 𝑚𝑚org Temperature (K) Γ 𝜏𝜏 𝛿𝛿 𝜎𝜎exp 
ETBE DIO 0.90 343.15 -2.68 5.98 0.00 -0.46 
ETBE DIO 0.75 343.15 -9.06 4.76 0.00 -0.40 
ETBE DIO 0.50 343.15 -4.51 6.38 0.00 -0.16 
ETBE DIO 0.25 343.15 -1.32 3.06 0.00 -0.39 
TBA DIO 0.90 363.15 -0.83 3.40 0.17 -0.60 
TBA DIO 0.75 363.15 -6.03 2.47 0.17 -1.10 
TBA DIO 0.50 363.15 -3.40 1.23 0.17 -0.74 
TBA DIO 0.25 363.15 -0.84 1.03 0.17 -0.35 
LGA DIO 0.90 403.15 7.03 2.51 0.41 0.50 
LGA DIO 0.75 403.15 -0.69 2.74 0.41 0.32 
LGA DIO 0.50 403.15 -1.90 1.69 0.41 0.01 
LGA DIO 0.25 403.15 -0.69 1.19 0.41 0.02 
PDO DIO 0.90 433.15 5.52 2.31 0.42 0.50 
PDO DIO 0.50 433.15 -0.16 1.55 0.42 -0.03 
PDO DIO 0.25 433.15 -0.40 1.19 0.42 -0.21 
FRU DIO 0.90 373.15 14.77 3.11 0.62 1.60 
FRU DIO 0.75 373.15 2.80 2.28 0.62 0.89 
FRU DIO 0.50 373.15 -0.79 1.75 0.62 0.39 
FRU DIO 0.25 373.15 -0.55 1.36 0.62 0.17 
CEL DIO 0.90 403.15 14.71 2.05 0.63 1.15 
CEL DIO 0.75 403.15 7.59 1.73 0.63 0.84 
CEL DIO 0.50 403.15 -0.30 1.58 0.63 0.21 
CEL DIO 0.25 403.15 -0.78 1.21 0.63 0.05 
XYL DIO 0.90 403.15 9.05 2.88 0.66 1.80 
XYL DIO 0.75 403.15 4.68 1.70 0.66 1.02 
XYL DIO 0.50 403.15 0.13 1.39 0.66 0.50 
XYL DIO 0.25 403.15 -0.38 1.28 0.66 0.18 
ETBE GVL 0.90 343.15 2.47 3.70 0.00 0.25 
ETBE GVL 0.75 343.15 -5.80 4.51 0.00 -0.36 
ETBE GVL 0.50 343.15 -11.34 5.50 0.00 -0.21 
ETBE GVL 0.25 343.15 -4.37 2.25 0.00 -0.05 
TBA GVL 0.90 363.15 1.71 4.61 0.17 0.16 
TBA GVL 0.75 363.15 -1.56 2.59 0.17 -0.10 
TBA GVL 0.50 363.15 -4.81 1.39 0.17 -0.30 
TBA GVL 0.25 363.15 -3.22 1.20 0.17 -0.14 
LGA GVL 0.90 403.15 1.49 4.81 0.41 0.88 
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Reactant Cosolvent 𝑚𝑚org Temperature (K) Γ 𝜏𝜏 𝛿𝛿 𝜎𝜎exp 
LGA GVL 0.75 403.15 1.11 1.97 0.41 0.51 
LGA GVL 0.50 403.15 -1.17 1.19 0.41 0.18 
LGA GVL 0.25 403.15 -0.66 1.14 0.41 0.04 
PDO GVL 0.90 433.15 2.60 2.30 0.42 1.70 
PDO GVL 0.50 433.15 -0.03 1.50 0.42 0.18 
PDO GVL 0.25 433.15 -0.58 1.19 0.42 0.06 
FRU GVL 0.90 373.15 6.08 4.09 0.62 2.05 
FRU GVL 0.75 373.15 4.77 2.13 0.62 1.00 
FRU GVL 0.50 373.15 0.08 1.62 0.62 0.41 
FRU GVL 0.25 373.15 -0.33 1.21 0.62 0.19 
CEL GVL 0.90 403.15 5.19 2.27 0.63 1.60 
CEL GVL 0.75 403.15 5.88 1.70 0.63 0.72 
CEL GVL 0.50 403.15 0.39 1.48 0.63 0.23 
CEL GVL 0.25 403.15 -0.46 1.18 0.63 0.08 
XYL GVL 0.90 403.15 2.89 3.51 0.66 2.05 
XYL GVL 0.75 403.15 2.98 2.07 0.66 1.02 
XYL GVL 0.50 403.15 0.94 1.48 0.66 0.41 
XYL GVL 0.25 403.15 -0.20 1.19 0.66 0.11 
ETBE THF 0.90 343.15 -6.62 12.43 0.00 -0.41 
ETBE THF 0.75 343.15 -59.47 2.49 0.00 -0.62 
ETBE THF 0.50 343.15 -67.40 4.33 0.00 -0.67 
ETBE THF 0.25 343.15 -37.84 4.69 0.00 -0.87 
TBA THF 0.90 363.15 0.10 5.17 0.17 -0.72 
TBA THF 0.75 363.15 -21.64 2.68 0.17 -0.61 
TBA THF 0.25 363.15 -18.53 1.51 0.17 -0.41 
LGA THF 0.90 403.15 14.36 7.71 0.41 0.55 
LGA THF 0.75 403.15 13.31 1.98 0.41 0.18 
LGA THF 0.25 403.15 -3.73 1.00 0.41 0.03 
PDO THF 0.90 433.15 13.37 2.69 0.42 2.25 
PDO THF 0.75 433.15 24.42 1.39 0.42 1.34 
PDO THF 0.25 433.15 -1.69 1.19 0.42 0.52 
FRU THF 0.90 373.15 59.63 2.64 0.62 1.46 
FRU THF 0.75 373.15 122.45 1.59 0.62 0.78 
FRU THF 0.25 373.15 0.09 1.39 0.62 0.20 
CEL THF 0.90 403.15 73.56 1.73 0.63 1.00 
CEL THF 0.75 403.15 151.78 1.42 0.63 0.60 
CEL THF 0.25 403.15 -0.34 1.16 0.63 0.08 
XYL THF 0.90 403.15 38.53 2.14 0.66 1.85 
XYL THF 0.75 403.15 84.05 1.40 0.66 0.74 
XYL THF 0.25 403.15 -0.06 1.09 0.66 0.23 
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Table S2. Parameters used to test generalizability of SolventNet. Simulation parameters 
include the number of organic cosolvent molecules (𝑁𝑁org) and water molecules (𝑁𝑁H2O) for each 
mass fraction of the organic component (𝑚𝑚org). Values are listed for aqueous mixtures containing 
dimethyl sulfoxide (DMSO), acetonitrile (MeCN), or acetone (ACE). All simulations included one 
reactant molecule. Experimental kinetic solvent parameters (𝜎𝜎𝑟𝑟) are listed for tert-butanol (TBA), 
1,2-propanediol (PDO), fructose (FRU), and glucose (GLU), obtained from Refs. 2 and 3.  

   Sim. parameters  Experimental kinetic solvent parameters 
Cosolvent 𝑚𝑚org   𝑁𝑁org 𝑁𝑁H2O   𝜎𝜎TBA 𝜎𝜎PDO 𝜎𝜎FRU 𝜎𝜎GLU 

DMSOa 0.90  816 402  -1.04 1.13 2.15 - 
 0.75  617 889  -0.91 0.73 1.44 - 
 0.50  357 1525  -0.60 0.17 0.61 - 

  0.25   152 2027   -0.33 -0.07 0.35 - 
MeCNb 0.90  2104 526  0.85 1.06 1.73 - 

 0.75  1459 1101  0.06 0.35 1.13 - 
 0.50  744 1737  -0.36 -0.04 0.69 - 

  0.25   316 2118   -0.58 -0.34 0.38 - 
ACEc 0.88  1077 484  - - 1.17 0.23 

 0.65  689 1174  - - 0.65 0.13 
 0.44  415 1661  - - 0.16 0.00 

  0.25   201 2041   - - -0.10 -0.07 
a The reaction temperature in DMSO-water mixtures is 363.15 K for TBA, 433.15 K for PDO, and 373.15 K for FRU.  
b The reaction temperature in MeCN-water mixtures is 363.15 K for TBA, 393.15 K for PDO, and 373.15 K for FRU. 
c The reaction temperature in ACE-water mixtures is 393.15 K for FRU and GLU. Note that for ACE-water mixtures, 
experimental kinetic solvent parameters are measured in the presence of hydrochloric acid, whereas all other kinetic 
solvent parameters are measured in triflic acid. 
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Section S2: Voxel representations and data augmentation 

S2.1 Data augmentation 

All voxel representations were augmented by rotations of 90° to train rotationally-invariant 
3D CNNs. Fig. S1 shows all twenty-four unique rotations performed for a single voxel 
representation using xylitol in 90 wt% dioxane as an example. Voxel representations are rotated 
90° along either the “x” or “y” axis. Multiple rotations are denoted by a sequence of these axes; 
for instance, “xy” would mean rotate 90° counter-clockwise along the x-axis, then 90° counter-
clockwise along the y-axis.  
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Fig. S1. Data augmentation for voxel representations. Twenty-four unique rotations performed 
for each voxel representation using t = 0-2 ns xylitol in 90 wt% dioxane as an example. The original 
voxel representation is shown in the top left. 90° rotations are performed along either the x or y 
axis in sequential order. For example, “xy” means rotate 90° counter-clockwise along the x-axis, 
then 90° counter-clockwise along the y-axis. 

 
S2.2 Additional examples of voxel representations 
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Fig. S2 shows voxel representation examples XYL and tert-butanol (TBA) in aqueous 
mixtures with 25, 50, 75, and 90 wt% dioxane (DIO), 25 and 90 wt% γ-valerolactone (GVL) or 
tetrahydrofuran (THF). These examples show that increasing wt% of the cosolvent results in voxel 
representations with more blue voxels. Furthermore, water-enrichment could be observed for 
larger wt% cosolvent with red voxels near the green voxels. While some solvent features could be 
observed from the voxel representations in Fig. S2, it is generally challenging to visually resolve 
the complex solvent arrangements that leads to differences in experimental reaction rates. 

 

 
Fig. S2. Voxel representation examples. (a) Example voxel representations of xylitol (XYL) and 
tert-butanol (TBA) in aqueous mixtures with 25, 50, 75, and 90 wt% dioxane (DIO). Example 
voxel representations of XYL and TBA in aqueous mixtures with 25 and 90 wt% γ-valerolactone 
(GVL) (b) or tetrahydrofuran (THF) (c). Voxel representations are illustrated as described in Fig. 
3 in the main text.   
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Section S3: Extent of simulation data required to train SolventNet 

We trained SolventNet with varying amounts of simulation data to determine the effect on 
model accuracy. Simulation and experimental data for the 76 reactant-solvent combinations 
studied in Ref. 1 were used to train the model. This data set includes a 200-ns MD simulation 
trajectory for each reactant-solvent combination. To determine the amount of MD data needed for 
accurate predictions, we divided the first 110 ns of each trajectory into 11 equal 10-ns partitions 
of consecutive MD configurations. We created a collection of training sets by varying two 
parameters: the number of training partitions used to generate voxel representations (which affects 
the size of the training set) and the amount of simulation time per partition used to generate each 
voxel representation in both the training and test set (which affects the number of MD 
configurations that were averaged together per voxel representation). As described in the main 
text, each training partition was used to generate 24 voxel representations: one using the original 
atomic positions and 23 using atomic positions from data augmentation (Section S2.1). For each 
training set, we trained SolventNet using the same parameters and 5-fold cross validation 
procedure described in the main text. We assessed the accuracy of each training set based on the 
predicted kinetic solvent parameters for the validation set of each fold.  

Fig. S3a shows the root-mean-squared error (RMSE) between the predicted (𝜎𝜎pred ) and 
experimental (𝜎𝜎exp) kinetic solvent parameters when varying the number of partitions and the 
simulation time per partition and used to train SolventNet. The total simulation time required for 
model training is the product of these two quantities, whereas the simulation time required to test 
a new reactant-solvent combination is equal to the simulation time per partition. Increasing the 
number of training partitions generally decreases the RMSE, as this increases the amount of 
training data, but the difference is minor for greater than 2 training partitions and the difference 
plateaus for greater than 7 training partitions. There is a non-monotonic dependence of the RMSE 
on the amount of MD simulation data per partition depending on the number of partitions – large 
amounts of simulation time (>5 ns) tend to increase the RMSE, likely because solvent 
arrangements average out and precise features are not resolved. We chose to use 10 training 
partitions with 2 ns simulation time per partition (indicated by the black circle in Fig. S3a) because 
these parameters lead to a low RMSE while requiring minimal simulation data, with 2 ns 
representing a simulation time that consistently leads to a low RMSE for multiple different 
numbers of training partitions. For these parameters, a total of 20 ns of simulation data are required 
to train and test SolventNet while only 2 ns of data are needed to test new reactant-solvent 
combinations.  

We next determined if SolventNet accuracy was affected by which simulation 
configurations were used for model training and testing. We extracted 20 ns blocks from the first 
110 ns of each simulation trajectory and divided the block into 10, 2-ns training partitions (based 
on the choice from Fig. S3a) and used these to generate augmented voxel representations to train 
SolventNet. We repeated this process for a collection of blocks with the starting time of each block 
offset from the start of the trajectory. Fig. S3b shows the validation set RMSE between 𝜎𝜎pred  and 
𝜎𝜎exp for SolventNet trained with each 20-ns block. The RMSE does not substantially vary for any 
of the blocks. We thus chose to train all 3D CNNs using the first 20-ns simulation block, marked 
by the asterisk in Fig. S3b, to minimize the total amount of simulation time necessary for training.  

We then tested if increasing the simulation data from 20 ns to 200 ns would affect the 
accuracy using SolventNet and the 5-fold cross validation training procedure. Fig. S3c shows the 
same parity plot as Fig 4b in the main text, which used 20 ns of MD data for each reactant-solvent 
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system, resulting in 10 unaugmented voxel representations per label (for each fold, a total of 14,640 
augmented voxel representations is used for training). Fig. S3d shows a parity plot between 
predicted and experimental kinetic solvent parameters when using 200 ns of MD data to train 
SolventNet, which results in 100 unagumented voxel representations per label (for each fold, a 
total of 146,400 augmented voxel representations is used for training). We find that using either 
20 ns or 200 ns of MD data results in similar model accuracies. Thus, we chose to use 20 ns of 
MD data to minimize the amount of simulation data required for training. 

In summary, based on these tests we decided to train the 3D CNNs using: (i) 10 training 
partitions, (ii) 2 ns of simulation data per partition, and (iii) the first 20-ns block in each simulation 
trajectory. These choices yield reasonable model accuracy with minimal input simulation data. 
Unless otherwise noted, all 3D CNNs were trained using these parameters. 

 

 
Fig. S3. Effect of varying the amount of simulation time on SolventNet accuracy. (a) Root-
mean-squared error (RMSE) between 𝜎𝜎pred  and 𝜎𝜎exp as a function of the number of training 
partitions and the simulation time per partition. SolventNet was separately trained for each set of 
parameters using all 76 reactant-solvent combinations and 5-fold cross validation training 
procedure (Figure 2b of main text). The black circle indicates the parameters used to generate 
voxel representations in the main text (2 ns voxel representations and 10 training partitions). (b) 
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RMSE between 𝜎𝜎pred  and 𝜎𝜎exp as a function of the specific 20-ns block of simulation data used 
to generate voxel representations. Since the RMSE is similar across different 20 ns-block of 
simulation data, we selected the first simulation block for model training in the main text, denoted 
by the asterisk. Parity plot between predicted (𝜎𝜎pred) and experimental (𝜎𝜎exp) kinetic solvent 
parameters using (c) 20 ns or (d) 200 ns of MD data for each reactant-solvent system. (c) is the 
same as Fig. 4b of the main text. The 200 ns MD data was equally partitioned into 100 2 ns voxel 
representations for each reactant-solvent system and trained with SolventNet using the 5-fold cross 
validation training procedure.  

 
Section S4: Three-dimensional convolutional neural network models 

S4.1 VoxNet and ORION architecture 

VoxNet is a shallow 3D CNN designed for real-time 3D object recognition, schematically 
illustrated in Fig. S4a.4 VoxNet consists of two convolutional layers: the first convolutional layer 
has 32 5×5×5 filters with a stride of 2 and the second convolutional layer has 32 3×3×3 filters with 
a stride of 1. A 2×2×2 max-pooling layer 2 is after the convolutional layers. The results from the 
max-pooling layer are passed to a fully connected layer with 128 nodes. The final layer in the 
original model is a softmax layer for classification, which we replaced with a linear activation 
function for regression. VoxNet has a total of 150,689 parameters.  

Orientation-boosted Voxel Nets for 3D Object Recognition (ORION) is a 3D CNN that 
uses the basic structure of VoxNet, schematically illustrated in Fig. S4b.5 ORION adds an 
additional auxiliary task of orientation estimation based on the assumption that the trained network 
induces different features with objects under rotation. We chose ORION to test against other 3D 
CNN models because it can reflect if our data set contains information in the azimuthal direction. 
We modified the number of filters and number of strides in the original ORION network because 
the size of the voxel representation used in this work is smaller (20×20×20) than that of the object 
classification data set used in the original work (30×30×30). The modified ORION network has 4 
convolutional layers with 4, 8, 16, and 32 3×3×3 filters, respectively. Each convolutional layer is 
followed by a batch normalization layer. After the 4 convolution layers, a 2×2×2 max pooling 
layer is applied, followed by a fully connected layer consisting of 2 dense layers with 128 and 40 
nodes, respectively. The ReLU activation function is used for the fully connected layers. The 
modified ORION network has a total of 908,833 parameters.  

Fig. S4 further shows parity plots between predicted and experimental kinetic solvent 
parameters using VoxNet (Fig. S4c) and ORION (Fig. S4d). Both models were trained with input 
data for the 76 reactant-solvent compositions from Ref. 1 using the same voxel representation and 
training procedure that were used to train SolventNet as described in the main text (Fig. 4b).  We 
find that 3D CNNs perform comparably using 5-fold cross validation, with SolventNet having a 
higher best-slope of 0.89 compared to VoxNet and ORION, both models having a slope of 0.86.  
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Fig. S4. Architecture and prediction accuracy of VoxNet and ORION. 3D CNN architectures 
for (a) VoxNet and (b) ORION. Parity plots between predicted (𝜎𝜎pred ) and experimental (𝜎𝜎exp) 
kinetic solvent parameters using (c) VoxNet and (d) ORION. The models were trained for 500 
epochs using simulation and experimental data for 76 reactant-solvent combinations following the 
5-fold cross validation procedure described in the main text. The best-fit slope and root-mean-
squared error (RMSE) between 𝜎𝜎pred and 𝜎𝜎exp are shown within the plot. The solid black line 
indicates perfect correlation (𝜎𝜎pred = 𝜎𝜎exp), the dashed black lines show approximate 
experimental error, and the dashed gray lines are drawn at 𝜎𝜎exp = 0 and 𝜎𝜎pred = 0 as a guide to 
the eye. 
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S4.2 Learning curves 

Learning curves were analyzed to ensure training convergence for the supervised learning 
task of predicting kinetic solvent parameters using the 3D CNNs. Fig. S5 shows the training and 
validation loss for ORION, VoxNet, and SolventNet when training with input data from all 76 
reactant-solvent combinations as described in the main text using a 5-fold cross validation training 
procedure. The training loss (filled lines) for all 3D CNNs reaches zero after 500 epochs, indicating 
that the models were fully trained. The validation loss (dashed lines) all converge after ~400, 
indicating that the models are well-converged.  

 

 
Fig. S5. Learning curves for ORION, VoxNet, and SolventNet. Training (filled lines) and 
validation loss (dashed lines) are shown across 500 epochs when training with input data from all 
76 reactant-solvent combinations. Each of the models obtained from the 5-fold cross validation 
training procedure are shown.  
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Table S3. Model parameters and prediction accuracy of all models. Number of parameters, convolutional layers, max-pooling layers, and fully 
connected (FC) layers for all models studied. Input data type (either descriptors or voxel representations) and array shape used for each model is shown. 
The total number of arrays for either 5-fold cross validation training or using 76 reactant-solvent combinations is shown with numbers before and after 
augmentation (aug., see Section S2.1). The best-fit slope and root-mean-squared error (RMSE) between 𝜎𝜎pred and 𝜎𝜎exp are listed based on training and 
evaluating each model using all 76 reactant-solvent combinations, denoted as “Model accuracy”. Multilinear regression with molecular descriptors and 
using all 76 reactant-solvent compositions is denoted as “Linear (Regression)”. All other models use the 5-fold cross validation procedure discussed in 
the main text. The time required to train the 3D CNNs with all training set data is reported using a workstation with one GPU (NVIDIA GeForce RTX 
2080 Ti) and one core. The best-fit slope and RMSE between 𝜎𝜎pred and 𝜎𝜎exp for predicting the test set consisting of 32 reactant-solvent combinations 
is shown for all 3D CNNs. 
     

Linear 
(Regression)a 

Linear  
(5-fold) NN ORION VoxNet SolventNet VGG16 

Model details 

 # parameters  3 3 271 908,833 150,689 172,417 33,601,345 
 # conv. layers  - - - 4 2 4 13 
 # max-pool layers  - - - 1 1 2 5 
 # FC layers  - -  2 1 3 2 

Input data 
 Type  Descriptors Descriptors Descriptors Voxel rep. Voxel rep. Voxel rep. 2D Voxel rep. 
 Array shape  3 3 3 20×20×20×3 20×20×20×3 20×20×20×3 32×32×3 

Input data for training 
each fold  
(5-fold) 

 # training arrays 
(before aug.) 

 - 61 61 610 610 610 1,830 

 # training arrays 
(after aug.) 

 - 61 61 14,640 14,640 14,640 7,320 
 # validation arrays  - - 15 150 150 150 450 
 # parameters / 

# training data 
 - 0.0 4.4 62.1 10.3 11.8 4590.3 

Input data training 
using all data 

 # training arrays 
(before aug.) 

 76 - - 760 760 760 - 

 # training arrays 
(after aug.) 

 76 - - 18,240 18,240 18,240 - 

Model accuracy 
 Slope  0.51 0.49 0.46 0.86 0.86 0.89 0.82 
 RMSE  0.52 0.58 0.62 0.36 0.35 0.37 0.44 

Training time (hr)    - - - 2.4 1.6 2.0 - 
Test set prediction 

accuracy 
 Slope  - - - 0.71 0.76 0.72 - 
 RMSE  - - - 0.48 0.57 0.48 - 

aWhen separately performing multilinear regression separately for each cosolvent-water system: 
Using 27 combinations of DIO-water mixtures: Slope = 0.89, RMSE = 0.23 
Using 27 combinations of GVL-water mixtures: Slope = 0.71, RMSE = 0.36 
Using 22 combinations of THF-water mixtures: slope = 0.51, RMSE = 0.59 
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Section S5: Alternative voxel representations as input for 3D CNNs 

The voxel representations used for all 3D CNNs in the main text stored the normalized 
occurrence of water atoms, reactant oxygen atoms, and cosolvent atoms within (0.2 nm)3 volume 
elements. We tested the effect of alternative voxel representations on SolventNet accuracy by 
varying the atomic positions stored in each voxel and varying the size of each volume element.  

 
S5.1 Varying input channels of voxel representations 

We tested the effect of storing normalized occurrences of different atom types within (0.2 
nm)3 volume elements. Fig. S6 summarizes the five different voxel representations tested using 
xylitol (XYL) in 90 wt% DIO as an example. The 2-channel voxel representation stores the 
normalized occurrences of water and cosolvent atomic positions. The 3-channel voxel 
representations all store the normalized occurrences of water and cosolvent atomic positions in 2 
channels. The third channel stored either the normalized occurrence of oxygen atoms of the 
reactant, atoms within hydroxyl groups on the reactant, or all reactant atoms. The 4-channel voxel 
representation stores the normalized occurrences of water atoms, cosolvent atoms, reactant oxygen 
atoms, and all reactant atoms.   

Table S4 compares the best-fit slope and RMSE between 𝜎𝜎pred and 𝜎𝜎exp calculated when 
training and testing SolventNet using all 76 reactant-solvent combinations and five-fold cross 
validation procedure for each voxel representation shown in Fig. S6. The 2-channel representation 
has the lowest training accuracy with a slope of 0.82 and RMSE of 0.34. All other representations 
with (0.2 nm)3 volume elements have a higher training accuracy with slope ≥ 0.85 and comparable 
RMSEs.  Of the voxel representations in Fig. S6, the 3-channel representation that stores the 
normalized occurrences of reactant oxygen atoms has one of the highest slopes, although we note 
no substantial difference between the different representations. We use this voxel representation 
for all results in the main text and mark it with an asterisk in Table S4. 
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Fig. S6. Different voxel representations used as input to SolventNet. Voxel representations are 
visualized by coloring different channels using xylitol in 90 wt% dioxane as an example. For each 
MD configuration, a 20×20×20 grid of (0.2 nm)3 volume elements was centered on the reactant. 
All voxel representations include normalized occurrences averaged over 2 ns of MD data and are 
visualized with half the voxels transparent. The asterisk indicates the voxel representation used in 
the main text. 
 
S5.2 Varying size of volume elements in voxel representations 

We tested the effect of varying the volume element size on the prediction accuracy of 
SolventNet. Tests were performed using the 3-channel voxel representation that stores the oxygen 
atoms of the reactant. The voxel representation used in the main text divided a (4 nm)3 cubic box 
into a 20×20×20 grid of (0.2 nm)3 volume elements. Using the same (4 nm)3 cubic box, we 
generated voxel representations in which the box was divided into a 16×16×16 grid of (0.25 nm)3 

and a 32×32×32 grid of (0.125 nm)3 volume elements. Fig. S7 shows examples of each voxel 
representation for XYL in 90 wt% DIO. The 32×32×32 representation shows higher resolution 
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features compared to the other two representations, such as more clearly defined locations of 
reactant oxygen atoms.  

Table S4 compares the effect of the volume element size on SolventNet predictions. 
Training SolventNet with 16×16×16 or 32×32×32 voxel representations lead to similar slope and 
RMSEs compared to 20×20×20 voxel representations. These results suggest that changing the 
volume element size do not significantly influence model accuracy. Therefore, we select 
20×20×20 voxel representations for all the results in the main text.  

 

 
Fig. S7. Voxel representations with different volume element sizes. Example voxel 
representations of XYL in 90 wt% DIO when varying the volume element size and corresponding 
number of voxel elements. Each voxel representation is labeled with the grid dimensions and 
volume element size. Voxel representations are visualized by showing normalized occurrences of 
water atoms, cosolvent atoms, and reactant oxygen atoms in red, green, and blue, respectively. 
Half of the voxels are transparent to visualize the spatial distribution around the reactant. The 
asterisk indicates the voxel representation used in the main text. 
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Table S4. Effect of voxel representation on SolventNet predictions. Accuracy metrics are 
reported for all different voxel representations tested. The training accuracy reports the best-fit 
slope and root-mean-squared error (RMSE) between 𝜎𝜎pred and 𝜎𝜎exp obtained when training and 
evaluating SolventNet with 5-fold cross validation. The asterisk indicates the voxel representation 
used in the main text.  
Voxel representation Slope RMSE 
2 channel 0.82 0.34 
3 channel with oxygens of reactant* 0.89 0.37 
3 channel with hydroxyls of reactant 0.90 0.36 
3 channel with all atom reactant 0.85 0.33 
4 channel 0.88 0.36 
3 channel with oxygens of reactant  
(16 x 16 x 16 x 3) 0.89 0.38 

3 channel with oxygens of reactant  
(32 x 32 x 32 x 3) 0.87 0.36 

VGG16  
(32 x 32) 0.82 0.44 
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Section S6: Comparison between 3D and 2D CNNs 

We also predicted 𝜎𝜎 using a 2D CNN to determine the effect of input data dimensionality 
on prediction accuracy. We selected the VGG16 network as a representative 2D CNN architecture 
since it was one of the top performers in the ImageNet Large-Scale Visual Object Challenge 
(Ref. 6). VGG16 has a deep architecture that has a total of 13 convolutional layers, 5 max-pooling 
layers, and 2 fully connected layers, totaling 33,601,345 parameters. We replaced the final softmax 
layer of VGG16 with a linear activation function for the regression task of predicting 𝜎𝜎. We 
flattened the 3D voxel representations to provide 2D input images for VGG16. Since this network 
has a restriction that the smallest image is 32×32, we convert 32×32×32 voxel representations that 
store reactant oxygen atoms from Section S5.2 into 2D images (pixel fields). Fig. S8a illustrates 
the conversion from 3D to 2D for XYL in 90 wt% DIO. For each voxel representation, the data 
was flattened by averaging along either the x-, y-, or z-axis to produce three 32×32 images. Each 
image was augmented by rotating counterclockwise by 90°, 180°, and 270°. Therefore, for 10 
training partitions, there are 120 images for a single reactant-solvent combination and 9,120 total 
images for all 76 reactant-solvent combinations. We trained the model following the 5-fold cross 
validation procedure described in the main text, in which each fold uses 20% of the 76 reactant-
solvent combinations as validation data (450 validation samples) and the remaining reactant-
solvent combinations were used as training data (7,320 training samples after augmentation). We 
trained VGG16 using the same training parameters as SolventNet (e.g. Adam optimizer, etc.).  

Fig. S8b shows the parity plot between 𝜎𝜎pred and 𝜎𝜎exp using VGG16.  The best-fit slope 
and RMSE for this data are 0.82 and 0.44, respectively. The larger RMSE for VGG16 compared 
to SolventNet (Table S4) suggests that this model may overfit the training examples, given that 
VGG16 has a large number of parameters. Fig. S8c shows the learning curve with the training and 
validation loss across 500 epochs when training VGG16. The learning curve shows convergence 
of training VGG16 within 500 epochs. Therefore, we find that the using a 3D CNN both provides 
a more accurate description of system geometry, reduces the number of parameters needed for the 
network compared to a top-performing 2D CNN, and generalizes more accurately. These findings 
agree with our hypothesis that 3D CNNs are more natural architectures to study the effect of 
solvent spatial distributions on reaction rates.  
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Fig. S8. Prediction of kinetic solvent parameters using the VGG16 model. (a) Example 
32×32×32 3D voxel representation for xylitol in 90 wt% dioxane and corresponding 32×32 2D 
images used to train VGG16. 3D voxel representations were flattened to 2D images by averaging 
the voxel data along the x-, y-, and z-axes. (b) Parity plot between 𝜎𝜎pred and 𝜎𝜎exp  using the VGG16 
model when training and testing with 76 reactant-solvent combinations. The best-fit slope and 
root-mean-squared error (RMSE) between 𝜎𝜎pred and 𝜎𝜎exp are shown within the plot.  (c) Learning 
curve with training and validation loss for training VGG16 with 2D images. Only one of five 
models are shown.  

Section S7: Propagation of error in the reaction rate predictions 

Since 𝜎𝜎 is defined as log-ratio of reaction rates, the error in the kinetic solvent parameter 
predictions may result in large errors in the actual reaction rates (𝑘𝑘𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟 ). Fig. S9 shows the predicted 
versus experimental reaction rates using the data from Fig. 4b of the main text. 𝑘𝑘𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟  is computed 
by rearranging Equation 1 of the main text, shown in Equation S1: 
 

𝑘𝑘𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟 = 10𝜎𝜎 ∙ 𝑘𝑘𝐻𝐻2𝑂𝑂
𝑟𝑟  (S1) 

𝑘𝑘𝐻𝐻2𝑂𝑂
𝑟𝑟  is the apparent rate constant for the reaction in pure water, taken from Ref. 2. The error of 

the reaction rates in mixed-solvent environments (∆𝑘𝑘𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟 ) was propagated using the total 
differential of 𝑘𝑘𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟  and assuming that the error associated with 𝑘𝑘𝐻𝐻2𝑂𝑂

𝑟𝑟  is negligible, shown in 
Equation S2: 
 

∆𝑘𝑘𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟 = 10𝜎𝜎 ∙ ln (10)𝑘𝑘𝐻𝐻2𝑂𝑂
𝑟𝑟 Δ𝜎𝜎 (S2) 
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Δ𝜎𝜎 is the estimated predicted error. Fig. S9 shows that the predicted reaction rates in mixed-
solvent environments are well-correlated with experimental reaction rates, with the exception of 
some outliers for CEL and LGA. 

 
Fig. S9. Propagated error in the prediction of actual reaction rates. Parity plots between 
predicted and experimental reaction rates (𝑘𝑘𝑜𝑜𝑟𝑟𝑜𝑜𝑟𝑟 ) using the SolventNet model described in Fig. 4b 
in the main text. Most points are overlapping along the main diagonal. 
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