Table of Contents

I. General information	S2
II. Preparation of substrates	S3
III. Condition optimization for the synthesis of 3a	S4
IV. Reaction mechanistic investigations	S6
V. General procedure for reactions	S14
VI. Stereochemistry determination via X-ray crystallographic analysis	S21
VII. Characterization of substrates and products	S22
VIII. ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR and HPLC Spectra.	S43

I. General information

Commercially available materials purchased from J&K or Bide were used as received. THF was distilled over sodium. Unless otherwise specified, all reactions were carried out under an atmosphere of nitrogen in 4 mL dry Schlenk tube. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on a Bruker (AVANCE III HD 400 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm, δ) relative to tetramethylsilane (δ 0.00) or chloroform (δ = 7.26, singlet). ¹H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), dd (doublet of doublets); m (multiplets), and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker (AVANCE III HD 101 MHz) spectrometer. Fluorine (¹⁹F) nuclear magnetic resonance (¹⁹F NMR) spectra were recorded on a Bruker (AVANCE III HD 376 MHz) spectrometer. The melting points (m.p.) of the title compounds were determined when left untouched on an XT-4-MP apparatus from Beijing Tech. Instrument Co. (Beijing, China). High resolution mass spectral analysis (HRMS) was performed on a quadrupole/electrostatic field orbitrap mass spectrometer. Absolute configuration of the products was determined by X-ray crystallography. HPLC analyses were measured on Waters systems with Empower 3 system controller, Alliance 2695, and 2998 Diode Array Waters 2489 UV/Vis detector. Chiralcel brand chiral columns from Daicel Chemical Industries were used with models IA, IB, IC, ID, IF, AD-H, OD-H in 4.6 x 250 mm size and IA-U in 3.0 x 100 mm size. The racemic products used to determine the ee values were synthesized using racemic catalyst. Optical rotations were measured on an Insmark IP-digi Polarimeter in a 1 dm cuvette at 25 °C. The concentration (c) is given in g/100 mL. Analytical thin-layer chromatography (TLC) was carried out pre-coated silica gel plate (0.2 mm thickness). Visualization was performed using a UV lamp.

II. Preparation of substrates

Note: Starting materials 2 were prepared according to previous literature procedures.¹

Step 1: To a suspension of aldehyde **S1**(10.50 mmol) in toluene (20.0 mL) was added 2-(triphenylphosphoranylidene)acetaldehyde (3.51 g, 11.55 mmol), the reaction mixture was heated to 120 °C and stirred for 8 h. Then the mixture was concentrated directly in vacuum and the residue was purified by silica gel chromatography with petroleum ether/EtOAc (100:1 to 20:1) to give **S2** as colorless liquid.

Step 2: The enals **S2** (10 mmol) were dissolved in DMSO (40.0 mL), PPh₃.HBr (6.86 g, 20 mmol) was added and the reaction mixture were heated to 80 °C and stirred for 8 h. After completion of reaction, monitored by TLC plate, the reaction mixture were poured into H₂O (50.0 mL), and extracted with EtOAc (50.0 mL*3), the combined organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum to give the residue. The residue was purified by silica gel chromatography with petroleum ether/EtOAc (100:1 to 20:1) to give **S3** as a yellow solid.^{1b}

Step 3: To a suspension of (Z)-2-bromo-Cinnamaldehyde **S3** (2.0 mmol), $Pd(PPh_3)_4$ (0.1 mmol), Cul (0.2 mmol), substituted-ethynyl (2.4 mmol) was added THF (50.0 mL) and Et₃N (25.0 mL) under N₂ atmosphere at room temperature for 12 hours. After completion of reaction, monitored by TLC plate, the reaction mixture were poured into H₂O (50.0 mL), and extracted with EtOAc (50.0 mL*3), the combined organic layers were washed with H₂O (50.0 mL*2) and dried over anhydrous Na₂SO₄, filtered and concentrated in vacuum to give the residue. The residue was purified by silica gel chromatography with petroleum ether/EtOAc (100:1 to 20:1) to give **2** as red liquid.^{1a}

III. Condition optimization for the synthesis of 3a

Entry	NHC	Base	Solvent	Yield[%] ^[b]	Ee [%] ^[c]	Dr ^[d]
1	Α	Et ₃ N	THF	52	99	> 20:1
2	В	Et_3N	THF	0	-	-
3	С	Et_3N	THF	0	-	-
4	D	Et_3N	THF	85	99	> 20:1
5	D	DIEA	THF	83	99	> 20:1
6	D	Na ₂ CO ₃	THF	80	92	-
7	D	NaHCO ₃	THF	50	98	-
8	D	NaOA	THF	75	95	
9	D	DABCO	THF	72	67	>20:1
10	D	K ₃ PO ₄	THF	80	79	>20:1
11	D	DBU	THF	Trace	-	-
12	D	Cs ₂ CO ₃	THF	45	50	-
13	D	K ₂ CO ₃	THF	85	43	-
14	D	CsOAc	THF	85	5	-
15	D	KOAc	THF	85	37	-
16	D	DMAP	THF	60	79	
17	D	Et_3N	CHCl ₃	64	97	> 20:1
18	D	Et_3N	EtOAc	68	99	>20:1
19	D	Et_3N	MeOH	0	-	-
20	D	Et_3N	EtOH	0	-	-
21	D	Et_3N	MeCN	70	88	-
22 ^e	D	Et_3N	THF	62	99	>20:1
23 ^f	D	DABCO	THF	0	-	-
24 ^f	D	K ₃ PO ₄	THF	0	-	-

25 ^f	D	K ₂ CO ₃	THF	0	-	-
26 ^f	D	КОАс	THF	0	-	-
27 ^f	D	DMAP	THF	0	-	-

[a] Unless otherwise specified, the reactions were carried using **1a** (0.15 mmol), **2a** (0.1 mmol), NHC (0.02 mmol), base (0.05 mmol) and solvent (1.0 mL) at rt for 24 h. [b] Isolated yield of 3a. [c] The ee values were determined via HPLC on chiral stationary phase. [d] Dr values were determined via ¹H NMR on the crude reaction mixture. [e] **1a** (0.1 mmol). [f] base (0.01 mmol). Mes = 2,4,6-Trimethylphenyl. THF = Tetrahydrofuran. DBU = 1,8-Dizabicyclo[5.4.0]undec-7-ene. MAP = 4-Dimethylaminopyridine. DABCO = 1,4-Diazabicyclo[2.2.2]octane;triethylenediamine. Et₃N = Triethylamine. DIEA = Diisopropylethy.

IV. Reaction mechanistic investigations

a) Replacing the alkynyl group with a methyl, vinyl, phenyl or cyano group

 α -Substituted enals **S4** to **S7**² were used instead of the alkynyl enal **2** as the Michael acceptor in this protocol. No desired cross-coupling products were observed in these reactions. The results indicated that the α -alkynyl substituent is crucial to this NHC-catalyzed chemoselective [2 + 4] cycloaddition reaction.

b) Compare the nucleophilicities of the $\alpha\text{-}$ and $\beta\text{-}carbons$ of 1a and 2a

The relative nucleophilicities of the α - and β -carbons of the enal substrates **1a** and **2a** have been studied with reported NHC organocatalytic reactions.³ The α -carbon of cinnamaldehyde **1a** can react with the enone substrate **S8** through enolate activation pathway under the catalysis of NHC catalyst **D** to give the lactone **S9** as the product in 82% yield.^{3a} The β -carbon of cinnamaldehyde **1a** can react with the imine substrate **S10** through homoenolate activation pathway under the catalysis of NHC catalyst **D** and afford the lactam **S11** in 75% yield.^{3b} However, no reactions happened when using the alkynyl enal **2a** as the nucleophilic enolate or homoenolate precursors under the same catalytic reaction conditions. Therefore, it is more difficult for an NHC catalyst to react with the alkynyl enal **2a** than cinnamaldehyde **1a** to generate nucleophilic species through covalent pathways. Bode, Glorius and coworkers have also observed similar phenomenon when using α -branched enal substrates as the nucleophiles in NHC organocatalytic reactions.⁴ It has been postulated that the steric effects caused by the α substituent on the enal substrate could inhibit the nucleophilic addition of the NHC catalyst to the enal carbonyl carbon. Additionally, the conjugated planar of the trace amount of the α , β unsaturated Breslow intermediate generated from α -substituted enals and the NHC catalysts can be twisted due to steric reasons and the nucleophilicities of the α - and β -carbons of the enal substrates are therefore inhibited.

c)nonlineæffectwithDABCQusedasthebase

We have also studied the NHC catalytic reaction of **1a** and **2a** by varying the enantiopurity of the NHC catalyst **D** under the optimized reaction conditions (Section III, Table S1, entry 4). The ee values of the products and the ee values of the catalysts showed a negative nonlinear effect (Figure S1, a). Nonlinear effects indicate at least two catalysts are involved in the enantiodifferentiating step of a reaction.⁵ We therefore assume that both of the enal substrates have been activated by the NHC catalyst in this [2 + 4] process. It has been well established that cinnamaldehyde **1** could be activated by NHC organic catalysts through covalent bond formations and fragmentations. We have indicated that it was unlikely for the NHC catalyst to react with the alkynyl enal **2** through covalent activation modes in the chemoselective [2 + 4] reaction. Therefore, the alkynyl enal **2** might be activated by the NHC catalyst in a non-covalent hydrogen-

bonding interaction mode. Non-covalent activation reactions with chiral NHC organic catalysts have been reported by Huang, Guin, and others.⁶

The existence of the non-covalent hydrogen-bonding interactions in this NHC organocatalytic [2 + 4] reaction could be supported by the base effects on the product enantioselectivities. Bases with similar basicities to Et₃N could give the product **3a** in excellent enantioselectivities (Table S1, entries 5-8), with similar non-linear effects observed when using NHC catalyst **D** with different optical purities (e.g, Figure S1, b). Strong bases could destroy the hydrogen-bonding interactions existed in the catalytic system, and resulted in drops in the product ee values (Table S1, entries 11-16). Meanwhile, the non-linear effects disappeared when using strong bases (e.g., DABCO or K₃PO₄) for the NHC organocatalytic reactions (e.g., Figure S1, c & d). This is probably because that the hydrogen-bonding interactions have been destroyed by DABCO or K₃PO₄ with a stronger basicity.

Additionally, to exclude the possibility for the dual activation of the cinnamaldehyde **1** by two or more NHC catalysts, we have examined the non-linear effect of a known NHC-catalyzed enantioselective reaction of the substituted cinamaldehyde **S12** (Figure S2). Experimental results indicated an obvious linear relationship between the product ee values and the NHC's optical purities. Therefore, one molecule of the cinnamaldehydes are likely activated by a single molecule of the NHC catalyst and the non-covalent interactions between cinnamaldehydes **1** and the NHC organic catalysts are not likely to exist.⁷

Figure S2. None-linear Effects.

d) ¹H NMR analysis of the catalytic system

The non-covalent H-bonding interactions between the NHC catalyst **D** and the alkynyl group of the α -alkynyl enal **2a** can also be supported by ¹H NMR analysis (Figures S3 & S4). A catalytic amount of the NHC catalyst **D** was added to the solution of the alkynyl enal **2a** in THF-d₈ in the presence of a sub-stoichiometric amount of TEA (Figure S3, a). Comparing with the reaction system without **2a** (Figure S3, b), an obvious change in the chemical shift of the acidic azolium

proton on the NHC precatalyst **D** was observed. Meanwhile, the aldehyde proton of the alkynyl enal **2a** was not changed in these reaction systems (Figures S3, a *v.s.* d). This is strong evidence for the existence of a non-covalent interaction between the acidic NHC azolium proton and the alkynyl enal **2a**.

Figure S3. ¹H NMR analysis of the NHC pre-catalyst **D** with a catalytic amount of **2a**.

Figure S4. ¹H NMR analysis of the NHC pre-catalyst D with a stoichiometric amount of 2a.

Similarly, changes in the chemical shift of the NHC pre-catalyst **D** can also be observed when mixing stoichiometric amount of **D** and **2a** in the precense of TEA (Figure S4). Therefore, the non-

covalent H-bonding interactions between **D** may exist in our NHC-catalyzed [2 + 4] cycloaddition reactions.

e) Shielding of the alkynyl units in the alkynyl enal 2

To show the critical roles of the alkynyl units in the chirality inductions of our NHC-catalyzed [2 + 4] cycloaddition reactions, we examined the [2 + 4] reactions using the alkynyl enals **2x** and **2y** (Figure S5). The alkynyl units of the substrates **2x** and **2y** were shielded by the steric bulky mesityl group and 2,4-diisopropyl group, and the H-bonding interactions between the NHC catalyst **D** and the alkynyl groups on **2x** or **2y** were therefore interupted. As a result, both of the ee values and the yields of the desired products **4x** and **4y** were droped.

Figure S5. Reactions with enals 2 bearing bulky alkynyl substituents.

f) Hammett studies with substituted alkynyl enal substrate 2

Figure S6. kinetic data obtained in the chemo-selective [2 + 4] cycloaddition reaction.

Hammett studies were carried out to get further insights into the reaction mechanism (Figures S6 & S7). Alkynyl enal substrates **2** bearing 4-F (**2i**), 4-Cl (**2j**), 4-CF₃ (**2k**), 4-CH₃ (**2l**), 4-OCH₃ (**2m**) groups were chosen as the target substrates to evaluate their relative reaction rates compared with the alkynyl enal **2a**. Kinetic studies showed that electron-withdrawing groups reacted faster

than the electron-donating groups (Figure S6). The Hammett plot of the relative reaction rates of the substrates **2i** to **2m** gave a positive slop ($\rho = 1.0128$) (Figure S7). Therefore, a negatively charged transition state should be built up in the rate determining step. This is in accordance with the non-covalent H-bonding interactions that we have proposed to exist between the acidic azolium proton of the NHC-precatalyst **D** and the alkynyl groups of the alkynyl enal substrates **2** (Figure S9).

Figure S7. Hammett plot for the chemo-selective [2 + 4] cycloaddition reaction.

g) Effects of the counter anions of the NHC pre-catalysts on the reaction results

Finally, the effects of the counter anions of the NHC pre-catalysts were examined (Figure S8). We have examined the NHC pre-catalysts bearing different counter ions (BF_4 , Cl^- , ClO_4 , and Br^-) in our model reactions. The counter ions have significant impacts on the reaction yields. However, all the corresponding products are afforded in similar ee values.

Based on the above results, this NHC organocatalytic reaction is believed to go through a dual activation process (Figure S9). Cinnamaldehyde **1a** is activated by NHC catalysts via a covalent enolate activation pathway to generate the chiral intermediate **I**. Alkynyl enal **2a** is activated by NHC:HX via H-bonding interactions in the presence of TEA (trasition state-1, **TS-1**) and can react with intermediate **I** as an electrophilic Michael acceptor. The Re face of intermediate **I** is favored to react with the Si face of **2a** due to steric effects. The afforded Michael adduct **II** can then go through lactone formation process to give the desired product **3a** with elimination of the NHC catalyst for additional catalytic cycles.

Figure S9. Proposed Reaction Pathway

V. General procedure for reactions

1. General procedure for the catalytic reactions of Cinnamaldehyde **1** and (*E*)-2-benzy -lidene-4-phenylbut-3-ynal **2** to synthesize product **3** or **4**

To a 4 mL dry Schlenk tube equipped with a magnetic stir bar, was added cinnamaldehyde **1** (0.15 mmol) and α -alkynyl enal **2** (0.1 mmol), triazolium salt **NHC-D** (0.02 mmol) and Et₃N (0.05 mmol). The tube was closed with a septum, evacuated, and refilled with nitrogen. Freshly distilled THF (0.5 mL) was added and the reaction mixture was then stirred at room temperature till cinnamaldehyde was completely consumed (monitored by TLC). The mixture was concentrated under reduced pressure. The residue was purified via column chromatography on silica gel (petroleum ether / ethyl acetate=100:1 to 20:1) to afford the desired product **3 or 4**.

2. Procedure for the synthesis 3a at 1 mmol

To a 50 mL dry Schlenk tube equipped with a magnetic stir bar, was added cinnamaldehyde **1a** (1.5 mmol, 198.2 mg) and (*E*)-2-benzylidene-4-phenylbut-3-ynal **2a** (1.0 mmol, 232.3 mg), triazolium salt **NHC-D** (0.2 mmol, 20 mol%, 99.6 mg) and Et₃N (0.5 mmol, 50 mol%, 50.6 mg). The tube was closed with a septum, evacuated, and refilled with nitrogen. Freshly distilled THF (5.0 mL) was added and the reaction mixture was then stirred at room temperature till cinnamaldehyde was completely consumed (monitored by TLC). The mixture was concentrated under reduced pressure. The residue was purified via column chromatography on silica gel (petroleum ether / ethyl acetate=100:1 to 20:1) to afford the desired product **3a** (83% yield, 99% ee, > 20:1 dr) as a white solid.

3. Procedure for the synthesis 4v at 1 g scale

To a 100 mL dry Schlenk tube equipped with a magnetic stir bar, was added cinnamaldehyde 1a (9.6 mmol, 1.3 g) and (E)-2-benzylidenebut-3-ynal 2v (6.40 mmol, 1.0 g),

triazolium salt **NHC-D** (1.3 mmol, 20 mol%, 0.64 g) and Et₃N (3.2 mmol, 50 mol%, 0.32 g). The tube was closed with a septum, evacuated, and refilled with nitrogen. Freshly distilled THF (20.0 mL) was added and the reaction mixture was then stirred at room temperature for 24 hours. After completely consumed (monitored by TLC), the reaction mixture was directly concentrated under reduced pressure to give a crude product. The crude product was purified via column chromatography on silica gel (petroleum ether / ethyl acetate=100:1 to 20:1) to afford the desired product **4v** (75% yield, 99% ee, > 20:1 dr) as a white solid.

4. Preparation of the NHC pre-catalyst D with varying ee values

The NHC pre-catalyst D with varying ee values were prepared by mixing the different enantiomers of D in different ratios:

NHC pre-catalyst **D** with a 80% ee value: optically pure **D** (0.18 mmol, 90.0 mg), optically pure ent-**D** (0.02 mmol, 10.0 mg).

NHC pre-catalyst **D** with a 60% ee value: optically pure **D** (0.16 mmol, 80.0 mg), optically pure ent-**D** (0.04 mmol, 20.0 mg).

NHC pre-catalyst **D** with a 40% ee value: optically pure **D** (0.14 mmol, 70.0 mg), optically pure ent-**D** (0.06 mmol, 30.0 mg).

NHC pre-catalyst **D** with a 20% ee value: optically pure **D** (0.12 mmol, 60.0 mg), optically pure ent-**D** (0.08 mmol, 40.0 mg).

NHC pre-catalyst **D** with a 0% ee value: optically pure **D** (0.10 mmol, 50.0 mg), optically pure ent-**D** (0.10 mmol, 50.0 mg).

5. Preparation of the NHC catalysts bearing different anions.

The NHC pre-catalyst **D-1** bearing the counter anion Cl⁻ was prepared according to the literature.⁸

The NHC pre-catalyst **D-2** bearing the counter anion ClO_4^- was prepared through the follow procedures:

The NHC pre-catalysts **D** (100 mg, 200.75 μ mol) was dissolved in DCM (10.0 mL) and added to a solution of NaOH (160.6 mg, 4.02 mmol) in water (10.0 mL). The biphasic mixture was shaken vigorously and the organic layer was collected and quickly transferred to a solution of HClO₄ (576.2 mg, 4.02 mmol, 70% in water) in H₂O (10.0 mL). After stirring for 5 min the organic layer was separated and dried over anhydrous Na₂SO₄. After removing of the organic solvents the NHC pre-catalyst **D-2** bearing the counter anion ClO₄⁻ was afforded as a white solid and was used without further purification.

The NHC pre-catalyst **D-3** bearing the counter anion Br⁻ was prepared through similar procedures to the preparation of **D-2**. HBr (984.5 mg, 4.02 mmol, 33% in acetic acid) was used instead of the $HClO_4$ (576.2 mg, 4.02 mmol, 70% in water).

6. Experiment of a stoichiometric reaction of alkynyl enal and NHC HX with Et₃N

Alkynyl enal **2a** (0.05 mmol), TEA (50 mol%) and NHC pre-catalyst **D** (20 mol% or 100 mol%) was dissolved in THF- d_8 (0.5 mL), and the solution was subjected to ¹H NMR analysis. Meanwhile, the solution of **D** (0.05 mmol) and TEA (50 mol%) in THF- d_8 (0.5 mL), the solution of **2a** (0.05 mmol) in THF- d_8 (0.5 mL), and the solution of **D** (0.05 mmol) in THF- d_8 (0.5 mL), were also

analyzed by ¹H NMR.

7. Competition experiment for the Hammett study

To a 4 mL dry Schlenk tube equipped with a magnetic stir bar, was added cinnamaldehyde **1** (0.15 mmol, 19.82 mg) and α -alkynyl enal **2a** (0.05 mmol), α -alkynyl bearing *para*-substituted enal (0.05 mmol) triazolium salt **NHC-D** (0.02 mmol, 9.96 mg) and Et₃N (0.05 mmol, 6.94 µL) and 1,3,5-Trimethoxybenzene (0.05 mmol, 8.41 mg) as internal standard. The tube was closed with a septum, evacuated, and refilled with nitrogen. Freshly distilled THF (1.0 mL) was added and the reaction mixture was then stirred at room temperature, this reaction was carried out four parallel samples at the same time. Samples of 0.5 mL each were withdrawn from the reaction mixture after 0, 0.5, 1, 2, 3, 5, and 10 hours reaction time and poured into water (2.0 mL) directly, extracted with EtOAc (2.0 mL*3) and concentrated under reduce pressure to give the residue. The residue was diluted with CDCl₃ (0.5 mL) and analyzed by ¹H NMR.⁹

Table S2: Date for the competition experiment involving 2a and 2i.

Reaction time (h)	С _н (М)	C _x (M)	In (С _{н,0} / С _н)	ln (C _{x,0} / C _x)
0	0.0395	0.0275	0	0
0.5 h	0.0130	0.0070	1.1113	1.3682
1 h	0.0145	0.0080	1.0022	1.2347
2 h	0.0065	0.0035	1.8045	2.0614
3 h	0.0125	0.0075	1.1506	1.2993
5 h	0.0105	0.0055	1.3249	1.5563
10 h	0.0155	0.0085	0.9354	1.1741

Table S3: Date for the competition experiment involving 2a and 2j.

Reaction time (h)	С _н (М)	C _x (M)	In (С _{н,о} / С _н)	In (C _{x,0} / C _x)
0	0.0390	0.0475	0	0
0.5 h	0.0180	0.0120	0.7732	1.3758
1 h	0.0200	0.0150	0.6678	1.1526
2 h	0.0215	0.0150	0.5955	1.1526
3 h	0.0185	0.0110	0.7458	1.4628
5 h	0.0065	0.0020	1.7917	3.1675
10 h	0.0040	0.0010	2.2773	3.8607

Table S4: Date for the competition experiment involving 2a and 2k.

Reaction time (h)	С _н (М)	C _x (M)	In (C _{H,0} / C _H)	In (C _{x,0} / C _x)
0	0.0485	0.0449	0	0
0.5 h	0.0380	0.0143	0.2439	1.1442
1 h	0.0356	0.0144	0.2843	1.1372
2 h	0.0365	0.0123	0.2843	1.2948
3 h	0.0350	0.0114	0.3262	1.3708
5 h	0.0325	0.0105	0.4003	1.4530
10 h	0.0180	0.0080	0.5494	1.7250

	•			
Reaction time (h)	С _н (М)	C _x (M)	In (C _{H,0} / C _H)	In (C _{x,0} / C _x)
0	0.0390	0.0305	0	0
0.5 h	0.0050	0.0060	2.0541	1.6259
1 h	0.0025	0.0020	2.7472	2.7246
2 h	0.0140	0.0115	1.0240	0.9754
3 h	0.0105	0.0105	1.3121	1.0664
5 h	0.0064	0.0064	1.8073	1.5614
10 h	0.0050	0.0050	2.0541	1.8082

Table S5: Date for the competition experiment involving 2a and 2l.

Table S6: Date for the competition experiment involving 2a and 2m.

Reaction time (h)	С _н (М)	C _x (M)	In (C _{H,0} / C _H)	In (C _{x,0} / C _x)
0	0.0400	0.0315	0	0
0.5 h	0.0060	0.0115	1.8971	1.0076
1 h	0.0085	0.0150	1.5488	0.7419
2 h	0.0115	0.0170	1.2465	0.6168
3 h	0.0010	0.0045	3.6889	1.9459
5 h	0.0025	0.0075	2.7725	1.4351
10 h	0.0005	0.0035	4.3820	2.1972

8. Synthetic transformation of chiral product of 3a

Preparation of 5 from product 3a

To a solution of **3a** (20 mg, 54.88 μ mol) in 1,2-dichloroethane (1.0 mL) was added Cu(OTf)₂ (1.98 mg, 5.49 μ mol) at room temperature, then the reaction mixture was heated to 80 °C and stirred for 5 hours. After cooling to room temperature, H₂O (10 mL) was added. The mixture was extracted with EtOAc (10 mL), and the combined organic layers were concentrated to afford the residue, the residue was purification directly by column chromatography with petroleum ether / ethyl acetate (20:1) to give the desired product **5** in 71% yield.¹⁰

9. Synthetic transformation of chiral product of 4v

Preparation of ${\bf 6}$ from product ${\bf 4v}$

To a solution of 4v (20 mg, 69.36 µmol) in CH₃CN (1.0 mL) was added CuBr₂ (30.98 mg, 138.73 µmol) at room temperature, the reaction mixture was stirred for 1 hour. Then the reaction mixture was concentrated and then directly subjected to column chromatography on silica gel with petroleum ethyl / ethyl acetate (20:1) to yield the desired product **6** in 84%

yield.11a

Preparation of 7 from product 4v

To a 10 mL dry Schlenk tube was charged with 4v (20 mg, 69.36 µmol), Togni reagent (26.30 mg, 83.24 µmol), TMSCN (13.76 mg, 138.73 µmol), terpyridine (3.24 mg, 0.94 µmol), Cu(OAc)₂ and CH₃CN(1.0 mL) at room temperature, then the reaction mixture was heated to 70 °C and stirred for 5 hours. After cooling to room temperature, the mixture was poured into water (5.0 mL) and extracted with EtOAc (10.0 mL*3), the combined organic layer concentrated under vacuum to afford a residue, the residue was purified by column chromatography on silica gel with petroleum ethyl / ethyl acetate (20:1) to give the desired product **7** in 53% yield.^{11b}

Preparation of 8 from product 4v

To a solution of **4v** (20 mg, 69.36 μ mol) and TosNHNH₂ (18.08 mg, 138.93 μ mol) in CH₃CN (1 mL) was added FeCl₃ (22.5 mg, 138.93 μ mol) and TBHP (12.5 mg, 138.93 μ mol), then the reaction mixture was heated to 80 °C and stirred for 8 hours. After completion, the mixture was added H₂O (5.0 mL) and extracted with EtOAc (10.0 mL*3), combined the organic layer and concentrated under vacuum. The crude product was directly subjected to column chromatography on silica gel with petroleum ethyl / ethyl acetate (5:1) to afford the desired product **8** in 49% yield.^{11c}

Preparation of 9 from product 4v:

To a solution of **4v** (20 mg, 69.36 μ mol) and BnN₃ (9.24 mg, 69.36 μ mol) in DCM/H₂O (v / v=1/1, 1 mL) was added Sodium L-ascorbate (1.37 mg, 6.94 μ mol) and CuSO₄ (0.55 mg, 3.47 μ mol) at room temperature, and stirred for 12 hours. Then the solution was participated and the aqueous phase was extracted with DCM (1.0 mL*2), the combined organic layers were concentrated in vacuum to give the crude product. The crude product was purified by column chromatography on silica gel with petroleum ethyl / ethyl acetate (10:1) to afford the desired product **9** in 96% yield.^{11d}

Preparation of 10 from product 4u:

To a solution of NaI (12.48 mg, 83.24 μ mol) in CH₃CN (1.0 mL) was added TMSCI (9.04 mg, 83.24 μ mol) and H₂O (0.75 mg, 41.62 μ mol), the mixture was allowed stirred 10 minutes at room temperature, then **4v** (20 mg, 69.36 μ mol) was added and the reaction mixture was stirred for 4 hours. After completion, monitored by TLC plate, the resulting mixture was directly purified by column chromatography on silica gel with petroleum ethyl / ethyl acetate (20:1) to give the desired product **10** in 65% yield.^{11e}

Preparation of **11** from product **4v**:

To a 25 mL flask was added 4v (30 mg, 104.04 µmol), Pd / C, CaCO₃ (2.45 mg) and EtOH (2.0 mL), the flask was flushed with hydrogen gas, then placed under a balloon of hydrogen. After 4 hours, the mixture was filtered with through Celite and concentrated in vacuum to give a crude product. The crude product was purified by column chromatography with petroleum ethyl / ethyl acetate (20:1) to afford the desired product **11** in 84% yield.

10. Synthetic transformation of chiral product of 4w:

Preparation of **12** form product **4w**:

To a 10 mL dry Schlenk tube equipped with a magnetic stir bar, was added **4w** (20 mg, 55.48 μ mol), 2-iodoaniline (12.15 mg, 55.48 μ mol), K₂CO₃ (15.33 mg, 110.95 μ mol), Pd(OAc)₂ (0.62 mg, 2.77 μ mol) and LiCl (2.35 mg, 55.48 μ mol). The tube was charged with nitrogen, freshly distilled DMF (1.0 mL) was added, and then the reaction mixture was heated to 100 °C for 6 hours. After cooling to room temperature, the reaction was directly purified by column chromatography on silica gel with petroleum ethyl / ethyl acetate (5:1) as the eluent to afford the desired product **12** in 50% yield.¹²

VI. Stereochemistry determination via X-ray crystallographic analysis

A colorless needle crystal of **3b** was obtained by vaporization of its ethyl acetate / petroleum ethyl solution.

The absolute stereochemistry of **3b** was determined by the X-ray diffraction. This crystal was deposited in the Cambridge Crystallographic Data Centre and assigned as **CCDC**: 1980067.

Reference:

- 1 (a) Y. Chen, Y. Liu, J. Org. Chem., 2011, **76**, 5274–5282; (b) Y. Liu, Y. Yu, Y. Fu, Y. Liu, L. Shi, H. Li, W. Wang, Org. Chem. Front., 2017, **4**, 2119–2123.
- (a) S. Kobayashi, K. Kudo, A. Ito, S. Hirama, T. Otani, T. Saito, Org. Biomol. Chem., 12, 2014, 4061-4064; (b) T. Matsuda, Y. Sakurai, Eur. J. Org, Chem., 2013, 20, 4219-4222; (c) S. Maeda, N. Horikawa, Y. Obora, Y. Ishii, J, Org. Chem., 2009, 74, 9558-9561.
- 3 (a) H. Lv, B. Tiwari, J. Mo, C. Xing, Y. R. Chi, *Org. Lett.*, 2012, **14**, 5412–5415; (b) X. Fang, X. Chen, Y. R. Chi, *Org. Lett.*, 2011, **13**, 4708–4711.
- 4 (a) S. S. Sohn, J. W. Bode, Org. Lett., 2005, 7, 3873–3876; (b) C. Burstein, S. Tschan, X. Xie, F. Glorius, Synthesis, 2006, 14, 2418–2439; (c) A. G. Kravina, J. Mahatthananchai, J. W. Bode, Angew. Chem. Int. Ed., 2012, 51, 9433-9436.
- 5 T. Satyanarayana, S. Abraham, H. B. Kaga, Angew. Chem. Int. Ed., 2009, 48, 456–494.
- For a pioneering work using NHCs as chiral non-covalent organic catalysts, see: (a) J. Chen, Y. Huang, *Nat. Commun.*, 2014, 5, 3437. For selected examples, see: (b) E. M. Phillips, M. Riedrich, K. A. Scheidt, *J. Am. Chem. Soc.*, 2010, 132, 13179–13181; (c) J. Chen, S. Meng, L. Wang, H. Tang, Y. Huang, *Chem. Sci.*, 2015, 6, 4184–4189; (d) L. Wang, J. Chen, Y. Huang, *Angew. Chem. Int. Ed.*, 2015, 54, 15414–15418; (e) S. Santra, A. Porey, B. Jana, J. Guin, *Chem. Sci.*, 2018, 9, 6446–6450; (f) S. Lu, J.-Y. Ong, H. Yang, S. B. Poh, X. Liew, C. S. D. Seow, M. W. Wong, Y. Zhao, *J. Am. Chem. Soc.*, 2019, 141, 17062–17067; (g) S. Santra, U. Maji, J. Guin, *Org. Lett.*, 2020, 22, 468–473.
- 7 Z. Fu, H. Sun, S. Chen, B. Tiwari, G. Li, Y. R. Chi, Chem. Commun., 2013, 49, 261-263.
- 8 J. R. Struble, J. W. Bode, *Org. Synth.*, 2010, **87**, 362-376.
- (a) C. Hansch, A. Leo, R. W. Taft., *Chem. Rev.*, 1991, 91, 165-195; (b) E. Casper, J. Thomas, R.-R. Sergio, F. Peter, *ACS Catal.*, 2013, 3, 294-302; (c) Y. Ayana, A. Yoshinori, C. Naoto, *J. Org. Chem.*, 2014, 79, 11922-11932; (d) M. R. Brennan, D. Kim, A. R. Fout, *Chem. Sci.*, 2014, 5, 4831-4839.
- 10 Y.-L. Wang, W.-M. Zhang, J.-J. Dai, Y.-S. Feng, H.-J. Xu, *RSC Adv.*, 2014, **4**, 61706–61710.
- (a) J. Xiang, R. Yuan, R. Wang, N. Yi, L. Lu, H. Zou, W. He, *J. Org. Chem.*, 2014, **79**, 11378–11382; (b) Y.-T. He, Q. Zhao, X. Wang, J. -Y. Liu, P.-F. Xu, Y.-M. Liang, *Chem. Commun.*, 2015, **51**, 13209–13212; (c) X. Li, X. Shi, M. Fang, X. Xu, *J. Org. Chem.*, 2013, **78**, 9499–9504; (d) Q. Gu, H. H. A. Mamari, K. Graczyk, E. Diers, L. Ackermann, *Angew. Chem. Int. Ed.*, 2014, **53**, 3868–3871; (e) L. W. C. Lawrence, A. K. Yudin, *Org. Lett.*, 2009, **11**, 1281–1284.
- W.-B. Liu, D. P. Schuman, Y.-F. Yang, A. A. Toutov, Y. Liang, H. F. T. Klare, N. Nesnas, M. Oestreich, D. G. Blackmond, S. C. Virgil, S. Banerjee, R. N. Zare, R. H. Grubbs, K. N. Houk, B. M. Stoltz, *J. Am. Chem. Soc.*, 2017, 139, 6867–6879.

VII. Characterization of substrates and products

1. Characterization of substrates

(E)-4-phenyl-2-(4-(trifluoromethyl) benzylidene) but-3-ynal

Red solid, 96% yield, 578.1 mg, m.p. 73-74 °C

¹**H NMR** (400 MHz, CDCl₃) δ 9.77-9.66 (m, 1H), 8.24 (d, *J* = 8.5 Hz, 1H), 7.75-7.69 (m, 3H), 7.60-7.49 (m, 3H), 7.42-7.40 (m, 2H), 6.81-6.75 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 192.2, 189.3, 149.3, 147.1, 131.0 (2C), 129.6 (2C),

128.5, 127.6 (2C), 124.7, 123.5, 100.9, 82.0.

¹⁹F NMR (376 MHz, CDCl₃) δ -63.0.

HRMS (ESI, m/z): Mass calcd. for $C_{18}H_{12}OF_3$ [M+H]⁺, 301.0835; found: 301.0842.

(E)-2-(2-chlorobenzylidene)-4-phenylbut-3-ynal

Red oil, 70% yield, 387.1 mg.

¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 8.75-8.58 (m, 1H), 8.00 (s, 1H), 7.60- 7.46 (m, 3H), 7.41-7.37 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 189.7, 145.5, 134.7, 131.1, 130.9 (2C), 129.2, 129.1, 128.3, 127.5 (2C), 125.8, 123.6, 121.5, 121.3, 100.2, 81.5.

HRMS (ESI, m/z): Mass calcd. for C₁₇H₁₂OCI [M+H]⁺, 267.0571; found: 267.0570.

(E)-4-phenyl-2-(thiophen-2-ylmethylene) but-3-ynal

Reddish black solid, 73% yield, 350.6 mg, m.p. 41-42 °C

¹H NMR (400 MHz, CDCl₃) δ 9.61 (s, 1H), 7.80 (s, 1H), 7.73-7.56 (m, 4H), 7.44- 7.33 (m, 3H), 7.19 (dd, *J* = 5.0, 3.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 189.0, 142.5, 137.8, 134.3, 131.9, 130.8 (2C), 128.1, 127.4, 126.7, 121.6, 118.8, 102.1, 82.5.

HRMS (ESI, m/z): Mass calcd. for $C_{15}H_{11}OS \ [M+H]^+$, 239.0528; found 286.0531

(E)-2-(furan-2-ylmethylene)-4-phenylbut-3-ynal

Red oil, 65% yield, 289.1 mg.

¹H NMR (400 MHz, CDCl₃) δ 9.56 (s, 1H), 7.67 (dd, *J* = 1.7, 0.5 Hz, 1H), 7.61-7.59 (m, 2H), 7.55 (d, *J* = 3.6 Hz, 1H), 7.46 (s, 1H), 7.40-7.38 (m, 3H), 6.65-6.63 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 188.8, 150.3, 145.2, 135.9, 130.8 (2C), 128.1, 127.5 (2C), 121.5, 118.2, 116.9, 112.5, 100.5, 82.3.

HRMS (ESI, m/z): Mass calcd. for C₁₅H₁₁O [M+H]⁺, 223.0754; found: 223.0752.

(E)-2-benzylidene-4-(3-methoxyphenyl) but-3-ynal

Red oil, 40% yield, 259.2 mg.

¹H NMR (400 MHz, CDCl₃) δ 9.59 (s, 1H), 8.17-8.00 (m, 2H), 7.49 (s, 1H), 7.46- 7.39 (m, 3H), 7.25-7.18 (m, 1H), 7.15-7.13 (m, 1H), 7.06 (dd, J = 2.5, 1.4 Hz, 1H), 6.91-6.88 (m, J = 8.3, 2.6, 1.0 Hz, 1H), 3.78 (s, 3H).

H₃CO ¹³C NMR (101 MHz, CDCl₃) δ 190.0, 158.4, 150.4, 133.1, 130.7, 129.7 (2C), 128.5, 127.8 (2C), 123.4, 122.5, 121.6, 115.5, 114.8, 99.8, 82.0, 54.3.

HRMS (ESI, m/z): Mass calcd. for C₁₈H₁₅O₂ [M+H]⁺, 263.1067; found: 263.1064.

(E)-2-benzylidene-4-(2-methoxyphenyl) but-3-ynal

Red oil, 98% yield, 516.8 mg.

¹H NMR (400 MHz, CDCl₃) δ 9.65 (s, 1H), 8.41-8.17 (m, 2H), 7.58 (dd, *J* = 7.6, 1.7 Hz, 1H), 7.53-7.44 (m, 4H), 7.38-7.34 (m, 1H), 6.99-6.92 (m, 2H), 3.97 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.1, 159.5, 149.4, 133.2, 132.8, 130.5, 129.9 (2C),

129.7, 127.7 (2C), 121.6, 119.6, 110.8, 109.6, 97.0, 86.4, 54.8.

HRMS (ESI, m/z): Mass calcd. for $C_{18}H_{15}O_2$ [M+H]⁺, 263.1067; found: 263.1065.

(E)-2-benzylidene-5,5-dimethylhex-3-ynal

Red oil, 71% yield, 250.3 mg.

¹H NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 8.10 (dd, *J* = 6.5, 3.1 Hz, 2H), 7.53- 7.34 (m, 4H), 1.39 (s, 9H).

 ^{13}C NMR (101 MHz, CDCl_3) δ 190.5, 149.30, 133.32, 130.21, 129.4 (2C), 127.5 (2C),

122.3, 109.8, 72.3, 29.6 (3C), 27.7.

HRMS (ESI, m/z): Mass calcd. for C₁₅H₁₇O [M+H]⁺, 213.1274; found: 213.1275.

(E)-2-benzylidene-4-mesitylbut-3-ynal

Yellow oil, 82% yield, 565.0 mg.

¹H NMR (400 MHz, CDCl₃) δ 9.68 (s, 1H), 8.32 – 8.12 (m, 2H), 7.58 – 7.35 (m, 4H), 6.92 (s, 2H), 2.55 (s, 6H), 2.31 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 191.2, 149.6, 141.0, 139.0, 134.3, 131.4 (2C), 130.5 (2C), 128.7 (2C), 127.9 (2C), 123.4, 119.4, 100.0, 90.6, 21.4, 21.2 (2C).

HRMS (ESI, m/z): Mass calcd. for C₂₀H₁₉O [M+H]⁺, 275.1430; found: 275.1437.

(E)-2-benzylidene-4-(2,6-diisopropylphenyl)but-3-ynal

Yellow oil, 35% yield, 280.0 mg.

¹H NMR (400 MHz, CDCl₃) δ 9.70 (s, 1H), 8.18 (dd, *J* = 6.5, 3.1 Hz, 2H), 7.51 (s, 1H), 7.47 (dd, *J* = 5.1, 1.9 Hz, 3H), 7.39 – 7.31 (m, 1H), 7.19 (d, *J* = 7.8 Hz, 2H), 3.76 (dt, *J* = 13.7, 6.9 Hz, 2H), 1.33 (s, 6H), 1.32 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 191.2, 151.6, 149.7, 134.3, 131.4, 130.4 (3C), 129.5, 128.8 (2C), 123.4, 122.3 (2C), 120.3, 99.0, 90.8, 31.8 (2C), 23.6 (4C).

HRMS (ESI, m/z): Mass calcd. for C₂₃H₂₅O [M+H]⁺, 317.1900; found: 317.1905.

2. Characterization of products

(3*S*,4*R*)-3-benzyl-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one White solid, 85% yield, 31.1 mg, m.p. 144-145 °C. [α]_{D²⁵} = -214.1 (c = 1.0, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.39-7.33 (m, 3H), 7.32-7.28 (m, 4H), 7.27 (dd, J = 3.9, 3.0 Hz, 2H), 7.26-7.22 (m, 2H), 7.14-7.06 (m, 4H), 7.04 (s, 1H), 3.55 (d, J = 7.0 Hz, 1H), 3.45-3.39 (m, 1H), 3.28 (dd, J = 14.7, 4.7 Hz, 1H), 2.43 (dd, J = 14.7, 9.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.9, 144.7, 138.2, 136.4, 131.4 (2C), 129.1 (2C), 129.0 (2C), 128.7 (2C), 128.5, 128.3 (4C), 128.2, 126.7, 122.6, 108.8, 92.8, 83.7, 45.1 (2C), 32.3.

HRMS (ESI, m/z): Mass calcd. for $C_{26}H_{21}O_2$ [M+H]⁺, 365.1536; found: 365.1531.

HPLC analysis: 99% e.e. (Chiralcel ID, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (major) = 20.5 min, Rt (minor) = 22.3 min.

(3*S*,4*R*)-3-(2-chlorobenzyl)-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 80% yield, 24.1 mg, m.p. 86-88 °C.

[α]²⁵ = -131.6 (c = 1.0, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.43-7.30 (m, 6H), 7.30-7.26 (m, 3H), 7.23-7.08 (m, 5H), 7.02 (s, 1H), 3.63 (d, J = 7.1 Hz, 1H), 3.57 (dd, J = 13.3, 6.9 Hz, 1H), 3.16 (dd, J = 14.3, 6.2 Hz, 1H), 2.69 (dd, J = 14.3, 6.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl3) δ 168.8, 144.6, 136.7, 136.0, 134.1, 132.2, 131.4 (2C), 129.6, 129.2 (2C), 128.5, 128.3 (3C), 128.2 (3C), 126.7, 122.5, 108.5, 92.8, 83.6, 46.1, 42. 9, 31.3.

HRMS (ESI, m/z): Mass calcd. for C₂₆H₂₀O₂Cl [M+H]⁺, 399.1146; found: 399.1147.

HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (major) = 22.3 min, Rt (minor) = 26.9 min.

(3*S*,4*R*)-3-(2-bromobenzyl)-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 96% yield, 42.5 mg, m.p. 139-140 °C.

 $[\alpha]_{D^{25}} = -260.7 (c = 1.0, CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ 7.56 (dd, *J* = 7.9, 1.1 Hz, 1H), 7.33-7.41 (m, 5H), 7.31-7.26 (m, 3H), 7.24-7.18 (m, 3H), 7.17-7.07 (m, 2H), 7.02 (s, 1H), 3.67 (d, *J* = 7.1 Hz, 1H), 3.57 (q, *J* = 6.7 Hz, 1H), 3.14 (dd, *J* = 14.3, 6.5 Hz, 1H), 2.70 (dd, *J* = 14.3, 6.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.7, 144.6, 137.8, 136.7, 132.9, 132.4 (2C), 131.4, 129.2 (2C), 128.6, 128.5, 128.3 (2C), 128.2 (3C), 127.4, 124.6, 122.6, 108.5, 92.9, 83.7, 46.3, 43.2, 33.7.

HRMS (ESI, m/z): Mass calcd. for C₂₆H₂₀O₂Br [M+H]⁺, 443.0641; found: 443.0641.

HPLC analysis: 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.7 mL/min, 254 nm), Rt (major) = 18.2 min, Rt (minor) = 21.3 min.

(3*S*,4*R*)-3-(2-methylbenzyl)-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 77% yield, 29.3 mg, m.p. 125-126 °C.

[α]_D²⁵ = -231.7 (c = 1.0, CHCl₃).

¹H NMR (400 MHz, CDCl3) δ 7.39 – 7.29 (m, 5H), 7.27 (s, 2H), 7.25 (s, 1H), 7.16 (d, *J* = 2.8 Hz, 3H), 7.12-7.08 (m, 2H), 7.07-7.00 (m, 2H), 3.61 (d, *J* = 7.0 Hz, 1H), 3.44-3.39 (m, 1H), 3.24 (dd, *J* = 15.1, 4.7 Hz, 1H), 2.51 (dd, *J* = 15.1, 9.4 Hz, 1H), 2.12 (s, 3H).

¹³C NMR (101 MHz, CDCl3) δ 168.0, 143.5, 135.6, 135.5, 135.2, 130.3 (2C), 129.62, 128.1 (2C), 128.0, 127.4, 127.3 (2C), 127.1 (2C), 127.0, 125.7, 125.0, 121.5, 107.7, 91.8, 82.6, 44.1, 42.3, 28.2, 18.4.

HRMS (ESI, m/z): Mass calcd. for C₂₇H₂₃O₂ [M+H]⁺, 379.1693; found: 379.1693.

HPLC analysis: 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (major) = 35.8 min, Rt (minor) = 48.8 min.

¹H NMR (400 MHz, CDCl3) δ 7.39-7.29 (m, 5H), 7.29-7.26 (m, 2H), 7.26-7.21 (m, 2H), 7.19-7.09 (m, 2H), 7.00 (s, 1H), 6.93-6.80 (m, 3H), 3.83 (s, 3H), 3.66-3.60 (m, 1H), 3.52 (d, *J* = 7.1 Hz, 1H), 3.22 (dd, *J* = 14.1, 5.0 Hz, 1H), 2.46 (dd, *J* = 14.1, 8.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 169.4, 157.6, 144.6, 137.0, 131.7, 131.3 (2C), 129.0 (2C), 128.4, 128.3 (2C), 128.2 (2C), 128.0, 127.9, 126.2, 122.6, 120.2, 110.1, 108.7, 92.6, 84.0, 55.2, 45.5, 42.4, 28.4. HRMS (ESI, m/z): Mass calcd. for C₂₇H₂₃O₃ [M+H]⁺, 395.1642; found: 395.1643.

HPLC analysis: 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.6 mL/min, 254 nm), Rt (major) = 15.7 min, Rt (minor) = 21.5 min.

(3*S*,4*R*)-3-(3-fluorobenzyl)-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 89% yield, 34.2 mg, m.p. 140-141 $^{\rm o}\text{C}.$

 $[\alpha]_{D^{25}} = -199.2 (c = 1.0, CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ 7.40-7.30 (m, 5H), 7.29-7.26 (m, 3H), 7.25-7.23 (m, 1H), 7.10 (dd, *J* = 7.8, 1.6 Hz, 2H), 7.04 (s, 1H), 6.95 (t, *J* = 8.4, 2.4 Hz, 1H), 6.88 (d, *J* = 7.7 Hz, 1H), 6.81 (dd, *J* = 9.9, 1.9 Hz, 1H), 3.55 (d, *J* = 7.0 Hz, 1H), 3.41-3.39 (m, 1H), 3.24 (dd, *J* = 14.7, 5.0 Hz, 1H), 2.44 (dd, *J* = 14.7, 9.3 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.6, 162.9 (d, *J* = 246.1 Hz), 144.6, 140.7 (d, *J* = 7.3 Hz), 136.3, 131.4 (2C), 130.1 (d, *J* = 8.4 Hz), 129.1 (2C), 128.5, 128.3 (3C), 128.2 (2C), 124.7, 124.6, 122.5, 115.9 (d, *J* = 21.3 Hz), 113. 7 (d, *J* = 20.9 Hz), 92.9, 83.5, 45.3, 44.9, 32.2.

¹⁹F NMR (376 MHz, CDCl₃) δ -112.9.

HRMS (ESI, m/z): Mass calcd. for $C_{26}H_{20}O_2F$ [M+H]⁺, 383.1442; found: 383.1440.

UPLC analysis: > 99% e.e. (Chiralcel IA-U, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (major) = 2.9 min, Rt (minor) = 3.1 min.

(3*S*,4*R*)-3-(3-chlorobenzyl)-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 80% yield, 32.0 mg, m.p. 136-137 °C.

[α]_D²⁵ = -199.2 (c = 1.0, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.31 (m, 5H), 7.30-7.27 (m, 3H), 7.25-7.22 (m, 2H), 7.14-7.07 (m, 3H), 7.04 (s, 1H), 7.01-6.94 (m, 1H), 3.54 (d, *J* = 7.0 Hz, 1H), 3.39 (m, 1H), 3.22 (dd, *J* = 14.7, 5.1 Hz, 1H), 2.42 (dd, *J* = 14.7, 9.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.6, 144.6, 140.3, 136.2, 134.4 (3C), 129.9, 129.2 (3C), 128.5, 128.3 (3C), 128.2 (2C), 127.3, 127.0, 122.5, 108.6, 93.0, 83.5, 45.4, 44.9, 32.2.

HRMS (ESI, m/z): Mass calcd. for C₂₆H₂₀O₂Cl [M+H]⁺, 399.1146; found: 399.1148.

HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (minor) = 41.6 min, Rt (major) = 45.8 min.

(3*S*,4*R*)-3-(3 one Ph Ph White solid

(3*S,4R*)-3-(3-methylbenzyl)-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2one

White solid, 69% yield, 26.2 mg, m.p. 105-107 °C.

<u>[α]</u>_D²⁵ = -171.1 (c = 1.0, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.30-7.28 (m, 2H), 7.26-7.08 (m, 8H), 7.08-6.90 (m, 5H), 6.82 (s, 2H), 3.47 (d, *J* = 6.4 Hz, 1H), 3.34-3.31 (m, 1H), 3.22-3.10 (m, 1H), 2.43-2.29 (m, 1H), 2.26 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.9, 143.6, 137.2, 137.0, 135.4, 130.3 (2C), 128.8, 128.0 (2C), 127.5, 127.4, 127.3 (2C), 127.2 (2C), 127.1, 126.4, 125.0, 121.5, 107.7, 91.7, 82.7, 44.0, 43.9, 31.1, 20.4. HRMS (ESI, m/z): Mass calcd. for $C_{27}H_{23}O_2$ [M+H]⁺, 379.1693; found: 379.1691.

HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (minor) = 30.8 min, Rt (major) = 32.5 min.

(3*S*,4*R*)-4-phenyl-5-(phenylethynyl)-3-(3-(trifluoromethyl)benzyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 87% yield, 37.5 mg, m.p. 106-107 $^{\circ}\text{C}.$

 $[\alpha]_{D^{25}} = -131.1 \text{ (c} = 1.0, \text{ CHCl}_3\text{)}.$

¹H NMR (400 MHz, CDCl₃) δ 7.52 (d, J = 7.7 Hz, 1H), 7.48-7.34 (m, 4H), 7.31 (dd, J = 7.4, 2.4 Hz, 4H), 7.27 (t, J = 2.2 Hz, 2H), 7.26-7.22 (m, 1H), 7.09 (dd, J = 7.7, 1.7 Hz, 2H), 7.04 (s, 1H), 3.51 (d, J = 7.1 Hz, 1H), 3.44-3.41 (m, 1H), 3.27 (dd, J = 14.6, 5.4 Hz, 1H), 2.52 (dd, J = 14.6, 8.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 144.6, 139.2, 136.2, 132.4, 131.4 (2C), 130.9 (d, J = 32.1 Hz), 129.2 (2C), 129.1, 128.6, 128.4, 128.3 (2C), 128.2 (2C), 126.1 (d, J = 3.8 Hz), 123.7 (d, J = 3.8 Hz), 122.7, 122.5, 108.5, 93.0, 83.5, 45.6, 44.9, 32.5.

¹⁹F NMR (376 MHz, CDCl₃) δ -62.6.

HRMS (ESI, m/z): Mass calcd. for $C_{27}H_{20}O_2F_3$ [M+H]⁺, 433.1410; found: 433.1409.

HPLC analysis: 99% e.e. (Chiralcel IA, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (major) = 18.9 min, Rt (minor) = 19.5 min.

(3*S*,4*R*)-3-(4-chlorobenzyl)-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one White solid, 73% yield, 29.1 mg, m.p. 175-176 °C. [α]o²⁵ = -300.4 (c = 0.5, CHCl₃).

 $\begin{array}{c} \begin{array}{c} & \mbox{'} & \mbox{'}$

¹³C NMR (101 MHz, CDCl₃) δ 168.6, 144.6, 136.6, 136.2, 132.5, 131.4 (2C), 130.4 (2C), 129.2 (2C), 128.8 (2C), 128.5, 128.3 (2C), 128.2 (3C), 122.5, 108.7, 93.0, 83.5, 45.3, 44.9, 31.9.

HRMS (ESI, m/z): Mass calcd. for C₂₆H₂₀O₂Cl [M+H]⁺, 399.1146; found: 399.1147.

HPLC analysis: 98% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.7 mL/min, 254 nm), Rt (minor) = 22.6 min, Rt (major) = 25.8 min.

(3*S*,4*R*)-3-(4-bromobenzyl)-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2one

White solid, 97% yield, 43.2 mg, m.p. 135-137 °C. [α]³⁰ = -295.9 (c = 1 in CHCl₃).

¹**H NMR (400 MHz, CDCl₃)** δ 7.43 (d, *J* = 8.3 Hz, 2H), 7.39-7.30 (m, 5H), 7.27 (d, *J* = 1.7 Hz, 3H), 7.09 (dd, *J* = 7.7, 1.6 Hz, 2H), 7.03 (s, 1H), 6.97 (d, *J* = 8.3 Hz, 2H), 3.52

(d, J = 7.0 Hz, 1H), 3.37 (m, 1H), 3.18 (dd, J = 14.7, 5.1 Hz, 1H), 2.40 (dd, J = 14.7, 9.3 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.6, 144.6, 137.2, 136.2, 131.7 (2C), 131.4 (2C), 130.8 (2C), 129.2 (2C), 128.5, 128.3 (3C), 128.2 (2C), 122.5, 120.6, 108.6, 93.0, 83.5, 45.3, 44.9, 31.9.

HRMS (ESI, m/z): Mass calcd. for C₂₆H₂₀O₂Br [M+H]⁺, 443.0641; found: 443.0641.

HPLC analysis: 96% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 2/98, 0.3 mL/min, 254 nm), Rt (minor) = 57.2 min, Rt (major) = 69.1 min.

3k

(3*S*,4*R*)-3-(4-methylbenzyl)-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 51% yield, 19.2 mg, m.p. 121-122 °C.

 $[\alpha]_{D^{25}} = -370.5 \text{ (c} = 1.0, \text{ CHCl}_3\text{)}.$

¹H NMR (400 MHz, CDCl₃) δ 7.38-7.27 (m, 5H), 7.27-7.22 (m, 3H), 7.15-7.06 (m,

4H), 7.01 (s, 1H), 6.97 (d, *J* = 8.0 Hz, 2H), 3.54 (d, *J* = 7.0 Hz, 1H), 3.35-3.40 (m,1H), 3.22 (dd, *J* = 14.7, 4.6 Hz, 1H), 2.41-2.35 (m, 1H), 2.33 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 144.7, 136.5, 136.3, 135.0, 131.4 (2C), 129.3 (2C), 129.0 (2C), 128.9 (2C), 128.5, 128.3 (2C), 128.3 (2C), 128.1, 122.6, 108.8, 92.8, 83.8, 45.2, 45.0, 31.8, 21.1. HRMS (ESI, m/z): Mass calcd. for C₂₇H₂₃O₂ [M+H]⁺, 379.1693; found: 379.1691.

HPLC analysis: 99% e.e. (Chiralcel IA, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (major) = 18.5 min, Rt (minor) = 20.3 min.

(3*S*,4*R*)-3-(4-isocyanobenzyl)-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 51% yield, 19.8 mg, m.p. 162-163 °C. [α]²⁵ = -130.9 (c = 0.5, CHCl₃).

3m ¹**H NMR (400 MHz, CDCl₃)** δ 7.64 (d, *J* = 7.9 Hz, 1H), 7.53-7.47 (m, 1H), 7.43- 7.31 (m, 7H), 7.30-7.26 (m, 3H), 7.22-7.15 (m, 2H), 7.04 (s, 1H), 3.75 (d, *J* = 7.2 Hz, 1H), 3.54 (t, *J* = 7.5, 5.8 Hz, 1H), 3.12 (dd, *J* = 14.5, 7.7 Hz, 1H), 2.85 (dd, *J* = 14.5, 5.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.2, 144.6, 142.8, 136.1, 132.9, 132.8, 131.4 (2C), 131.3, 129.3 (2C), 128.5, 128.4, 128.3 (2C), 128.1 (2C), 127.4, 122.5, 117.8, 112.5, 108.4, 93.0, 83.4, 46.9, 44.3, 32.4.

HRMS (ESI, m/z): Mass calcd. for $C_{27}H_{20}NO_2$ [M+H]⁺, 390.1489; found: 390.1491.

HPLC analysis: > 99% e.e. (Chiralcel IA, 25 °C, IPA/Hexane = 6/94, 0.5 mL/min, 254 nm), Rt (major) = 17.9 min, Rt (minor) = 19.5 min.

(3*S*,4*R*)-4-phenyl-5-(phenylethynyl)-3-(4-(trifluoromethoxy)benzyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 74% yield, 33.4 mg, m.p. 158-159 °C.

[α]_D²⁵ = -178.6 (c = 1.0, CHCl₃).

 cr_3 ³ⁿ ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.29 (m, 5H), 7.28 (dd, *J* = 4.5, 1.8 Hz, 3H), 7.20 – 7.07 (m, 6H), 7.04 (s, 1H), 3.56 (d, *J* = 7.0 Hz, 1H), 3.41-3.36 (m, 1H), 3.21 (dd, *J* = 14.7, 5.3 Hz, 1H), 2.46 (dd, *J* = 14.7, 8.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.6, 148.0, 144.6, 137.0, 136.2, 131.4 (2C), 130.4 (2C), 129.2 (2C), 128.6, 128.3 (3C), 128.2 (2C), 122.5, 121.8, 121.1, 119.2, 108.6, 93.0, 83.5, 45.5, 45.0, 31.9.
 ¹⁹F NMR (376 MHz, CDCl₃) δ -57.8.

HRMS (ESI, m/z): Mass calcd. for C₂₇H₂₀O₃F₃ [M+H]⁺, 449.1359; found: 449.1352.

HPLC analysis: > 99% e.e. (Chiralcel IA, 25 °C, IPA/Hexane = 1/99, 0.7 mL/min, 254 nm), Rt (minor) = 15.8 min, Rt (major) = 18.3 min.

(3*S*,4*R*)-3-(2-bromo-4-methylbenzyl)-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 78% yield, 35.8 mg, m.p. 65-66 °C.

 $[\alpha]_{D^{25}} = -283.2 (c = 1.0, CHCl_3).$

^{CH₃} ³⁰ ¹H NMR (400 MHz, CDCl₃) δ 7.33-7.26 (m, 4H), 7.25-7.23 (m, 2H), 7.22-7.16 (m, 3H), 7.15-7.08 (m, 2H), 6.96-6.89 (m, 3H), 3.57 (d, *J* = 7.1 Hz, 1H), 3.47 (q, *J* = 6.8 Hz, 1H), 3.03 (dd, *J* = 14.3, 6.4 Hz, 1H), 2.57 (dd, *J* = 14.3, 6.8 Hz, 1H), 2.22 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 167.7, 143.6, 137.6, 135.6, 133.5, 132.3, 131.0, 130.3 (2C), 128.1 (2C), 127.4, 127.3 (2C), 127.2 (2C), 127.1, 127.1, 123.3, 121.5, 107.5, 91.8, 82. 7, 45.0, 42.1, 32.1, 19.6. HRMS (ESI, m/z): Mass calcd. for $C_{27}H_{22}O_2$ [M+H]⁺, 457.0783; found: 457.0781.

HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.7 mL/min, 254 nm), Rt (major) = 15.5 min, Rt (minor) = 17.5 min.

(3*S*,4*R*)-3-(4-bromo-3-chlorobenzyl)-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 83% yield, 39.7 mg, m.p. 167-168 °C. [α]₂²⁵ = -215.1 (c = 1.0, CHCl₃).

¹³C NMR (101 MHz, CDCl₃) δ 168.4, 144.6, 139.2, 136.1, 134.5, 133.8, 131.4 (2C), 131.0, 129.3 (2C), 128.7, 128.6, 128.4, 128.3 (2C), 128.2 (2C), 122.5, 120.6, 108.6, 93.1, 83.4, 45.5, 44.7, 32.0.

HRMS (ESI, m/z): Mass calcd. for $C_{26}H_{19}O_2BrCl$ [M+H]⁺, 447.0251; found: 447.0251.

HPLC analysis: 98% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 2/98, 0.5 mL/min, 254 nm), Rt (minor) = 25.3 min, Rt (major) = 33.2 min.

(3*S*,4*R*)-3-(naphthalen-2-ylmethyl)-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one

Colorless solid, 57% yield, 23.8 mg, m.p. 175-176 °C.

 $[\alpha]_{D^{25}}$ = -269.6 (c =0.5, CHCl₃).

3q ¹H NMR (400 MHz, CDCl₃) δ 7.93-7.83 (m, 2H), 7.78 (d, *J* = 8.2 Hz, 1H), 7.58-7.45 (m, 2H), 7.44-7.33 (m, 4H), 7.29-7.26 (m, 2H), 7.25-7.18 (m, 5H), 7.16 (d, *J* = 6.8 Hz, 1H), 6.98 (s, 1H), 3.89-3.78 (m, 1H), 3.60-3.51 (m, 2H), 2.94-2.84 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 144.4, 136.7, 134.0, 134.0, 131.5, 131.3 (2C), 129.2 (2C), 129.1, 128.4, 128.4 (2C), 128.3 (2C), 128.2, 127.7, 127.6, 126.4, 125.8, 125.3, 123.2, 122.5, 108.8, 92.9, 83.6, 45.3, 43.9, 29.3.

HRMS (ESI, m/z): Mass calcd. for $C_{30}H_{23}O_2$ [M+H]⁺, 415.1693; found: 415.1693.

HPLC analysis: 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 2/98 0.5 mL/min, 254 nm), Rt (minor) = 39.1 min, Rt (major) = 45.6 min.

(3*S*,4*R*)-3-(furan-2-ylmethyl)-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one

Ph Yellow oil, 78% yield, 27.6 mg.

 $[\alpha]_{D^{25}} = -106.1 \text{ (c} = 1.0, \text{ CHCl}_3\text{)}.$

¹H NMR (400 MHz, CDCl₃) δ 7.32-7.26 (m, 3H), 7.25-7.23 (m, 3H), 7.20-7.17 (m, 3H), 7.10-7.04 (m, 2H), 7.01 (s, 1H), 6.26 (dd, *J* = 3.1, 1.9 Hz, 1H), 5.94 (d, *J* = 3.1 Hz, 1H), 3.60 (d, *J* = 7.0 Hz, 1H), 3.47-3.42 (m, 1H), 3.13 (dd, *J* = 15.8, 4.1 Hz, 1H), 2.39 (dd, *J* = 15.8, 9.9 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 167.2, 150.8, 143.9, 140.6, 134.8, 130.4 (2C), 128.0 (2C), 127.5, 127.3 (4C), 127.2, 121.5, 109.3, 107.5, 106.3, 91.7, 82.6, 44.2, 41.7, 24.1

HRMS (ESI, m/z): Mass calcd. for C₂₄H₁₉O₃ [M+H]⁺, 355.1329; found: 355.1328.

HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane =2/98, 0.7 mL/min, 254 nm), Rt (major) = 13.0 min, Rt (minor) = 14.3 min.

(3*S*,4*R*)-4-phenyl-5-(phenylethynyl)-3-(thiophen-2-ylmethyl)-3,4-dihydro-2*H*-pyran-2-one

Yellow solid, 51% yield, 18.8 mg, m.p. 102-104 °C.

 $[\alpha]_{D^{25}} = -262.1 \text{ (c} = 0.5, \text{CHCl}_3\text{)}.$

¹H NMR (400 MHz, CDCl₃) δ 7.40-7.30 (m, 5H), 7.29-7.27 (m, 3H), 7.20 (dd, J = 5.1, 1.0 Hz, 1H), 7.17-7.12 (m, 2H), 7.06 (s, 1H), 6.96 (dd, J = 5.1, 3.4 Hz, 1H), 6.76 (d, J = 3.4 Hz, 1H), 3.73

(d, J = 6.6 Hz, 1H), 3.50-3.26 (m, 2H), 2.78-2.55 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.3, 144.7, 140.6, 135.9, 131.4 (2C), 129.1 (2C), 128.5, 128.3 (C), 128.30 (2C), 128.2, 127.0, 126.2, 124.1, 122.5, 108.6, 92.8, 83.6, 45.7, 45.0, 26.8.

HRMS (ESI, m/z): Mass calcd. for $C_{24}H_{19}O_2S$ [M+H]⁺, 371.1100; found: 371.1101.

HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (major) = 31.7 min, Rt (minor) = 37.4 min.

(3*S*,4*R*)-3-butyl-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one Yellow solid, 51% yield, 16.0 mg, m.p. 87-89 °C.

 P_{h} [<u>a</u>]₂²⁵ = -73.6 (c = 0.5, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.38-7.33 (m, 3H), 7.33-7.26 (m, 5H), 7.21- 7.14 (m, 2H), 7.07 (s, 1H), 3.73 (d, J = 7.0 Hz, 1H), 3.01-2.96 (m, 1H), 1.83-1.63 (m, 0.87 (t, J = 7.2 Hz, 2H)

1H), 1.46-1.13 (m, 5H), 0.87 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.2, 144.9, 136.4, 131.4 (2C), 129.0 (2C), 128.4, 128.3 (2C), 128.0 (3C), 122.7, 108.4, 92.6, 83.9, 45.8, 43.7, 29.4, 26.2, 22.5, 13.9.

HRMS (ESI, m/z): Mass calcd. for C₂₃H₂₃O₂ [M+H]⁺, 331.1693; found: 331.1693.

HPLC analysis: 98% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (minor) = 18.4 min, Rt (major) = 23.2 min.

(3*S*,4*R*)-3-ethyl-4-phenyl-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one White solid, 51% yield, 19.1 mg, m.p. 146-147 °C.

 $[\alpha]_{D^{25}} = -35.8$ (c = 0.5, CHCl₃).

¹ ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.32 (m, 3H), 7.32-7.26 (m, 5H), 7.21- 7.15 (m, 2H), 7.07 (s, 1H), 3.76 (d, *J* = 7.0 Hz, 1H), 2.96-2.86 (m, 1H), 1.87- 1.72 (m,

1H), 1.30-1.16 (m, 1H), 1.02 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 145.0, 136.4, 131.4 (2C), 129.0 (2C), 128.4, 128.3 (2C), 128.0 (3C), 122.7, 108.4, 92.7, 83.9, 45.6, 45.3, 19.9, 11.9.

HRMS (ESI, m/z): Mass calcd. for $C_{21}H_{19}O_2$ [M+H]⁺, 303.1380; found: 303.1375.

HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (minor) = 22.4 min, Rt (major) = 24.5 min.

(35,4R)-3-benzyl-5-(phenylethynyl)-4-(p-tolyl)-3,4-dihydro-2H-pyran-2-one

White solid, 86% yield, 32.5 mg, m.p. 164-166 °C.

 $[\alpha]_{D^{25}} = -232.4 \ (c = 0.5, CHCl_3).$

 ¹H NMR (400 MHz, CDCl₃) δ 7.35-7.26 (m, 5H), 7.24 (m, 3H), 7.16 (d, J = 8.0 Hz, 2H), CH₃ 4a 7.11 (d, J = 7.1 Hz, 2H), 7.04-6.96 (m, 3H), 3.52 (d, J = 6.9 Hz, 1H), 3.42-3.36 (m, 1H),
 3.26 (dd, J = 14.6, 4.7 Hz, 1H), 2.43 (dd, J = 14.6, 9.5 Hz, 1H), 2.35 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.0, 144.6, 138.3, 137.9, 133.3, 131.4 (2C), 129.8 (2C), 129.1 (2C), 128.6 (2C), 128.4, 128.3 (2C), 128.2 (2C), 126.7, 122.6, 108.9, 92.7, 83.8, 45.2, 44.7, 32.3, 21.2. HRMS (ESI, m/z): Mass calcd. for C₂₇H₂₃O₂ [M+H]⁺, 379.1693; found: 379.1693. HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.7 mL/min, 254 nm), Rt (major) = 21.7 min, Rt (minor) = 30.0 min.

(3*S*,4*R*)-3-benzyl-4-(4-methoxyphenyl)-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 74% yield, 29.2 mg, m.p. 81-82 °C. [α]_D²⁵ = -171.2 (c = 0.5, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.24-7.18 (m, 4H), 7.17-7.10 (m, 4H), 7.04 -6.96 (m, 2H), 6.94-6.87 (m, 3H), 6.81-6.72 (m, 2H), 3.68 (s, 3H), 3.40 (d, *J* = 6.9 Hz, 1H), 3.31-3.26 (m, 1H), 3.16 (dd, *J* = 14.6, 4.7 Hz, 1H), 2.33 (dd, *J* = 14.6, 9.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.0, 158.3, 143.4, 137.3, 130.3 (2C), 128.3 (2C), 128.0 (2C), 127.6 (2C), 127.4, 127.2 (2C), 127.2, 125.6, 121.5, 113.3 (2C), 107.9, 91.7, 82.8, 54.2, 44.2, 43.2, 31.2.

HRMS (ESI, m/z): Mass calcd. for $C_{27}H_{23}O_3$ [M+H]⁺, 395.1642; found: 395.1640.

HPLC analysis: > 99% e.e. (Chiralcel IA, 25 °C, IPA/Hexane = 1/99, 0.7 mL/min, 254 nm), Rt (major) = 20.8 min, Rt (minor) = 24.6 min.

(3*S*,4*R*)-3-benzyl-4-(4-chlorophenyl)-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 58% yield, 23.2 mg, m.p. 154-155 °C.

 $[\alpha]_{D^{25}} = -343.4 (c = 0.5, CHCl_3).$

 d_{a} 4c ¹H NMR (400 MHz, CDCl₃) δ 7.37-7.26 (m, 9H), 7.24 (dd, *J* = 3.7, 2.4 Hz, 1H), 7.09 (d, *J* = 7.0 Hz, 2H), 7.06-6.99 (m, 3H), 3.53 (d, *J* = 7.0 Hz, 1H), 3.46-2.40 (m, 1H), 3.29 (dd, *J* = 14.7, 4.7 Hz, 1H), 2.40 (dd, *J* = 14.7, 9.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.6, 144.8, 137.8, 134.9, 134.1, 131.4 (2C), 129.7 (2C), 129.3 (2C),

129.0 (2C), 128.8 (2C), 128.6, 128.4 (2C), 126.9, 122.4, 108.4, 93.1, 83.3, 44.8, 44.5, 32.3.

HRMS (ESI, m/z): Mass calcd. for $C_{26}H_{20}O_2CI$ [M+H]⁺, 399.1146; found: 399.1144.

HPLC analysis: 99% e.e. (Chiralcel IA, 25 °C, IPA/Hexane = 1/99, 0.7 mL/min, 254 nm), Rt (major) = 15.0 min, Rt (minor) = 17.1 min.

(3*S*,4*R*)-3-benzyl-5-(phenylethynyl)-4-(4-(trifluoromethyl)phenyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 44% yield, 19.1 mg, m.p. 117-118 °C.

 $[\alpha]_{D^{25}}$ = -173.8 (c = 0.5, CHCl₃).

4 ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.26 (m, 7H), 7.26-7.22 (m, 1H), 7.12-7.01 (m, 7H), 3.54 (d, J = 7.0 Hz, 1H), 3.46-3.40 (m, 1H), 3.29 (dd, J = 14.7, 4.7 Hz, 1H), 2.40 (dd, J = 14.7, 9.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.7, 162.51 (d, J = 247.0 Hz), 144.7, 137.9, 132.2, 132.1, 131.4 (2C), 130.0, 129.9, 129.0 (2C), 128.7 (2C), 128.6, 128.3 (2C), 126.8, 122.4, 116.2, 115.9, 108.6, 93.0, 83.4, 44.9, 44.3, 32.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -113.8.

HRMS (ESI, m/z): Mass calcd. for C₂₇H₁₉O₃F₃ [M+H]⁺, 432.1332; found: 432.1335. **HPLC** analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (major) = 35.0 min, Rt (minor) = 42.1 min.

(3*S*,4*R*)-3-benzyl-4-(3-chlorophenyl)-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one

Yellow solid, 40% yield, 16.0 mg, m.p. 67-69 °C.

 $[\alpha]_{D^{25}} = -139.7 (c = 1.0, CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ 7.28 (s, 1H), 7.24-7.14 (m, 9H), 7.02 (d, *J* = 7.3 Hz, 2H), 6.98 (s, 2H), 6.92 (d, *J* = 6.3 Hz, 1H), 3.52-3.41 (m, 1H), 3.41-3.31 (m, 1H), 3.29-3.15 (m, 1H), 2.33 (dd, *J* = 14.8, 9.7 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 167.4, 144.0, 137.3, 136.7 133.7, 130.3 (2C), 129.4, 127.9 (2C), 127.7 (3C), 127.6, 127.4, 127.3 (2C), 125.8, 125.1, 121.3, 107.0, 92.0, 82.2, 43.7, 43.7, 31.2.

HRMS (ESI, m/z): Mass calcd. for C₂₆H₂₀O₂Cl [M+H]⁺, 399.1146; found: 399.1145.

HPLC analysis: 98% e.e. (Chiralcel IA, 25 °C, IPA/Hexane = 1/99, 0.3 mL/min, 254 nm), Rt (major) = 31.3 min, Rt (minor) = 33.5 min.

(3*S*,4*S*)-3-benzyl-4-(2-chlorophenyl)-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2one

Yellow solid, 49% yield, 19.7 mg. m.p. 65-66 °C.

 $[\alpha]_{D^{25}} = -262.1 \text{ (c} = 0.5, \text{ CHCl}_3\text{)}.$

¹**H NMR (400 MHz, CDCl₃)** δ 7.42 (dd, *J* = 7.7, 1.6 Hz, 1H), 7.38-7.26 (m, 9H), 7.25-7.15 (m, 2H), 7.05 (d, *J* = 7.1 Hz, 2H), 7.01 (s, 1H), 4.47 (s, 1H), 3.49-3.43 (m, *J* =

7.9, 6.1 Hz, 1H), 3.23-3.12 (m, 1H), 2.54 (dd, *J* = 14.5, 8.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.8, 146.3, 144.7, 138.0, 134.7, 131.3 (2C), 130.2, 129.5, 129.2, 129.0 (2C), 128.7 (2C), 128.5, 128.3 (2C), 128.0, 126.7, 122.6, 103.2, 93.1, 83.3, 47.5, 44.9, 32.5.

HRMS (ESI, m/z): Mass calcd. for C₂₆H₂₀O₂Cl [M+H]⁺, 399.1146; found: 399.1143.

HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 1.0 mL/min, 254 nm), Rt (major) = 13.1 min, Rt (minor) = 17.6 min.

(3*S*,4*S*)-3-benzyl-5-(phenylethynyl)-4-(thiophen-2-yl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 73% yield, 27.0 mg, m.p. 149-150 °C.

 $[\alpha]_{D^{25}} = -189.9 (c = 1.0, CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ 7.38-7.30 (m, 4H), 7.28 (dd, *J* = 5.1, 3.3 Hz, 4H), 7.25 (s, 1H), 7.22- 7.14 (m, 2H), 7.05- 6.96 (m, 2H), 6.89 (dd, *J* = 3.5, 0.6 Hz, 1H), 3.83 (d, *J* = 6.2 Hz, 1H), 3.45-3.29 (m, 2H), 2.72- 2.48 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 167.4, 143.7, 137.5, 137.0, 130.4 (2C), 128.1 (2C), 127.7 (2C), 127.5, 127.3 (2C), 126.3, 125.8, 125.4, 124.3, 121.4, 108.0, 92.4, 82.2, 44.9, 38.8, 31.2.

HRMS (ESI, m/z): Mass calcd. for C₂₄H₁₉O₂S [M+H]⁺, 371.1100; found: 371.1098.

HPLC analysis: >99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.7 mL/min, 254 nm), Rt (major) = 37.0 min, Rt (minor) = 54.0 min.

(35,45)-3-benzyl-4-(furan-2-yl)-5-(phenylethynyl)-3,4-dihydro-2*H*-pyran-2-one White solid, 67% yield, 23.7 mg, m.p. 113-114 °C. [α]₀²⁵ = -158.7 (c = 0.5, CHCl₃).

 ^{13}C NMR (101 MHz, CDCl_3) δ 168.3, 149.7, 145.7, 143.1, 138.1, 131.4 (2C), 129.2 (2C), 128.7 (2C), 128.6, 128.4 (2C), 126.8, 122.5, 110.5, 109.2, 105.7, 92.9, 83.3, 44.6, 38.1, 32.5.

HRMS (ESI, m/z): Mass calcd. for C₂₄H₁₉O₃ [M+H]⁺, 355.1329; found: 355.1324.

HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.7 mL/min, 254 nm), Rt (major) = 31.3 min, Rt (minor) = 41.7 min.

(3*S*,4*R*)-3-benzyl-5-((4-fluorophenyl)ethynyl)-4-phenyl-3,4-dihydro-2*H*-pyran-2-one

White solid, 69% yield, 26.5 mg, m.p. 145-146 $^{\rm o}\text{C}.$

¹H NMR (400 MHz, CDCl₃) δ 7.39-7.27 (m, 7H), 7.26-7.23 (m, 1H), 7.10 (dd, *J* = 7.9, 1.3 Hz, 4H), 7.03 (s, 1H), 6.99-6.89 (m, 2H), 3.54 (d, *J* = 7.0 Hz, 1H), 3.44-3.99 (m, 1H), 3.27 (dd, *J* = 14.7, 4.7 Hz, 1H), 2.42 (dd, *J* = 14.7, 9.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.8, 162.6 (d, J = 250.1 Hz), 144.7, 138.2, 136.4, 133.4, 133.3, 129.1 (2C), 129.0 (2C), 128.7 (2C), 128.3 (2C), 128.2, 126.7, 118.7 (d, J = 3.5 Hz), 115.8, 115.5, 108.6, 91.7, 83.4, 45.1, 45.0, 32.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -110.4.

HRMS (ESI, m/z): Mass calcd. for C₂₆H₂₀O₂F [M+H]⁺, 383.1442; found: 383.1443.

HPLC analysis: 99% e.e. (Chiralcel IA, 25 °C, IPA/Hexane = 1/99, 1.0 mL/min, 254 nm), Rt (major) = 9.8 min, Rt (minor) = 11.1 min.

(3*S*,4*R*)-3-benzyl-5-((4-chlorophenyl)ethynyl)-4-phenyl-3,4-dihydro-2*H*-pyran-2-one

White solid, 59% yield, 23.6 mg, m.p. 140-142 °C.

 $[\alpha]_{D^{25}} = -148.0 (c = 0.5, CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ 7.40-7.30 (m, 5H), 7.28 (d, *J* = 1.2 Hz, 1H), 7.23 (s, 4H), 7.10 (d, *J* = 7.8 Hz, 4H), 7.05 (s, 1H), 3.55 (d, *J* = 7.0 Hz, 1H), 3.45-4.39 (m, 1H), 3.28 (dd, *J* = 14.7, 4.7 Hz, 1H), 2.42 (dd, *J* = 14.7, 9.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.8, 145.0, 138.1, 136.3, 134.5, 132.6 (2C), 129.1 (2C), 129.0 (2C), 128.7 (2C), 128.6 (2C), 128.3 (2C), 128.2, 126.7, 121.1, 108.5, 91.7, 84.7, 45.1, 45.0, 32.3.

HRMS (ESI, m/z): Mass calcd. for C₂₆H₂₀O₂Cl [M+H]⁺, 399.1146; found: 399.1148.

HPLC analysis: 97% e.e. (Chiralcel IA, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (major) = 20.3 min, Rt (minor) = 24.8 min.

(3*S*,4*R*)-3-benzyl-4-phenyl-5-((4-(trifluoromethyl)phenyl)ethynyl)-3,4dihydro-2*H*-pyran-2-one

White solid, 77% yield, 33.3 mg, m.p. 115-116 $^{\rm o}\text{C}.$

[**α**]_D²⁵ = -165.0 (c = 1.0, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, *J* = 8.2 Hz, 2H), 7.47 – 7.29 (m, 8H), 7.12 (dd, *J* = 10.4, 3.4 Hz, 5H), 3.59 (d, *J* = 7.0 Hz, 1H), 3.45 (m, 1H), 3.31 (dd, *J* = 14.7, 4.7 Hz, 1H), 2.46 (dd, *J* = 14.7, 9.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.6, 145.5, 143.0, 138.1, 136.2, 131.6 (2C), 130.4, 130.3, 129.1 (2C), 129.0 (2C), 128.7 (2C), 128.3, 128.3 (2C), 126.8, 126.4, 125.2 (dd, *J* = 7.7, 3.7 Hz), 108.2, 91.4, 86.2, 45.1, 45.0, 32.3.

¹⁹F NMR (377 MHz, CDCl₃) δ -62.9.

HRMS (ESI, m/z): Mass calcd. for C₂₇H₂₀O₂F₃ [M+H]⁺, 433.1410 ; found: 433.1411.

HPLC analysis: 99% e.e. (Chiralcel IA, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (major) = 21.6 min, Rt (minor) = 23.4 min.

(35,4R)-3-benzyl-4-phenyl-5-(p-tolylethynyl)-3,4-dihydro-2H-pyran-2-one

White solid, 76% yield, 28.8 mg, m.p. 179-180 °C.

 $[\alpha]_{D^{25}} = -226.1 (c = 0.5, CHCl_3).$

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 144.4, 138.7, 138.2, 136.5, 131.3 (2C), 129.1 (4C), 129.0 (2C), 128.7 (2C), 128.3 (2C), 128.1, 126.7, 119.5, 108.9, 93.0, 83.0, 45.1, 45.1, 32.3, 21.5.

HRMS (ESI, m/z): Mass calcd. for C₂₇H₂₃O₂ [M+H]⁺, 379.1693; found: 379.1690.

HPLC analysis: 95% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.7 mL/min, 254 nm), Rt (major) = 29.5 min, Rt (minor) = 36.5 min.

(3*S*,4*R*)-3-benzyl-5-((4-methoxyphenyl)ethynyl)-4-phenyl-3,4-dihydro-2*H*-pyran-2-one

White solid, 60% yield, 23.6 mg, m.p. 137-138 °C.

 $\alpha_{\rm D}^{25} = -174.2 \ (c = 1.0, CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ 7.39-7.26 (m, 5H), 7.26-7.22 (m, 3H), 7.14-7.04 (m, 4H), 7.00 (s, 1H), 6.80-6.72 (m, 2H), 3.76 (s, 3H), 3.53 (d, *J* = 7.0 Hz, 1H), 3.43-3.38 (m, 1H), 3.26 (dd, *J* = 14.6, 4.7 Hz, 1H), 2.41 (dd, *J* = 14.7, 9.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 159.7, 144.1, 138.2, 136.5, 132.8 (2C), 129.0 (2C), 129.0 (2C), 128.6 (2C), 128.3 (2C), 128.1, 126.7, 114.6, 113.9 (2C), 109.0, 92.8, 82.28, 55.3, 45.1, 45.1, 32.2.

HRMS (ESI, m/z): Mass calcd. for $C_{27}H_{23}O_3$ [M+H]⁺, 395.1642; found:395.1643.

HPLC analysis: 99% e.e. (Chiralcel IA, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (major) = 28.1 min, Rt (minor) = 33.6 min.

(3*S*,4*R*)-3-benzyl-5-((3-methoxyphenyl)ethynyl)-4-phenyl-3,4-dihydro-2*H*-pyran-2-one

White solid, 77% yield, 30.5 mg, m.p. 99-101 °C. [α]₂²⁵ = -194.5 (c = 1.0, CHCl₃).

⁴ⁿ OCH₃ ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.29 (m, 5H), 7.26 (d, *J* = 7.2 Hz, 1H), 7.19-7.07 (m, 5H), 7.04 (s, 1H), 6.92-6.89 (m, 1H), 6.86-6.78 (m, 2H), 3.75 (s, 3H), 3.55 (d, *J* = 7.0 Hz, 1H), 3.44-3.39 (m, 1H), 3.27 (dd, *J* = 14.7, 4.7 Hz, 1H), 2.42 (dd, *J* = 14.7, 9.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.9, 159.2, 144.8, 138.2, 136.4, 129.4, 129.1 (2C), 129.1 (2C), 128.7 (2C), 128.3(2C), 128.2, 126.7, 124.0, 123.5, 116.2, 115.1, 108.7, 92.7, 83.5, 55.3, 45.1, 45.0, 32.3.

HRMS (ESI, m/z): Mass calcd. for $C_{27}H_{23}O_3$ [M+H]⁺, 395.1642; found: 395.1642.

HPLC analysis: 96% e.e. (Chiralcel IA, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (major) = 23.7 min, Rt (minor) = 31.2 min.

(3*S*,4*R*)-3-benzyl-5-((3-fluorophenyl)ethynyl)-4-phenyl-3,4-dihydro-2*H*-pyran-2-one

Yellow solid, 65% yield, 25.0 mg, m.p. 86-87 °C.

 $[\alpha]_{D^{25}} = -184.7$ (c = 1.0, CHCl₃).

40 ^L_F ¹H NMR (**400** MHz, CDCl₃) δ 7.44-7.26 (m, 6H), 7.25-7.16 (m, 1H), 7.12-7.06 (m, 6H), 7.02-6.96 (m, 2H), 3.56 (d, *J* = 7.0 Hz, 1H), 3.46-3.40 (m, 1H), 3.29 (dd, *J* = 14.7, 4.7 Hz, 1H), 2.43 (dd, *J* = 14.7, 9.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.8, 162.3 (d, J = 246.8 Hz), 145.2, 138.1, 136.3, 129.9 (d, J = 8.7 Hz),
129.2 (2C), 129.1 (2C), 128.7 (2C), 128.3 (2C), 128.3, 127.3 (d, J = 3.0 Hz), 126.8, 124.5 (d, J = 9.5 Hz),
118.2 (d, J = 22.9 Hz), 115.8 (d, J = 21.2 Hz), 108.4, 91.6, 84.7, 45.1, 45.0, 32.3.

¹⁹F NMR (376 MHz, CDCl₃) δ -112.8.

HRMS (ESI, m/z): Mass calcd. for C₂₆H₂₀O₂F [M+H]⁺, 383.1442; found: 383.1442.

HPLC analysis: 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.3 mL/min, 254 nm), Rt (minor) = 36.6 min, Rt (major) = 41.7 min.

(3*S*,4*R*)-3-benzyl-4-phenyl-5-(thiophen-2-ylethynyl)-3,4-dihydro-2*H*-pyran-2-one

White solid, 50% yield, 19.7 mg, m.p. 148-150 °C.

 $[\alpha]_{D^{25}} = -216.5 (c = 0.5, CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ 7.40-7.28 (m, 5H), 7.26 (s, 1H), 7.24 (d, *J* = 5.5, 1.7 Hz, 2H), 7.15-7.08 (m, 4H), 7.05 (s, 1H), 6.88-6.80 (m, 2H), 3.81 (s, 3H), 3.59 (d, *J* = 7.0 Hz, 1H), 3.45-3.40 (m, 1H), 3.29 (dd, *J* = 14.6, 4.8 Hz, 1H), 2.45 (dd, *J* = 14.6, 9.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 159.7, 144.4, 138.2, 136.6, 133.3, 130.0, 129.1 (2C), 129.0 (2C), 128.6 (2C), 128.4 (2C), 128.1, 126.7, 120.4, 111.8, 110.6, 109.0, 89.3, 87.7, 55.7, 45.2, 45.0, 32.3.

HRMS (ESI, m/z): Mass calcd. for $C_{27}H_{23}O_3$ [M+H]⁺, 395.1642; found: 395.1642.

HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (major) = 12.9 min, Rt (minor) = 47.5 min.

(3*S*,4*R*)-3-benzyl-4-phenyl-5-(thiophen-2-ylethynyl)-3,4-dihydro-2*H*-pyran-2one

White solid, 59% yield, 21.8 mg, m.p. 135-137 °C.

 $[\alpha]_{D^{25}} = -280.7 (c = 0.5, CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ 7.40-7.25 (m, 6H), 7.24-7.19 (m, 1H), 7.13- 7.07 (m, 5H), 7.03 (s, 1H), 6.92 (dd, J = 5.1, 3.7 Hz, 1H), 3.55 (d, J = 6.9 Hz, 1H), 3.43-3.38 (m, 1H), 3.26 (dd, J = 14.7, 4.7 Hz, 1H), 2.42 (dd, J = 14.7, 9.6 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.8, 144.9, 138.1, 136.3, 132.1, 129.1 (2C), 129.0 (2C), 128.7 (2C), 128.3 (2C), 128.2, 127.8, 127.1, 126.8, 122. 6, 108.6, 87.3, 85.9, 45.1, 44.9, 32.3.

HRMS (ESI, m/z): Mass calcd. for C₂₄H₁₉O₂S [M+H]⁺, 371.1100; found: 371.1100.

HPLC analysis: 96% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (major) = 50.8 min, Rt (minor) = 58.9 min.

(3*S*,4*R*)-3-benzyl-5-(cyclopropylethynyl)-4-phenyl-3,4-dihydro-2*H*-pyran-2-one

White solid, 85% yield, 27.9 mg, m.p. 81-83 $^{\rm o}\text{C}.$

 $[\alpha]_{D^{25}} = -200.8$ (c = 1.0, CHCl₃).

4r ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.32 (m, 3H), 7.32-7.27 (m, 2H), 7.24 (dd, J = 6.2, 3.4 Hz, 1H), 7.11-7.00 (m, 4H), 6.85 (s, 1H), 3.43-3.28 (m, 2H), 3.23 (dd, J = 14.6, 4.5 Hz, 1H), 2.36 (dd, J = 14.6, 9.3 Hz, 1H), 1.27-1.20 (m, 1H), 0.80-0.68 (m, 2H), 0.67-0.53 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 143.9, 138.2, 136.4, 128.9 (2C), 128.8 (2C), 128.5 (2C), 128.2 (2C), 127.9, 126.5, 109.0, 97.0, 69.8, 45.1, 44.9, 32.1, 8.5, 8.5, 0.1.

HRMS (ESI, m/z): Mass calcd. for C₂₃H₂₁O₂ [M+H]⁺, 329.1536; found: 329.1536.

HPLC analysis: 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (minor) = 21.9 min, Rt (major) = 23.9 min.

Ph Br 4s

(3*S*,4*R*)-3-(4-bromobenzyl)-5-(cyclopropylethynyl)-4-phenyl-3,4-dihydro-2*H*-pyran-2-one

White solid, 75% yield, 23.7 mg, m.p. 138-140 °C.

 $[\alpha]_{D^{25}} = -195.2$ (c = 0.5, CHCl₃).

^br ^{4s} ¹H NMR (400 MHz, CDCl₃) δ 7.47 – 7.38 (m, 2H), 7.38 – 7.28 (m, 3H), 7.06 – 6.99 (m, 2H), 6.94 (d, J = 8.3 Hz, 2H), 6.84 (s, 1H), 3.35 (d, J = 7.0 Hz, 1H), 3.27 (m, 1H), 3.14 (dd, J = 14.7, 5.0 Hz, 1H), 2.34 (dd, J = 14.7, 9.2 Hz, 1H), 1.24 (m, 1H), 0.74 (m, 2H), 0.61 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 168.8, 143.9, 137.3, 136.3, 131.7 (2C), 130.7 (2C), 129.0 (2C), 128.2 (2C), 128.1, 120.5, 109.0, 97.3, 69.8, 45.4, 44.8, 31.9, 8.6, 8.6, 0.1.

HRMS (ESI, m/z): Mass calcd. for C₂₃H₂₀O₂Br [M+H]⁺, 407.0641; found: 407.0639.

HPLC analysis: >99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.8 mL/min, 254 nm), Rt (minor) = 14.5 min, Rt (major) = 24.9 min.

(3*S*,4*R*)-3-benzyl-5-(3,3-dimethylbut-1-yn-1-yl)-4-phenyl-3,4-dihydro-2*H*pyran-2-one

White solid, 74% yield, 25.4 mg, m.p. 70-72 °C.

 $[\alpha]_{D^{25}} = -174.8$ (c = 1.0, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.29-7.27 (m, 1H), 7.26-7.12 (m, 5H), 7.05-6.93 (m,

4H), 6.75 (s, 1H), 3.34-3.22 (m, 2H), 3.18 (dd, *J* = 14.5, 4.4 Hz, 1H), 2.34 (dd, *J* = 14.5, 8.8 Hz, 1H), 1.05 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 168.3, 142.3, 137.3, 135.7, 128.0 (2C), 127.9 (2C), 127.5 (2C), 127.2 (2C), 126.8, 125.5, 108.0, 101.2, 72.2, 44.4, 43.8, 31.3, 29.7 (3C), 26.9.

HRMS (ESI, m/z): Mass calcd. for C₂₄H₂₅O₂ [M+H]⁺, 345.1849; found: 345.1848.

HPLC analysis: 99% e.e. (Chiralcel IC, 25 °C, IPA/Hexane = 4/96, 1.0 mL/min, 254 nm), Rt (minor) = 5.4 min, Rt (major) = 6.7 min.

(3S,4R)-3-benzyl-5-(hex-1-yn-1-yl)-4-phenyl-3,4-dihydro-2H-pyran-2-one

White solid, 82% yield, 28.4 mg, m.p. 70-72 °C.

 $[\alpha]_{D^{25}} = -203.8 (c = 1.0, CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ 7.38-7.26 (m, 5H), 7.25-7.22 (m, 1H), 7.13-6.97 (m, 4H),

4u CH₃ 6.86 (s, 1H), 3.40 (d, *J* = 7.0 Hz, 1H), 3.37-3.32 (m, 1H), 3.24 (dd, *J* = 14.6, 4.6 Hz, 1H), 2.38 (dd, *J* = 14.6, 9.3 Hz, 1H), 2.19 (t, *J* = 7.0 Hz, 2H), 1.46-1.35 (m, 2H), 1.35-1.22 (m, 2H), 0.84 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 169.2, 143.7, 138.3, 136.6, 129.0 (2C), 128.9 (2C), 128.6 (2C), 128.3 (2C), 128.0, 126.6, 109.1, 94.1, 74.7, 45.3, 45.0, 32.2, 30.5, 21.9, 19.1, 13.5.

HRMS (ESI, m/z): Mass calcd. for C₂₄H₂₅O₂ [M+H]⁺, 345.1849; found: 345.1848.

HPLC analysis: > 99% e.e. (Chiralcel ID, 25 °C, IPA/Hexane = 2/98, 0.3 mL/min, 254 nm), Rt (minor) = 19.8 min, Rt (major) = 21.7 min.

(3S,4R)-3-benzyl-5-ethynyl-4-phenyl-3,4-dihydro-2H-pyran-2-one

White solid, 89% yield, 25.7 mg, m.p. 142-143 °C.

 $[\alpha]_{D^{25}} = -370.9 (c = 1.0, CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ 7.39-7.30 (m, 4H), 7.29 (d, *J* = 1.2 Hz, 1H), 7.25-7.23 (m, 1H), 7.09-7.04 (m, 4H), 7.02-6.99 (m, 1H), 3.47 (d, *J* = 7.0 Hz, 1H), 3.41-3.31 (m,

1H), 3.24 (dd, J = 14.7, 4.7 Hz, 1H), 2.92 (s, 1H), 2.38 (dd, J = 14.7, 9.5 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.7, 146.1, 138.0, 136.1, 129.1 (2C), 129.0 (2C), 128.7 (2C), 128.3 (3C), 126.8, 107.6, 80.9, 78.3, 45.0, 44.8, 32.2.

HRMS (ESI, m/z): Mass calcd. for C₂₀H₁₇O₂ [M+H]⁺, 289.1223; found: 289.1221.

HPLC analysis: > 99% e.e. (Chiralcel IA, 25 °C, IPA/Hexane = 1/99, 1.0 mL/min, 254 nm), Rt (major) = 10.1 min, Rt (minor) = 11.5 min.

(3*S*,4*R*)-3-benzyl-4-phenyl-5-((trimethylsilyl)ethynyl)-3,4-dihydro-2*H*-pyran-2one

White solid, 82% yield, 29.6 mg, m.p. 91-93 °C.

$$[\alpha]_{D^{25}} = -242.9 (c = 1.0, CHCl_3).$$

¹H NMR (400 MHz, CDCl₃) δ 7.38-7.27 (m, 5H), 7.25-7.21 (m, 1H), 7.11-7.02 (m, 4H), 6.96 (s, 1H), 3.44 (d, *J* = 7.0 Hz, 1H), 3.36-3.31 (m, 1H), 3.24 (dd, *J* = 14.6, 4.7 Hz, 1H), 2.40 (dd, *J* = 14.6, 9.4 Hz, 1H), 0.10 (s, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 145.8, 138.4, 136.5, 129.3 (2C), 129.2 (2C), 128.8 (2C), 128.5 (2C), 128.3, 126.9, 108.9, 99.4, 98.7, 45.1, 45.1, 32.5, 0.0 (3C).

HRMS (ESI, m/z): Mass calcd. for $C_{23}H_{24}O_2Si [M+H]^+$, 361.1618; found: 361.1616.

HPLC analysis: 99% e.e. (Chiralcel IC, 25 °C, IPA/Hexane = 1/99, 1.0 mL/min, 254 nm), Rt (minor) = 7.1 min, Rt (major) = 10.5 min.

Ρh

4y

(3*S*,4*R*)-3-benzyl-5-(mesitylethynyl)-4-phenyl-3,4-dihydro-2*H*-pyran-2one Colorless oil, 37% yield, 15.1 mg.

¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.30 (m, 5H), 7.26 (dd, *J* = 7.8, 1.7 Hz, 1H), 7.13 (dd, *J* = 7.7, 1.4 Hz, 4H), 7.03 (s, 1H), 6.81 (s, 2H), 3.60 (d, *J* = 7.2 Hz, 1H), 3.47 (m, 1H), 3.30 (dd, *J* = 14.7, 4.9 Hz, 1H), 2.54 – 2.40 (m, 1H), 2.25 (s, 3H), 2.23 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 143.5, 139.8 (2C), 138.3, 138.0, 136.7, 129.0 (4C), 128.6 (2C), 128.4 (2C), 128.1, 127.6 (3C), 126.7, 119.3, 109.3, 91.1, 45.8, 45.0, 32.4, 21.3, 20.8 (2C).

HRMS (ESI, m/z): Mass calcd. for C₂₉H₂₇O₂ [M+H]⁺, 407.2006; found: 407.2002.

HPLC analysis: 81% e.e. (Chiralcel IF, 25 °C, IPA/Hexane = 4/96, 0.5 mL/min, 254 nm), Rt (major) = 14.0 min, Rt (minor) = 15.5 min.

(3*S*,4*R*)-3-benzyl-5-((2,6-diisopropylphenyl)ethynyl)-4-phenyl-3,4-dihydro-2*H*-pyran-2-one

Colorless oil, 58% yield, 26.1 mg.

 $[\alpha]_{D^{25}} = -203.0 (c = 1.0, CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5H), 7.22 (dd, J = 16.9, 9.1 Hz, 2H), 7.11 (m, 4H), 7.05 – 7.00 (m, 3H), 3.61 (d, J = 7.2 Hz, 1H), 3.47 (m, 1H), 3.27 (dd, J = 14.7, 5.0 Hz, 1H), 3.24 – 3.11 (m, 2H), 2.45 (dd, J = 14.7, 9.2 Hz, 1H), 1.14 (s, 3H), 1.12 (s, 3H), 1.07 (s, 3H), 1.05 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 150.5 (2C), 143.6 (2C), 138.3, 136.7, 129.0 (4C), 128.6, 128.6 (2C), 128.4 (2C), 128.1, 126.7, 122.1, 120.2, 109.2, 91.5, 90.3, 45.9, 45.0, 32.4, 31.7 (2C), 23.1 (2C), 23.0 (2C).

HRMS (ESI, m/z): Mass calcd. for C₃₂H₃₃O₂ [M+H]⁺, 449.2475; found: 449.2466.

HPLC analysis: 80% e.e. (Chiralcel ODH, 25 °C, IPA/Hexane = 2/98, 0.6 mL/min, 254 nm), Rt (major) = 11.1 min, Rt (minor) = 10.0 min.

Yellow solid, 71% yield, 14.1 mg, m.p. 82-83 °C.

 $[\alpha]_{D^{25}} = -280.1 (c = 1.0, CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 7.74 (s, 1H), 7.38-7.27 (m, 6H), 7.26 -7.17 (m, 3H), 7.14-6.94 (m, 5H), 4.08 (dd, *J* = 6.4, 3.5 Hz, 1H), 323-3.08 (m, 2H), 2.43-2.36 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 194.0, 187.2, 168.6, 166.6, 151.2, 137.9, 137.0, 136.6, 134.9, 133.9, 129.2, 129.0, 129.0, 128.7, 128.7, 128.4, 128.4, 128.0, 127.7, 127.1, 126.8, 124.7, 121.9, 45.1, 38.4, 32.3.

HRMS (ESI, m/z): Mass calcd. for $C_{26}H_{21}O_2$ [M+H]⁺, 365.1536; found: 365.1535.

HPLC analysis: 99% e.e. (Chiralcel AD-H, 25 °C, IPA/Hexane = 8/92, 0.5 mL/min, 254 nm), Rt (major) = 20.7 min, Rt (minor) = 25.9 min.

(*3S,4R*)-3-benzyl-5-((Z)-1,2-dibromovinyl)-4-phenyl-3,4-dihydro-2*H*-pyran-2-one Colorless oil, 84% yield, 26.2 mg.

 $[\alpha]_{p^{25}} = -259.1 (c = 1.0, CHCl_3).$

¹H NMR (400 MHz, CDCl₃) δ 7.36-7.27 (m, 5H), 7.24 (t, *J* = 4.7 Hz, 1H), 7.13 (d, *J* = 7.2 Hz, 2H), 7.09-7.02 (m, 2H), 6.99 (s, 1H), 6.54 (s, 1H), 3.78 (d, *J* = 7.0 Hz, 1H), 3.47-3.42 (m, 1H), 3.20 (dd, *J* = 14.9, 5.3 Hz, 1H), 2.43 (dd, *J* = 14.9, 9.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.6, 142.7, 138.1, 135.6, 128.9 (2C), 128.9 (2C), 128.7 (2C), 128.6 (2C), 128.3, 126.7, 120.2, 117.4, 106.0, 45.1, 43.4, 32.3.

HRMS (ESI, m/z): Mass calcd. for C₂₀H₁₇O₂Br₂ [M+H]⁺, 446.9590; found: 446.9591.

HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 1/99, 0.5 mL/min, 254 nm), Rt (minor) = 22.6 min, Rt (major) = 24.6 min.

(*E*)-2-((3*S*,4*R*)-3-benzyl-2-oxo-4-phenyl-3,4-dihydro-2*H*-pyran-5-yl)-4,4,4trifluorobut-2-enenitrile

White solid, 53% yield, 14.1 mg, m.p. 125-126 °C.

6

 $[\alpha]_{D^{25}} = -166.2 \text{ (c} = 0.5, \text{CHCl}_3\text{)}.$

¹H NMR (400 MHz, CDCl₃) δ 7.39-7.27 (m, 5H), 7.24 (s, 1H), 7.10 (d, *J* = 7.1 Hz, 2H), 7.05-6.98 (m, 2H), 6.97 (s, 1H), 6.28 (q, *J* = 7.5 Hz, 1H), 3.67 (d, *J* = 7.0 Hz, 1H),

3.47-3.41 (m, 1H), 3.20 (dd, J = 14.9, 5.3 Hz, 1H), 2.41 (dd, J = 14.9, 9.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 167.6, 143.3, 143.2, 137.4, 134.4, 132.2 (d, *J* = 36.3 Hz), 129.3 (2C), 128.8, 128.8 (2C), 128.7 (2C), 128.3 (2C), 126.9, 121.9, 114.9, 114.8, 44.8, 43.8, 32.2.

¹⁹F NMR (**376** MHz, CDCl₃) δ -57.6 (d, *J* = 7.5 Hz).

HRMS (ESI, m/z): Mass calcd. for $C_{22}H_{17}O_2NF_3$ [M+H]⁺, 384.1206; found: 384.1204.

HPLC analysis: > 99% e.e. (Chiralcel IB, 25 °C, IPA/Hexane = 2.5/97.5, 0.5 mL/min, 254 nm), Rt (minor) = 47.9 min, Rt (major) = 56.3 min.

(3S,4R)-3-benzyl-5-((Z)-1-chloro-2-tosylvinyl)-4-phenyl-3,4-dihydro-2H-pyran-2-

one

White solid, 49% yield, 16.4 mg, m.p. 165-166 °C. [α]_D²⁵ = -90.6 (c = 0.5, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 7.51-7.41 (m, 2H), 7.40-7.30 (m, 5H), 7.30-7.21 (m, 3H), 7.15 (d, *J* = 7.2 Hz, 2H), 7.08-6.98 (m, 3H), 6.55 (s, 1H), 3.71 (d, *J* = 6.8 Hz, 1H), 3.67-

3.62 (m, 1H), 3.24 (dd, *J* = 15.0, 4.9 Hz, 1H), 2.43 (s, 3H), 2.38 (dd, *J* = 15.0, 9.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.5, 145.1, 143.5, 143.4, 137.8, 137.3, 136.0, 131.6, 130.1 (2C), 129.0 (4C), 128.6 (2C), 128.5 (2C), 128.2, 127.6 (2C), 126.7, 118.0, 44.5, 43.9, 32.1, 21.7.

HRMS (ESI, m/z): Mass calcd. for C₂₇H₂₄O₄SCI [M+H]⁺, 479.1082; found 479.1084.

HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 0.5/99.5, 0.5 mL/min, 254 nm), Rt (minor) = 31.2 min, Rt (major) = 34.7 min.

Ph Ph N-N 9 (3*S*,4*R*)-3-benzyl-5-(1-benzyl-1H-1,2,3-triazol-4-yl)-4-phenyl-3,4-dihydro-2*H*-pyran-2-one

White solid, 96% yield, 28.3 mg, m.p. 176-177 °C.

 $[\alpha]_{D^{25}} = -226.0 \text{ (c} = 0.5, \text{ CHCl}_3\text{)}.$

¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 1H), 7.35-7.27 (m, 7H), 7.27-7.19 (m, 2H),
 Ph 7.19-7.08 (m, 7H), 5.54-5.18 (m, 2H), 3.97 (d, J = 7.0 Hz, 1H), 3.51-3.45 (m, 1H),
 3.23 (dd, J = 14.8, 5.0 Hz, 1H), 2.40 (dd, J = 14.8, 9.2 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.5, 145.1, 143.5, 143.4, 137.8, 137.3, 136.0, 131.6, 130.1 (2C), 129.0 (4C), 128.6 (2C), 128.5 (2C), 128.2, 127.6 (2C), 126.7, 118.0, 44.5, 43.9, 32.1, 21.7.

HRMS (ESI, m/z): Mass calcd. for C₂₇H₂₄N₃O₂ [M+H]⁺, 422.1870; found 422.1869.

HPLC analysis: 99% e.e. (Chiralcel AD-H, 25 °C, IPA/Hexane = 20/80, 0.5 mL/min, 254 nm), Rt (major) = 24.2 min, Rt (minor) = 28.5 min.

(3S, 4R)-3-benzyl-5-(1-iodovinyl)-4-phenyl-3,4-dihydro-2H-pyran-2-one

Colorless solid, 65% yield, 18.9 mg, m.p. 134-135 °C.

[α]_D²⁵ = -211.7 (c = 1.0, CHCl₃).

¹H NMR (400 MHz, $CDCl_3$) δ 7.39-7.30 (m, 5H), 7.29-7.26 (m, 1H), 7.21-7.12 (m, 3H), 7.09-6.97 (m, 2H), 6.12 (d, *J* = 2.1 Hz, 1H), 5.79 (d, *J* = 2.1 Hz, 1H), 3.87 (s, 1H), 3.39-3.34 (m, 1H), 3.18 (dd, *J* = 15.0, 5.1 Hz, 1H), 2.38 (dd, *J* = 15.0, 9.1 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 169.1, 146.8, 138.1, 136.0, 129.2 (2C), 128.9 (2C), 128.7 (2C), 128.3, 128.2 (2C), 127.6, 126.8, 124.9, 99.9, 44.7, 42.5, 32.2.

HRMS (ESI, m/z): Mass calcd. for C₂₀H₁₈O2I [M+H]⁺, 417.0351; found 417.0361.

HPLC analysis: 96% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 0.5/99.5, 0.5 mL/min, 254 nm), Rt (minor) = 38.4 min, Rt (major) = 43.0 min.

(3S,4R)-3-benzyl-5-ethyl-4-phenyl-3, 4-dihydro-2H-pyran-2-one

Colorless oil, 84% yield, 25.6 mg.

 $[\alpha]_{D^{25}} = -321.3 \text{ (c} = 1.0, \text{ CHCl}_3\text{)}.$

¹H NMR (400 MHz, CDCl₃) δ 7.39-7.27 (m, 5H), 7.25-7.19 (m, 1H), 7.11 (d, J = 7.2 H₃
Hz, 2H), 7.03 (dd, J = 7.6, 1.8 Hz, 2H), 6.45 (t, J = 1.6 Hz, 1H), 3.32-3.28 (m, 1H), 3.27-3.19 (m, 2H), 2.34 (dd, J = 14.7, 9.4 Hz, 1H), 1.98-1.87 (m, 2H), 0.90 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.6, 138.8, 137.5, 135.2, 129.0 (2C), 128.9 (2C), 128.6 (2C), 128.5 (2C), 127.8, 126.5, 125.6, 45.4, 44.3, 32.3, 23.8, 12.1.

HRMS (ESI, m/z): Mass calcd. for $C_{20}H_{21}O_2$ [M+H]⁺, 293.1536; found: 293.1532.

HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 0.5/99.5, 0.5 mL/min, 254 nm), Rt (major) = 28.5 min, Rt (minor) = 30.4 min.

(3S,4R)-3-benzyl-4-phenyl-5-(2-(trimethylsilyl)-1H-indol-3-yl)-3,4-dihydro-2*H*-pyran-2-one

Colorless solid, 50% yield, 13.5 mg, m.p. 150-151 °C.

[α]²⁵ = - 170.9 (c = 1.0, CHCl₃).

¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 19.5 Hz, 1H), 7.45-7.18 (m, 7H), 7.17-7.06 (m, 3H), 7.04-6.96 (m, 2H), 6.96-6.79 (m, 2H), 6.65 (s, 1H), 3.70 (d, J = 6.8 Hz, 1H),

3.65-3.60 (m, 1H), 3.52-3.38 (m, 1H), 2.46 (dd, *J* = 14.5, 10.3 Hz, 1H), 0.11 (d, *J* = 23.2 Hz, 9H).

¹³C NMR (101 MHz, CDCl₃) δ 171.3, 139.1, 138.8, 138.3, 137.8, 135.7, 129.5 (2C), 129.4 (2C), 129.2 (2C), 129.1 (2C), 128.2, 127.8, 127.1, 123.1, 120.8, 120.3, 120.2, 119.7, 111.3, 46.3, 46.2, 32.9, 0.1, 0.0 (2C).

HRMS (ESI, m/z): Mass calcd. for C₂₉H₃₀NO₂Si [M+H]⁺, 452.2040; found: 452.2039.

HPLC analysis: > 99% e.e. (Chiralcel OD-H, 25 °C, IPA/Hexane = 2.5/97.5, 0.1 mL/min, 254 nm), Rt (minor) = 178.6 min, Rt (major) = 186.7 min.

(5aS,10bR)-9-bromo-2-mesityl-4,5a,6,10b-tetrahydroindeno[2,1-

b][1,2,4]triazolo[4,3-d][1,4]oxazin-2-ium chloride

White solid, 37% yield, 1.24 g, m.p. 253-255 $^{\rm o}\text{C}.$

 $[\underline{\alpha}]_{D^{25}} = -25.2 (c = 0.5, CHCl_3).$

¹H NMR (400 MHz, DMSO) δ 11.58 (s, 1H), 7.98 (s, 1H), 7.58 (dd, *J* = 8.1, 1.5 Hz, 1H), 7.40 (d, *J* = 8.1 Hz, 1H), 7.21 (s, 2H), 6.22 (d, *J* = 2.9 Hz, 1H), 5.26 (d, *J* = 16.0

Hz, 1H), 5.09 (d, J = 16.0 Hz, 1H), 5.00 (s, 1H), 3.45 (dd, J = 17.1, 4.5 Hz, 1H), 3.13 (d, J = 17.2 Hz, 1H), 2.37 (s, 3H), 2.16 (s, 6H).

¹³C NMR (101 MHz, DMSO) δ 150.5, 145.3, 141.8, 140.7, 139.2, 135.3 (2C), 132.6, 131.8, 129.9 (2C), 127.9 (2C), 120.5, 77.5, 61.3, 60.3, 37.2, 21.2, 17.6 (2C).

HRMS (ESI, m/z): Mass calcd. for C₂₁H₂₂BrClN₃O [M+H]⁺, 446.0567; found: 446.0564.

(5aS,10bR)-9-bromo-2-mesityl-4,5a,6,10b-tetrahydroindeno[2,1-

b][1,2,4]triazolo[4,3-d][1,4]oxazin-2-ium perchlorate

White solid, 82% yield, 84.1 mg, m.p. 282-283 °C.

 $[\alpha]_{D^{25}} = -29.0$ (c = 0.5, CHCl₃).

¹H NMR (400 MHz, DMSO) δ 11.06 (d, J = 10.3 Hz, 1H), 7.89 (s, 1H), 7.59 (d, J = 7.7 Hz, 1H), 7.41 (d, J = 8.0 Hz, 1H), 7.22 (s, 2H), 6.09 (dd, J = 12.7, 3.7 Hz, 1H), 5.26 (d,

J = 16.0 Hz, 1H), 5.02 (dd, *J* = 30.4, 10.1 Hz, 2H), 3.52 – 3.43 (m, 1H), 3.14 (d, *J* = 17.2 Hz, 1H), 2.38 (s, 3H), 2.14 (s, 6H).

¹³C NMR (101 MHz, DMSO) δ 150.6, 145.0, 141.9, 140.7, 139.1, 135.2 (2C), 132.6, 131.7, 130.0 (2C), 128.0, 127.7, 120.5, 77.5, 61.3, 60.3, 37.2, 21.2, 17.5 (2C).

HRMS (ESI, m/z): Mass calcd. for C₂₁H₂₂BrClN₃O₅ [M+H]⁺, 510.7685; found: 510.7683.

(5a*S*,10b*R*)-9-bromo-2-mesityl-4,5a,6,10b-tetrahydroindeno[2,1b][1,2,4]triazolo[4,3-d][1,4]oxazin-2-ium bromide

White solid, 87% yield, 86.2 mg, m.p. 202-203 °C.

 $[\alpha]_{D^{25}} = -38.5 (c = 0.5, CHCl_3).$

¹H NMR (400 MHz, DMSO) δ 11.15 (d, J = 5.6 Hz, 1H), 7.90 (d, J = 11.4 Hz, 1H), 7.69 - 7.54 (m, 1H), 7.41 (d, J = 8.1 Hz, 1H), 7.22 (s, 2H), 6.15 (dd, J = 10.4, 4.0 Hz,

1H), 5.26 (d, *J* = 16.0 Hz, 1H), 5.17 – 4.90 (m, 2H), 3.46 (dd, *J* = 17.1, 4.9 Hz, 1H), 3.14 (dd, *J* = 17.4, 3.3 Hz, 1H), 2.38 (s, 3H), 2.15 (s, 6H).

¹³C NMR (101 MHz, DMSO) δ 150.6, 145.0, 141.9, 140.7, 139.2, 135.3 (2C), 132.6, 131.7, 130.0 (2C), 128.2, 128.0, 127.8, 120.5, 77.5, 61.3, 60.3, 37.2, 21.2, 17.6 (2C).

HRMS (ESI, m/z): Mass calcd. for C₂₁H₂₂Br₂N₃O [M+H]⁺, 489.0151; found: 489.0148.

VIII. ¹H NMR, ¹³C NMR, ¹⁹F NMR and HPLC Spectra

Figure S10. ¹H, ¹³C and ¹⁹F NMR spectrum of 2d.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200

S45

Figure S16. ¹H and ¹³C NMR spectrum of 2r.

S50

Figure S17. ¹H and ¹³C NMR spectrum of 2x.

Figure S18. ¹H and ¹³C NMR spectrum of **2y.**

Figure S19. ¹H and ¹³C NMR spectrum of 3a.

Figure S20. HPLC spectrum of 3a.

	Ret. Time	Height	Area	% Area
1	20.535	319648	7801899	99.80
2	23.217	547	15278	0.20

Figure S21. ¹H and ¹³C NMR spectrum of **3b.**

	THE THE	rioigin	7 4 6 4	101000	
1	22.292	295812	12654256	99.55	
2	26.850	1105	57128	0.45	

Figure S23. ¹H and ¹³C NMR spectrum of 3c.

Figure S24. HPLC spectrum of 3c.

Figure S25. ¹H and ¹³C NMR spectrum of 3d.

Figure S26. HPLC spectrum of 3d.

Figure S27. ¹H and ¹³C NMR spectrum of **3e.**

Figure S28. HPLC spectrum of 3e.

	Ret. Time	Height	Area	% Area
1	15.569	129799	5818301	49.33
2	20.983	91279	5977175	50.67

	Ret. Time	Height	Area	% Area
1	15.667	257284	11670765	99.51
2	21.467	969	57995	0.49

Figure S29. ¹H, ¹³C and ¹⁹F NMR spectrum of 3f.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200

Figure S30. HPLC spectrum of 3f.

Peak Results						
9	RT	Area	Height	% Area		
1	2.878	4019209	2076606	51.29		
2	3.054	3816385	808706	48.71		

Figure S31. ¹H and ¹³C NMR spectrum of 3g.

Figure S32. HPLC spectrum of 3g.

	Ret. Time	Height	Area	% Area
1	40.012	20414	1579663	49.90
2	46.438	19829	1585972	50.10

	Ret. Time	Height	Area	% Area	
1	41.583	165	9916	0.36	
2	45.838	33340	2733356	99.64	

Figure S33. ¹H and ¹³C NMR spectrum of **3h.**

Figure S34. HPLC spectrum of 3h.

2 32.544 28197 2160009 99.96

Figure S35. ¹H, ¹³C and ¹⁹F NMR spectrum of 3i.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200

Figure S36. HPLC spectrum of 3i.

S73

Figure S38. HPLC spectrum of 3j.

	Ret. Time	Height	Area	% Area
1	21.776	24634	1370601	50.88
2	26.286	24617	1323141	49.12

	Ret. Time	Height	Area	% Area
1	22.632	897	48602	0.95
2	25.821	77189	5052145	99.05

Figure S39. ¹H and ¹³C NMR spectrum of 3k.

S75

Figure S40. HPLC spectrum of 3k.

1	51.150		15150	1.07
2	69.130	31808	3844266	98.13

Figure S41. ¹H and ¹³C NMR spectrum of 3I.

Figure S42. HPLC spectrum of 3I.

Figure S43. ¹H and ¹³C NMR spectrum of **3m.**

Figure S44. HPLC spectrum of 3m.

Figure S45. ¹H, ¹³C and ¹⁹F NMR spectrum of 3n.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200

Figure S46. HPLC spectrum of 3n.

1	15.835	646	11120	0.24
2	18.302	112841	4596357	99.76

Figure S47. ¹H and ¹³ C NMR spectrum of **30.**

Figure S48. HPLC spectrum of 3o.

Figure S49. ¹H and ¹³C NMR spectrum of **3p.**

Figure S50. HPLC spectrum of 3p.

Figure S51. ¹H and ¹³C NMR spectrum of **3q**.

Figure S52. HPLC spectrum of 3q.

Figure S53.¹H and ¹³C NMR spectrum of **3r.**

Figure S54. HPLC spectrum of 3r.

Figure S55. ¹H and ¹³C NMR spectrum of **3s**.

Figure S56. HPLC spectrum of 3s.

Figure S57. ¹H and ¹³C NMR spectrum of **3t.**

Figure S58. HPLC spectrum of 3t.

	Ret. Time	Height	Area	% Area
1	18.362	3263	35697	1.14
2	23.168	79844	3090479	98.86

Figure S59. ¹H and ¹³C NMR spectrum of **3u**.

Figure S60. HPLC spectrum of 3u.

2	24.491	373270	17258947	99.27
---	--------	--------	----------	-------

Figure S61. ¹H and ¹³C NMR spectrum of 4a.

Figure S62. HPLC spectrum of 4a.

Figure S63. ¹H and ¹³C NMR spectrum of 4b.

Figure S64. HPLC spectrum of 4b.

Figure S66. HPLC spectrum of 4c.

Figure S67.¹H, ¹³C and ¹9F NMR spectrum of 4d.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200

Figure S68. HPLC spectrum of 4d.

	Ret. Time	Height	Area	% Area
1	35.033	116575	12810792	99.80
2	42.050	308	25859	0.20

Figure S69. ¹H and ¹³C NMR spectrum of 4e.

Figure S70. HPLC spectrum of 4e.

Figure S71. ¹H and ¹³C NMR spectrum of 4e.

Figure S72. HPLC spectrum of 4e.

Figure S73. ¹H and ¹³C NMR spectrum of 4g.

Figure S74. HPLC spectrum of 4g.

Figure S75. ¹H and ¹³C NMR spectrum of **4h.**

Figure S76. HPLC spectrum of 4h.

Figure S77. ¹H, ¹³C and ¹⁹F NMR spectrum of 4i.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200

Figure S78. HPLC spectrum of 4i.

S118

Figure S80. HPLC spectrum of 4j.

S120

----62.88

<u>10 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210</u>

Figure S82. HPLC spectrum of 4k.

S122

Figure S83. ¹H and ¹³C NMR spectrum of 4I.

Figure S84. HPLC spectrum of 4I.

Figure S85. ¹H and ¹³C NMR spectrum of 4m.

S125

Figure S86. HPLC spectrum of 4m.

Figure S87. ¹H and ¹³C NMR spectrum of 4n.

 $\begin{array}{c} 7.7_{3}\\ 7.7_{$

Figure S88. HPLC spectrum of 4n.

Figure S89. ¹H and ¹³C NMR spectrum of 4o.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200

Figure S90. HPLC spectrum of 4o.

	Ret. Time	Height	Area	% Area	
	36.563	2677	132390	0.55	
2	41.729	403236	24033008	99.45	

Figure S91. ¹H and ¹³C NMR spectrum of 4p.

Figure S92. HPLC spectrum of 4p.

Figure S93. ¹H and ¹³C NMR spectrum of 4q.

S134

Figure S94. HPLC spectrum of 4p.

Figure S95. ¹H and ¹³C NMR spectrum of 4r.

Figure S96. HPLC spectrum of 4r.

Figure S97. ¹H and ¹³C NMR spectrum of 4s.

Figure S98. HPLC spectrum of 4s.

Figure S99. ¹H and ¹³C NMR spectrum of 4t.

Figure S100. HPLC spectrum of 4t.

6.702	134474	1984418	99.

Figure S101. ¹H and ¹³C NMR spectrum of 4u.

Figure S102. HPLC spectrum of 4u.

	Ret. Time	Height	Area	% Area
1	19.816	775	17919	0.05
2	21.728	757167	38329173	99.95

16.00

17.00

18.00

19.00

23.00

21.00

25.00

Figure S103. ¹H and ¹³C NMR spectrum of 4v.

Figure S104. HPLC spectrum of 4v.

Figure S105. ¹H and ¹³C NMR spectrum of 4w.

Figure S106. HPLC spectrum of 4w.

Figure S107. ¹H and ¹³C NMR spectrum of 4x.

	Ret. Time	Height	Area	% Area
1	13.965	837815	12133676	90.55
2	15.489	74421	1266847	9.45

Figure S109. ¹H and ¹³C NMR spectrum of 4y.

	Ret. Time	Height	Area	% Area
1	9.975	123287	1419548	9.99
2	11.125	823468	12788591	90.01

Figure S111. ¹H and ¹³C NMR spectrum of 5

Figure S112. HPLC spectrum of 5.

Figure S113. ¹H and ¹³C NMR spectrum of 6.

Figure S114. HPLC spectrum of 6.

	Ret. Time	Height	Area	% Area
1	20.257	164	5436	0.02
2	22.555	808778	34548880	99.98

Figure S115. ¹H and ¹³C NMR spectrum of 7.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200

Figure S116. HPLC spectrum of 7.

S158

Figure S117. ¹H and ¹³C NMR spectrum of 8.

Figure S118. HPLC spectrum of 8.

	Ret. Time	Height	Area	% Area
1	31.222	62	1766	0.02
2	34.734	126553	7499382	99.98

Figure S119. ¹H and ¹³C NMR spectrum of 9.

Figure S120. HPLC spectrum of 9.

Figure S121. ¹H and ¹³C NMR spectrum of **10**.

Figure S122. HPLC spectrum of 10.

Figure S123. ¹H and ¹³C NMR spectrum of 11.

 $\begin{array}{c} -2.2\\$

Figure S125. ¹H and ¹³C NMR spectrum of **12**.

60 50 -10

	Ret. Time	Height	Area	% Area
1	178.573	286	55859	0.21
2	186.633	63076	26780095	99.79

Figure S127. ¹H and ¹³C NMR spectrum of the NHC pre-catalysts D bearing counter ions (Cl-).

Figure S128. ¹H and ¹³C NMR spectrum of the NHC pre-catalysts D bearing counter ions (ClO₄⁻).

