Supporting Information

Driving High Quantum Yield NIR Emission through Proquinoidal Linkage

Motifs in Conjugated Supermolecular Arrays

Erin J. Peterson, Wei Qi, Ian N. Stanton, Peng Zhang, and Michael J. Therien*

Department of Chemistry, French Family Science Center, 124 Science Drive, Duke University,

Durham, North Carolina 27708-0346, USA

Contents

1.	Materials and Instrumentation	S1-S3
2.	Synthetic Procedures and Schemes	S3-S14
3.	Characterization and Additional Spectra	S15-S26
4.	DFT and TD-DFT Calculations	S27-S31
5.	References	S32

1. Materials and Instrumentation

Materials. All manipulations were carried out under argon previously passed through an O₂ scrubbing tower (Schweitzerhall R3-11 catalyst) and a drying tower (Linde 3-Å molecular sieves) unless otherwise stated. Air sensitive solids were handled in a Braun 150-M glove box. Standard Schlenk techniques were employed to manipulate air sensitive solutions. Unless otherwise noted, all solvents utilized in this work were obtained from Fisher Scientific (HPLC grade); tetrahydrofuran (THF) was distilled from Na/4-benzoylbiphenyl under N₂. Diisopropylamine, Triethylamine, MeOH, CHCl₃ and CH₂Cl₂ were distilled from CaH₂ under N₂. Pyridine and piperidine was also dried over CaH₂ and distilled under reduced pressure. The catalysts tetrakis(triphenylphosphine)palladium(0) (Pd(PPh₃)₄), bis(triphenylphosphine)-palladium(II) chloride (Pd(PPh₃)₂Cl₂), tris(dibenzylideneacetone)dipalladium(0) (Pd₂dba₃), copper iodide (CuI), triphenylarsine (AsPh₃) and triphenylphosphine (P(*o*-tol)₃) were purchased from Strem Chemicals and used as received. 4-Bromo-benzo[*c*][1,2,5]thiadiazole and 4,7 Dibromobenzo[*c*][1,2,5]thiadiazole¹ were prepared by literature methods. All NMR solvents were used as received. All the other chemicals were used as received.

Instrumentation. NMR spectra were recorded on a 500 MHz AC-Brucker instrument. All chemical shifts for ¹H NMR spectra are relative to tetramethylsilane (TMS) signal in the deuterated solvent (TMS = 0.00 ppm). All *J* values are reported in Hertz. Flash and size exclusion column chromatography were performed on the bench top, using silica gel (EM Science, 230–400 mesh) and Bio-Rad Bio-Beads SX-1, respectively, as media. MALDI-TOF spectroscopic data were obtained with a Perspective Voyager DE instrument; samples for these experiments were prepared as micromolar solutions in THF or CH₂Cl₂, and dithranol in THF or cyano-4-hydroxycinnamic acid in CH₂Cl₂/isopropyl alcohol (4:1) were utilized as the matrix. **Steady State Absorption**. Absorption measurements were performed on a Shimadzu UV-1700 spectrophotometer in the same 1 cm quartz cell used for the quantum yield measurements. **Steady State Emission**. Steady state emission spectra were recorded on an Edinburgh FLSP920, equipped with a Xe-lamp for excitation and an R2658 PMT (Hamamatsu) for detection, in the same 1 cm quartz cell used for the quantum yield measurements.

Quantum Yield System. A Hamamatsu C9920-03 Absolute Quantum Yield Measurement System was employed to make the quantum yield measurements. Excitation initiates from a Xelamp, where the wavelength is selected by a monochromator, and passed through a 1 mm optical excitation fiber. The inside of the sphere is coated with Spectralon (Labsphere, Inc.) that has 99% reflectance from at least 350 – 1650 nm. The light transmitted, light scattered, and emitted light are collected through a second optical fiber protected by a baffle. The baffle ensures that each photon bounces twice within the sphere before being collected, which homogenizes the collected light such that no detected photons are from direct injection of scattered or emitted light into the fiber. Therefore, the individual signals of the light being detected is truly representative of the distribution of the light within the sphere. The collected light is then sent into a photonic multichannel analyzer (PMA-12) that contains a BT-CCD based spectrometer for light detection. The system response to wavelength and intensity are fully calibrated and corrected based on the output of traceable lamp sources to the National Metrology Institute of Japan.

Quantum Yield Measurement. A dilute stock solution of each sample was made fresh daily. For each sample, at least two sets of four concentrations were measured to show the precision of the methodology. For each set, a low chromophore concentration (~0.025 OD) at the excitation wavelength was prepared, measured, and subsequently diluted 3 additional times until the final OD was roughly 0.005. Each measurement was checked for absorption prior to measurement to ensure this range. The reference sample of each measurement was a 1 cm cuvette filled with the solvent being used, and the same 1 cm cell was used for the whole set of measurement.

Density Functional Theory Calculations. All electronic structure calculations were performed upon model compounds in which the aliphatic chains were truncated to methyl groups. Structure optimization was performed with density functional theory using Gaussian $16^{2,3}$ The M11 functional⁴ was employed for all calculations. Optimizations were performed with minimal symmetry constraints using tight optimization criteria and the 6-311g(d) basis set was implemented. Selected frontier orbital wavefunctions were plotted as isosurfaces (iso = 0.02) using Avogadro.⁵ TD-DFT result files were post-processed using the GaussSum package;⁶ this software partitions the wavefunction amplitudes onto molecular fragments using Mulliken population analysis.⁷

2. Synthetic Procedures and Schemes

Synthesis.

For synthesis of previously made porphyrin compounds see supplemental literature.^{8,9}

4,7-Bis[(10,20-bis[2',6'-bis(3'',3''-dimethyl-1''-butyloxy)phenyl]porphinato)zinc(II)-5ylethynyl]benzo[*c*][1,2,5]thiadiazole (PZn-BTD-PZn) (1). (5-Ethynyl-10, 20-bis[2",6"-bis(3,3dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (0.100 g, 1.05×10^{-4} mol), 4,7dibromobenzo[*c*][1,2,5]thiadiazole (12.9 mg, 4.4×10^{-5} mol) were charged into a Schlenk flask with Pd₂dba₃ (12.1 mg, 1.32×10^{-5} mol) and AsPh₃ (32.3 mg, 1.05×10^{-4} mol). THF:ⁱPr₂NH (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 50 °C overnight under Ar. After the solvent was evaporated, the residue was chromatographed on silica gel using 5:1 hexanes:THF as the eluent. Yield = 82 mg (91.6 % based on 12.9 mg of the dibromobenzo[*c*][1,2,5]thiadiazole starting material). ¹H NMR (500 MHz, CDCl₃): 10.12 (d, 4H, *J* = 4.4 Hz, β-H), 10.04 (s, 2H, *meso*-H), 9.21 (d, 4H, *J* = 4.4 Hz, β-H), 9.06 (d, 4H, *J* = 4.5 Hz, β-H), 8.92 (d, 4H, *J* = 4.3 Hz, β-H), 8.37 (s, 2H, Ph-H), 7.74 (t, 4H, *J* = 8.6 Hz, Ph-H), 7.04 (d, 8H, *J* = 8.6 Hz, Ph-H), 3.94 (t, 16H, *J* = 7.2 Hz, -O-CH₂-C), 0.87 (t, 16H, *J* = 7.6 Hz, -O-C-CH₂-C), 0.24 (s, 72H, -C-CH₃). MALDI-TOF MS m/z : 2029.98 (M+H)⁺ (calcd 2029.89).

(5-[7'-Bromobenzo[*c*][1,2,5]thiadiazole- ethyn-4'-yl] -10,20-bis[2',6'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II) (2). (5-Ethynyl-10,20-bis[2'',6''-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (0.100 g, 1.05×10^{-4} mol) and 4, 7-dibromobenzo[*c*][1,2,5]thiadiazole (123.7 mg, 4.21×10^{-4} mol) were charged into a Schlenk flask with Pd₂dba₃ (14.4 mg, 1.57×10^{-5} mol) and AsPh₃ (38.5 mg, 1.26×10^{-4} mol). THF: *i*Pr₂NH (9:1)

mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 50 °C overnight under Ar. After the solvent was evaporated, the residue was chromatographed on silica gel using 5:1 hexanes:THF as the eluent. Yield = 0.118 g(96.6 % based on 100 mg of the porphyrin starting material). ¹H NMR (500 MHz, CDCl₃): 10.06 (s, 1H, *meso*-H), 10.01 (d, 2H, J = 4.4 Hz, β -H), 9.22 (d, 2H, J = 4.4 Hz, β -H), 9.02 (d, 2H, J = 4.5 Hz, β -H), 8.91 (d, 2H, J = 4.5 Hz, β -H), 8.07 (d, 1H, J = 7.4 Hz, Ph-H), 8.01(d, 1H, J = 7.5 Hz, Ph-H), 7.71 (t, 2H, J = 8.6 Hz, Ph-H), 7.01 (d, 4H, J = 8.6Hz, Ph-H), 3.90 (t, 8H, J = 7.3 Hz, -O-CH₂-C), 0.87 (t, 8H, J = 7.0 Hz, -O-C-CH₂-C), 0.22 (s, 36H, -C-CH₃).

(5, 15-Bis[7'-([10"',20"'-bis[2"'',6"''-bis(3"''',3"'''-dimethyl-1"'''-

butyloxy)phenyl[porphinato)zinc(II)-5"-ylethynyl]benzo[c][1,2,5]thiadiazole-ethyn-4'-yl] 10.20-bis[2',6'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II) (PZn-(BTD-PZn)₂ (3). Compound 2 (0.100 g, 8.59×10⁻⁵ mol) and (5, 15-diethynyl-10, 20-bis[2",6"-bis(3,3dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (34.9 mg, 3.58×10⁻⁵ mol) were charged into a Schlenk flask with Pd₂dba₃ (9.83 mg, 1.07×10⁻⁵ mol) and P(o-tol)₃ (26.1 mg, 8.59×10⁻⁵ mol). A THF: TEA (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 60 °C overnight under Ar. The reaction mixture was then poured down a short silica gel column using CHCl₃: MeOH (49:1 mL) as the eluent. A large band was collected, and the solvent stripped and then the residue was taken up in THF and put down a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically. The first band was collected, and solvent removed via vacuum and the residue was purified by silica gel chromatography using CHCl₃:MeOH (49:1 mL) as the eluent. Yield = 114 mg (58% based on diethynyl starting material). ¹H NMR (500 MHz, CDCl₃): 10.02 (d, 4H, J = 4.4 Hz, β -H), 9.94 (d, 4H, J = 4.5 Hz, β -H), 9.86 (s, 2H, meso-H), 9.08 (d, 4H, J = 4.2 Hz, β -H), 8.96 (d, 4H, J = 4.3 Hz, β -H), 8.86 (d, 4H, J = 4.5 Hz, β -H), 8.81(d, 4H, J) = 4.5 Hz, β -H), 8.81(d, 4H, A) = 4.5 Hz, β -H), 8.81(d, 4H, J = 4.2 Hz, β -H), 8.26 (s, 4H, Ph-H), 7.70 (t, 6H, J = 8.6 Hz, Ph-H), 7.02 (d, 6H, J = 4.6 Hz, Ph-H), 7.00 (d, 6H, J = 4.7 Hz, Ph-H), 3.89 (m, 24H, -O-CH₂-C), 0.87 (m, 24H, -O-C-CH₂-C), 0.34 (s, 36H, -C-CH₃), 0.30 (s, 72H, -C-CH₃). MALDI-TOF MS m/z: 3136.72 (M+H)⁺ (calcd 3134.33).

(5-Ethynyl-15-[7'-bromobenzo[*c*][1,2,5]thiadiazole- ethyn-4'-yl] -10,20-bis[2',6''-bis(3'',3''dimethyl-1''butyloxy)phenyl]porphinato)zinc(II) (4). (5-Ethynyl-15-triisopropylsilylethynyl-10,20-bis[2'',6''-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (0.100 g, 0.94×10^{-4} mol) and 4, 7-dibromobenzo[*c*][1,2,5]thiadiazole (110.7 mg, 3.77×10^{-4} mol) were charged into a Schlenk flask with Pd₂dba₃ (12.9 mg, 1.40×10^{-5} mol) and AsPh₃ (34.5 mg, 1.13×10^{-4} mol). THF: ¹Pr₂NH (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 50 °C overnight under Ar. After the solvent was evaporated, the residue was chromatographed on silica gel using 5:1 hexanes:THF as the eluent. Yield = 0.117 g (92.4 % based on 100 mg of the porphyrin starting material). ¹H NMR (500 MHz, CDCl₃): 9.85 (d, 2H, β -H), 9.57 (d, 2H, J = 4.6 Hz, β -H), 8.83 (d, 2H, J = 4.5 Hz, β -H), 8.79 (d, 2H, J = 4.7 Hz, β -H), 7.69 (t, 2H, J = 8.5 Hz, Ph-H), 7.56 (m, 1H, Ph-H), 7.29 (m, 1H, Ph-H), 6.98 (d, 4H, J = 8.6 Hz, Ph-H), 1.43(m, 42H, -SiCH(CH₃)₂), 3.88 (t, 8H, J = 7.4 Hz, -O-CH₂-C), 0.87 (t, 8H, J = 7.3 Hz, -O-C-CH₂-C), 0.24 (s, 36H, -C-CH₃).

5, 15-Bistriisopropylsilylethynyl- (5, 15-bis[7'-([10''',20'''-bis[2'''',6''''-bis(3''''',3'''''-dimethyl-1'''''-butyloxy)phenyl]porphinato)zinc(II)-5''-

vlethynyl|benzo[c][1,2,5]thiadiazole-ethyn-4'-yl]-10,20-bis[2',6'-bis(3'',3''-dimethyl-1"butyloxy)phenyl]porphinato)zinc(II) (5). Compound 4 (0.100 g, 7.44×10⁻⁵ mol) and (5, 15diethynyl-10, 20-bis[2",6"-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (30.3 mg, 3.10×10^{-5} mol) were charged into a Schlenk flask with Pd₂dba₃ (8.52 mg, 0.93 \times 10^{-5} mol) and P(o-tol)₃ (22.6 mg, 7.44×10⁻⁵ mol). A THF:TEA (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 60 °C overnight under Ar. The reaction mixture was then poured down a short silica gel column using CHCl₃:MeOH (49:1 mL) as the eluent. A large band was collected, the solvent stripped and then the residue was taken up in THF and put down a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically. The first band was collected and solvent removed via vacuum and the residue was purified by silica gel chromatography using CHCl₃:MeOH (49:1 mL) as the eluent. Yield = 56.4 mg (52% based on diethynyl starting material). ¹H NMR (500 MHz, CDCl₃): 10.02 (d, 4H, J = 4.4 Hz, β -H), 9.94 (d, 4H, J = 4.5 Hz β -H), 9.86 (s, 2H, meso-H), 9.08 (d, 4H, J = 4.2 Hz, β -H), 8.96 (d, 4H, J = 4.3 Hz, β -H), 8.86 (d, 4H, J = 4.5 Hz, β -H), 8.81(d, 4H, J = 4.2 Hz, β -H), 8.26 (s, 4H, Ph-H), 7.70 (t, 6H, J = 8.6Hz, Ph-H), 7.02 (d, 6H, J = 4.6 Hz, Ph-H), 7.00 (d, 6H, J = 4.7 Hz, Ph-H), 3.89 (m, 24H, -O-CH₂-C), 1.42 (m, 42H, -SiCH(CH₃)₂), 0.87 (m, 24H, -O-CCH₂-C), 0.34 (s, 36H, -C-CH₃), 0.30 (s, 72H, -C-CH₃). MALDI-TOF MS m/z: 3136.72 (M+H)⁺ (calcd 3134.33).

5, 15-Ethynyl- (5, 15-bis[7'-([10''',20'''-bis[2'''',6''''-bis(3''''',3''''-dimethyl-1''''' butyloxy)phenyl]porphinato)zinc(II)-5''-ylethynyl]benzo[c][1,2,5]thiadiazole-ethyn-4'-yl]-10,20-bis[2',6'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II) (6). Compound 5 (100 mg, 2.63×10^{-5} mol) was dissolved in THF and cooled down to 0 °C under Ar. TBAF (0.526 mL, 0.1 M TBAF in THF solution, 5.26×10^{-5} mol) was then added dropwise and the reaction mixture was allowed to stir for 15 min at 0 °C. The reaction mixture was then directly poured down a short silica gel column using CHCl₃ as the eluent. Yield = 75 mg (82.3% based on compound 5). ¹H NMR (500 MHz, CDCl₃): 10.05 (d, 4H, J = 4.4 Hz, β -H), 9.96 (d, 4H, J = 4.5 Hz, β -H), 9.02 (d, 4H, J = 4.2 Hz, β -H), 8.96 (d, 4H, J = 4.3 Hz, β -H), 8.87 (d, 4H, J = 4.5 Hz, β -H), 8.80 (d, 4H, J = 4.2 Hz, β -H), 8.26 (s, 4H, Ph-H), 7.72 (t, 6H, J = 8.6 Hz, Ph-H), 7.02 (d, 6H, J = 4.6 Hz, Ph-H), 7.00 (d, 6H, J = 4.7 Hz, Ph-H), 4.13 (s, 2H), 3.89 (m, 24H, -O-CH₂-C), 0.87 (m, 24H, -O-C-CH₂-C), 0.34 (s, 36H, -CCH₃), 0.30 (s, 72H, -C-CH₃).

(5, 15-Bis[7''-([10''',20''''-bis[2'''',6'''''-bis(3''''',3'''''-dimethyl-1'''''butyloxy)phenyl]porphinato)zinc(II)-5'''-ylethynyl]benzo[*c*][1,2,5]thiadiazole-ethyn-4''-yl] -(5, 15-bis[7'-([10''',20'''-bis[2'''',6''''-bis(3'''',3''''-dimethyl-1''''butyloxy)phenyl]porphinato)zinc(II)-5''-ylethynyl]benzo[*c*][1,2,5]thiadiazole-ethyn4'-yl] 10,20-bis[2',6'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II) (PZn-(BTD-PZn)4 (7). Compound 2 (0.100 g, 8.59×10⁻⁵ mol) and compound 6 (114.1 mg, 3.58×10⁻⁵ mol) were charged into a Schlenk flask with Pd₂dba₃ (9.83 mg, 1.07×10⁻⁵ mol) and P(*o*-tol)₃ (26.1 mg, 8.59×10⁻⁵mol). A THF:TEA (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 60 °C overnight under Ar. The reaction mixture was then poured down a short silica gel column using CHCl₃:MeOH (49:1 mL) as the eluent. A large band was collected and the solvent stripped and then the residue was taken up in THF and put down a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically. The first band was collected, solvent removed via vacuum and the residue was purified by silica gel chromatography using CHCl₃: MeOH (49:1 mL) as the eluent. Yield = 61.2 mg (32% based on compound 6). ¹H NMR (500 MHz, CDCl₃): 10.02 (d, 4H, J = 4.4 Hz, β -H), 9.94 (d, 4H, J = 4.5 Hz, β -H), 9.86 (s, 2H, *meso*-H), 9.08 (d, 4H, J = 4.2 Hz, β -H), 8.96 (d, 4H, J = 4.3 Hz, β -H), 8.86 (d, 4H, J = 4.5 Hz, β -H), 8.81(d, 4H, J = 4.2 Hz, β -H), 8.26 (s, 4H, Ph-H), 7.70 (t, 6H, J = 8.6 Hz, Ph-H), 7.02 (d, 6H, J = 4.6 Hz, Ph-H), 7.00 (d, 6H, J = 4.7 Hz, Ph-H), 3.89 (m, 24H, -O-CH₂-C), 0.87 (m, 24H, -O-C-CH₂-C), 0.34 (s, 36H, -C-CH₃), 0.30 (s, 72H, -C-CH₃). MALDI-TOF MS *m/z*: 5366.7 (M+Na)⁺ (calcd 5367.18).

(5, 15-Bis[benzo[*c*][1,2,5]thiadiazole-ethyn-4'-yl] -10,20-bis[2',6'-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (BTD-PZn-BTD) (8). (5, 15-Diethynyl-10,20-bis[2'',6''-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (50.0 mg, 5.13×10^{-5} mol), and 4 bromobenzo[*c*][1,2,5]thiadiazole (26.5 mg, 1.23×10^{-4} mol) were charged into a Schlenk flask with Pd₂dba₃ (14.1 mg, 1.54×10^{-5} mol) and AsPh₃ (37.7 mg, 1.23×10^{-4} mol). THF: ^{*i*}Pr₂NH (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 50 °C overnight under Ar. After the solvent was evaporated, the residue was chromatographed on silica gel using 5:1 hexanes:THF as the eluent. Yield = 57.2 mg (90.2 % based on 50 mg of the porphyrin starting material). ¹H NMR (500 MHz, CDCl₃): 9.82 (d, 4H, *J* = 4.5 Hz, β -H), 8.85 (d, 4H, *J* = 4.5 Hz, β -H), 7.97 (d, 2H, *J* = 6.4 Hz, Ph-H), 7.68 (t, 2H, *J* = 8.5 Hz, Ph-H), 7.47 (m, 2H, Ph-H), 7.01 (t, 2H, *J* = 8.6 Hz, Ph-H), 6.98 (m, 6H, Ph-H), 3.86 (t, 8H, *J* = 7.3 Hz, -O-CH₂-C), 0.77 (t, 8H, *J* = 7.3 Hz, -O-CCH₂-C), 0.19 (s, 36H, -C-CH₃). MALDI-TOF MS m/z: 1239.53 [(M+H)⁺] (calcd 1240.44).

4-(Trimethylsilyl)ethynylbenzo[*c*][1,2,5]thiadiazole (9). 4-Bromobenzo[*c*][1,2,5]thiadiazole (0.378 g, 1.76×10^{-3} mol), Pd(PPh₃)₄ (0.125 g, 1.68×10^{-4} mol), CuI (0.014 g, 7.4×10^{-5} mol), THF (20 mL), diisopropylamine (1.00 mL), and (trimethylsilyl)acetylene (1.00 mL, 7.1×10^{-3} mol) were added to a 50 mL Schlenk tube. N₂ was bubbled through the mixture for 5 min, following which the reaction was stirred at 45 °C for 20 h under N₂. After cooling, the solvent was evaporated, and the residue was chromatographed on silica gel with 1:1 hexanes:CHCl₃ as the eluent. Yield = 0.398 g (97.3 % based on 0.378 g of 4-bromobenzothiadiazole). ¹H NMR (500 MHz, CDCl₃): 7.88 (m, 1H, Ph-H), 7.67 (m, 1H, Ph-H), 7.45 (m, 1H, Ph-H), 0.33 (s, 9H, -Si-CH₃).

4-Ethynylbenzo[*c*][1,2,5]thiadiazole (10). 4-(Trimethylsilyl)ethynylbenzo[*c*][1,2,5]thiadiazole (0.100 g, 4.30×10^{-4} mol), K₂CO₃ (78.6 mg, 5.71×10^{-4} mol), THF (3 mL), and MeOH (2 mL) were added to a 25 mL Schlenk tube. N₂ was bubbled through the mixture for 5 min, following which the reaction was stirred at room temperature for 1.5 h under N₂. The reaction mixture was then filtered and the filtrate was evaporated. The residue was chromatographed on silica gel with 5:1 hexanes:THF as the eluent. Yield = 63 g (91.4% based on 0.100 g of 4-(trimethylsilyl)-ethynylbenzothiadiazole). ¹H NMR (500 MHz, CDCl₃): 8.01 (m, 1H, Ph-H), 7.78 (m, 1H, Ph-H), 7.56 (m, 1H, Ph-H), 3.56 (s, 1H, -CC-H).

(5-Bromo-15-[benzo[*c*][1,2,5]thiadiazole- ethyn-4'-yl] -10,20-bis[2',6'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II) (11). (5, 15-Dibromo-10,20-bis[2'',6''-bis(3,3dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (0.200 g, 1.84×10^{-4} mol) and 4ethynylbenzo[*c*][1,2,5]thiadiazole (14.8 mg, 8.22×10^{-5} mol) were charged into a Schlenk flask with Pd(PPh₃)₄ (26.6 mg, 2.30×10^{-5} mol) and CuI (8.8 mg, 4.62×10^{-4} mol). THF:piperidine (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 50 °C overnight under Ar. After the solvent was evaporated, the residue was chromatographed on silica gel using 5:1 hexanes:THF as the eluent. Yield = 0.076 g (64.9 % based on the 4-ethynylbenzothiadiazole starting material). ¹H NMR (500 MHz, CDCl₃): 9.75 (d, 2H, β -H), 9.57 (d, 2H, J = 4.6 Hz, β -H), 8.88 (d, 2H, J = 4.5 Hz, β -H), 8.81 (d, 2H, J = 4.7 Hz, β -H), 8.00 (m, 1H, Ph-H), 7.69 (t, 2H, J = 8.5 Hz, Ph-H), 7.56 (m, 1H, Ph-H), 7.29 (m, 1H, Ph-H), 6.98 (d, 4H, J = 8.6 Hz, Ph-H), 3.88 (t, 8H, J = 7.4 Hz, -O-CH₂-C), 0.87 (t, 8H, J = 7.3 Hz, -O-C-CH₂-C), 0.24 (s, 36H, -C-CH₃).

(5-Triisopropylsilylethynyl-15-[benzo[c][1,2,5]thiadiazole- ethyn-4'-yl] -10,20-bis[2',6'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II) (12). (5-Bromo-15-

triisopropylsilylethynyl-10,20-bis[2",6"-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (0.200 g, 1.69×10^{-4} mol) and 4-ethynylbenzo[c][1,2,5]thiadiazole (32.5 mg, 2.03×10^{-4} mol) were charged into a Schlenk flask with Pd(PPh₃)₄ (29.3 mg, 2.53×10^{-5} mol) and CuI (9.6 mg, 5.06×10^{-5} mol). THF:piperidine (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 50 °C overnight under Ar. After the solvent was evaporated, the residue was chromatographed on silica gel using 5:1 hexanes:THF as the eluent. Yield = 164.4 mg (76.8 % based on the porphyrin starting material). ¹H NMR (500 MHz, CDCl₃): 9.87 (d, 2H, β -H), 9.61 (d, 2H, J = 4.5 Hz, β -H), 8.86 (d, 2H, J = 4.5 Hz, β -H), 8.80 (d, 2H, J = 4.5 Hz, β -H), 8.07 (m, 1H, Ph H), 7.67 (t, 2H, J = 8.5 Hz, Ph-H), 7.60 (m, 1H, Ph-H), 7.49 (m, 1H, Ph-H), 6.98 (d, 4H, J = 8.5 Hz, Ph-H), 3.88 (t, 8H, J = 7.4 Hz, -O-CH₂-C), 1.41 (m, 21H, -Si-(CH(CH₃)₂)₃), 0.88 (t, 8H, J = 7.3 Hz, -O-C-C+Q₂-C), 0.27 (s, 36H, -C-CH₃).

(5-Ethynyl-15-[benzo[*c*][1,2,5]thiadiazole- ethyn-4'-yl] -10,20-bis[2',6'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II) (13). Compound 12 (160 mg, 1.26×10^{-4} mol) was dissolved in THF under Ar. TBAF (2.5 mL, 0.1 M TBAF in THF solution, 2.5×10^{-4} mol) was then added dropwise and the reaction mixture was allowed to stir for 5 min at room temperature. TLC analysis (5:1 hexanes:THF) showed complete formation of the product and consumption of the starting material. The reaction mixture was then quenched with 10 mL water, extracted with CHCl₃ and evaporated. The residue was chromatographed on silica gel using 5:1 hexanes:THF as the eluant. Yield = 125.5 mg (89.5% based on compound 12). ¹H NMR (500 MHz, CDCl₃): 9.86 (d, 2H, β -H), 9.57 (d, 2H, J = 4.1 Hz, β -H), 8.85 (d, 2H, J = 4.8 Hz, β -H), 8.81 (d, 2H, J = 4.5 Hz, β -H), 8.03 (m, 1H, Ph-H), 7.69 (t, 2H, J = 8.5 Hz, Ph-H), 7.56 (m, 1H, Ph-H), 7.49 (m, 1H, Ph-H), 6.98 (m, 4H, Ph-H), 4.07 (S, 1H, -CC-H), 3.88 (t, 8H, J = 7.4 Hz, -O-CH₂-C), 0.87 (t, 8H, J = 6.8 Hz, -O-C-CH₂-C), 0.29 (s, 36H, -C-CH₃).

1,2-Bis[(15-(benzo[c][1,2,5]thiadiazole- ethyn-4'-yl)-10,20-bis[3',5'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II)-5-yl]ethyne (BTD-PZn₂-BTD) (14). Compound 11 (50.0 mg, 4.30 \times 10^{-5} mol) and compound 13 (57.0 mg, 5.16 \times 10^{-5} mol) were charged into a Schlenk flask with Pd₂dba₃ (5.9 mg, 6.45 \times 10^{-6} mol) and AsPh₃ (15.8 mg, 5.16 \times 10^{-5} mol). A THF:TEA (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 60 °C overnight under Ar. The reaction mixture was then poured down a short silica gel column using CHCl₃:MeOH (49:1 mL) as the eluent. A large band was collected and the solvent stripped and then the residue was taken up in THF and put down a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically. The first band was collected and solvent removed via vacuum and the residue was purified by silica gel chromatography using CHCl₃:MeOH (49:1 mL) as the eluent. Yield = 45 mg (47.8% based on 50 mg of compound 11). ¹H NMR (500 MHz, CDCl₃): 10.19 (d, 4H, J = 4.4 Hz, β -H), 9.85 (d, 4H, J = 4.3 Hz, β -H), 8.88 (d, 4H, J = 4.4 Hz, β -H), 8.84 (d, 4H, J = 4.5 Hz, β -H), 8.10 (d, 2H, J = 6.1 Hz, Ph-H), 8.07 (m, 2H, Ph-H), 7.66 (t, 4H, J = 8.6 Hz, Ph-H), 7.00 (d, 8H, J = 8.6 Hz, Ph-H), 3.89 (t, 16H, J = 7.5 Hz, -O-CH₂-C), 0.82 (t, 16H, J = 6.6 Hz, -O-C-CH₂-C), 0.32 (s, 72H, -C-CH₃). MALDI-TOF MS *m/z*: 2182.14 (M+H)⁺ (calcd 2187.89).

(5, 15-Bis[15'-benzo]c][1,2,5]thiadiazole-ethyn-4'-yl-(10''',20'''- bis[2'''',6''''bis(3"",3""-dimethyl-1""-butyloxy)phenyl]porphinato)zinc(II)ethyn-5'-yl]-10,20bis[2',6'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II) (BTD-PZn₃-BTD) (15). Compound 13 (60 mg, 5.42×10⁻⁵ mol) and (5, 15-dibromo-10, 20-bis[2",6"-bis(3,3dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (24.5 mg, 2.26×10⁻⁵ mol) were charged into a Schlenk flask with Pd₂dba₃ (6.2 mg, 6.78×10⁻⁶ mol) and P(o-tol)₃ (16.5 mg, 5.42×10⁻⁵ mol). A THF:TEA (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 60 °C overnight under Ar. The reaction mixture was then poured down a short silica gel column using CHCl₃: MeOH (49:1 mL) as the eluent. A large band was collected and the solvent stripped and then the residue was taken up in THF and put down a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically. The first band was collected and solvent removed via vacuum and the residue was purified by silica gel chromatography using CHCl₃:MeOH (49:1 mL) as the eluent. Yield = 48.4 mg (68.2% based on dibromo starting material). ¹H NMR (500 MHz, CDCl₃): 10.16 (d, 4H, J = 4.4 Hz, β -H), 10.14 (d, 4H, J = 4.3 Hz, β -H), 9.81 (d, 4H, J = 4.4Hz, β -H), 8.87 (d, 4H, J = 4.4 Hz, β -H), 8.85 (d, 4H, J = 4.4 Hz, β -H), 8.81 (d, 4H, J = 4.4 Hz, β -H), 8.02 (d, 2H, J = 6.0 Hz, Ph-H), 7.90 (d, 2H, J = 8.7 Hz, Ph-H), 7.63 (m, 8H, Ph-H), $6.96 \text{ (m, 12H, } J = 4.6 \text{ Hz, Ph-H}\text{)}, 3.89 \text{ (m, 24H, -O-CH₂-C)}, 0.81 \text{ (m, 24H, -O-C-CH₂-C)}, 0.28 \text{ (s, 12H, } J = 4.6 \text{ Hz, Ph-H}\text{)}, 3.89 \text{ (m, 24H, -O-CH₂-C)}, 0.81 \text{ (m, 24H, -O-C-CH₂-C)}, 0.28 \text{ (s, 12H, } J = 4.6 \text{ Hz}\text{)}, 0.28 \text{ (s, 12H, } J = 4.6 \text{ Hz$ 36H, -C-CH₃), 0.26 (s, 72H, -C-CH₃). MALDI-TOF MS *m/z*: 3136.80 (M+H)⁺ (calcd 3134.33).

(5,15-Bis[(15'-triisopropylsilylethynyl-10',20'-bis[2''',6'''-bis(3''',3'''-dimethyl-1'''butyloxy)phenyl]porphinato)zinc(II) (16): (5-bromo-15-triisopropylsilylethynyl-10,20bis[2'',6''-bis(3''',3''''-dimethyl-1''''butyloxy)phenyl]porphinato)zinc(II) (120 mg, 1.01×10^{-4} mol) and (5,15-diethynyl-10,20-bis[2'',6''-bis(3'''',3''''dimethyl-1''''butyloxy)phenyl]porphinato)zinc(II) (41.1 mg, 4.21×10^{-5} mol) were charged into a Schlenk flask with AsPh₃ (30.9 mg, 1.01×10^{-4} mol) and Pd₂dba₃ (11.6 mg, 1.26×10^{-5} mol). A THF:TEA (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min and then transferred to the reaction flask. The reaction mixture was stirred at 60 °C under Ar overnight. The reaction mixture was then poured down a short silica gel column using CHCl₃: MeOH (49:1 mL) as the eluent. A large band was collected and the solvent stripped and then the residue was taken up in THF and put down a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically. The first band was collected and solvent removed via vacuum and the residue was purified by silica gel chromatography using CHCl₃: MeOH (49:1 mL) as the eluent. Yield = 114 mg (85% based on diethynyl starting material). ¹H NMR (500 MHz, CDCl₃): 10.35 (d, 8H, β -H), 9.64 (d, 4H, β -H), 9.01 (d, 8H, β -H), 8.86 (d, 4H, β -H), 7.72 (d, 6H, β -H), 7.05 (d, 12H, J = 4.6 Hz, Ph-H), 3.98 (m, 24H, -O-CH₂-C), 1.40 (m, 42, -SiCH(CH₃)₂), 0.89 (m, 24H, -O-CH₂-C), 0.40 (s, 36H, -C-CH₃), 0.37 (s, 72H, -C-CH₃).

(5,15-Bis[(15'-ethynyl-10',20'-bis[2''',6'''-bis(3'''',3''''-dimethyl-

1'''butyloxy)phenyl]porphinato)zinc(II)ethyn-5'-yl]-10,20-bis[2',6'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II) (17): Compound 16 (114 mg, 3.58×10^{-5} mol) was dissolved in THF and cooled down to 0 °C under Ar. TBAF (0.716 mL, 0.1 M TBAF in THF solution, 7.16×10^{-5} mol) was then added dropwise and the reaction mixture was allowed to stir for 15 min at 0 °C. The reaction mixture was then directly poured down a short silica gel column using CHCl₃ as the eluent. Yield = 101.2 mg (98.4% based on compound 16). ¹H NMR (500 MHz, CDCl₃): 10.35 (d, 8H, β -H), 9.64 (d, 4H, β -H), 9.01 (d, 8H, β -H), 8.86 (d, 4H, β -H), 7.72 (d, 6H, β -H), 7.05 (d, 12H, J = 4.6 Hz, Ph-H), 4.11 (s, 2H), 3.98 (m, 24H, -O-CH₂-C), 0.89 (m, 24H, -O-C-CH₂-C), 0.40 (s, 36H, -C-CH₃), 0.37 (s, 72H, -C-CH₃).

[5,15-Bis(15^{***}-[(15^{*****}- benzo[*c*][1,2,5]thiadiazole-ethyn-4^{******}-yl -10^{******},20^{******}-bis[2^{*******}-bis(3^{*******},3^{*******}dimethyl-1^{********}-

butyloxy)phenyl]porphinato)zinc(II)-ethyn-5""-vl]-10",20" bis[2",6"bis(3"",3""'-dimethyl-1""'-butyloxy)phenyl]porphinato)zinc(II)-ethyn-5"'-yl)-10,20bis[2',6'-bis(3'',3''-dimethyl-1''-butyloxy)phenyl)phenyl]porphinato]zinc(II) (BTD-PZn₅-**BTD**) (18): Compound 11 (50 mg, 4.13×10⁻⁵ mol), compound 17 (47.4 mg, 1.65×10⁻⁵ mol) were charged into a Schlenk flask with Pd₂dba₃ (5.7 mg, 4.95×10⁻⁶ mol) and P(o-tol)₃ (12.1 mg, 3.96×10⁻⁵ mol), CuI (0.31mg, 1.65×10⁻⁶ mol). A THF:TEA (9:1 ml) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 60 °C overnight under Ar. The reaction mixture was then poured down a short silica gel column using CHCl₃: MeOH (49:1 mL) as the eluent. A large band was collected and the solvent stripped and then the residue was taken up in THF and put down a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically. The first band was collected and solvent removed via vacuum and the residue was purified by silica gel chromatography using CHCl₃:MeOH (49:1 mL) as the eluent. Yield = 55 mg (68.2% based on compound 17). ¹H NMR (500 MHz, CDCl₃): 10.39 (m, 8H, β-H), 10.35 (m, 8H, β-H), 9.84 (d, 4H, β-H), 9.04 (m, 16H, β-H), 8.88 (d, 4H, β-H), 7.77 (d, 2H, Ph-H), 7.74 (m, 12H, Ph-H), 7.55 (d, 2H, Ph-H), 7.07 (m, 20H, Ph-H), 4.03 (m, 40H, -O-CH₂-C), 0.89 (m, 40H, -O-C-CH₂-C), 0.38 (m, 180H, -C-CH₃). MALDI-TOF MS *m/z*: 5046.80 (M+Na)⁺ (calcd 5049.18).

(5- Triisopropylsilylethynyl-15-[10',20'-bis[2''',6'''-bis(3'''',3''''-dimethyl-

1''''butyloxy)phenyl]porphinato)zinc(II)-ethyn-5'-yl] -10,20-bis[2',6'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II) (19). (5-Bromo-15-triisopropylsilylethynyl-10,20-bis[2'',6''-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (74.8 mg, 6.31×10⁻⁵ mol) and (5-ethynyl-10,20-bis[2'',6''-bis(3,3-dimethyl-1-butyloxy)phenyl]porphinato)zinc(II) (50 mg, 5.26×10⁻⁵ mol) were charged into a Schlenk flask with Pd₂dba₃ (7.2 mg, 7.89×10⁻⁶ mol) and AsPh₃ (19.2 mg, 6.31×10⁻⁵ mol). A THF:TEA (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 60 °C overnight under Ar. The reaction mixture was then poured down a short silica gel

column using CHCl₃: MeOH (49:1 mL) as the eluent. A large band was collected and the solvent stripped and then the residue was taken up in THF and put down a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically. The first band was collected and solvent removed via vacuum and the residue was purified by silica gel chromatography using CHCl₃:MeOH (49:1 mL) as the eluent. Yield = 82 mg (75.8 % based on the 50 mg of 5-Bromo-15-triisopropylsilylethynyl porphyrin starting material). ¹H NMR (500 MHz, CDCl³): 10.43 (d, 2H, J = 4.6 Hz, β -H), 10.42 (d, 2H, J = 4.4 Hz, β -H), 10.03 (s, 1H, *meso*-H), 9.65 (d, 2H, J = 4.5 Hz, β -H), 9.23 (d, 2H, J = 4.4 Hz, β -H), 9.10 (d, 2H, J = 4.6 Hz, β -H), 8.99 (d, 2H, J = 4.4 Hz, β -H), 8.95 (d, 2H, J = 4.4 Hz, β -H), 8.86 (d, 2H, J = 4.4 Hz, β -H), 7.73 (m, 4H, Ph-H), 7.05 (m, 8H, Ph-H), 3.98 (m, 16H, -O-CH₂-C), 1.43 (m, 21, -SiCH(CH₃)₂), 0.89 (m, 16H, -O-C-CH₂-C), 0.45 (s, 36H, -C-CH₃), 0.42 (s, 36H, -C-CH₃).

(5-Ethynyl-15-[10',20'-bis[2''',6'''-bis(3'''',3''''-dimethyl-

1'''butyloxy)phenyl]porphinato)zinc(II)-ethyn-5'-yl] -10,20-bis[2',6'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II) (20). Compound 19 (80 mg, 3.89×10^{-5} mol) was dissolved in THF and cooled down to 0 °C under Ar. TBAF (0.778 mL, 0.1 M TBAF in THF solution, 7.78×10^{-5} mol) was then added dropwise and the reaction mixture was allowed to stir for 15 min at 0 °C. The reaction mixture was then directly poured down a short silica gel column using CHCl₃ as the eluent. Yield = 65 mg (87.9% based on compound 16). ¹H NMR (500 MHz, CDCl₃): 10.43 (d, 2H, J = 4.6 Hz, β -H), 10.42 (d, 2H, J = 4.4 Hz, β -H), 10.03 (s, 1H, *meso*-H), 9.65 (d, 2H, J = 4.5 Hz, β -H), 9.23 (d, 2H, J = 4.4 Hz, β -H), 9.10 (d, 2H, J = 4.6 Hz, β -H), 8.99 (d, 2H, J = 4.4 Hz, β -H), 8.95 (d, 2H, J = 4.4 Hz, β -H), 8.86 (d, 2H, J = 4.4 Hz, β -H), 7.73 (m, 4H, Ph-H), 7.05 (m, 8H, Ph-H), 4.10 (s, 2H), 3.98 (m, 16H, -O-CH₂-C), 0.89 (m, 16H, -O-C-CH₂-C), 0.45 (s, 36H, -C-CH₃), 0.42 (s, 36H, -C-CH₃).

4,7-Diiodobenzo[*c*][1,2,5]thiadiazole (21). Benzo[*c*][1,2,5]thiadiazole (3.20 g, 2.35×10^{-2} mol), I₂ (13.2 g, 5.20×10^{-2} mol) and Ag₂SO₄ (7.34 g, 2.35×10^{-2} mol) were added to a 100 mL three neck round bottom flask. 35 mL concentrated H₂SO₄ was added to the mixture and the reaction mixture was stirred at 110 °C for 14 hours under N₂. After cooling, the reaction mixture was poured into ice water and the precipitate was collected by filtration. This precipitate was washed with CHCl₃. The organic solution was then washed with saturated NaHSO₃ aqueous solution and brine respectively for three times and dried over Na₂SO₄. The product was then chromatographed on silica gel with 1:1 hexanes:CHCl₃ as the eluant. Yield = 3.95 g (43.3 % based on 3.20 g of benzothiadiazole). ¹H NMR (500 MHz, CDCl₃): 7.75 (s, 12H, Ph-H).

4,7-Bis[(15-(10',20'-bis[2",6"-bis(3"",3"'-dimethyl-1""-

butyloxy)phenyl]porphinato)zinc(II) ethyn-5'-yl)-10,20-bis[2',6'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II)-5-ylethynyl]benzo[c][1,2,5]thiadiazole (PZn₂-BTD-PZn₂) (22). Compound 20 (50.0 mg, 2.63×10^{-5} mol) and Compound 21 (4.27 mg, 1.10×10^{-6} mol) were charged into a Schlenk flask with Pd₂dba₃ (3.03 mg, 3.31×10^{-7} mol) and AsPh₃ (8.05 g, 2.63×10^{-5} mol). THF:⁴Pr₂NH (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 60 °C overnight under Ar. The reaction mixture was then poured down a short silica gel column using CHCl₃: MeOH (49:1 mL) as the eluent. A large band was collected and the solvent stripped and then the residue was taken up in THF and put down a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically. The first band was collected and solvent removed via vacuum and the residue was purified by silica gel chromatography using CHCl₃:MeOH (49:1 mL) as the eluent. Yield = 35 mg (80.6 % based on 4.27 mg of compound 21). ¹H NMR (500 MHz, THF-d⁸): 10.33 (d, 4H, J = 7.3 Hz, β -H), 10.28 (d, 4H, J = 7.0 Hz, β -H), 10.07 (d, 4H, J = 8.3 Hz, β -H), 9.90(s, 2H, *meso*-H), 9.13 (d, 4H, J = 7.0 Hz, β -H), 9.06 (d, 4H, J = 7.4 Hz, β -H), 8.94 (m, 8H, β -H), 8.88 (d, 4H, J = 4.2 Hz, β -H), 8.40 (s, 2H, Ph-H), 7.79 (m, 8H, Ph-H), 7.17 (m, 16H, Ph-H), 4.01 (m, 32H, -O-CH₂-C), 0.87 (m, 32H, -O-C-CH₂-C), 0.41 (d, 72H, J = 5.2 Hz, -C-CH₃), 0.36 (d, 72H, J = 5.1 Hz, -C-CH₃). MALDI-TOF MS *m/z*: 3942.10 (M+H)⁺ (calcd 3938.80).

1,2-Bis[(15-triisoprpylsilylethynyl-10,20-bis[2',6'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II)-5-yl]ethyne (23). (5-Bromo-15-

triisopropylsilylethynyl-10,20-bis[2",6"-bis(3"",3""-dimethyl-

1^{""}butyloxy)phenyl]porphinato)zinc(II) (150 mg, 1.26 x 10-4 mol) and (5-ethynyl-15-triisopropylsilylethynyl-10,20-bis[2["],6["]-bis(3^{""},3^{""}-dimethyl-

1""butyloxy)phenyl]porphinato)zinc(II) (106 mg, 9.40×10^{-5} mol) were charged into a Schlenk flask with AsPh₃ (46.3 mg, 1.51×10^{-4} mol) and Pd₂dba₃ (17 mg, 1.89×10^{-5} mol). A THF:TEA (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min and then transferred to the reaction flask. The reaction mixture was stirred at 60 °C under Ar overnight. The reaction mixture was then poured down a short silica gel column using CHCl₃: MeOH (49:1 mL) as the eluent. A large band was collected and the solvent stripped and then the residue was taken up in THF and put down a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically. The first band was collected and solvent removed via vacuum and the residue was purified by silica gel chromatography using CHCl₃: MeOH (49:1 mL) as the eluent. Yield = 164 mg (78.1% based on 106 mg 5-ethynyl-15-triisopropylsilylethynyl porphyrin starting material). ¹H NMR (500 MHz, CDCl₃): 10.36 (d, 4H, β -H), 9.67 (d, 4H, β -H), 9.00 (d, 4H, β -H), 8.88 (d, 4H, β -H), 7.75 (m, 4H, Ph-H), 7.06 (m, 8H, Ph-H), 3.98 (m, 16H, -O-CH₂-C), 1.46 (m, 21H, -SiCH(CH₃)₂), 0.91 (m, 16H, -O-CC-CH₂-C), 0.38 (d, 72H, -C-CH₃).

1,2-Bis[(15-ethynyl-10,20-bis[2',6'-bis(3'',3''-dimethyl-

1''butyloxy)phenyl]porphinato)zinc(II)-5-yl]ethyne (24). Compound 23 (150 mg, 6.71×10^{-5} mol) was charged in a Schlenk flask and dissolved in THF and cooled to 0 °C while under Ar. TBAF (1.34 mL, 0.1 M TBAF solution in THF, 1.34×10^{-4} mol) was added dropwise to the reaction mixture and allowed to stir for 15 min at 0 °C under Ar. At 15 min the reaction mixture was poured down a prepacked CHCl₃ silica gel plug and the first band was collected and solvent removed via vacuum. Yield = 115 mg (89.1% based on compound 23). ¹H NMR (500 MHz, CDCl₃):10.32 (d, 4H, β -H), 9.58 (d, 4H, β -H), 8.96 (d, 4H, β -H), 8.84 (d, 4H, β -H), 7.73 (m, 4H, Ph-H), 7.06 (m, 8H, Ph-H), 4.10 (s, 2H), 3.96 (m, 16H, -O-CH₂-C), 0.91 (m, 16H, -O-CCH₂-C), 0.40 (d, 72H, -C-CH₃).

(5-(10',20'-Bis[2'',6''-bis(3''',3'''-dimethyl-1'''butyloxy)phenyl]porphinato)zinc(II)-ethyn-5'-yl)-15-[7'-bromobenzo[c][1,2,5]thiadiazole- ethyn-4'-yl] -10,20-bis[2',6'-bis(3'',3''dimethyl-1''butyloxy)phenyl]porphinato)zinc(II) (25). Compound 20 (0.200 g, 1.05×10^{-4} mol) and 4, 7-dibromobenzo[c][1,2,5]thiadiazole (123.8 mg, 4.21×10^{-4} mol) were charged into a Schlenk flask with Pd₂dba₃ (14.4 mg, 1.57×10^{-5} mol) and AsPh₃ (38.6 mg, 1.26×10^{-4} mol). A THF:TEA (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture, was stirred at 50 °C overnight under Ar. After the solvent was evaporated, the residue was then poured down a short silica gel column using CHCl₃: MeOH (49:1 mL) as the eluent. A large band was collected and the solvent stripped and then the residue was taken up in THF and put down a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically. The second band was collected and solvent removed via vacuum and the residue was purified by silica gel chromatography using CHCl₃:MeOH (49:1 mL) as the eluent. Yield = 108 mg (48.7 % based on 0.200 mg of the porphyrin starting material). ¹H NMR (500 MHz, CDCl₃): 10.43 (d, 2H, J = 4.6 Hz, β -H), 10.42 (d, 2H, J = 4.4 Hz, β -H), 10.03 (s, 1H, *meso*-H), 9.65 (d, 2H, J = 4.5 Hz, β -H), 9.23 (d, 2H, J =4.4 Hz, β -H), 9.10 (d, 2H, J = 4.6 Hz, β -H), 8.99 (d, 2H, J = 4.4 Hz, β -H), 8.95 (d, 2H, J =4.4 Hz, β -H), 8.86 (d, 2H, J = 4.4 Hz, β -H), 8.10 (d, 1H, J = 6.1 Hz, Ph-H), 7.73 (m, 5H, Ph-H), 7.05 (m, 8H, Ph-H), 3.98 (m, 16H, -O-CH₂-C), 1.43 (m, 21, -SiCH(CH₃)₂), 0.89 (m, 16H, -O-C-CH₂-C), 0.45 (s, 36H, -C-CH₃), 0.42 (s, 36H, -C-CH₃).

1,2-Bis(4-[10,20-bis[2',6'-bis(3'',3''-dimethyl-1''-butyloxy)phenyl]porphinato)zinc(II)-5-ylethynyl],7-[(15-(10',20'-bis[2'',6''-bis(3''',3'''-dimethyl-1'''-

butyloxy)phenyl]porphinato)zinc(II)ethyn-5'-yl)-10,20-bis[2',6'-bis(3'',3''-dimethyl-1''butyloxy)phenyl]porphinato)zinc(II)-5-vlethynyl]benzo[c][1,2,5]thiadiazole (PZn₂-(BTD-PZn₂)₂ (26). Compound 25 (181.4 mg, 8.59×10⁻⁵ mol) and compound 24 (68.9 mg, 3.58×10⁻⁵ mol) were charged into a Schlenk flask with Pd₂dba₃ (9.83 mg, 1.07×10⁻⁵ mol) and P(o-tol)₃ (26.1 mg, 8.59×10⁻⁵ mol). A THF:TEA (9:1 mL) solvent mixture was degassed with an Ar purge for 30 min prior to solvent transfer. Once solvent was transferred, the reaction mixture was stirred at 60°C overnight under Ar. The reaction mixture was then poured down a short silica gel column using CHCl₃: MeOH (49:1 mL) as the eluent. A large band was collected and the solvent stripped and then the residue was taken up in THF and put down a size exclusion column (BioRad Biobeads, SX-1) and chromatographed gravimetrically. The first band was collected and solvent removed via vacuum and the residue was purified by silica gel chromatography using CHCl₃: MeOH (49:1 mL) as the eluent. Yield = 68.9 mg (32% based on diethynyl starting material). ¹H NMR (500 MHz, CDCl₃): 10.02 (d, 4H, J = 4.4 Hz, β -H), 9.94 (d, 4H, J = 4.5 Hz, β -H), 9.86 (s, 2H, meso-H), 9.08 (d, 4H, J = 4.2 Hz, β -H), 8.96 (d, 4H, J = 4.3 Hz, β -H), 8.86 (d, 4H, J = 4.5 Hz, β -H), 8.81(d, 4H, J = 4.2 Hz, β -H), 8.26 (s, 4H, Ph-H), 7.70 (t, 6H, J = 8.6Hz, Ph-H), 7.02 (d, 6H, J = 4.6 Hz, Ph-H), 7.00 (d, 6H, J = 4.7 Hz, Ph-H), 3.89 (m, 24H, -O-CH2-C), 0.87 (m, 24H, -O-C-CH2-C), 0.34 (s, 36H, -C-CH3), 0.30 (s, 72H, -C-CH3). MALDI-TOF MS *m*/*z*: 6017.79 (M+Na)⁺ (calcd 6023.65).

Synthetic Schemes.

Scheme 1. Syntheses of PZn-(BTD-PZn)_n compounds.

Scheme 2. Syntheses of BTD-PZn_n-BTD compounds.

Scheme 3. Syntheses of (PZn)₂-(BTD-PZn₂)_n compounds.

3. Characterization and Additional Spectra

¹H NMR Spectra.

Figure S1. ¹H NMR (500 MHz) of **PZn-BTD-PZn** in CDCl₃. The designations s and x denote solvent and impurity peaks, respectively.

Figure S2. ¹H NMR (500 MHz) of **PZn-(BTD-PZn)**₂ in CDCl₃ with 1 drop of pyridined₅. The designations s and x denote solvent and impurity peaks, respectively.

Figure S3. ¹H NMR (500 MHz) of **PZn-(BTD-PZn)**₄ in CDCl₃ with 1 drop of pyridine-d₅. The designations s and x denote solvent and impurity peaks, respectively.

Figure S4. ¹H NMR (500 MHz) of **BTD-PZn-BTD** in CDCl₃. The designations s and x denote solvent and impurity peaks, respectively.

Figure S5. ¹H NMR (500 MHz) of **BTD-PZn₂-BTD** in CDCl₃ with one drop of pyridine-d₅. The designations s and x denote solvent and impurity peaks, respectively.

Figure S6. ¹H NMR (500 MHz) of **BTD-PZn₃-BTD** in CDCl₃ with 1 drop of pyridine-d₅. The designations s and x denote solvent and impurity peaks, respectively.

Figure S7. ¹H NMR (500 MHz) of **BTD-PZn₅-BTD** in CDCl₃ with 1 drop of pyridine-d₅. The designations s and x denote solvent and impurity peaks, respectively.

Figure S8. ¹H NMR (500 MHz) of **PZn₂-BTD-PZn₂** in CDCl₃ with 1 drop of pyridine-d₅. The designations s and x denote solvent and impurity peaks, respectively.

Figure S9. ¹H NMR (500 MHz) of **PZn₂-(BTD-PZn₂)**₂ in CDCl₃ with 1 drop of pyridine-d₅. The designations s and x denote solvent and impurity peaks, respectively.

Additional Electronic Spectral Data.

Table S1 | Prominent absorption band wavelength and energies of BTD-incorporated

arrays in THF solvent.

	B-Band			Q-Band			
	$\lambda(nm)$	$v(cm^{-1})$	Log(ɛ)	λ(nm)	$\nu(cm^{-1})$	FWHM (cm ⁻¹)	Log(ɛ)
PZn-BTD-PZn	426 465 530 566	23,474 21,505 18,868 17,668	5.16 4.79 4.55 4.34	689	14,514	1194	4.81
PZn-(BTD-PZn) ₂	427 486 524 572	23,419 20,576 19,084 17,483	5.42 5.01 4.94 4.53	628 745	15,924 13,423	1178	4.48 5.13
PZn-(BTD-PZn) ₄	428 530	23,364 18,868	5.46 5.05	642 712 776	15,576 14,045 12,887	1558	4.68 4.94 5.26
BTD-PZn-BTD	432 468	23,148 21,368	4.97 5.25	674	14,837	672	4.92
BTD-PZn ₂ -BTD	467 495	21,413 20,202	5.20 5.40	586 640 705 766	17,065 15,625 14,184 13,056	1243	4.26 4.21 4.73 5.04
BTD-PZn ₃ -BTD	422 492	23,697 20,325	5.16 5.43	588 812	17,007 12,315	1663	4.38 5.20
BTD-PZn ₅ -BTD	424 498	23,585 20,080	5.31 5.67	590 686 846	16,949 14,577 11,820	1675	4.53 4.69 5.38
PZn ₂ -BTD-PZn ₂	415 488 564	24,096 20,491 17,730	5.33 5.61 4.61	781	12,804	1822	5.16
$PZn_2-(BTD-PZn_2)_2$	416 489	24,038 20,450	5.23 5.50	818	12,225	1582	5.24

Table S2 | Prominent absorption band wavelength, energies, and Stokes shifts of BTD

arrays in toluene solvent.

		B-band region		Q-band region		$S_1 \rightarrow S_0$		Stokes' Shift		
		λ (nm)	$v(cm^{-1})$	λ (nm)	$v(cm^{-1})$	FWHM (cm ⁻¹)	λ (nm)	$\nu(cm^{-1})$	FWHM (cm ⁻¹)	$v(cm^{-1})$
PZn-B PZn	STD-	423 462 519 560	23,641 21,645 19,268 17,857	667	14,993	949	689	14,514	886	479
PZn-(1 PZn) ₂	BTD-	427 485 522 568	23,419 20,619 19,157 17,606	614 656 720	16,287 15,244 13,889	1014	738	13,550	787	339
PZn-(1 PZn) ₄	BTD-	427 488 525	23,419 20,492 19,048	633 689 756	15,798 14,514 13,228	1655	764	13,089	811	139
BTD-I BTD	PZn-	426 468	23,474 21,368	660	15,152	663	669	14,948	606	204
BTD-I BTD	PZn ₂ -	430 467 496	23,256 21,413 20,161	578 626 685 737	17,301 15,974 14,599 13,569	1564	763	13,106	753	463
BTD-I BTD	PZn ₃ -	414 467 496	24,155 21,413 20,161	584 770	17,123 12,970	1630	810	12,346	871	624
BTD-I BTD	PZn ₅ -	420 456 498	23,810 21,930 20,080	583 797	17,153 12,547	1564	841	11,891	939	656
PZn ₂ - PZn ₂	BTD-	412 487	24,272 20,534	748	13,369	1609	781	12,804	907	565
PZn ₂ -(PZn ₂)	(BTD-	414 488	24,155 20,492	777	12,870	1339	806	12,407	829	463

Figure S10. Electronic absorption spectra of $BTD-PZn_n-BTD$ fluorophores in toluene solvent.

Figure S11. Emission spectra of BTD-PZn_n-BTD fluorophores in toluene solvent.

Figure S12. Electronic absorption spectra of $PZn-(BTD-PZn)_n$ fluorophores in toluene solvent.

Figure S13. Emission spectra of $PZn-(BTD-PZn)_n$ fluorophores in toluene solvent.

Figure S14. Electronic absorption spectra of PZn₂-(BTD-PZn₂)_n fluorophores in toluene solvent.

Figure S15. Emission spectra of $PZn_2-(BTD-PZn_2)_n$ fluorophores in toluene solvent.

Exemplary Concentration Dependence

Figure S16. Absorbance spectra of BTD-PZn₃-BTD in THF at varying concentrations.

Figure S17. Beer's law plot of **BTD-PZn₃-BTD** in THF at varying concentrations for lowest-energy (Q_x) transition.

Figure S18. Absorbance spectra of BTD-PZn₃-BTD in toluene at varying concentrations.

Figure S19. Beer's law plot of BTD-PZn₃-BTD in toluene at varying concentrations for the lowest-energy (Q_x) transition.

4. DFT and TD-DFT Calculations.

Figure S20. Front and side view of optimized ground state structures of representative tetramers.

Figure S21. Electronic absorbance spectrum of PZn₃ in toluene solvent with calculated oscillator strengths overlaid.

Figure S22. Electronic absorbance spectrum of BTD-PZn₃-BTD in toluene solvent with calculated oscillator strengths overlaid.

Figure S23. Electronic absorbance spectrum of PZn-(BTD-PZn)₂ in toluene solvent with calculated oscillator strengths overlaid.

Figure S24. Electronic absorbance spectrum of PZn_2 -BTD-PZn₂ in toluene solvent with calculated oscillator strengths overlaid.

Figure S25. Calculated frontier molecular orbitals, energies, and relative one electron contributions to the lowest energy (Q_x) transition for PZn₂-BTD-PZn₂.

Delocalization Range Function Calculation. Using the electron delocalization range function (EDR) developed by Frisch and coworkers,¹⁰ the degree to which electrons in a calculated wavefunction delocalize over a given length scale may be quantified. Here, we computed weighted averages over the EDR using the S₁ state density obtained at the S₁ minimum geometry to quantify the average number of electrons that delocalize over length scale d. This approach is especially helpful as it provides a quantitative comparison of both the number of delocalized electrons and how far that delocalization holds. Figure S26 displays the results of these calculations, indicating that both **BTD-PZn₃-BTD** and **PZn-(BTD-PZn)₂** have more delocalized wavefunctions than benchmark **PZn₃** as on average both systems possess a larger number of electrons delocalized over longer distance relative to that for **PZn₃**.

Figure S26. Calculated delocalization via electron density range function for BTD-PZn₃-BTD and PZn-(BTD-PZn)₂ as compared to benchmark PZn₃.

References

- 1. K. Pilgram and R. D. Skiles, J. Heterocycl. Chem., 1974, 11, 777-780.
- M. J. T. Frisch, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J., 2016.
- 3. J. Towns, Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A, Hazlewood, V., Lathrop, S., Lifka, D., and Peterson, G. D., *Comptut. Sci. Eng.*, 2014, **16**, 62-74.
- 4. R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett., 2011, 2, 2810-2817.
- 5. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, J. *Cheminformatics*, 2012, **4**.
- 6. J. Jaumot, R. Gargallo, A. de Juan and R. Tauler, *Chemom. Intell. Lab. Syst.*, 2005, 76, 101-110.
- 7. R. S. Mulliken, J. Chem. Phys., 1955, 23, 1833-1840.
- 8. H. T. Uyeda, Y. Zhao, K. Wostyn, I. Asselberghs, K. Clays, A. Persoons and M. J. Therien, J. Am. Chem. Soc., 2002, **124**, 13806-13813.
- 9. K. Susumu and M. J. Therien, J. Am. Chem. Soc., 2002, **124**, 8550-8552.
- 10. B. G. Janesko, G. Scalmani and M. J. Frisch, J. Chem. Phys., 2014, 141, 144104.