1. General methods
2. Syntheses and characterization
2.1 PADTE ligand
Scheme S1. Synthetic route for ligand PADTE
Figure S1. ¹ H NMR spectrum for ligand PADTE (CDCl ₃ , 25°C)7
Figure S2. ¹³ C NMR spectrum for ligand PADTE (CDCl ₃ , 25°C)8
Figure S3. FT-IR spectrum for ligand PADTE
Figure S4. Single-crystal structure of <i>o</i> -PADTE (CCDC 1917233, grey for
C, blue for N, yellow for S, red for O, H atoms and solvents are omitted for
clarity)9
2.2 <i>o</i> -A ¹ ₂ L ₃ Zn ₂ cage
Figure S5 . ¹ H NMR spectrum for o -A ¹ ₂ L ₃ Zn ₂ cage (CD ₃ CN, 25°C)10
Figure S6. ¹³ C NMR spectrum for o -A ¹ ₂ L ₃ Zn ₂ cage (CD ₃ CN, 25°C) 10
Figure S7 . FT-IR spectrum for o -A ¹ ₂ L ₃ Zn ₂ cage11
Figure S8 . ¹ H- ¹ H COSY spectrum for o -A ¹ ₂ L ₃ Zn ₂ cage (CD ₃ CN, 25°C)11
Figure S9. HSQC spectrum for o -A ¹ ₂ L ₃ Zn ₂ cage (CD ₃ CN, 25°C)12
Figure S10 . High resolution ESI-MS spectrum for o -A ¹ ₂ L ₃ Zn ₂ cage
(CH ₃ CN, 25°C)12
Figure S11 . DOSY spectrum for o -A ¹ ₂ L ₃ Zn ₂ cage (CD ₃ CN, 25°C)13
Figure S12. A pair of $\Lambda\Lambda$ - and $\Delta\Delta$ -enantiomeric cages coexist in the crystal
lattice of o -A ¹ ₂ L ₃ Zn ₂ cage (grey for C, blue for N, yellow for S, cyan for
Zn, H atoms, solvents and counter anions are omitted for clarity)
2.3 o -A ² ₂ L ₃ Cd ₂ cage
Figure S13. ¹ H NMR spectrum for o -A ² ₂ L ₃ Cd ₂ cage (CD ₃ CN, 25°C) 14
Figure S14. ¹³ C NMR spectrum for o -A ² ₂ L ₃ Cd ₂ cage (CD ₃ CN, 25°C)15
Figure S15 . FT-IR spectrum for o -A ² ₂ L ₃ Cd ₂ cage15
Figure S16. ¹ H- ¹ H COSY spectrum for o -A ² ₂ L ₃ Cd ₂ cage (CD ₃ CN, 25°C).16
Figure S17 . High resolution ESI-MS spectrum for o -A ² ₂ L ₃ Cd ₂ cage
(CH ₃ CN, 25°C)17
Figure S18. DOSY spectrum for o -A ² ₂ L ₃ Cd ₂ cage (CD ₃ CN, 25°C)18
Figure S19 . (a) Single-crystal structure of o -A ² ₂ L ₃ Cd ₂ cage. (b)
Coordination geometry of Cd ^{II} (grey for C, blue for N, yellow for S, orange
for Cd, H atoms, solvents and counter anions are omitted for clarity) 18
2.4 o -A ² 2L ₃ Zn ₂ cage
Figure S20. ¹ H NMR spectrum for o -A ² ₂ L ₃ Zn ₂ cage (CD ₃ CN, 25°C) 19
Figure S21. High resolution ESI-MS spectrum for o -A ² ₂ L ₃ Zn ₂ cage
$(CH_3CN, 25^{\circ}C)$
Figure S22. DOSY spectrum for o -A ² ₂ L ₃ Zn ₂ cage (CD ₃ CN, 25°C)21
2.5 <i>0</i> -K-A ¹ ₂ L ₃ cage
Figure 825. 'H NMR spectrum for o -R-A' ₂ L ₃ cage (CD ₃ OD, 25°C)
Figure 824. ¹⁵ C NIVIK spectrum for o -K-A ¹ ₂ L ₃ cage (CD ₃ OD, 25 [°] C)22
Figure S25. F1-IK spectrum for o -K-A ^{1} ₂ L ₃ cage

Figure S26. ¹ H- ¹ H COSY spectrum (upper) and DOSY spectrum (lowe	r)
for o -R-A ¹ ₂ L ₃ cage (CD ₃ OD, 25°C)	23
Figure S27 . High resolution ESI-MS spectrum for o -R-A ¹ ₂ L ₃ cage	
(CH ₃ OH, 25°C).	24
2.6 <i>o</i> -R-A ² ₂ L ₃ cage	25
Figure S29 . ¹ H NMR spectrum for <i>o</i> -R-A ² ₂ L ₃ cage (CD ₃ OD, 25°C)	25
Figure S30. ¹³ C NMR spectrum for <i>o</i> -R-A ² ₂ L ₃ cage (CD ₃ OD, 25°C)	26
Figure S31 . FT-IR spectrum for <i>o</i> -R-A ² ₂ L ₃ cage	26
Figure S32. ¹ H- ¹ H COSY spectrum for <i>o</i> -R-A ² ₂ L ₃ cage (CD ₃ OD, 25°C)27
Figure S33 . High resolution ESI-MS spectrum for o -R-A ² ₂ L ₃ cage	
(CH ₃ OH, 25°C).	27
Figure S34. DOSY spectrum for o-R-A ² ₂ L ₃ cage (CD ₃ OD, 25°C)	28
Table S1. Crystallographic data summary for o-PADTE (CCDC 19172)	33),
<i>c</i> -PADTE (CCDC 1919654).	29
Table S2. Bond lengths (Å) for PADTE (L).	30
Table S3. Bond angles (°) for PADTE (L).	31
Table S4 . Crystallographic data summary for o -A ¹ ₂ L ₃ Zn ₂ cage. CCDC	
1917232), c-A ¹ ₂ L ₃ Zn ₂ cage, CCDC 1917235).	32
Table S5. Selected bond lengths (Å) for $A^{1}_{2}L_{3}Zn_{2}$ cage	
Table S6 . Selected bond angles (°) for $A^{1}_{2}L_{3}Zn_{2}$ cage	
Table S7 . Crystallographic data summary for $o-A^2_2L_3Cd_2$ cage. CCDC	
1917234 and $c-A^2$ ₂ L ₃ Cd ₂ cage. CCDC 1917798	
Table S8 . Selected bond lengths (Å) for $A^2_2L_3Cd_2$ cage.	
Table S9. Selected bond angles (°) for $A^2_2L_3Cd_2$ cage.	
Table S11. Crystallographic data summary for ρ -R-A ¹ ₂ L ₃ (CCDC	
1922928).	
Table S12. Bond lengths (Å) for ρ -R-A ¹ ₂ L ₃	40
Table S13. Bond angles (°) for ρ -R-A ¹ 2L ₃	41
2.7 Er-1, Er-5, Er-9	43
3. Study of photochromic process of PADTE ligand and cages	43
3.1 PADTE ligand	43
Figure S35. Color change of PADTE ligand in $CH_3CN/CHCl_3$ (v:v = 1)	:1,
1×10^{-5} mol L ⁻¹) solution by UV/Vis irradiation	43
Figure S36 . ¹ H NMR comparison of <i>o</i> - and <i>c</i> -PADTE ligand (CDCl ₃ , 2	.5
°С)	44
Figure S37. UV-Vis spectra of <i>o</i> -PADTE ligand during ring-closing	
process under UV irradiation for different time (CH ₃ CN/CHCl ₃ , v:v=1:	1,
1×10^{-5} mol L ⁻¹ , room temperature).	44
Figure S38. UV-Vis spectra of <i>c</i> -PADTE ligand during ring-opening	
process under visible irradiation for different time (CH ₃ CN/CHCl ₃ , v:v=	=1:1,
1×10^{-5} mol L ⁻¹ , room temperature).	45
Figure S39 . (a) Plot of $\ln[(A_0-A_\infty)/(A_t-A_\infty)]$ with time for UV-Vis	
absorption of o-PADTE ligand during ring-closing process, and (b) c-	

PADTE ligand during ring-opening process ($CH_3CN/CHCl_3$, v:v = 1:1,
1×10^{-5} mol L ⁻¹ , room temperature)
Figure S40. Cycled signals for absorbance at 605 nm of PADTE during
alternative ring-closing/ring-opening processes46
Figure S41. Emission spectra of o-PADTE ligand during ring-closing
process (CH ₃ CN/CHCl ₃ , v:v = 1:1, 1×10^{-5} mol L ⁻¹ , room temperature)46
3.2 $A^{1}_{2}L_{3}Zn_{2}$ cage
Figure S42 . (a) Plot of $\ln[(A_0-A_\infty)/(A_t-A_\infty)]$ with time for UV-Vis
absorption of o -A ¹ ₂ L ₃ Zn ₂ cage during ring-closing process, and (b) c -
$A^{1}_{2}L_{3}Zn_{2}$ cage during ring-opening process (CH ₃ CN/CHCl ₃ , v:v = 1:1,
1×10^{-5} mol L ⁻¹ , room temperature)
Figure S43 . The emission spectra of o -A ¹ ₂ L ₃ Zn ₂ cage during ring-closing
process (CH ₃ CN/CHCl ₃ , v:v = 1:1, 1×10^{-5} mol L ⁻¹ , room temperature)47
Figure S44 . High resolution ESI-MS spectra of c -A ¹ ₂ L ₃ Zn ₂ cage (CH ₃ CN,
room temperature)
Figure S45 . (a) DOSY and (b) its partial enlargement spectra of c -A ¹ ₂ L ₃ Zn ₂
cage (CD ₃ CN, room temperature)
Figure S46 . (a) Single-crystal structure of c -A ¹ ₂ L ₃ Zn ₂ cage. (b) NMR
spectra for the crystallized sample of c -A ¹ ₂ L ₃ Zn ₂ cage, and the solution
sample of o -A ¹ ₂ L ₃ Zn ₂ cage before and after UV irradiation for 3 hours50
3.3 $A^2_2L_3Cd_2$ cage
Figure S47 . ¹ H NMR spectra evolution of o -A ² ₂ L ₃ Cd ₂ cage under UV
irradiation for different time (400 MHz, CD ₃ CN, 298 K)51
Figure S48 . UV-Vis spectra of o -A ² ₂ L ₃ Cd ₂ cage during ring-closing
process (CH ₃ CN/CHCl ₃ , v:v = 1:1, 1×10^{-5} mol L ⁻¹ , room temperature)51
Figure S49. UV-Vis spectra of c -A ² ₂ L ₃ Cd ₂ cage during ring-opening
process (CH ₃ CN/CHCl ₃ , v:v = 1:1, 1×10^{-5} mol L ⁻¹ , room temperature)52
Figure S50. (a) Plot of $\ln[(A_0-A_\infty)/(A_t-A_\infty)]$ with time for UV-Vis
absorption of o -A ² ₂ L ₃ Cd ₂ cage during ring-closing process, and (b) c -
$A^{2}_{2}L_{3}Cd_{2}$ cage during ring-opening process (CH ₃ CN/CHCl ₃ , v:v = 1:1,
1×10^{-5} mol L ⁻¹ , room temperature)
Figure S51. Cycled signals for absorbance at $627 \text{ nm of } A^2_2L_3Cd_2$ cage
during alternative ring-closing/ring-opening processes
Figure S52. High resolution ESI-MS spectra of c -A ² ₂ L ₃ Cd ₂ cage (CH ₃ CN,
room temperature)
Figure S53. DOSY spectra of c -A ² ₂ L ₃ Cd ₂ cage (CD ₃ CN, room
temperature)
Figure S54. Single-crystal structure of c -A ² ₂ L ₃ Cd ₂ cage (grey for C, blue
for N, yellow for S, orange for Cd, H atoms, solvents and counter anions are
omitted for clarity)
5.4 $A^2_2L_3L_{n_2}$ cage
Figure SS5. 'H NMK spectra evolution of o -A ² ₂ L ₃ Zn ₂ cage under UV
irradiation for different time (400 MHz, CD ₃ CN, 298 K)

	Figure S56. UV-Vis spectra of o-A ² ₂ L ₃ Zn ₂ cage during ring-closing process	5
	$(CH_3CN/CHCl_3, v:v = 1:1, 1 \times 10^{-5} \text{ mol } L^{-1}, \text{ room temperature}).$	5
	Figure S57. UV-Vis spectra of c -A ² ₂ L ₃ Zn ₂ cage during ring-opening	
	process (CH ₃ CN/CHCl ₃ , v:v=1:1, 1×10 ⁻⁵ mol L ⁻¹ , room temperature)57	7
	Figure S58 . (a) Plot of $\ln[(A_0-A_\infty)/(A_t-A_\infty)]$ with time for UV-Vis	
	absorption of o -A ² ₂ L ₃ Zn ₂ cage during ring-closing process, and (b) c -	
	$A^{2}_{2}L_{3}Zn_{2}$ cage during ring-opening process (CH ₃ CN/CHCl ₃ , v:v = 1:1,	
	1×10^{-5} mol L ⁻¹ , room temperature)	7
	Figure S59 . Cycled signals for absorbance at 627 nm of A ² ₂ L ₃ Zn ₂ during	
	alternative ring-closing/ring-opening processes	3
	Figure S60. High resolution ESI-MS spectra of c -A ² ₂ L ₃ Zn ₂ cage (CH ₃ CN,	
	room temperature)	3
	Figure S61. DOSY spectra of c -A ² ₂ L ₃ Zn ₂ cage (CD ₃ CN, room	
	temperature))
3.5 R	-A ¹ ₂ L ₃ cage)
	Figure S62 . (a) Plot of $\ln[(A_0-A_\infty)/(A_t-A_\infty)]$ with time for UV-Vis	
i	absorption of o -R-A ¹ ₂ L ₃ cage during ring-closing process, and (b) c -R-	
	$A^{1}_{2}L_{3}$ cage during ring-opening process (CH ₃ CN/CHCl ₃ , v:v = 1:1, 1×10 ⁻⁵)	
	mol L ⁻¹ , room temperature))
	Figure S63 . High resolution ESI-MS spectra of c -R-A ¹ ₂ L ₃ cage (CH ₃ OH,	
	room temperature))
-	Figure S64. DOSY spectra of c -R-A ¹ ₂ L ₃ cage (CD ₃ OD, room temperature).)
	Figure S65 . The emission spectra of o -R-A ¹ ₂ L ₃ cage during ring-closing	,
	process (CH ₃ CN/CHCl ₃ , v:v = 1:1, 1×10^{-5} mol L ⁻¹ , room temperature)61	Ĺ
3.6 R	-A ² 2L3 cage	Ĺ
	Figure S66. ¹ H NMR spectra evolution of o -R-A ² ₂ L ₃ cage under UV	
	irradiation for different time (400 MHz, CD ₃ OD, 298 K)61	Ĺ
	Figure S67 . UV-Vis spectra of o -R-A ² ₂ L ₃ cage during ring-closing process	
	$(CH_3CN/CHCl_3, v:v = 1:1, 1 \times 10^{-5} \text{ mol } L^{-1}, \text{ room temperature}).$	2
	Figure S68 . UV-Vis spectra of c -R-A ² ₂ L ₃ cage during ring-opening process	;
	$(CH_3CN/CHCl_3, v:v = 1:1, 1 \times 10^{-5} \text{ mol } L^{-1}, \text{ room temperature}).$	2
	Figure S69 . (a) Plot of $\ln[(A_0-A_\infty)/(A_t-A_\infty)]$ with time for UV-Vis	
	absorption of o -R-A ² ₂ L ₃ cage during ring-closing process, and (b) c -R-	
	$A_{2}^{2}L_{3}$ cage during ring-opening process (CH ₃ CN/CHCl ₃ , v:v = 1:1, 1×10 ⁻⁵)	
	mol L ⁻¹ , room temperature)63	3
	Figure S70 . Cycled signals for absorbance at 538 nm of $R-A_2^2L_3$ cage	
	during alternative ring-closing/ring-opening processes	3
	Figure S71 . High resolution ESI-MS spectra of c -R-A ² ₂ L ₃ cage (CH ₃ OH,	
	room temperature)	ł
-	Figure S72. DOSY spectra of c -R-A ² ₂ L ₃ cage (CD ₃ OD, room temperature).	
		ł
3.7 G	Suest effects	l

Figure S73. UV-Vis spectra (left) and solution color (right) after adding
different amounts of H ₂ PO ₄ ⁻ anions into o -R-A ¹ ₂ L ₃ solution (CH ₂ Cl ₂ , 1×10 ⁻⁵
mol L ⁻¹), and then irradiated under UV light for 90 min
Figure S74. UV-Vis spectra (left) and solution color (right) after adding
different amounts of HSO4 ⁻ anions into <i>o</i> -R-A ¹ ₂ L ₃ solution (CH ₂ Cl ₂ , 1×10 ⁻⁵
mol L ⁻¹), and then irradiated under UV light for 90 min
Figure S75 . ¹ H NMR titration spectra of $H_2PO_4^-$ into <i>o</i> -R-A ¹ ₂ L ₃ solution
(CD ₃ OD, 25°C)
Figure S76. ¹ H NMR titration spectra of HSO_4^- into <i>o</i> -R-A ¹ ₂ L ₃ solution
(CD ₃ OD, 25°C)
4. Up-conversion color tuning applications
Figure S77. The UV-Vis spectra of <i>c</i> -PADTE and <i>c</i> -cages67
Figure S78. The upconversion luminescence spectra of three kinds of
upconversion materials (Er-1, Er-5, Er-9) and their hybrid materials with c-
$R-A^{1}{}_{2}L_{3} cage67$
Figure S79. The upconversion emission spectra of nine kinds of hybrid
materials68
Figure S80. The upconversion emission spectra of Er-1 and its hybrid
materials (Er-1 + o/c -R-A ¹ ₂ L ₃)
Figure S81. Cycled signals for upconversion PL intensity at 544 nm of
0.11% R-A ¹ ₂ L ₃ @ Er-1 hybrid solid state materials during alternative ring-
closing/ring-opening processes
REFERENCES70

1. General methods

Unless otherwise stated, all commercial reagents and solvents were used as commercially purchased without additional purification. The ¹H NMR, ¹³C NMR, ¹H-¹H COSY, DOSY, HSQC spectra were recorded on Bruker AVANCE III 400 (400 MHz). IR spectra were measured on a Nicolet/Nexus-670 FT-IR spectrometer with KBr pellets in the range 4000–400 cm⁻¹. HR-ESI-MS spectra were tested on Bruker Maxis 4G and data analyses were processed on Bruker Data Analysis software. UV-vis absorption spectra were measured using a Shimadzu/UV-250PC spectrophotometer. Photoluminescence spectra were measured on an EDINBURGH FLS980 fluorescence spectrophotometer. Ring closing and opening experiments for the ligand and cages were carried out using standard hand-held UV lamp irradiation (365 nm), and 150 W halogen source (Philips 13629 EKE), which was passed through a Y48 (> 455 nm) cutoff filter to eliminate higher energy light, respectively.

Single-crystal diffraction data for *o*-PADTE (CCDC 1917233), *c*-PADTE (CCDC 1919654), *o*-A¹₂L₃Zn₂ cage (CCDC 1917232), *c*-A¹₂L₃Zn₂ cage (CCDC 1917235), *o*-A²₂L₃Cd₂ cage (CCDC 1917234), *c*-A²₂L₃Cd₂ cage (CCDC 1917798), and *o*-R-A¹₂L₃ cage (CCDC 1922928) were collected on an Agilent Gemini S Ultra diffractometer with the Enhanced X-ray Source of Cu-K α radiation ($\lambda = 1.54178$ Å). Empirical absorption correction was applied using spherical harmonics implemented in SCALE3 ABSPACK scaling algorithm. Structural solution and refinement against F² were carried out using the SHELXL programs. All the nonhydrogen atoms were refined with anisotropic parameters. Crystallographic data and structural refinement information, selected bond lengths and angles are listed in Tables S1-12.

2. Syntheses and characterization

2.1 PADTE ligand

The ligand PADTE was synthesized according to a modified method in literature,^[S1] with the procedure as shown in Scheme S1. The hexane solution of *n*BuLi (3.1 mL, 1.6 mmol L⁻¹) was added dropwise at 0 °C under N₂ atmosphere to a solution of 1,2-bis(5-chloro-2methylthiophen-3-yl)cyclopent-1-ene (0.98 g, 3 mmol) in anhydrous THF (45 mL). After 20 min, 2.4 mL of tributyl borate was added and heated to room temperature. After stirring for 1 h, the resulting reddish solution was used directly for the following procedure. To 50 mL of N₂degassed DMSO, 15 mL water solution of Na₂CO₃ (2 mol L⁻¹) and 1.5 mL ethylene glycol in a Schlenk system, 5-bromopicolinaldehyde (7 mmol) and Pd(PPh₃)₄ (100 mg) were added under the protection of N₂. After that, the reddish THF solution prepared in the above procedure was added into the mixture and reacted at 90 °C for 24 h in dark. Upon reaction completion, 50 mL of toluene and 20 mL water was added, and the extracted organic phase was washed successively with water and brine. Flash column chromatography on silica gel (ethyl acetate/petroleum ether, 1/3) of the concentrated and MgSO₄-dried residue afforded 500 mg of PADTE ligand. Yield, 20%. For single crystal suitable for X-ray diffraction, 4 mg powder product of the PADTE was dissolved in CHCl₃ and natural evaporation under room temperature for five days led to block yellow single crystals. ¹H NMR data (400 MHz, CDCl₃): δ 10.02 (s, 2H), 8.88 (s, 2H), 7.90 (m, 4H), 7.22 (s, 2H), 2.88 (t, J = 7.4 Hz, 4H), 2.15 (m, 2H), 2.08 (s, 6H). ¹³C NMR data (100 MHz, CDCl₃): δ 192.61, 150.89, 146.41, 138.19, 137.44, 134.94, 134.83, 134.18, 132.50, 126.90, 122.05, 99.98. IR (KBr pellets, cm⁻¹): 2946, 2840, 1700, 1578, 1490, 1452, 1370, 1298, 1204, 1122, 1024, 948, 832, 710, 614, 470.

Scheme S1. Synthetic route for ligand PADTE.

Figure S1. ¹H NMR spectrum for ligand PADTE (CDCl₃, 25°C).

Figure S2. ¹³C NMR spectrum for ligand PADTE (CDCl₃, 25°C).

Figure S3. FT-IR spectrum for ligand PADTE.

Figure S4. Single-crystal structure of *o*-PADTE (CCDC 1917233, grey for C, blue for N, yellow for S, red for O, H atoms and solvents are omitted for clarity).

$2.2 \text{ } o\text{-} A^{1}_{2} L_{3} Zn_{2} cage$

PADTE (4.7 mg, 0.01 mmol, 3 equiv) and zinc triflate (2.4 mg, 2 equiv) was added into 0.5 mL CH₃CN and stirred for 10 minutes. Addition of tris(2-aminoethyl)amine (1 µl, 0.0067 mmol, 2 equiv) resulted in large quantity of precipitates. Further addition of 1 mL CHCl₃ and heating at 50 °C for 12 hours led to clear yellow solution. Yellow crude product of o-A¹₂L₃Zn₂ cage was obtained by rotary evaporation of the solvent, which was washed with CHCl₃ and water successively and then dissolved again in CH_3CN . 5 mg pure powder product of the cage was obtained by evaporation of the filtrate, yield 65%. For single crystal suitable for X-ray diffraction, 2 mg powder product of the cage was dissolved in CH₃CN, and natural evaporation under room temperature for three days led to block yellowish green single crystals. High resolution ESI-MS (m/z) data: calc. (measured): 1012.1696 (1012.1769) for [A12L3Zn2 + $2CF_3SO_3^{2+}$; 625.1289 (625.1324) for $[A_2^1L_3Zn_2 + CF_3SO_3]^{3+}$. EA calc. for C₉₇H₉₀F₁₂N₁₄O₁₂S₁₀Zn₂·3CH₃CN·15H₂O ([A¹₂L₃Zn₂]·3CH₃CN·15H₂O): C, 45.54, H, 4.79, N, 8.77%; Found, C, 45.15, H, 4.47, N, 8.63%. ¹H NMR (400 MHz, CD₃CN) δ 8.65 (s, 2H), 8.49 (d, 2H), 8.00 (d, 2H), 7.56 (s, 2H), 7.06 (s, 2H), 3.86 (s, 1H), 3.64 (s, 1H), 3.23 (s, 1H), 2.95 (s, 2H), 2.61 (s, 1H), 2.10 (s, 1H), 1.64 (s, 3H). ¹³C NMR (100 MHz, CD₃CN) δ 162.56, 145.23, 144.28, 138.05, 137.72, 135.80, 135.15, 134.66, 133.46, 128.77, 128.50, 56.01, 53.96, 38.41, 22.95 – 21.88, 13.88. IR (KBr pellets, cm⁻¹): 3450, 2915, 2852, 1654, 1589, 1562, 1495, 1459, 1380, 1258, 1223, 1162, 1031, 899, 875, 639.

Figure S5. ¹H NMR spectrum for *o*-A¹₂L₃Zn₂ cage (CD₃CN, 25°C).

Figure S6. ¹³C NMR spectrum for *o*-A¹₂L₃Zn₂ cage (CD₃CN, 25°C).

Figure S7. FT-IR spectrum for o-A¹₂L₃Zn₂ cage.

Figure S8. ¹H-¹H COSY spectrum for *o*-A¹₂L₃Zn₂ cage (CD₃CN, 25°C).

Figure S9. HSQC spectrum for *o*-A¹₂L₃Zn₂ cage (CD₃CN, 25°C).

Figure S10. High resolution ESI-MS spectrum for *o*-A¹₂L₃Zn₂ cage (CH₃CN, 25°C).

Figure S11. DOSY spectrum for o-A¹₂L₃Zn₂ cage (CD₃CN, 25°C).

Figure S12. A pair of $\Lambda\Lambda$ - and $\Delta\Delta$ -enantiomeric cages coexist in the crystal lattice of *o*- $A^{1}_{2}L_{3}Zn_{2}$ cage (grey for C, blue for N, yellow for S, cyan for Zn, H atoms, solvents and counter anions are omitted for clarity).

2.3 o-A²₂L₃Cd₂ cage

PADTE (4.7 mg, 0.01 mmol, 3 equiv) and cadmium triflate (2.7 mg, 2 equiv) was added into 0.5 mL CH₃CN and stirred for 10 minutes. Addition of tris(3-aminopropyl)amine (1.3 µl, 0.0067 mmol, 2 equiv) resulted in large quantity of precipitates. Further addition of 1 mL CHCl₃ and heating at 50 °C for 12 hours resulted in clear yellow solution. Yellow crude product of o- $A_{2}^{2}L_{3}Cd_{2}$ cage was obtained by rotary evaporation of the solvent, which was washed with CHCl₃ and water successively and then dissolved again in CH₃CN. 3 mg pure powder product of the cage was obtained by evaporation of the filtrate, yield 34%. For single crystal suitable for X-ray diffraction, 3 mg powder product of the cage was dissolved in CH₃CN, and then diffusion of ether into the CH₃CN solution under room temperature for one month led to block yellowish green single crystals. High resolution ESI-MS (m/z) data: calc. (measured): 1011.1926 (1011.1926) for $[A_2^2L_3Cd_2 + 2CF_3SO_3]^{2+}$; 684.8131 (684.8111) for $[A_2^2L_3Cd_3 + 2CF_3SO_3]^{2+}$; 684.812 (A_2^2L_3Cd_3 + 2CF_3SO_3]^{2+}; 684.812 (A_2^2L_3Cd_3 + 2CF_3SO_3]^{2+}; 684.812 (A_2^2L_3Cd_3 + 2CF_3SO_3); 684.812 (A_2^2L_3Cd_3 + 2CF_3SO_3); 684.812 (A_2^2L_3Cd_3 + 2CF_3SO_3); 684.812 (A_2^2L_3Cd_3 + 2CF_3SO_3) CF_3SO_3]³⁺; 476.1235 (476.1201) for [A²₂L₃Cd₂]⁴⁺. ¹H NMR (400 MHz, CD₃CN) δ 8.54 (d, J = 1.9 Hz, 1H), 8.36 (dd, J = 8.1, 2.3 Hz, 1H), 7.89 (d, J = 8.2 Hz, 1H), 7.42 (s, 1H), 7.07 (d, J = 2.4 Hz, 1H), 3.80 (d, J = 12.3 Hz, 1H), 3.47 (q, J = 13.6, 13.1 Hz, 2H), 2.89 (dt, J = 14.3, 7.3 Hz, 1H), 2.53 (dt, J = 14.8, 7.1 Hz, 1H), 2.26 (t, J = 13.6 Hz, 1H), 2.06 (q, J = 7.7, 7.3 Hz, 1H), 1.93 (s, 2H), 1.62 (s, 3H). ¹³C NMR (100 MHz, CD₃CN) δ 162.03, 145.58, 144.91, 137.88, 137.62, 135.88, 135.10, 135.06, 133.84, 128.54, 127.70, 61.89, 58.26, 38.38, 25.43, 22.45, 13.41. IR (KBr pellets, cm⁻¹): 3482, 2924, 2844, 1648, 1584, 1558, 1498, 1444, 1358, 1252, 1220, 1152, 1028, 838, 740, 636, 572, 514.

Figure S13. ¹H NMR spectrum for *o*-A²₂L₃Cd₂ cage (CD₃CN, 25°C).

Figure S14. ¹³C NMR spectrum for *o*-A²₂L₃Cd₂ cage (CD₃CN, 25°C).

Figure S15. FT-IR spectrum for o-A²₂L₃Cd₂ cage.

Figure S16. ¹H-¹H COSY spectrum for *o*-A²₂L₃Cd₂ cage (CD₃CN, 25°C).

Figure S17. High resolution ESI-MS spectrum for *o*-A²₂L₃Cd₂ cage (CH₃CN, 25°C).

Figure S18. DOSY spectrum for *o*-A²₂L₃Cd₂ cage (CD₃CN, 25°C).

Figure S19. (a) Single-crystal structure of o-A²₂L₃Cd₂ cage. (b) Coordination geometry of Cd^{II} (grey for C, blue for N, yellow for S, orange for Cd, H atoms, solvents and counter anions are omitted for clarity).

2.4 o-A²₂L₃Zn₂ cage

PADTE (4.7 mg, 0.01 mmol, 3 equiv) and zinc triflate (2.4 mg, 2 equiv) was added into 0.5 mL CH₃CN and stirred for 10 minutes. Addition of tris(3-aminopropyl)amine (1.3 µl, 0.0067 mmol, 2 equiv) resulted in large quantity of precipitates. Further addition of 1 mL CHCl₃ and heating at 50 °C for 12 hours resulted in clear yellow solution. Yellow crude product of *o*- $A^{1}_{2}L_{3}Zn_{2}$ cage was obtained by rotary evaporation of the solvent, which was washed with CHCl₃ and water successively, and then dissolved again in CH₃CN. Pure powder product of the cage was obtained by evaporation of the filtrate. For single crystal suitable for X-ray diffraction, 10 mg powder product of the R-A¹₂L₃ cage was dissolved in CHCl₃ and natural evaporation under room temperature for three months led to block colorless single crystals. High resolution ESI-MS (m/z) data: calc. (measured): 1054.2167 (1054.1936) for [A²₂L₃Zn₂ + 2CF₃SO₃]²⁺; 653.1603 (653.1422) for [A²₂L₃Zn₂ + CF₃SO₃]³⁺; 452.6321 (452.6233) for [A²₂L₃Zn₂]⁴⁺. ¹H NMR (400 MHz, CD₃CN) δ 8.54 – 8.46 (m, 2H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.61 (d, *J* = 3.4 Hz, 1H), 7.39 (d, *J* = 2.2 Hz, 1H), 3.61 (dd, *J* = 11.3, 6.4 Hz, 1H), 3.30 (t, *J* = 10.7 Hz, 1H), 2.94 (dq, *J* = 18.8, 12.1, 9.8 Hz, 3H), 2.59 (dt, *J* = 14.5, 7.2 Hz, 2H), 2.15 – 2.03 (m, 3H), 1.73 (s, 3H).

Figure S20. ¹H NMR spectrum for *o*-A²₂L₃Zn₂ cage (CD₃CN, 25°C).

Figure S21. High resolution ESI-MS spectrum for *o*-A²₂L₃Zn₂ cage (CH₃CN, 25°C).

Figure S22. DOSY spectrum for *o*-A²₂L₃Zn₂ cage (CD₃CN, 25°C).

2.5 o-R-A¹₂L₃ cage

To a 50 mL flask was added o-A¹₂L₃Zn₂ cage (110 mg, 0.05 mmol, 1 equiv), sodium borohydride (60 mg, 1.6 mmol, 32 equiv) and dry MeOH (15 mL). The solution was stirred overnight under a nitrogen atmosphere at room temperature. Then 37% hydrochloric acid was added to bring the pH to 2, and a pale green solid precipitated out. This precipitate was washed by water, dissolved by CH₃OH and then 2M NaOH aqueous solution was added, giving a light purple precipitatate. The precipitate was isolated by centrifugation, washed by water, and then dissolved by CH₃OH, concentrated in vacuo. The product was obtained as a pale purple solid (50 mg, 62%). High resolution ESI-MS (m/z) data: calc. (measured): 804.8455 (804.8512) for [R-A¹₂L₃ + 2H]²⁺; 536.8995 (536.9033) for [R-A¹₂L₃ + 3H]³⁺; 402.9264 (402.9289) for [R-A¹₂L₃ + 4H]⁴⁺. ¹H NMR (400 MHz, CD₃OD) δ 8.41 (s, 2H), 7.66 (d, 2H), 7.31 (d, 2H), 7.22 (s, 2H), 3.89 (s, 4H), 2.88 (s, 4H), 2.82 (t, 4H), 2.75 (s, 4H), 2.08 (t, 2H), 1.75 (s, 6H). ¹³C NMR (100 MHz, CD₃OD) δ 156.61, 144.95, 137.12, 135.61, 135.06, 134.46, 132.68, 129.03, 124.82, 122.00, 53.50, 53.12, 38.48, 22.40, 13.63. IR (KBr pellets, cm⁻¹): 3248, 2918, 2836, 1658, 1598, 1564, 1498, 1436, 1384, 1292, 1254, 1200, 1122, 1028, 948, 824, 752, 642, 564, 498.

Figure S23. ¹H NMR spectrum for *o*-R-A¹₂L₃ cage (CD₃OD, 25°C).

Figure S24. ¹³C NMR spectrum for *o*-R-A¹₂L₃ cage (CD₃OD, 25°C).

Figure S25. FT-IR spectrum for o-R-A¹₂L₃ cage.

Figure S26. ¹H-¹H COSY spectrum (upper) and DOSY spectrum (lower) for *o*-R-A¹₂L₃ cage (CD₃OD, 25°C).

Figure S27. High resolution ESI-MS spectrum for *o*-R-A¹₂L₃ cage (CH₃OH, 25°C).

Figure S28. Single-crystal structure of o-R-A¹₂L₃ cage (grey for C, blue for N, yellow for S, H atoms and solvents are omitted for clarity).

2.6 o-R-A²₂L₃ cage

To a 25 mL flask was added $o-A^2_2L_3Cd_2$ cage (50.0 mg, 18.7 µmol, 1 equiv), sodium borohydride (60 mg, 1.6 mmol, 86 equiv) and dry MeOH (8 mL). The solution was stirred overnight under a nitrogen atmosphere at 50 °C. Then 37% hydrochloric acid was added to bring the pH to 2, and a pale green solid precipitated out. This precipitate was washed by water, dissolved by CH₃OH and then 2M NaOH aqueous solution was added, giving a solid precipitatate. The precipitate was isolated by centrifugation, washed by water twice, and then dissolved by CH₃OH, concentrated in vacuo. The product was obtained as a pale purple solid (22 mg, 68%). High resolution ESI-MS (m/z) data: calc. (measured): 1692.7777 (1692.7493) [R-A²₂L₃ + H⁺]⁺, 846.8925 (846.8807) [R-A²₂L₃ + 2H⁺]²⁺, 564.9308 (564.9236) [R-A²₂L₃ + 3H⁺]³⁺. ¹H NMR (400 MHz, CD₃OD) δ 8.65 (d, *J* = 2.4 Hz, 1H), 7.80 (dd, *J* = 8.1, 2.4 Hz, 1H), 7.28 (d, *J* = 8.1 Hz, 1H), 7.25 (s, 1H), 3.74 (s, 2H), 2.82 (t, *J* = 7.4 Hz, 2H), 2.66 (t, *J* = 7.0 Hz, 2H), 2.40 (d, *J* = 6.5 Hz, 3H), 2.06 (q, *J* = 7.6 Hz, 1H), 1.79 – 1.68 (m, 2H), 1.64 (s, 3H), 1.29 (s, 1H). ¹³C NMR (100 MHz, CD₃OD) δ 158.11, 145.71, 137.77, 136.43, 135.86, 135.02, 133.55, 129.70, 125.52, 123.29, 54.74, 52.94, 39.27, 27.31, 23.24, 14.22. IR (KBr, cm⁻¹): 3450, 2915, 2852, 1654, 1589, 1562, 1495, 1459, 1380, 1258, 1223, 1162, 1031, 899, 875, 639.

Figure S29. ¹H NMR spectrum for o-R-A²₂L₃ cage (CD₃OD, 25°C).

Figure S30. ¹³C NMR spectrum for o-R-A²₂L₃ cage (CD₃OD, 25°C).

Figure S31. FT-IR spectrum for o-R-A²₂L₃ cage.

Figure S32. ¹H-¹H COSY spectrum for *o*-R-A²₂L₃ cage (CD₃OD, 25°C).

Figure S33. High resolution ESI-MS spectrum for *o*-R-A²₂L₃ cage (CH₃OH, 25°C).

Figure S34. DOSY spectrum for *o*-R-A²₂L₃ cage (CD₃OD, 25°C).

2.7 Crystal structures

Table S1.	Crystallographic data summary for o-PADTE (CCDC 1917233), c-PADTE (CC	CDC
1919654).		

	o-PADTE	c-PADTE
Empirical Formula	$C_{27}H_{22}N_2O_2S_2$	$C_{27}H_{22}N_2O_2S_2$
Formula weight	470.58	470.58
Temperature/K	161(17)	150.00(10)
Crystal system	monoclinic	monoclinic
Space group	<i>C</i> 2/c	<i>C</i> 2/c
<i>a</i> (Å)	24.6968(7)	22.3150(13)
<i>b</i> (Å)	9.9776(3)	12.4269(5)
<i>c</i> (Å)	9.3115(2)	8.2043(5)
α (°)	90	90
β (°)	93.975(2)	92.884(5)
γ (°)	90	90
$V(\text{\AA}^3)$	2288.97(11)	2272.2(2)
Ζ	4	4
$ ho_{ m calc} g/{ m cm}^3$	1.366	1.376
μ/mm^{-1}	2.330	2.348
<i>F</i> (000)	984.0	984.0
2θ range for data collection/°	7.176 to 133.022	7.934 to 145.482
Reflections collected	3471	3604
	1995	2171
Independent reflections	$R_{\rm int} = 0.0154,$	$R_{\rm int} = 0.0245,$
	$R_{\rm sigma} = 0.0200$	$R_{\rm sigma} = 0.0399$
Data/restraints/parameters	1995/0/151	2171/19/151
Goodness-of-fit on F^2	1.056	1.034
Final <i>R</i> indexes	$R_1 = 0.0345,$	$R_1 = 0.0624,$
$[I > = 2\sigma(I)]$	$wR_2 = 0.0928$	$wR_2 = 0.1505$
Final R indexes [all data]	$R_1 = 0.0367,$	$R_1 = 0.0819,$
That it indexes [un data]	$wR_2 = 0.0946$	$wR_2 = 0.1658$
Largest diff. peak/hole / e Å ⁻³	0.38/-0.28	1.04/-0.42

o-PADTE	Bond lengths(Å)	c-PADTE	Bond lengths(Å)
S1-C7	1.7330(16)	S1-C7	1.773(3)
S1-C10	1.7261(17)	S1-C10	1.844(4)
01-C1	1.208(2)	O1-C1	1.205(5)
N1-C2	1.343(2)	N1-C2	1.350(5)
N1-C6	1.328(2)	N1-C6	1.329(5)
C1-C2	1.483(2)	C1-C2	1.481(5)
C2-C3	1.378(3)	C2-C3	1.379(5)
C3-C4	1.384(3)	C3-C4	1.386(5)
C4-C5	1.386(2)	C4-C5	1.389(5)
C5-C6	1.399(3)	C5-C7	1.463(4)
C5-C7	1.462(2)	C5-C6	1.408(5)
C7-C8	1.364(2)	C7-C8	1.353(5)
C8-C9	1.425(2)	C8-C9	1.422(5)
C9-C10	1.374(2)	C9-C10	1.529(5)
C9-C12	1.475(2)	C9-C12	1.353(5)
C10-C11	1.497(2)	C10-C10 ¹	1.450(9)
C12-C12 ¹	1.344(3)	C10-C11	1.652(7)
C12-C13	1.516(2)	C12-C121	1.429(6)
C13-C14	1.504(2)	C12-C13	1.505(4)
C14-C13 ¹	1.504(2)	C13-C14	1.537(4)
		C14-C13 ¹	1.536(4)

 Table S2. Bond lengths (Å) for PADTE (L).

¹1-X, +Y,1/2-Z

o-PADTE	Bond angles (°)	c-PADTE	Bond angles (°)
C10-S1-C7	92.60(8)	C7-S1-C10	92.37(17)
C6-N1-C2	117.33(15)	C6-N1-C2	116.8(3)
O1-C1-C2	124.27(18)	O1-C1-C2	124.5(4)
N1-C2-C1	114.74(15)	N1-C2-C1	113.8(3)
N1-C2-C3	123.06(16)	N1-C2-C3	123.3(3)
C3-C2-C1	122.19(16)	C3-C2-C1	122.9(3)
C2-C3-C4	118.69(16)	C2-C3-C4	119.0(3)
C3-C4-C5	119.75(17)	C3-C4-C5	119.4(3)
C4-C5-C6	116.80(15)	C4-C5-C7	123.6(3)
C4-C5-C7	123.12(16)	C4-C5-C6	116.9(3)
C6-C5-C7	120.05(15)	C6-C5-C7	119.5(3)
N1-C6-C5	124.32(16)	C5-C7-S1	121.4(3)
C5-C7-S1	121.89(13)	C8-C7-S1	112.9(2)
C8-C7-S1	109.78(12)	C8-C7-C5	125.6(3)
C8-C7-C5	128.17(15)	C7-C8-C9	115.1(3)
С7-С8-С9	114.66(15)	C8-C9-C10	112.6(3)
C8-C9-C12	121.06(15)	C12-C9-C8	127.4(3)
C10-C9-C8	111.62(15)	C12-C9-C10	120.0(3)
C10-C9-C12	126.98(15)	C9-C10-S1	104.2(3)
C9-C10-S1	111.33(12)	C9-C10-C11	107.8(4)
C9-C10-C11	129.67(16)	C101-C10-S1	120.0(4)
C11-C10-S1	118.88(13)	C101-C10-C9	112.5(3)
C9-C12-C13	117.80(14)	C101-C10-C11	104.5(5)
C12 ¹ -C12-C9	131.20(9)	C11-C10-S1	107.3(3)
C12 ¹ -C12-C13	110.96(9)	C9-C12-C12 ¹	120.68(19)
C14-C13-C12	105.04(15)	C9-C12-C13	128.6(3)
C13 ¹ -C14-C13	107.8(2)	C12 ¹ -C12-C13	110.69(17)
		C12-C13-C14	105.1(3)
		C13 ¹ -C14-C13	108.4(4)
		N1-C6-C5	124.5(3)

 Table S3. Bond angles (°) for PADTE (L).

¹1-X, +Y,1/2-Z

	$o-A^{1}_{2}L_{3}Zn_{2}$	$c-A^{1}_{2}L_{3}Zn_{2}$
Empirical Formula	$C_{193}H_{180}F_{21}N_{28}O_{21}S_{19}Zn_4$	$C_{97}H_{90}F_{12}N_{14}O_{12}S_{10}Zn_2$
Formula weight	4497.26	2323.16
Temperature/K	173(2)	173(2)
Crystal system	triclinic	monoclinic
Space group	<i>P</i> -1	$P2_{1}/n$
<i>a</i> (Å)	17.1885(8)	21.3852(6)
<i>b</i> (Å)	18.1907(8)	18.2160(3)
<i>c</i> (Å)	19.2773(8)	28.8807(4)
α (°)	67.867(4)	90
eta (°)	83.882(4)	91.739(2)
γ (°)	83.880(4)	90
$V(Å^3)$	5537.0(5)	11245.4(4)
Ζ	1	4
$ ho_{ m calc} g/cm^3$	1.349	1.372
μ/mm^{-1}	2.867	2.956
<i>F</i> (000)	2315.0	4776.0
2θ range for data collection/°	7.114 to 130.068	7.018 to 148.59
Reflections collected	33920	44414
	18381	22259
Independent reflections	$R_{\rm int} = 0.0631,$	$R_{\rm int} = 0.0368,$
	$R_{\rm sigma} = 0.0744$	$R_{\rm sigma} = 0.0429$
Data/restraints/parameters	18381/249/1361	22259/98/1330
Goodness-of-fit on F^2	1.036	1.048
Final <i>R</i> indexes	$R_1 = 0.0951,$	$R_1 = 0.0914,$
$[I > = 2\sigma(I)]$	$wR_2 = 0.2656$	$wR_2 = 0.2692$
Final <i>R</i> indexes [all data]	$R_1 = 0.1225,$	$R_1 = 0.1109,$
T (1°CC 1/1-1	$wR_2 = 0.2974$	$wR_2 = 0.3000$
/ e Å ⁻³	2.20/-1.97	1.18/-0.86

Table S4. Crystallographic data summary for *o*-A¹₂L₃Zn₂ cage, CCDC 1917232), *c*-A¹₂L₃Zn₂ cage, CCDC 1917235).

$o-A^{1}_{2}L_{3}Zn_{2}$	Bond lengths(Å)	c-A ¹ ₂ L ₃ Zn ₂	Bond lengths(Å)
Zn1-N2	2.095(6)	Zn1-N11	2.093(4)
Zn1-N11	2.122(6)	Zn1-N2	2.118(4)
Zn1-N10	2.124(5)	Zn1-N10	2.125(5)
Zn1-N9	2.219(5)	Zn1-N9	2.203(4)
Zn1-N12	2.294(5)	Zn1-N3	2.267(4)
Zn1-N3	2.321(5)	Zn1-N12	2.398(4)
Zn2-N7	2.104(6)	Zn2-N7	2.104(5)
Zn2-N5	2.109(6)	Zn2-N5	2.111(4)
Zn2-N14	2.141(6)	Zn2-N14	2.136(5)
Zn2-N8	2.187(5)	Zn2-N8	2.254(4)
Zn2-N13	2.331(5)	Zn2-N4	2.272(4)
Zn2-N4	2.336(5)	Zn2-N13	2.311(4)

Table S5. Selected bond lengths (Å) for $A^1_2L_3Zn_2$ cage.

$o-A^{1}_{2}L_{3}Zn_{2}$	Bond angles (°)	c-A ¹ ₂ L ₃ Zn ₂	Bond angles (°)
N2-Zn1-N11	100.8(2)	N11-Zn1-N2	101.27(16)
N2-Zn1-N10	111.3(2)	N11-Zn1-N10	105.45(19)
N11-Zn1-N10	104.9(2)	N2-Zn1-N10	100.93(17)
N2-Zn1-N9	98.0(2)	N11-Zn1-N9	97.99(16)
N11-Zn1-N9	159.7(2)	N2-Zn1-N9	160.51(14)
N10-Zn1-N9	75.0(2)	N10-Zn1-N9	76.52(17)
N2-Zn1-N12	157.2(2)	N11-Zn1-N3	163.90(18)
N11-Zn1-N12	74.7(2)	N2-Zn1-N3	76.15(15)
N10-Zn1-N12	91.4(2)	N10-Zn1-N3	90.62(16)
N9-Zn1-N12	84.94(18)	N9-Zn1-N3	84.52(14)
N2-Zn1-N3	75.1(2)	N11-Zn1-N12	74.68(17)
N11-Zn1-N3	89.5(2)	N2-Zn1-N12	95.69(15)
N10-Zn1-N3	162.3(2)	N10-Zn1-N12	162.95(16)
N9-Zn1-N3	87.88(18)	N9-Zn1-N12	86.53(15)
N12-Zn1-N3	82.39(19)	N3-Zn1-N12	89.66(14)
N7-Zn2-N5	105.7(2)	N7-Zn2-N5	106.18(17)
N7-Zn2-N14	102.5(2)	N7-Zn2-N14	109.29(19)
N5-Zn2-N14	100.7(2)	N5-Zn2-N14	100.50(17)
N7-Zn2-N8	76.4(2)	N7-Zn2-N8	75.73(17)
N5-Zn2-N8	161.3(2)	N5-Zn2-N8	97.06(16)
N14-Zn2-N8	96.83(19)	N14-Zn2-N8	159.33(15)
N7-Zn2-N13	163.2(2)	N7-Zn2-N4	161.42(17)
N5-Zn2-N13	91.2(2)	N5-Zn2-N4	74.82(15)
N14-Zn2-N13	74.5(2)	N14-Zn2-N4	88.44(17)
N8-Zn2-N13	87.42(18)	N8-Zn2-N4	85.71(15)
N7-Zn2-N4	99.4(2)	N7-Zn2-N13	94.88(16)
N5-Zn2-N4	75.5(2)	N5-Zn2-N13	158.85(17)
N14-Zn2-N4	158.03(19)	N14-Zn2-N13	73.75(16)
N8-Zn2-N4	85.8(2)	N8-Zn2-N13	85.96(15)
N13-Zn2-N4	83.89(19)	N4-Zn2-N13	84.58(14)

Table S6. Selected bond angles (°) for $A^{1}_{2}L_{3}Zn_{2}$ cage.

Symmetry code: 'x, y, z'; '-x, -y, -z'

	$o-A^2_2L_3Cd_2$	c-A ² ₂ L ₃ Cd ₂
Empirical Formula	$C_{109}H_{111}Cd_2F_{12}N_{17}O_{12}S_{10}\\$	$C_{105}H_{105}Cd_2F_{12}N_{15}O_{12}S_{10}\\$
Formula weight	2624.54	2542.43
Temperature/K	150.00(10)	150(2)
Crystal system	tetragonal	triclinic
Space group	P4 ₃ 2 ₁ 2	<i>P</i> -1
<i>a</i> (Å)	13.54180(10)	17.6556(11)
<i>b</i> (Å)	13.54180(10)	18.0529(12)
<i>c</i> (Å)	66.0707(8)	19.857(2)
α (°)	90	78.743(8)
eta (°)	90	75.912(8)
γ (°)	90	79.512(5)
$V(\text{\AA}^3)$	12116.1(2)	5960.2(9)
Ζ	4	2
$ ho_{ m calc} g/cm^3$	1.439	1.417
μ/mm^{-1}	5.122	5.182
<i>F</i> (000)	5376.0	2600.0
2θ range for data collection/°	6.662 to 146.892	6.994 to 117.868
Reflections collected	33381	17052
Independent reflections	11878 $R_{\rm int} = 0.0435,$ $R_{\rm sigma} = 0.0407$	17052 $R_{\rm int} = 0.1188,$ $R_{\rm sigma} = 0.1296$
Data/restraints/parameters	11878/302/756	17052/1537/1412
Goodness-of-fit on F^2	1.024	1.034
Final <i>R</i> indexes $[I \ge 2\sigma (I)]$	$R_1 = 0.0978,$ $wR_2 = 0.2610$ $R_1 = 0.1046,$	$R_1 = 0.1205,$ $wR_2 = 0.0.2045$ $R_1 = 0.2064,$
Final K indexes [all data]	$wR_2 = 0.2706$	$wR_2 = 0.2296$
Largest diff. peak/hole / e Å ⁻³	4.61/-1.94	0.97/-1.00

Table S7. Crystallographic data summary for $o-A_2^2L_3Cd_2$ cage, CCDC 1917234 and $c-A_2^2L_3Cd_2$ cage, CCDC 1917798.

$o-A^2_2L_3Cd_2$	Bond lengths(Å)	c-A ² ₂ L ₃ Cd ₂	Bond lengths(Å)
Cd1-N1	2.464(9)	Cd1-N1	2.338(13)
Cd1-N2	2.329(10)	Cd1-N9	2.366(14)
Cd1-N3	2.502(9)	Cd1-N7	2.424(14)
Cd1-N4	2.352(9)	Cd1-N10	2.438(13)
Cd1-N5	2.462(10)	Cd1-N14	2.536(13)
Cd1-N6	2.334(10)	Cd1-N2	2.547(10)
Cd1-N7	2.456(11)	Cd1-N1	2.338(13)
		Cd2-N4	2.339(15)
		Cd2-N12	2.345(12)
		Cd2-N5	2.351(16)
		Cd2-N6	2.430(15)
		Cd2-N3	2.444(13)
		Cd2-N13	2.454(17)
		Cd2-N11	2.513(17)

Table S8. Selected bond lengths (Å) for $A^2_2L_3Cd_2$ cage.

o-A ² ₂ L ₃ Cd ₂	Bond angles (°)	$c-A^2_2L_3Cd_2$	Bond angles (°)
N1-Cd1-N3	130.7(3)	N8-Cd1-N1	118.8(5)
N2-Cd1-N1	80.2(3)	N8-Cd1-N9	119.7(5)
N2-Cd1-N3	68.6(3)	N1-Cd1-N9	111.0(6)
N2-Cd1-N4	117.6(3)	N8-Cd1-N7	70.4(5)
N2-Cd1-N5	81.9(3)	N1-Cd1-N7	151.4(4)
N2-Cd1-N6	114.1(4)	N9-Cd1-N7	82.0(5)
N2-Cd1-N7	148.4(4)	N8-Cd1-N10	147.9(5)
N4-Cd1-N1	79.3(3)	N1-Cd1-N10	80.1(5)
N4-Cd1-N3	149.0(3)	N9-Cd1-N10	69.1(4)
N4-Cd1-N5	68.6(3)	N7-Cd1-N10	81.3(5)
N4-Cd1-N7	82.1(3)	N8-Cd1-N14	77.9(5)
N5-Cd1-N1	129.9(3)	N1-Cd1-N14	79.0(5)
N5-Cd1-N3	83.3(3)	N9-Cd1-N14	80.4(5)
N6-Cd1-N1	80.1(4)	N7-Cd1-N14	129.2(5)
N6-Cd1-N3	79.2(3)	N10-Cd1-N14	133.4(5)
N6-Cd1-N4	119.3(4)	N8-Cd1-N2	82.6(4)
N6-Cd1-N5	149.3(4)	N1-Cd1-N2	69.8(5)
N6-Cd1-N7	69.4(4)	N9-Cd1-N2	148.5(4)
N7-Cd1-N1	129.9(4)	N7-Cd1-N2	85.9(4)
N7-Cd1-N3	82.0(3)	N10-Cd1-N2	80.5(4)
N7-Cd1-N5	83.4(4)	N14-Cd1-N2	128.6(5)
		N4-Cd2-N12	125.3(6)
		N4-Cd2-N5	117.9(5)
		N12-Cd2-N5	106.6(5)
		N4-Cd2-N6	80.6(6)
		N12-Cd2-N6	148.0(6)
		N5-Cd2-N6	69.0(5)
		N4-Cd2-N3	69.0(5)
		N12-Cd2-N3	87.0(4)
		N5-Cd2-N3	151.5(6)
		N6-Cd2-N3	86.1(5)
		N4-Cd2-N13	79.3(5)

Table S9. Selected bond angles (°) for $A^2_2L_3Cd_2$ cage.

N12-Cd2-N13	79.7(5)
N5-Cd2-N13	79.0(6)
N6-Cd2-N13	127.7(5)
N3-Cd2-N13	128.8(6)
N4-Cd2-N11	145.1(5)
N12-Cd2-N11	69.2(6)
N5-Cd2-N11	80.1(5)
N6-Cd2-N11	79.0(5)
N3-Cd2-N11	81.7(4)
N13-Cd2-N11	135.3(4)

Symmetry code: 'x, y, z'; '-x, -y, -z'

Table S10	DOSY	data	and	calcu	lated	sol	vod	vnami	c ra	dii	for	cages
1 abic 510.	DODI	uata	anu	carcu	iaicu	301	vou	ynann	c ra	un	101	cages.

Cages	log D	$D[\times 10^{-10} \text{ m}^2 \text{ s}^{-1}]$	r[Å]
$o-A^{1}_{2}L_{3}Zn_{2}$	-9.20	6.31	9.4
c-A ¹ ₂ L ₃ Zn ₂	-9.09	8.13	7.3
$o-A^2_2L_3Zn_2$	-9.13	7.41	8.0
c-A ² ₂ L ₃ Zn ₂	-9.15	7.08	8.3
$o-A^2_2L_3Cd_2$	-9.05	8.91	6.6
c-A ² ₂ L ₃ Cd ₂	-9.07	8.51	6.9
o-R-A ¹ ₂ L ₃	-9.42	3.80	9.6
c-R-A ¹ ₂ L ₃	-9.45	3.55	10.2
o-R-A ² ₂ L ₃	-9.20	6.31	5.8
c-R-A ² ₂ L ₃	-9.18	6.61	5.5

Note: Stokes-Einstein equation

$$D = \frac{k_B T}{6\pi\eta r},$$

was applied to estimate the dynamic radius for the cages. In which, *D* is diffusion coefficient obtained from DOSY spectra, k_B is Boltzmann constant, *T* is temperature 298 K, η is dynamic viscosity of CD₃CN (3.7 × 10⁻⁴ Pa s⁻¹) or CD₃OD (6.0 × 10⁻⁴ Pa s⁻¹), and *r* is the estimated dynamic radius.

	o-R-A ¹ ₂ L ₃
Empirical Formula	$C_{93}H_{102}N_{14}S_6$
Formula weight	1608.24
Temperature/K	149.99(10)
Crystal system	monoclinic
Space group	$P2_1/c$
<i>a</i> (Å)	21.0570(9)
<i>b</i> (Å)	15.0503(3)
<i>c</i> (Å)	34.322(3)
α (°)	90
eta (°)	90.522(6)
γ (°)	90
$V(Å^3)$	10876.7(11)
Ζ	4
$ ho_{ m calc} g/ m cm^3$	0.982
μ/mm^{-1}	1.496
<i>F</i> (000)	3416.0
2θ range for data collection/°	5.15 to 122.336
Reflections collected	83143
Independent reflections	16130 $R_{\rm int} = 0.1042,$ $R_{\rm sigma} = 0.0543$
Data/restraints/parameters	16130/1097/989
Goodness-of-fit on F^2	0.906
Final <i>R</i> indexes	$R_1 = 0.2016,$
$[I > = 2\sigma(I)]$	$wR_2 = 0.4995$
Final <i>R</i> indexes [all data]	$K_1 = 0.2304,$ $wR_2 = 0.5148$
Largest diff. peak/hole / e Å ⁻³	1.50/-0.65

Table S11. Crystallographic data summary for *o*-R-A¹₂L₃ (CCDC 1922928).

o-R-A ¹ ₂ L ₃	Bond lengths(Å)	o-R-A ¹ ₂ L ₃	Bond lengths(Å)
S1-C9	1.724(15)	N6-C31	1.53(3)
S1-C12	1.774(16)	N6-C62	1.454(9)
S2-C20	1.769(18)	N6-C93	1.464(9)
S2-C23	1.762(17)	N7-C33	1.49(2)
S3-C40	1.686(15)	N7-C34	1.51(2)
S3-C43	1.664(18)	N9-C57	1.39
S4-C51	1.718(16)	N9-C56	1.39
S4-C54	1.781(16)	N10-C60	1.385(10)
S5-C71	1.725(11)	N10-C61	1.437(9)
S5-C74	1.751(11)	N11-C64	1.477(16)
S6-C82	1.689(13)	N11-C65	1.437(16)
S6-C85	1.719(13)	N12-C66	1.413(16)
N1-C1	1.40(2)	N12-C67	1.415(17)
N1-C32	1.39(2)	N14-C91	1.50(2)
N1-C63	1.500(19)	N14-C92	1.45(2)
N2-C2	1.455(18)	N3-C5	1.39
N2-C3	1.381(19)	C35-N8	1.29(2)
N4-C25	1.32(2)	N8-C39	1.39(2)
N4-C26	1.302(19)	C88-N13	1.39
N5-C29	1.50(2)	N13-C87	1.39
N5-C30	1.46(2)		

Table S12. Bond lengths (Å) for o-R-A¹₂L₃.

o-R-A ¹ ₂ L ₃	Bond angles (°)	$o-R-A^{1}_{2}L_{3}$	Bond angles (°)
C9-S1-C12	91.5(7)	N4-C26-C27	121.8(16)
C23-S2-C20	88.7(9)	N4-C26-C29	118.2(16)
C43-S3-C40	94.1(8)	C26-C29-N5	110.9(15)
C51-S4-C54	92.6(8)	C31-C30-N5	113.2(19)
C71-S5-C74	94.4(6)	C30-C31-N6	116.2(18)
C82-S6-C85	91.6(6)	N1-C32-C33	112.0(15)
C1-N1-C63	110.8(14)	C32-C33-N7	109.6(16)
C32-N1-C1	109.5(13)	C35-C34-N7	112.9(18)
C32-N1-C63	114.1(14)	N8-C35-C34	114.3(18)
C3-N2-C2	113.0(13)	N8-C35-C36	120(2)
C26-N4-C25	119.5(16)	C35-N8-C39	119.3(16)
C30-N5-C29	114.5(15)	C50-C51-S4	108.4(12)
C62-N6-C31	114.4(17)	C52-C51-S4	121.3(13)
C62-N6-C93	112.5(9)	C55-C54-S4	118.8(11)
C93-N6-C31	115.5(17)	C53-C54-S4	106.1(12)
C33-N7-C34	113.8(16)	N10-C60-C57	111.6(16)
C57-N9-C56	120	N10-C61-C62	101.8(15)
N9-C57-C58	120	N6-C62-C61	118.0(16)
N9-C57-C60	127.2(11)	N1-C63-C64	108.8(13)
C55-C56-N9	120	N11-C64-C63	111.3(12)
C60-N10-C61	112.1(16)	N11-C65-C66	113.5(11)
C65-N11-C64	112.2(11)	N12-C66-C65	121.5(11)
C66-N12-C67	119.1(11)	C70-C66-N12	120.0(12)
C92-N14-C91	107.8(15)	N12-C67-C68	118.5(11)
N1-C1-C2	110.7(14)	C68-C71-S5	123.0(8)
N2-C2-C1	108.4(13)	C72-C71-S5	109.6(9)
N2-C3-C4	111.8(12)	C73-C74-S5	107.4(9)
N3-C4-C3	124.4(9)	C75-C74-S5	122.8(9)
N3-C4-C8	120	C81-C82-S6	111.7(9)
C4-N3-C5	120	C83-C82-S6	120.0(9)
N3-C5-C6	120	C84-C85-S6	110.3(10)
C6-C9-S1	120.1(10)	C86-C85-S6	119.5(9)

Table S13. Bond angles (°) for *o*-R-A¹₂L₃.

C10-C9-S1	113.1(11)	N13-C88-C89	120
C11-C12-S1	108.9(11)	N13-C88-C91	117.2(10)
C13-C12-S1	118.1(12)	C88-N13-C87	120
C19-C20-S2	111.9(13)	N13-C87-C86	120
C21-C20-S2	114.1(14)	C88-C91-N14	110.7(13)
C22-C23-S2	111.9(13)	N14-C92-C93	107.4(17)
C24-C23-S2	119.6(14)	N6-C93-C92	113.8(16)
N4-C25-C24	122.6(16)	C38-C39-N8	123.0(16)

2.7 Er-1, Er-5, Er-9

Macroporous ZrO_2 : Er(III)-Yb(III) materials with different Er/Yb molar ratios (1:1, 1:5, 1:9 for samples Er-1, Er-5, Er-9, respectively) were prepared by sol-gel method combined with polystyrene (PS) sphere templating technique.^[S2] Appropriate amounts of Er(NO₃)₃ and Yb(NO₃)₃ were added into the methanol solution of Zr(IV)-polyacetylacetone under stirring, and then dripped onto PS templates. The products were dried in air at room temperature for 24 h, then annealed at 900 °C for 5 h.

3. Study of photochromic process of PADTE ligand and cages

3.1 PADTE ligand

Figure S35. Color change of PADTE ligand in CH₃CN/CHCl₃ (v:v = 1:1, 1×10^{-5} mol L⁻¹) solution by UV/Vis irradiation.

Figure S36. ¹H NMR comparison of *o*- and *c*-PADTE ligand (CDCl₃, 25 °C).

Figure S37. UV-Vis spectra of *o*-PADTE ligand during ring-closing process under UV irradiation for different time (CH₃CN/CHCl₃, v:v=1:1, 1×10^{-5} mol L⁻¹, room temperature).

Figure S38. UV-Vis spectra of *c*-PADTE ligand during ring-opening process under visible irradiation for different time (CH₃CN/CHCl₃, v:v=1:1, 1×10^{-5} mol L⁻¹, room temperature).

Figure S39. (a) Plot of $\ln[(A_0-A_\infty)/(A_t-A_\infty)]$ with time for UV-Vis absorption of *o*-PADTE ligand during ring-closing process, and (b) *c*-PADTE ligand during ring-opening process (CH₃CN/CHCl₃, v:v = 1:1, 1×10⁻⁵ mol L⁻¹, room temperature).

Figure S40. Cycled signals for absorbance at 605 nm of PADTE during alternative ringclosing/ring-opening processes

Figure S41. Emission spectra of *o*-PADTE ligand during ring-closing process (CH₃CN/CHCl₃, $v:v = 1:1, 1 \times 10^{-5}$ mol L⁻¹, room temperature).

Figure S42. (a) Plot of $\ln[(A_0-A_\infty)/(A_t-A_\infty)]$ with time for UV-Vis absorption of o-A¹₂L₃Zn₂ cage during ring-closing process, and (b) c-A¹₂L₃Zn₂ cage during ring-opening process (CH₃CN/CHCl₃, v:v = 1:1, 1×10⁻⁵ mol L⁻¹, room temperature).

Figure S43. The emission spectra of o-A¹₂L₃Zn₂ cage during ring-closing process (CH₃CN/CHCl₃, v:v = 1:1, 1×10⁻⁵ mol L⁻¹, room temperature).

Figure S44. High resolution ESI-MS spectra of c-A¹₂L₃Zn₂ cage (CH₃CN, room temperature).

Figure S45. (a) DOSY and (b) its partial enlargement spectra of c-A¹₂L₃Zn₂ cage (CD₃CN, room temperature).

Figure S46. (a) Single-crystal structure of c-A¹₂L₃Zn₂ cage (grey for C, blue for N, yellow for S, cyan for Zn, the closed PADTE-moiety is shown in shadow, H atoms, solvents and counter anions are omitted for clarity). (b) NMR spectra (CD₃CN, room temperature) for the crystallized sample of c-A¹₂L₃Zn₂ cage (top), and the solution sample of o-A¹₂L₃Zn₂ cage before (bottom) and after UV irradiation for 3 hours (middle).

3.3 A²₂L₃Cd₂ cage

Figure S47. ¹H NMR spectra evolution of *o*-A²₂L₃Cd₂ cage under UV irradiation for different time (400 MHz, CD₃CN, 298 K).

Figure S48. UV-Vis spectra of o-A²₂L₃Cd₂ cage during ring-closing process (CH₃CN/CHCl₃, v:v = 1:1, 1×10⁻⁵ mol L⁻¹, room temperature).

Figure S49. UV-Vis spectra of c-A²₂L₃Cd₂ cage during ring-opening process (CH₃CN/CHCl₃, v:v = 1:1, 1×10⁻⁵ mol L⁻¹, room temperature).

Figure S50. (a) Plot of $\ln[(A_0-A_{\infty})/(A_t-A_{\infty})]$ with time for UV-Vis absorption of $o-A^2_2L_3Cd_2$ cage during ring-closing process, and (b) $c-A^2_2L_3Cd_2$ cage during ring-opening process (CH₃CN/CHCl₃, v:v = 1:1, 1×10⁻⁵ mol L⁻¹, room temperature).

Figure S51. Cycled signals for absorbance at 627 nm of A²₂L₃Cd₂ cage during alternative ringclosing/ring-opening processes.

Figure S52. High resolution ESI-MS spectra of c-A²₂L₃Cd₂ cage (CH₃CN, room temperature).

Figure S53. DOSY spectra of *c*-A²₂L₃Cd₂ cage (CD₃CN, room temperature).

Figure S54. Single-crystal structure of c-A²₂L₃Cd₂ cage (grey for C, blue for N, yellow for S, orange for Cd, H atoms, solvents and counter anions are omitted for clarity).

3.4 A²₂L₃Zn₂ cage

Figure S55. ¹H NMR spectra evolution of *o*-A²₂L₃Zn₂ cage under UV irradiation for different time (400 MHz, CD₃CN, 298 K).

Figure S56. UV-Vis spectra of o-A²₂L₃Zn₂ cage during ring-closing process (CH₃CN/CHCl₃, v:v = 1:1, 1×10⁻⁵ mol L⁻¹, room temperature).

Figure S57. UV-Vis spectra of c-A²₂L₃Zn₂ cage during ring-opening process (CH₃CN/CHCl₃, v:v=1:1, 1×10⁻⁵ mol L⁻¹, room temperature).

Figure S58. (a) Plot of $\ln[(A_0-A_{\infty})/(A_t-A_{\infty})]$ with time for UV-Vis absorption of $o-A^2_2L_3Zn_2$ cage during ring-closing process, and (b) $c-A^2_2L_3Zn_2$ cage during ring-opening process (CH₃CN/CHCl₃, v:v = 1:1, 1×10⁻⁵ mol L⁻¹, room temperature).

Figure S59. Cycled signals for absorbance at 627 nm of $A^2_2L_3Zn_2$ during alternative ringclosing/ring-opening processes.

Figure S60. High resolution ESI-MS spectra of c-A²₂L₃Zn₂ cage (CH₃CN, room temperature).

Figure S61. DOSY spectra of c-A²₂L₃Zn₂ cage (CD₃CN, room temperature).

3.5 R-A¹₂L₃ cage

Figure S62. (a) Plot of $\ln[(A_0-A_\infty)/(A_t-A_\infty)]$ with time for UV-Vis absorption of *o*-R-A¹₂L₃ cage during ring-closing process, and (b) *c*-R-A¹₂L₃ cage during ring-opening process (CH₃CN/CHCl₃, v:v = 1:1, 1×10⁻⁵ mol L⁻¹, room temperature).

Figure S63. High resolution ESI-MS spectra of *c*-R-A¹₂L₃ cage (CH₃OH, room temperature).

Figure S64. DOSY spectra of *c*-R-A¹₂L₃ cage (CD₃OD, room temperature).

Figure S65. The emission spectra of *o*-R-A¹₂L₃ cage during ring-closing process (CH₃CN/CHCl₃, v:v = 1:1, 1×10^{-5} mol L⁻¹, room temperature).

3.6 R-A²₂L₃

Figure S66. ¹H NMR spectra evolution of o-R-A²₂L₃ cage under UV irradiation for different time (400 MHz, CD₃OD, 298 K).

Figure S67. UV-Vis spectra of *o*-R-A²₂L₃ cage during ring-closing process (CH₃CN/CHCl₃, v:v = 1:1, 1×10^{-5} mol L⁻¹, room temperature).

Figure S68. UV-Vis spectra of *c*-R-A²₂L₃ cage during ring-opening process (CH₃CN/CHCl₃, v:v = 1:1, 1×10^{-5} mol L⁻¹, room temperature).

Figure S69. (a) Plot of $\ln[(A_0-A_\infty)/(A_t-A_\infty)]$ with time for UV-Vis absorption of *o*-R-A²₂L₃ cage during ring-closing process, and (b) *c*-R-A²₂L₃ cage during ring-opening process (CH₃CN/CHCl₃, v:v = 1:1, 1×10⁻⁵ mol L⁻¹, room temperature).

Figure S70. Cycled signals for absorbance at 538 nm of $R-A^2_2L_3$ cage during alternative ringclosing/ring-opening processes.

Figure S71. High resolution ESI-MS spectra of *c*-R-A²₂L₃ cage (CH₃OH, room temperature).

Figure S72. DOSY spectra of c-R-A²₂L₃ cage (CD₃OD, room temperature).

3.7 Guest effects

Figure S73. UV-Vis spectra (left) and solution color (right) after adding different amounts of $H_2PO_4^-$ anions into *o*-R-A¹₂L₃ solution (CH₂Cl₂, 1×10⁻⁵ mol L⁻¹), and then irradiated under UV light for 90 min.

Figure S74. UV-Vis spectra (left) and solution color (right) after adding different amounts of HSO_4^- anions into *o*-R-A¹₂L₃ solution (CH₂Cl₂, 1×10⁻⁵ mol L⁻¹), and then irradiated under UV light for 90 min.

Figure S75. ¹H NMR titration spectra of H₂PO₄⁻ into *o*-R-A¹₂L₃ solution (CD₃OD, 25°C).

Figure S76. ¹H NMR titration spectra of HSO₄⁻ into *o*-R-A¹₂L₃ solution (CD₃OD, 25°C).

4. Up-conversion color tuning applications

Figure S77. The UV-Vis spectra of *c*-PADTE and *c*-cages.

Figure S78. The upconversion luminescence spectra of three kinds of upconversion materials (Er-1, Er-5, Er-9) and their hybrid materials with c-R-A¹₂L₃ cage.

Figure S79. The upconversion emission spectra of nine kinds of hybrid materials.

Figure S80. The upconversion emission spectra of Er-1 and its hybrid materials (Er-1 + o/c-R- $A_{2}^{1}L_{3}$).

Figure S81. Cycled signals for upconversion PL intensity at 544 nm of 0.11% R-A¹₂L₃ @ Er-1 hybrid solid state materials during alternative ring-closing/ring-opening processes.

REFERENCES

- S1 E. S. Tam, J. J. Parks, W. W. Shum, Y.-W. Zhong, M. E. B. Santiago-Berríos, X. Zheng, W. Yang, G. K.-L. Chan, H. D. Abruna, D. C. Ralph, ACS Nano, 2011, 5, 5115-5123.
- S2 S.-Y. Yin, L. Chen, M. Pan, Z. Wang, L.-Y. Zhang, H.-P. Wang, Y.-N. Fan, C.-Y. Su, *ChemistrySelect*, 2016, 1, 3136-3143.