Supporting Information

Surface Sites Density and Utilization of Platinum Group Metal (PGM)-free Fe-NC and FeNi-NC Electrocatalysts for the Oxygen Reduction Reaction

Fang Luo¹, Stephan Wagner², Ichiro Onishi³, Sören Selve⁴, Shuang Li⁵, Wen Ju¹, Huan Wang¹, Julian Steinberg¹, Arne Thomas⁵, Ulrike I. Kramm^{*2}, Peter Strasser^{*1}

¹The Electrochemical Catalysis, Energy and Materials Science Laboratory, Department of Chemistry, Technische Universität Berlin, Straße des 17. 10623, Berlin, Germany

²Department of Chemistry and Department of Materials and Earth Sciences, Catalysts and Electrocatalysts group, Technical University of Darmstadt, Otto-Berndt-Str. 3, 64287 Darmstadt, Germany

³JEOL Ltd, 3-1-2 Musashino, Akishima, Tokyo, Japan.

⁴Technische Universität Berlin, Center for Electron Microscopy (ZELMI), Straße des 17. Juni 135, 10623 Berlin, Germany

⁵Functional materials, Department of Chemistry, Technical Universität Berlin, Hardenbergstr. 40, 10623, Berlin, Germany

*Email: pstrasser@tu-berlin.de; kramm@ese.tu-darmstadt.de

Figure S1. XPS analyses of N-C and Ni-NC catalysts. XPS- N_{1s} spectrum of (a) N-C and (b) Ni-NC, (c)The comparison of high-resolution N 1s XPS for all the catalyst, (d) XPS- N_{12p} spectra of FeNi-NC, NiO and Pure Ni, (e)The comparison of experimental Ni2p spectra of FeNi-NC and expected Ni2p spectra of NiO envelope.

Figure S2. STEM-BF image images of the carbon phase of FeNi-NC catalyst.

Figure S3. Electron transfer for Fe-NC, FeNi-NC, Ni-NC and N-C in (a) alkaline and (b) acidic electrolyte. Electrochemical Tafel curves of MNC catalysts (applied E versus $\log|j_m|$ (j_m : kinetic mass activity / mA mg⁻¹)) in (c) alkaline and (d) acid electrolyte.

Figure S4. The active-site utilization factor $\phi_{SD \ surfac/bulk}$ as a function of Brunauer-Emmett-Teller (BET) surface area.

Figure S5. The correlation of the (a) micro and (b) meso pore volumes and the utilization factors

Sample	0	Ν	С	Fe	Ni
Fe-NC	3.8	5.9	88.9	0.8	-
FeNi-NC	2.5	4.3	91.7	0.4	0.4
Ni-NC	3.0	6.0	88.6	-	0.9
N-C	3.9	4.0	92.2	-	-

Supplementary Table 1. The atomic concentrations (at.%) of N, O, C, Fe, and Ni of Fe-NC, FeNi-NC, Ni-NC and N-C catalysts from XPS.

Supplementary Table 2. Relative amount of nitrogen components, as obtained by fitting of the N_{1s} narrow scan XPS spectra to 8 individual N components. The latter were grouped into 4 distinct BE-ranges, due to recognized multiple possible assignment of nitrogen speciation in each of those BE ranges.¹

	BE- ra N bonded carbons, N bonds, - (e.g. Imine N, triaz 398-399	ange 1 to two sp ² NC double -C=N-C c, Pyridinic zinic N) eV / at%	BE- range 2 sp ² N, N-Metal coordination, OC-NH-C, multiple graphitic N in a single aromatic ring (e.g. M – Nx, Amide) 399 – 400 eV/ at%		BE- range 3 in-plane hydrogenated N, isolated graphitic N, out-of-plane hydrogenated-N/protonated N, hydrogenated graphitic N (e.g. pyrrolic, protonated pyridinic) 400 – 403 eV / at%			BE- range 4 oxidized N (e.g. C=N-O) / at%
BE	~398.1ev	~398.7ev	~399.3ev	~399.8ev	~400.7ev	~401.8ev	~403ev	~405ev
Fe-NC	20.6	13.6	4.4	3.6	44.9	7.4	4.3	1.3
FeNi-NC	15.9	11.8	2.9	3.3	50.1	8.6	5.3	2.1
NiNC	8.7	21.3	5.6	1.5	48.9	7.7	5.0	1.4
N-C	25.3	0.4	6.4	2.5	52.7	8.5	2.6	1.6

Catalyst	Microporosity / cc g ⁻¹	Mesoporosity / cc g ⁻¹	Micropore Surface Area / m ² g ⁻	BET Surface Area / m ² g ⁻¹	Iron Content (ICP) / wt %	Nitrogen Content (EA) / wt %	Carbon Content (EA) / wt %
Fe-NC	0.20	0.45	587	665	Fe: 3.92	6.43	76.41
FeNi- NC	0.25	0.4	701	758	Ni: 1.74 Fe: 2.44	4.3	80.19
Ni-NC	0.05	0.22	108	238	Ni: 13.8	5.49	66.34
N-C	0.02	0.2	47	174		7.1	83.05

Supplementary Table 3. Physical characterization of Fe-NC, FeNi-NC, Ni-NC and N-C catalysts

Supplementary Table 4. Summary of Rotating ring disk electrode (RRDE) results in terms of mass activity j_m at 0.85 V_{RHE} for pH 13 KOH and at 0.8 V_{RHE} for pH 1 HClO₄. All catalysts were measured in O₂-saturated electrolyte with 5 mV s⁻¹ scan rate, at 1,600 rpm. Experimental errors are indicated

catalysts	0.1 M KOH, pH 13, 0.85V _{RHE}	0.1 M HClO4, pH 1, 0.8V _{RHE}		
	j _m / mA mg _{catalyst} ⁻¹	$j_m/mAmg_{catalyst}$ -1		
Fe-NC	15.56±1.54	2.43±0.12		
FeNi-NC	1.94±0.49	0.24±0.03		
Ni-NC	0	0.03 ± 0.003		
N-C	0.50±0.06	0.05±0.004		

Supplementary Table 5. The half-wave potentials $(E_{1/2})$ of Fe-NC, FeNi-NC, Ni-NC and N-C catalysts from RRDE experiments

Samples	Fe-NC	FeNi-NC	Ni-NC	N-C
E _{1/2} (V vs RHE) 0.1 M KOH	0.89±0.01	0.84±0.01	0.72±0.001	0.79±0.002
E _{1/2} (V vs RHE) 0.1M HClO4	0.79±0.002	0.69±0.004	0.46±0.01	0.43±0.01

Supplementary Table 6. CO cryo chemisorption results of Fe-NC, FeNi-NC, Ni-NC and N-C catalysts

Catalysts	n_{CO} / 10^{-6} mol g ⁻¹
Fe-NC	162±6
FeNi-NC	53±8
Ni-NC	0
N-C	0

Supplementary Table 7. Active sites density (SD) from CO cryo chemisorption and Mössbauer spectroscopy experiments of Fe-NC and FeNi-NC catalysts

		SD (×10 ²⁰) / site g ⁻¹
Catalysts	CO chemisorption	Mössbauer spectroscopy
	SD _{surface}	SD _{bulk} -(D1+D2)
Fe-NC	0.98±0.04	3.49±0.07
FeNi-NC	0.32±0.05	0.90±0.01

Supplementary Table 8. The utilization factor ($\phi_{SD \ surfac/bulk}$) results of of Fe-NC and FeNi-NC catalysts

Catalysta	$\phi_{sDsurfac/bulk}$
Catalysts	SD _{bulk} -(D1+D2)
Fe-NC	0.28
FeNi-NC	0.36

Supplementary Table 9. The turn over frequency (TOF) results of Fe-NC and FeNi-NC catalysts

Catalysts	TOF / e/(s*site) KOH	TOF/ e/(s*site) HCLO4
Fe-NC	1.00	0.15
FeNi-NC	0.38	0.05

References

1. Artyushkova, K., Misconceptions in interpretation of nitrogen chemistry from x-ray photoelectron spectra. *Journal of Vacuum Science & Technology A*, 2020, *38*, 031002.