The Role of Neutral Donor Ligands in the Isoselective Ring-Opening Polymerization of *rac*-β-Butyrolactone

Xiang Dong,^a Jerome R. Robinson*^a

^a 324 Brook St., Department of Chemistry, Brown University, Providence, RI 02912, United States Phone: (+1)-401-863-3249; e-mail: jerome_robinson@brown.edu

Supporting Information

1. General Methods	S03-S04
2. Synthetic Details and Characterization	S05-S10
Scheme S1. Synthesis of benzyl-amino bisphenol and corresponding rare- earth complexes.	S5
3. Experimental Procedures	S11-S13
4. Supporting Data and Spectra	S13-S48
Table S1. Additional reaction optimization results for the ROP of rac-BBLcatalyzed by 1-La and 1-Y2	S13
Table S2. Impact of alcohol equivalents on the ROP of <i>rac</i> -BBL catalyzedby 1-La(TPPO)2	S14
Discussion of stereocontrol mechanism (statistical analysis)	S14-S15
Figure S1. IG- ¹³ C-NMR of P3HB for Bernoullian triad distribution	S15
Figure S2. ¹ H- and ¹³ C-NMR of ¹ L	S16-S17
Figure S3. ¹ H- and ¹³ C-NMR and IR of 1-La	S17-S18
Figure S4. ¹ H- and ¹³ C-NMR and IR of 1-Y ₂	S19-S20
Figure S5. ¹ H-, ¹³ C- and ³¹ P{ ¹ H}-NMR and IR of $1-La(TPPO)_2$	S21-S22
Figure S6. Variable temperature ¹ H- and ³¹ P{ ¹ H}-NMR of $1-La(TPPO)_2$	S22
Figure S7. ¹ H- and ³¹ P{ ¹ H}-NMR of 1-La and TPPO (0–3 equiv)	S23
Figure S8. ¹ H-, ¹³ C- and ³¹ P{ ¹ H}-NMR and IR of $1-Y(TPPO)_2$	S23-S26
Figure S9. ¹ H-, and ³¹ P{ ¹ H}-NMR of $1-Y + 2$ TPPO and $1-Y(TPPO)_2$	S26-S27
Table S3. Diffusion coefficients and estimated hydrodynamic radii of 1-RE	S27
Figure S10. ¹ H DOSY NMR of a mixture of 1-La and ferrocene	S28
Figure S11 . ¹ H DOSY NMR of a mixture of $1-Y_2$ and ferrocene	S28
Figure S12. ¹ H DOSY NMR of a mixture of 1-La(TPPO) ₂ and ferrocene	S29
Figure S13. ¹ H DOSY NMR of a mixture of 1-Y(TPPO) ₂ and ferrocene	S29
Figure S14. ¹ H DOSY NMR of a mixture of 1-Y ₂ , OPPh ₃ and ferrocene	S 30

Figure S15 . ³¹ P{ ¹ H}-NMR and ¹ H-NMR studies for the ROP of BBL (200 equiv) with $1-La + {}^{i}PrOH + x$ TPPO ($x = 1$ or 2) at RT	S30-S31
Figure S16. ¹ H- and ³¹ P{ ¹ H}-NMR studies for the ROP of BBL (100 equiv) with 1-La + ^{<i>i</i>} PrOH + 2 TPPO at $-30 ^{\circ}\text{C}$	S32
Figure S17. ³¹ P{ ¹ H}-NMR studies for the ROP of BBL (100 equiv) with 1- La + ^{<i>i</i>} PrOH + 2 TPPO warming from -30 °C to 0 °C	S33
Figure S18. ¹ H- and ³¹ P{ ¹ H}-NMR of 2-Y + TPPO (0–2 equiv)	S 33
Figure S19. ¹ H- and ¹³ C-NMR of P3HB	S34
Figure S20. GPC calibration curve and a typical GPC trace	S35
Figure S21 . Carbonyl region of IG- 13 C-NMR of P3HB with different P _m .	S35
Figure S22. MALDI-TOF spectrum of P3HB	S36
Figure S23. ¹ H-NMR of the P3HB for MALDI analysis.	S36
Table S4. ROP of <i>rac</i> -BBL with 1-La (TPPO) ₂ + ^{<i>i</i>} PrOH quenched atdifferent time points.	S37
Figure S24. M_n and D as functions of conversion of BBL	S 37
Figure S25. Reactivity studies of 1-La and 1-La(TPPO) ₂ in the presence of 1 equiv ^{<i>i</i>} PrOH and 15 equiv (<i>R</i>)-3-OAcB ^{Me}	S38
Table S5. Crystallographic parameters for 1-La, 1-La(TPPO)2, and1-Y(TPPO)2	S39
Table S6. Bond distances and angles for 1-La	S40-S41
Table S7. Bond distances and angles for 1-La(TPPO)2	S42-S44
Table S8. Bond distances and angles for 1-Y(TPPO)2	S45-S47
Figure S26. Thermal ellipsoid plot (50% probability) for 1-La	S48
Figure S27. Thermal ellipsoid plot (50% probability) for 1-La(TPPO) ₂	S48
Figure S28. Thermal ellipsoid plot (50% probability) for $1-Y(TPPO)_2$	S49
5. References	S49-S50

1. General Methods.

Instruments and measurements: Unless specified, all reactions were performed under inert conditions (N₂) using standard Schlenk techniques or in a MBraun drybox equipped with a standard catalyst purifier and solvent trap. Glassware was oven-dried for at least 2 h at 150 °C prior to use. Celite and 3 Å molecular sieves were heated under reduced pressure at 300 °C for at least 24 h and then cooled under vacuum prior to use. The following spectrometers were used for NMR characterization: Bruker Avance III HD Ascend (¹H: 600 MHz, ¹³C: 152 MHz, ³¹P: 243 MHz) and a Bruker DRX (¹H: 400 MHz, ¹³C: 101 MHz, ³¹P: 162 MHz). ¹H- and ¹³C-NMR shifts are referenced relative to the solvent signal (CDCl₃: ¹H: 7.26 ppm, ¹³C: 77.16 ppm; C₆D₆: ¹H: 7.16 ppm, ¹³C: 128.06 ppm), while ³¹P-NMR shifts are referenced relative to external solution standards (H₃PO₄, 0 ppm). Both instruments were equipped with Z-gradient BBFO probes. Probe temperatures were calibrated using ethylene glycol and methanol as previously described.¹ Polymer tacticity (P_m , percentage of meso diads) was measured using a ¹³C inversegated pulse sequence, followed by integration of the C=O resonances (Figure S21). The mechanism for stereocontrol was determined by statistical analysis of stereochemical triads in P3HB (rr, mm, and rm/mr; integration of CH₂ resonances from ¹³C-NMR using an inversegated pulse sequence) as described by Thomas and Carpentier.²

Gel permeation chromatography (GPC) measurements were performed using an Agilent 1260 equipped with two Poroshell 120 EC-C18 columns heated at 35 °C (4.6 x 100 mm, 2.7 µm) and a UV-vis diode-array detector and refractive detector. The eluent was inhibitor-free THF, and the system was calibrated with standard polystyrene standards ranging from 580 to 1,500,000 Da. Reported molecular weights are those obtained from GPC corrected by a Mark-Houwink factor of 0.54.³ Unless stated otherwise, all GPC samples were of the quenched crude reaction mixtures (not precipitated or purified polymers). P3HB samples (10 mg/mL in THF) using a DCTB/NaTFA matrix (v/v, 10:1) were analysed using MALDI TOF MS under positive-ion reflectron mode on a Bruker Ultraflex III ToF/ToF mass spectrometer at the University of Akron. IR spectra were recorded on Jasco 4100 FTIR spectrometers using Nujol mulls sandwiched between KBr plates. Elemental analyses were performed by Robertson Microlit Laboratories (Ledgewood, NJ) and Midwest Microlab, LLC (Indianapolis, IN) for bench-stable (¹L) and air-sensitive compounds (**1-RE** and **1-RE(TPPO)**₂) respectively. Samples were shipped in a sealed 2 mL vial that was placed in a 20 mL scintillation vial and sealed, which were then placed in a vacuum-sealed plastic bag.

Materials: Tetrahydrofuran, diethyl ether, toluene, hexanes, and pentane were purchased from Fisher Scientific. Solvents were sparged for 20 min with dry Ar and dried using a commercial two-column solvent purification system (LC Technologies). Solvents were further dried by storing them over 3 Å molecular sieves for at least 48 h prior to use. Ultrapure, deionized water (18.2 M Ω) was obtained from a Millipore Direct-Q 3 UV Water Purification System. Deuterated solvents were purchased from Cambridge Isotope Laboratories, Inc. C₆D₆ was degassed with 3 freeze-pump-thaw cycles and stored over 3 Å molecular sieves for at least 48 h prior to use. Qualitative assessment of moisture-content in these solvents was performed by adding 1 drop of a concentrated solution of a sodium benzophenone radical anion (purple) to 10 mL of solvent where maintenance of a dark blue color for at least 5 minutes was sufficient for use. 2,6-ditertbutyl phenol (Oakwood Chemical; 99% purity), para-formaldehyde (Alfa Aesar; 97% purity), benzylamine (TCI; 99% purity), 2-methoxyethylamine (Sigma-Aldrich; 99% purity), triphenylphosphine oxide (Acros; 99% purity), trioctylphosphine oxide (Sigma-Aldrich; 99% purity), hexamethylphosphoramide (TCI; 98% purity), triphenylphosphate (Sigma-Aldrich; 99% purity), triphenyl phosphine (Sigma-Aldrich; 99% purity), 4-dimethylaminopyridine (Chem-Impex; 99% purity), 1,4-diazabicyclo[2.2.2]octane (Sigma-Aldrich; 99% purity), potassium hexamethyldisilazide (Sigma-Aldrich; 95% purity), 1,1,3,3-tetramethyldisilazane (TCI, 97% purity), RECl₃ (Strem; RE = La, Y; 99.9% purity), (*R*)-methyl 3-hydroxybutanoate (Oakwood; 99% purity), acetyl chloride (Acros; 99% purity), 2-propanol (Alfa-Aesar, Anhydrous, 99.5% purity), and pyridine (Sigma-Aldrich; 98% purity) were purchased and used as received. Racemic butyrolactone (Sigma-Aldrich; 98% purity) was freshly distilled from CaH₂ under nitrogen and degassed by freeze-pump-thaw cycles prior to use. RE[N(SiMe₃)₂]₃ (RE = La and Y),⁴ RE[N(SiHMe₂)₂]₃(THF)₂ (RE = La and Y),⁵ 6,6'-(((2-methoxyethyl)azanediyl)bis-(methylene))bis(2,4-di-tert-butylphenol) (²L),⁶ RE(²L)THF (RE = La⁶ and Y⁷) were prepared according to reported procedures.

X-ray Crystallography: Samples were collected in Paraton[™] oil on a petri dish in a glovebox and then guickly evaluated and mounted with the assistance of an optical microcope. X-ray reflection intensity data were collected on a Bruker D8 Quest with a Photon 100 CMOS detector employing graphite-monochromated Mo-K α radiation ($\lambda = 0.71073$ Å) at a temperature of 173(1) K. Rotation frames were integrated using SAINT,⁸ producing a listing of unaveraged F^2 and $\sigma(F^2)$ values which were then passed to the SHELXT⁹ program package for further processing and structure solution. The intensity data were corrected for Lorentz and polarization effects and for absorption using SADABS.¹⁰ The structures were solved by direct methods (SHELXT).⁹ Refinement was by full-matrix least squares based on F² using SHELXL.¹¹ All reflections were used during refinements. Non-hydrogen atoms were refined anisotropically and hydrogen atoms were refined using a riding model. Two tert-butyl groups and one of the Si(HMe₂) groups were found to be disordered over two positions in $[La(^{1}L)(N(SiHMe_{2})_{2})(TPPO)_{2}]$ (1-La(TPPO)_{2}). Two tert-butyl groups were found to be disordered over two positions in $[Y(^{1}L)(N(SiHMe_{2})_{2})(TPPO)_{2}]$ (1-Y(TPPO)₂). Disorders were refined with the help of similarity restraints using standard/default values on 1,2 and 1,3 distances (SADI) and rigid bond restraints (RIGU) of the disordered groups.^{12,13} For the structures $[La(^{1}L)(N(SiHMe_{2})_{2})(TPPO)_{2}]$ (1-La(TPPO)_{2}) and $[Y(^{1}L)(N(SiHMe_{2})_{2})(TPPO)_{2}]$ (1-Y(TPPO)₂) there were areas of disordered solvent (toluene, 2 molecules in the asymmetric unit) for which reliable disorder models could not be devised; the X-ray data were corrected for the presence of disordered solvent using SQUEEZE.¹⁴ Crystallographic parameters are summarized in Table S5, bond distances and angles are summarized in Tables S6-S8, and thermal ellipsoid plots (50 % probability) are shown in Figures S26-S28.

2. Synthetic Details and Characterization.

Scheme S1. Synthesis of benzyl-amino bisphenol and corresponding rare-earth complexes.

6,6'-((benzylazanediyl)bis(methylene))bis(2,4-di-tert-butylphenol), (¹L)

A 250 mL round-bottomed flask was charged with benzyl amine (3.27 g, 30.5 mmol, 1.0 equiv.; MW: 107.16 g•mol⁻¹), DI water (50 mL), a Teflon-coated stir bar, and paraformaldehyde (1.83 g; 30.5 mmol; 2.0 equiv.; MW: 30.03 g•mol⁻¹) paraformaldehyde, resulting in a colorless solution. To the stirring mixture, 2,6-ditertbutyl phenol (12.59 g, 30.5 mmol, 2.0 equiv.; MW: 206.33 g•mol⁻¹) was added and floated on the top of the solution. The reaction was heated in an oil bath at 110 °C for 20 h. The mixture became a yellow emulsion during heating. After cooling to RT, a solid was formed out of the cooled liquid. The aqueous layer was decanted. The residual solid was dissolved in EtOH (20 mL) at 60 °C and then cooled to RT, affording a colorless crystalline solid after standing overnight. The solid was isolated by vacuum filtration over a course porosity fritted filter, washed with EtOH (2 × 10 mL), and dried under reduced pressure to furnish compound ¹L as a white solid. Yield: 7.8 g (14.3 mmol, 47% yield; MW: 543.84 g•mol⁻¹).

¹H-NMR (400 MHz, CDCl₃, 298 K): $\delta = 1.28$ (s, 18H; 2-'Bu), 1.42 (s, 18H; 4-'Bu), 3.60 (s, 2H; N<u>CH</u>₂Bn), 3.66 (s, 4H; N<u>CH</u>₂ArOH), 6.94 (d, J = 2.4 Hz, 2H; 5-H_Ar), 7.22 (d, J = 2.4 Hz, 2H; 3-H_Ar), 7.30-7.42 ppm (m, 7H; Bn, OH);

¹³C{¹H}-NMR (101 MHz, CDCl₃, 298 K): $\delta = 29.8$ (C<u>*Me*₃</u>), 31.8 (C<u>*Me*₃</u>), 34.3 (<u>*C*Me₃</u>), 35.0 (<u>*C*Me₃</u>), 57.0 (N<u>*C*H₂</u>ArOH), 58.6 (N<u>*C*H₂</u>Bn), 121.5, 123.7, 125.3, 128.0, 129.1, 129.7, 136.1, 137.6, 141.6, 152.3 ppm (<u>C_{Ar}-OH</u>);

¹H-NMR (400 MHz, C₆D₆, 298 K): $\delta = 1.34$ (s, 18H; 2-^{*t*}Bu), 1.62 (s, 18H; 4-^{*t*}Bu), 3.29 (s, 2H; N<u>CH</u>₂Bn), 3.39 (s, 4H; N<u>CH</u>₂ArOH), 6.96 (d, J = 2.4 Hz, 2H; 5-H_{Ar}), 7.02 (t, J = 7.2 Hz, 1H;

p-H_{Bn}), 7.11 (t, J = 7.2 Hz, 2H; m-H_{Bn}), 7.26 (d, J = 7.2 Hz, 2H; o-H_{Bn}), 7.49 (d, J = 2.4 Hz, 2H; 3-H_{Ar}), 7.69 ppm (m, 2H; OH);

Elemental Analysis calcd. (%) for C₃₇H₅₃NO₂: C 81.72, H 9.82, N 2.58; found: C 81.94, H 9.78, N 2.56.

La(¹L)[N(SiHMe₂)₂](THF)₂ (1-La)

A 20 mL scintillation vial was charged with ¹L (335 mg, 0.62 mmol, 1.0 equiv.; MW: 543.84 g•mol⁻¹), a Teflon-coated stir-bar, and THF (2 mL). To the stirring, clear, and colorless solution, $La[N(SiHMe_2)_2]_3(THF)_2$ (419 mg, 0.62 mmol, 1.0 equiv.; MW: 680.12 g•mol⁻¹) was added. The solution was heated at 60 °C for 2 h. All volatiles were removed under reduced pressure, affording **1-La** as a white solid. Yield: 580 mg (0.61 mmol, 98% yield; MW: 957.27 g•mol⁻¹).

¹H-NMR (600 MHz, C₆D₆, 298 K): $\delta = 0.42$ (d, ³*J* = 3.0 Hz, 12H; SiH<u>*Me*</u>₂), 1.23 (s, 8H; 3,4-H_{THF}), 1.46 (s, 18H; 2-'Bu), 1.74 (s, 18H; 4-'Bu), 3.45 (d, ²*J* = 12.8 Hz, 2H; N<u>CH</u>₂ArO), 3.65 (s, 8H; 2,5-H_{THF}), 3.79 (s, 2H; N<u>CH</u>₂Bn), 4.00 (d, ²*J* = 12.8 Hz, 2H; NCH₂ArO), 5.21 (quint, ³*J* = 3.0 Hz, ¹*J*_{Si(29)-H} = 167 Hz, 2H; Si-H), 7.04 (t, *J* = 7.2 Hz, 1H; *p*-H_{Bn}), 7.15 (t, *J* = 7.2 Hz, 2H; *m*-H_{Bn}), 7.19 (d, *J* = 7.2 Hz, 2H; *o*-H_{Bn}), 7.20 (d, *J* = 2.4 Hz, 2H; 5-H_{ArO}), 7.62 ppm (d, *J* = 2.4 Hz, 2H; 3-H_{ArO});

¹³C{¹H}-NMR (152 MHz, C₆D₆, 298 K): δ = 4.0 (SiH<u>*Me*</u>₂), 25.3 (β-C_{THF}), 30.5 (C<u>*Me*</u>₃), 32.3 (C<u>*Me*</u>₃), 34.3 (<u>*C*</u>Me₃), 35.6 (<u>*C*</u>Me₃), 52.0 (N<u>*C*H</u>₂Bn), 61.6 (N<u>*C*H</u>₂ArO), 69.7 (α-C_{THF}), 124.0, 125.0, 127.8, 128.3, 128.7, 131.6, 135.7, 135.9, 136.9, 162.6 ppm (<u>C_{Ar}</u>-O);

IR (Nujol): 2075 [m, v(SiH)], 2011 [w, v(La–<u>*H*–Si</u>)], 1774 (w), 1602 (w), 1414 (m), 1305 (s), 1279 (s), 1241 (s), 1232 (s), 1201 (m), 1165 (m), 1133 (m), 1051 (m), 1030 (m), 962 (m), 899 (s), 883 (s), 835 (s), 802 (m), 787 (m), 762 (m), 700 (m), 644 (w), 629 (m), 598 (m), 528 (m), 489 (w), 444 (m) cm⁻¹;

Elemental Analysis calcd. (%) for C₄₉H₈₁LaN₂O₄Si₂: C 61.75, H 8.30, N 2.92; found: C 61.48, H 8.53, N 2.93.

${Y(^{1}L)[N(SiHMe_{2})_{2}]}_{2}(1-Y_{2})$

A 20 mL scintillation vial was charged with ¹L (253 mg, 0.47 mmol, 1.0 equiv.; MW: 543.84 g•mol⁻¹), a Teflon-coated stir-bar, and hexanes (2 mL). To the stirring, clear, and colorless solution, $Y[N(SiHMe_2)_2]_3(THF)_2$ (294 mg, 0.47 mmol, 1.0 equiv.; MW: 630.12 g•mol⁻¹) was added. The solution was stirred at ambient temperature for 24 h. All volatiles were removed under reduced pressure, affording **1-Y**₂ as a white solid. Yield: 345 mg (0.23 mmol, 97% yield; MW: 1526.12 g•mol⁻¹).

¹H-NMR (600 MHz, C₆D₆, 298 K): δ = -0.09 (d, ³*J* = 2.9 Hz, 12H; SiH<u>*Me*</u>₂), 0.18 (d, ³*J* = 2.9 Hz, 12H; SiH<u>*Me*</u>₂), 1.23 (s, 18H; 2-'Bu), 1.32 (s, 18H; 4-'Bu) , 1.37 (s, 18H; 4-'Bu) , 1.62 (s, 18H; 2-'Bu), 3.79 (d, ²*J* = 13.2 Hz, 2H; N<u>CH</u>₂ArO), 3.93 (d, ²*J* = 14.4 Hz, 2H; N<u>CH</u>₂ArO), 4.40 (d, ²*J* = 14.4 Hz, 2H; N<u>CH</u>₂Bn), 4.55 (d, ²*J* = 14.4 Hz, 2H; N<u>CH</u>₂Bn), 4.73 (d, ²*J* = 13.2 Hz, 2H; N<u>CH</u>₂ArO), 5.00-5.03 (m, 4H; Si-H), 7.06 (d, *J* = 2.4 Hz, 2H; 5-H_{ArO}), 7.17 (t, *J* = 7.2 Hz, 2H; *p*-H_{Bn}), 7.22 (d, *J* = 2.4 Hz, 2H; 5-H_{ArO}), 7.27 (t, *J* = 7.2 Hz, 4H; *m*-H_{Bn}), 7.38 (d, *J* = 2.4 Hz, 4H; 3-H_{ArO}), 7.47 (d, *J* = 2.4 Hz, 4H; 3-H_{ArO}), 7.60 ppm (d, *J* = 7.2 Hz, 4H; *o*-H_{Bn});

¹³C{¹H}-NMR (152 MHz, C₆D₆, 298 K): $\delta = 2.6$ (SiH<u>*Me2*</u>), 3.1 (SiH<u>*Me2*</u>), 29.6 (C<u>*Me3*</u>), 31.6 (C<u>*Me3*</u>), 32.0 (C<u>*Me3*</u>), 34.22 (C<u>Me3</u>), 34.26 (C<u>Me3</u>), 34.33 (C<u>*Me3*</u>), 35.1 (C<u>Me3</u>), 36.7 (C<u>Me3</u>), 52.1 (N<u>CH2</u>Bn), 59.3 (N<u>CH2</u>ArO), 62.1 (N<u>CH2</u>ArO), 123.3, 123.8, 125.5, 126.7, 128.29, 128.31, 128.34, 129.4, 132.8, 133.4, 136.4, 137.7, 137.9, 142.6, 155.0 (C<u>Ar</u>–O), 161.1 ppm (d, *J*_{*F*-C} = 3.3 Hz, <u>CAr</u>–O);

IR (Nujol): 2096 [m, v(SiH)], 2054 [w, v(SiH)], 1936 [br, m, v(Y–<u>H–Si</u>)], 1605 (w), 1415 (m), 1307 (m), 1279 (m), 1248 (m), 1246 (m), 1225 (m), 1201 (m), 1165 (m), 1128 (m), 1086 (w), 1012 (s), 964 (m), 901 (s), 877 (s), 834 (s), 802 (m), 768 (m), 746 (m), 704 (m), 648 (w), 631 (m), 613 (m), 534 (m), 521 (w), 501 (w), 455 (m) cm⁻¹;

Elemental Analysis calcd. (%) for C₈₂H₁₃₀N₄O₄Si₄Y₂: C 64.76, H 8.63, N 3.63; found: C 64.54, H 8.59, N 3.67.

The assignment of the ¹H- and ¹³C{¹H}-NMR spectrum for **1-Y**₂ was made by heteronuclear multiple bond correlation (HMBC) spectroscopy. Assignment for the bridging versus terminal phenolate in the ¹³C-NMR was made based on comparison of the mononuclear **1-La**. The bridging phenolate <u>*C*</u>_{*Ar*}–O is significantly shifted up-field (155.0 ppm) in comparison to the corresponding terminal <u>*C*</u>_{*Ar*}–O (**1-Y**₂: 161.1 ppm; **1-La**: 162.6 ppm). The HMBC experiment was done at 600 MHz, with filtered ¹J coupling constant (cnst2) = 145 Hz, long rang ⁿJ coupling constant (cnst13) = 10 Hz.

La(¹L)[N(SiHMe₂)₂](TPPO)₂ (1-La(TPPO)₂)

A 20 mL scintillation vial was charged with **1-La** (173 mg, 0.18 mmol, 1.0 equiv.; MW: 957.27 g•mol⁻¹), TPPO (101 mg, 0.36 mmol, 2.0 equiv.; MW: 278.29 g•mol⁻¹) and toluene (0.5 mL). After all solids were dissolved, hexane (3 mL) was layered on top of the toluene solution. After the two layers mixed (~ 1 h), the vial was cooled in the glovebox freezer at -35 °C for 3 h, affording a white crystalline solid. The mother liquor was decanted and volatiles were removed under reduced pressure, affording **1-La(TPPO)**₂ as a white solid. Yield: 230 mg (0.17 mmol, 93% yield; MW: 1369.64 g•mol⁻¹). X-ray quality crystals were grown by layering hexane (2 mL) on top of a solution of **1-La(TPPO)**₂ (200 mg / 0.5 mL toluene) and allowing the solution to stand and mix undisturbed at RT.

¹H-NMR (600 MHz, C₆D₆, 298 K): $\delta = 0.50$ (d, $J_3 = 3.0$ Hz, 12H; SiH<u>*Me*</u>), 1.51 (s, 18H; 2-^{*i*}Bu), 1.81 (s, 18H; 4-^{*i*}Bu), 2.95 (br, 2H; N<u>CH</u>₂ArO), 3.74 (s, 2H; N<u>CH</u>₂Bn), 3.78 (br, 2H; N<u>CH</u>₂ArO), 5.63 (quint, ³*J* = 3.0 Hz, ^{*i*}*J*_{*Si*(29)-*H*} = 174 Hz, 2H; Si-H), 6.94 (d, *J* = 2.4 Hz, 2H; 5-HArO), 6.96-7.04 (m, 19H; *p*-H_{Bn}, *m*,*p*-H_{TPPO}), 7.12 (t, *J* = 7.5 Hz, 2H; *m*-H_{Bn}), 7.19 (d, *J* = 7.5 Hz, 2H; *o*-H_{Bn}), 7.63 (d, *J* = 2.4 Hz, 2H; 3-HArO), 7.65 ppm (br, 12H; *o*-H_{TPPO});

¹³C{¹H}-NMR (152 MHz, C₆D₆, 298 K): $\delta = 5.0$ (SiH<u>Me2</u>), 31.0 (C<u>Me3</u>), 32.5 (C<u>Me3</u>), 34.3 (<u>C</u>Me3), 36.0 (<u>C</u>Me3), 51.2 (N<u>CH2</u>Bn), 61.0 (N<u>CH2</u>ArO), 123.1, 125.5, 127.0, 127.3, 128.3, 128.5, 128.9 (d, $J_{P(31)-C(13)} = 12.5$ Hz; *m*-CTPPO), 130.3 (d, $J_{P(31)-C(13)} = 107$ Hz; C–P), 132.5 (*p*-CTPPO), 133.0 (d, $J_{P(31)-C(13)} = 10.5$ Hz; *o*-CTPPO), 134.2, 135.5, 135.8, 164.3 ppm (CAr–O);

³¹P{¹H}-NMR (243 MHz, C₆D₆, 298 K): δ = 33.3 (br) ppm;

IR (Nujol): 2048 [m, v(Si-H)], 1959 (w), 1593(w), 1414 (m), 1331 (m), 1298 (m), 1259 (w), 1236 (m), 1200 (w), 1155 [s, v(P=O)], 1120 (m), 1089(m), 1074 (w), 1043 (m), 1024 (m), 999 (w), 937 (m), 883 (m), 741 (m), 694 (m), 673 (w), 648 (w), 625 (w), 606 (w), 542 [s, v(P-C)], 461 (w), 440 (w), 426 (w) cm⁻¹;

Elemental Analysis calcd. (%) for C77H95LaN2O4P2Si2: C 66.98, H 6.77, N 1.86; found: C 67.52, H 6.99, N 2.05.

Y(¹L)[N(SiHMe₂)₂](TPPO)₂ (1-Y(TPPO)₂)

A 20 mL scintillation vial was charged with $1-Y_2$ (129 mg, 0.085 mmol, 1.0 equiv.; MW: 1526.12 g•mol⁻¹), TPPO (94 mg, 0.34 mmol, 4.0 equiv.; MW: 278.29 g•mol⁻¹) and toluene (0.5 mL). After all solids were dissolved, hexane (3 mL) was layered on top of the toluene solution. After the two layers mixed (~ 1 h), the vial was cooled in the glovebox freezer at -35 °C for 3 h, affording a white crystalline solid. The mother liquor was decanted, and volatiles were removed under reduced pressure, affording $1-Y(TPPO)_2$ as a white solid. Yield: 192 mg (0.15 mmol, 86% yield; MW: 1319.64 g•mol⁻¹). X-ray quality crystals were grown by layering hexanes (1 mL) on top of a solution of $1-Y(TPPO)_2$ (100 mg / 0.2 mL toluene) and allowing the solution to stand and mix undisturbed at RT.

Note: The solution behaviour of $1-Y(TPPO)_2$ and 1-Y + 2 TPPO is complex and concentrationdependent. Crystallized $1-Y(TPPO)_2$ has limited solubility in C₆D₆, and some TPPO dissociation was observed by ¹H- and ³¹P-NMR. The major species observed at low concentration ([Y] = 25 mM) correspond to monomeric and dimeric Y-TPPO adducts (1:2). Concentrated ([Y] = 75 mM) C₆D₆ solutions of $1-Y(TPPO)_2$ were made by adding 4 equiv. TPPO to C₆D₆ solution of $1-Y_2$, in which $1-Y(TPPO)_2$, $[1-Y(TPPO)_2]_2$ and 1-Y(TPPO) was observed. The speciation is readily seen from DOSY NMR spectra (Figures S13 and S14).

¹H-NMR (400 MHz, C₆D₆, 298 K, 25 mM): $\delta = 0.10$ (d, ³J = 2.9 Hz, 12H; SiH<u>*Me*</u>² of [1-Y(**TPPO**)₂]₂), 1.37-1.85 (m; ^{*i*}Bu), 2.72 (d, J = 13.7 Hz, 2H; N<u>CH</u>₂ArO of **1-Y(TPPO**)), 2.95 (br), 3.22 (d, J = 13.7 Hz, 2H; N<u>CH</u>₂ArO of **1-Y(TPPO**)), 3.50 (s, 2H; N<u>CH</u>₂Bn of **1-Y(TPPO**)), 3.66 (br; **1-Y(TPPO**)₂), 3.76 (d, J = 15.3 Hz, 1H; N<u>CH</u>₂ArO), 3.78 (d, J = 13.7 Hz, 1H; N<u>CH</u>₂ArO), 4.04 (br; **1-Y(TPPO**)₂), 4.64 (d, J = 14.1 Hz, 1H; N<u>CH</u>₂Bn), 4.70 (br; **1-Y(TPPO**)₂), 4.77 (d, J = 14.1 Hz, 1H; N<u>CH</u>₂Bn), 4.99 (quint, ³J = 3.0 Hz, 2H; Si-H), 5.16 (d, J = 15.3 Hz, 1H; N<u>CH</u>₂ArO), 5.49 (br; Si-H of **1-Y(TPPO**)₂), 6.62-6.68 (m), 7.01-7.16 (m), 7.29-7.36 (m), 7.44-7.82 (m),;

³¹P{¹H}-NMR (162 MHz, C₆D₆, 298 K, 15 mM): $\delta = 25.2$ (br, free TPPO), 25.2 (br, 1-**Y(TPPO)**₂), 34.6 (d, $J_{Y-P(31)} = 12.6$ Hz; **1-Y(TPPO)**), 38.4 (d, $J_{Y-P(31)} = 11.1$ Hz; [**1-Y(TPPO)**₂]₂), 39.1 (d, $J_{Y-P(31)} = 10.9$ Hz; **1-Y(TPPO)**) ppm;

IR (Nujol): 2081 [m, v(SiH)], 2015 (w), 1959 (w), 1591(w), 1416 (m), 1331 (m), 1300 (m), 1259 (m), 1240 (m), 1201 (w), 1153 [s, v(P=O)], 1120 (m), 1090 (m), 1018 (m), 997 (m), 933 (m), 897 (m), 885 (m), 835 (m), 802 (w), 789 (w), 744 (m), 694 (m), 671 (w), 646 (w), 629 (w), 540 [s, v(P-C)], 464 (m), 447 (m) cm⁻¹;

Elemental Analysis calcd. (%) for C77H95YN2O4P2Si2: C 69.75, H 7.59, N 1.65; found: C 70.08, H 7.26, N 2.12.

¹H-NMR (600 MHz, C₆D₆, 298 K, 75 mM, prepared *in-situ*): $\delta = 0.09$ (d, ³*J* = 3.0 Hz, 12H; SiH<u>*Me2*</u>), 1.45 (s, 9H; 'Bu), 1.49 (s, 9H; 'Bu), 1.58 (s, 9H; 'Bu), 1.69 (s, 9H; 'Bu), 3.76 (d, *J* = 15.3 Hz, 1H; N<u>CH2</u>ArO), 3.78 (d, *J* = 13.7 Hz, 1H; N<u>CH2</u>ArO), 4.64 (d, *J* = 14.1 Hz, 1H; N<u>CH2</u>Bn), 4.77 (d, *J* = 14.1 Hz, 1H; N<u>CH2</u>Bn), 4.99 (quint, ³*J* = 3.0 Hz, 2H; Si-H), 5.16 (d, *J* = 15.3 Hz, 1H; N<u>CH2</u>ArO), 5.17 (d, *J* = 13.7 Hz, 1H; N<u>CH2</u>ArO), 6.86 (t, *J* = 6.0 Hz, 6H; *p*-H_{TPPO}), 6.99-7.09 (m, 12H), 7.13 (t, *J* = 7.5 Hz, 1H; *p*-H_{Bn}), 7.17-7.22 (m, 10H), 7.33 (t, *J* = 7.5 Hz, 2H; *m*-H_{Bn}), 7.46 (d, *J* = 2.4 Hz, 1H; 3-H_{ArO}), 7.50 (d, *J* = 2.4 Hz, 1H; 3-H_{ArO}), 7.73 (br, 4H), 7.79 ppm (d, *J* = 7.5 Hz, 2H; *o*-H_{Bn});

¹³C{¹H}-NMR (152 MHz, C₆D₆, 298 K, 75 mM, prepared *in-situ*): δ = 3.7 (SiH*Me*₂), 30.6 (*CMe*₃), 30.8 (*CMe*₃), 32.6 (*CMe*₃), 32.7 (*CMe*₃), 34.2 (*CMe*₃), 34.3 (*CMe*₃), 35.6 (*CMe*₃), 35.7 (*CMe*₃), 50.6 (*NC*H₂Bn), 61.67 (*NC*H₂ArO), 61.7 (*NC*H₂ArO), 122.8, 122.9, 123.4, 124.3, 127.2, 127.3, 127.4, 127.6, 128.3 (*p*-CTPPO), 128.9 (d, *JP*(*31*)-*C*(*13*) = 115 Hz; P-C), 129.1 (d, *JP*(*31*)-*C*(*13*) = 12.6 Hz; *m*-CTPPO), 132.9 (d, *JP*(*31*)-*C*(*13*) = 10.9 Hz; *o*-CTPPO), 133.1, 133.4, 133.8, 135.7, 136.0, 136.4, 164.3 (O-C), 164.6 ppm (O-C);

³¹P{¹H}-NMR (243 MHz, C₆D₆, 298 K, 75 mM, prepared *in-situ*): $\delta = 25.0$ (br, free TPPO), 34.6 (d, $J_{Y-P(31)} = 10.4$ Hz; **1-Y(TPPO)**), 38.3 (d, $J_{Y-P(31)} = 12.8$ Hz; **[1-Y(TPPO)**₂]₂), 38.9 (d, $J_{Y-P(31)} = 10.3$ Hz; **1-Y(TPPO)**) ppm;

(*R*)-3-acetoxybutyric acid methylester [(*R*)-3-OAcB^{Me}]

In a 50 mL flask, acetyl chloride (2.40 g, 30.6 mmol, 1.2 equiv.; MW = 78.50) was added to a solution of (*R*)-Methyl 3-hydroxybutanoate (3.01 g, 25.5 mmol, 1.0 equiv.) and pyridine (3.02 g, 38.2 mmol, 1.5 equiv.) in CH₂Cl₂ (15 mL). The reaction was stirred at ambient temperature for 6 h. Saturated NH₄Cl solution (15 mL) was added to the reaction, followed by deionized water (15 mL) to dissolve all solids. The organic phase was isolated and washed with saturated NH₄Cl solution (3 x 10 mL). The combined organic layer was evaporated under reduced pressure and redissolved with Et₂O (20 mL). The mixture was dried with Na₂SO₄, filtrated through activated carbon and Celite®, and dried under reduced pressure to yield (*R*)-**3**-OAcB^{Me} as a colorless oil. Yield: 3.25 g (20.3 mmol, 80% yield; MW: 160.17 g•mol⁻¹). The ¹H-NMR spectrum is in agreement with the previous report.¹⁵

¹H-NMR (400 MHz, CDCl₃, 298 K): $\delta = 1.29$ (d, J = 6.3 Hz, 3H; CH<u>Me</u>), 2.02 (s, 3H; CO<u>Me</u>), 2.50 (dd, J = 15.6, 5.8 Hz, 1H; COC<u>H</u>₂), 2.64 (dd, J = 15.6, 7.4 Hz, 1H; COC<u>H</u>₂), 3.68 (s, 3H; O<u>Me</u>), 5.26 ppm (hex, J = 6.2 Hz, 1H; C<u>H</u>);

¹H-NMR (400 MHz, C₆D₆, 298 K): $\delta = 1.05$ (d, J = 6.3 Hz, 3H; CH<u>Me</u>), 1.64 (s, 3H; CO<u>Me</u>), 2.14 (dd, J = 15.6, 5.6 Hz, 1H; COC<u>H</u>₂), 2.40 (dd, J = 15.6, 7.4 Hz, 1H; COC<u>H</u>₂), 3.30 (s, 3H; O<u>Me</u>), 5.33 ppm (hex, J = 6.2 Hz, 1H; C<u>H</u>).

3. Experimental Procedures

Typical polymerization procedures

Reactions at ambient temperature:

In a glovebox, a 2 mL scintillation vial was charged with Rare-earth catalyst [e.g. **1-La(TPPO)**₂ (5.7 mg, 0.0060 mmol, 1.0 equiv.; MW: 957.27 g•mol⁻¹)], neutral ligand [if needed, e.g. TPPO (3.4 mg, 0.012 mmol, 2.0 equiv.; MW: 278.29 g•mol⁻¹)] and toluene (0.382 mL). A toluene solution of ^{*i*}PrOH (2% m/m, 0.021 mL, $\rho = 0.867$ g/mL; 0.36 mg, 0.0060 mmol, 1.0 equiv.; MW: 60.10 g•mol⁻¹) was then added to the clear colorless solution. After approximately one minute, *rac*-BBL (103 mg, 1.20 mmol, 200 equiv.; MW: 86.09 g•mol⁻¹) was added to the catalyst solution. After 1 h, the reaction was quenched by a methanol solution of AcOH (10% v/v, ca. 0.1 mL), and volatiles were removed under reduced pressure.

Analysis of reaction progress prior to quenching:

An aliquot of the reaction was removed and dissolved in CDCl₃ for NMR analysis without additional quenching. The CDCl₃ solution was evaporated in vacuo and the sample was redissolved in THF for GPC analysis.

Reactions at 0 and -30 °C:

In a glovebox, a J-Young NMR tube was charged with **1-La(TPPO)**₂ (8.2 mg, 0.0060 mmol, 1.0 equiv.; MW: 1369.64 g•mol⁻¹) and toluene (0.382 mL). A toluene solution of ^{*i*}PrOH (2% m/m, 0.021 mL, $\rho = 0.867$ g/mL; 0.36 mg, 0.0060 mmol, 1.0 equiv.; MW: 60.10 g•mol⁻¹) was then added to the clear colorless solution. After approximately one minute, the solution was then chilled to -30 °C in the glovebox freezer and pre-chilled (-30 °C) *rac*-BBL (103 mg, 1.20 mmol, 200 equiv.; MW: 86.09 g•mol⁻¹) was added to the catalyst solution. The tube was then immediately removed from the glovebox and reacted in a 0 °C or -30 °C bath. After 1 h, the reaction was quenched by a methanol solution of AcOH (10% v/v, ca. 0.1 mL), and all volatiles were removed under reduced pressure.

NMR studies of relevant catalyst species in the ROP of rac-BBL

Room Temperature (1-La + 1 ⁱPrOH + 1 or 2 equiv. TPPO)

A screw-capped NMR tube was charged with **1-La** (5.7 mg, 0.0060 mmol, 1.0 equiv.; MW: 957.27 g•mol⁻¹), TPPO (1.7 mg, 0.0060 mmol, 1.0 equiv.; 3.4 mg, 0.012 mmol, 2.0 equiv.; MW: 278.29 g•mol⁻¹), toluene (0.382 mL), and C₆D₆ (0.025 mL). The sample was removed from the glovebox and NMR spectra were taken. A toluene solution of ^{*i*}PrOH (2% m/m, 0.021 mL, $\rho = 0.867$ g/mL; 0.36 mg, 0.0060 mmol, 1.0 equiv.; MW: 60.10 g•mol⁻¹) was added inside the glovebox, and NMR spectra were recorded. *rac*-BBL (103 mg, 1.20 mmol, 200 equiv.; MW: 86.09 g•mol⁻¹) was then added to catalyst solution and NMR spectra were recorded at varying time points. Reaction conversion was determined by ¹H-NMR taken immediately before and after the ³¹P{¹H}-NMR spectra were taken. The ³¹P{¹H}-NMR spectra are displayed as Figure S15a and S15b. The ¹H-NMR of reaction of 2equiv. TPPO is displayed as Figure S15c.

A J-Young NMR tube was charged with **1-La(TPPO)**₂ (12.0 mg, 0.0088 mmol, 1.0 equiv.; MW: 1369.64 g•mol⁻¹) and toluene- d_8 (0.350 mL). PPh₃ (1.0 mg, 0.0040 mmol, 0.45 equiv.; MW: 262.29 g•mol⁻¹) was also added to calibrate line width in the ³¹P-NMR spectra. The sample was removed from the glovebox, cooled to -30 °C in the NMR spectrometer, and spectra were taken. The sample was then brought inside of the glovebox, and a toluene solution of ¹PrOH (2% m/m, 0.031 mL, $\rho = 0.867$ g/mL; 0.53 mg, 0.0088 mmol, 1.0 equiv; MW: 60.10 g•mol⁻¹) was added to the tube. The sample was cooled to -30 °C in the NMR spectrometer, and spectra were recorded. The sample was then brought inside of the glovebox and chilled in the glovebox freezer to -30 °C. *rac*-BBL (75 mg, 0.88 mmol, 100 equiv.; MW: 86.09 g•mol⁻¹) was chilled at -30 °C, and then added to the NMR tube. The tube was immediately removed from the glovebox and chilled to -78 °C (¹PrOH-dry ice bath) for the brief period of time needed to transport the sample to the spectrometer. The sample was then loaded to the pre-cooled spectrometer (-30 °C) and spectra were taken immediately. The ¹H- and ³¹P{¹H}-NMR spectra are displayed as Figure S16a and S16b.

After 25 min, the spectrometer was warmed to -15 °C and 0 °C and spectra were recorded after 5 min of thermal equilibration. The total warming process was 30 min, and corresponded to an increase in reaction conversion from 48 to 67% during this time. ³¹P{¹H}-NMR are displayed as Figure S17.

Sample for end-group analysis (MALDI-TOF and NMR)

In a glovebox, a 2 mL scintillation vial was charged with **1-La** (37 mg, 0.031 mmol, 1.0 equiv.; MW: 1369.64 g•mol⁻¹) and toluene (0.310 mL). A toluene solution of ^{*i*}PrOH (2% m/m, 0.109 mL, $\rho = 0.867$ g/mL; 1.86 mg, 0.031 mmol, 1.0 equiv.; MW: 60.10 g•mol⁻¹) was then added to the clear colorless solution. After approximately one minute, *rac*-BBL (108 mg, 1.25 mmol, 40 equiv.; MW: 86.09 g•mol⁻¹) was added to the catalyst solution. After 1 h, the reaction reached full conversion, was quenched by a drop of acetic acid, and all volatiles were removed under reduced pressure. ^{*i*}PrOH (1 mL) was added to the residual material precipitating the polymer and the liquid was decanted. The polymer was washed with ^{*i*}PrOH (1 mL) and dried under reduced pressure. This material was used for NMR, GPC and MALDI analysis. The ¹H-NMR and MALDI-TOF spectra are displayed as Figure S22 and S23.

Measurement of M_n and $\boldsymbol{\mathcal{P}}$ as a function of conversion

In a glovebox, a 20 mL scintillation vial was charged with **1-La(TPPO)**₂ (16.4 mg, 0.012 mmol, 1.0 equiv.; MW: 1369.64 g•mol⁻¹), a Teflon-coated stirbar, and toluene (0.763 mL). A toluene solution of ^{*i*}PrOH (2% m/m, 0.042 mL, $\rho = 0.867$ g/mL; 0.72 mg, 0.012 mmol, 1.0 equiv.; MW: 60.10 g•mol⁻¹) was added to the clear colorless solution. After approximately one minute, *rac*-BBL (207 mg, 2.40 mmol, 200 equiv.; MW: 86.09 g•mol⁻¹) was added to the stirring catalyst solution. After various time, 0.050 mL reaction solution was added to 0.050 mL 5% (m/m) benzoic acid solution in toluene to quench. The quenched mixture was dissolved in 0.5 mL CDCl₃ for NMR analysis. The NMR sample was evaporated under reduced pressure and dissolved in 1 mL THF for GPC analysis. The conversions, M_n and *Đ* are displayed as Table S4 and Figure S24.

Reactivity studies of 1-La and 1-La(TPPO)₂ in the presence of 1 equiv ⁱPrOH and 15 equiv. (*R*)-3-acetoxybutyric acid methylester [(*R*)-3-OAcB^{Me}]

A screw-capped NMR tube was charged with 1-La (6.9 mg, 0.0072 mmol, 1.0 equiv.; MW: 957.27 g•mol⁻¹) or **1-La(TPPO)**₂ (9.9 mg, 0.0072 mmol, 1.0 equiv.; MW: 1369.64 g•mol⁻¹) and C₆D₆ (0.558 mL). A toluene solution of ^{*i*}PrOH (2% m/m, 0.025 mL, $\rho = 0.867$ g/mL; 0.43 mg, 0.0072 mmol, 1.0 equiv.; MW: 60.10 g•mol⁻¹) and (**R**)-3-OAcB^{Me} (17.3 mg, 0.105 mmol, 15 equiv.; MW: 160.17 g•mol⁻¹) were added. NMR spectra were taken recorded at 0.5 h and 7 h. The ¹H-NMR spectra are displayed as Figure S25.

4. Supporting Data and Spectra

Table S1. Additional reaction optimization results (solvent screening, ligand equivalents, inclusion of alcohol) for the ROP of rac-BBL catalyzed by 1-La and 1-Y₂.

		0 1- 	PrOH 25 °C, Time		о С РЗНВ	$\begin{bmatrix} [BBL] = \\ \\ \hline \\ \hline$	2.4 M 200		
Entry	Cat.	[BBL]/[RE]/ [TPPO]/[[/] PrOH]	Solvent	Time (h) ^a	Conv. (%) ^b	<i>M</i> n, calc ^c (kg/mol)	<i>M</i> _{n, exp} ^d (kg/mol)	${\cal D}^{d,e}$	P_{m}^{f}
1	1-Y ₂	200/1/0/0	Tol	1	0		n.d.	n.d.	n.d.
2	1-Y ₂	200/1/0/1	Tol	1	5	0.9	n.d.	n.d.	n.d.
3	1-Y ₂	200/1/2/0	Tol	7	97	16.6	29.8	1.33	0.50
4	1-Y ₂	200/1/2/1	Tol	3	95	16.4	14.0	1.18	0.51
5	1-La	200/1/0/0	Tol	48	35	5.9	2.1	1.46	0.54
6	1-La	200/1/0/1	Tol	1	21	3.6	2.9	1.04	0.57
7	1-La	200/1/1/1	Tol	6	71	12.2	4.7	1.04	0.67
8	1-La	200/1/2/1	Tol	1	97	16.7	9.6	1.18	0.71
9	1-La	200/1/3/1	Tol	1	97	16.7	9.1	1.27	0.71
10	1-La	200/1/2/0	THF	3	75	12.9	12.2	1.64	0.65
11	1-La	200/1/2/1	THF	3	84	14.5	8.7	1.10	0.68
12	1-La	200/1/2/0	CH ₂ Cl ₂	3	53	9.1	8.2	1.76	0.64
13	1-La	200/1/2/1	CH_2CI_2	3	82	14.1	8.2	1.17	0.64

a – Reaction times not optimized. b – Determined by ¹H-NMR integration of BBL and PHB methine resonances in the crude reaction mixture. c - [BBL]/[RE]/[PrOH] × Conv. × 0.08609 kg•mol⁻¹. When [PrOH] = 0, [BBL]/[La] × Conv. × 0.08609 kg•mol⁻¹. d – Determined by gel permeation chromatography (GPC) at 30 °C in THF using polystyrene standards and corrected by Mark-Houwink factor of 0.54.¹⁶ $e - M_w/M_n$. f – Probability of mesolinkages between repeat units. Determined by integration of P3HB C=O resonances using inverse gated (IG) ¹³C-NMR.

$\begin{array}{c} \mathbf{O} \\ $											
Entry	[/] PrOH (equiv)	Time (h) ^a	Conv. (%) ^b	<i>M</i> _{n, calc} ^c (kg/mol)	<i>M</i> _{n, exp} ^d (kg/mol)	${\cal B}^{d,e}$	$P_{m}{}^{f}$				
1	0	5	87	15.0	13.5	1.45	0.71				
2	1	1	93	16.0	9.4	1.16	0.71				
3	2	1	95	8.2	6.6	1.14	n.d.				
4	4	1	93	4.0	3.3	1.07	0.70				

Table S2. Impact of alcohol equivalents on the ROP of rac-BBL catalyzed by 1-La(TPPO)₂.

a – Reaction times not optimized. *b* – Determined by ¹H-NMR integration of BBL and PHB methine resonances in the crude reaction mixture. *c* – [BBL]/[La]/[/PrOH] × Conv. × 0.08609 kg•mol⁻¹. When [/PrOH] = 0, [BBL]/[La] × Conv. × 0.08609 kg•mol⁻¹. *d* – Determined by gel permeation chromatography (GPC) at 30 °C in THF using polystyrene standards and corrected by Mark-Houwink factor of 0.54.¹⁶ *e* – M_w/M_n . *f* – Probability of *meso*-linkages between repeat units. Determined by integration of P3HB <u>*C*</u>=O resonances using inverse gated (IG) ¹³C-NMR.

Discussion of stereocontrol mechanism (statistical analysis)

As described by Thomas and Carpentier,² diad and triad distribution can provide insight into the mechanism of stereocontrol for the ROP of *rac*-BBL. Two types of stereocontrol may contribute to the tacticity of BBL polymerization:

(1) *enantiomorphic site control*, under which the selectivity of incoming monomer is determined by the asymmetric environment of catalyst, and (2) *chain-end control*, in which the asymmetric nature of the active end of growing polymer differentiates the two enantiomers of the monomer.

In the context that the isotactic diad (meso diad) is dominant, one can consider a mis-insertion (e.g. ...RRRR<u>S</u>, where <u>S</u> is the mis-insertion) is immediately corrected and followed by insertions that are favored. For site control, error correction leads to propagation with the favored enantiomer (e.g., ...RRR<u>S</u>RRR, where <u>S</u> is the mis-insertion). For chain-end control, it will continue to propagate the meso diad and propagate the enantiomer that was mis-inserted (e.g. ...RRR<u>S</u>SSS). Therefore, the resulting minor triads for site control are 1 mr, 1 rr and 1 rm, while the minor triads for chain-end control are 1 mr and 1 rm. Therefore, the two methods of stereocontrol can be differentiated by their triad distribution.

The triad distribution was obtained from the <u>C</u>H₂ signals of P3HB using IG-¹³C-NMR. We fit the signals in the form of a Cauchy-Lorentz distribution. The result contains 4 components, each of which represents a triad ratio with its area (Figure S1). A representative example is P3HB obtained from Table 1, entry 6 (**1-La** + 2 TPPO + 1 ^{*i*}PrOH; $P_m = 0.71$).

For chain-end control, the triad distribution obeys a binominal distribution, i.e.: $P(mm) = P_m^2$, $P(rr) = (1-P_m)^2$, $P(mr) = P(rm) = P_m(1-P_m)$. Applying the Bernoulli model triad test, $B = 4P(mm)P(rr)/[P(mr)+P(rm)]^2$, where B = 1 for a purely chain-end controlled process. For

P3HB obtained from entry 6 in Table 1, $B = (4*51.01*8.46)/(20.38+20.15)^2 = 1.05$. This is close to the theoretical value and confirms chain-end control as the mechanism for stereocontrol.

triad	δ ₀ , Chemical Shift/ppm	γ, Width/ppm	Io, Intensity	rel. Area (%)
rm	40.864(1)	0.025(4)	0.59(6)	20.38
mm	40.809(1)	0.026(2)	1.38(6)	51.01
rr	40.727(2)	0.019(6)	0.32(7)	8.46
mr	40.662(1)	0.021(3)	0.68(7)	20.15

Figure S1. Experimental and fitted IG-¹³C-NMR (152 MHz, CDCl₃) signal of P3HB (Table 1, entry 6; **1-La** + 2 TPPO + 1 ^{*i*}PrOH, $P_m = 0.71$)

Figure S2a. ¹H-NMR (CDCl₃, 400 MHz) spectra of H₂¹L.

Figure S2c. ¹H-NMR (C₆D₆, 400 MHz) spectra of $H_2^{1}L$.

Figure S3a. ¹H-NMR (C₆D₆, 600 MHz) spectra of 1-La.

Figure S3b. ¹³C-NMR (C₆D₆, 152 MHz) spectra of **1-La**.

Figure S3c. IR (Nujol) spectra of 1-La. (*: Nujol).

Figure S4a. ¹H-NMR (C₆D₆, 600 MHz) spectra of **1-Y**₂. (*: HN(SiHMe₂)₂).

Figure S4b. ¹³C-NMR (C₆D₆, 152 MHz) spectra of 1-Y₂. (*: HN(SiHMe₂)₂, **: toluene).

Figure S4c. Selected regions of ${}^{1}H{}^{-13}C$ HMBC (600 MHz for ${}^{1}H$ in C₆D₆) of 1-Y₂

Figure S4d. IR (Nujol) spectra of 1-Y₂. (*: Nujol).

Figure S5a. ¹H-NMR (C₆D₆, 600 MHz) spectra of **1-La**(TPPO)₂.

Figure S5b. ¹³C-NMR (C₆D₆, 152 MHz) spectra of 1-La(TPPO)₂.

Figure S5c. ³¹P{¹H}-NMR (C₆D₆, 243 MHz) spectra of **1-La**(**TPPO**)₂.

Figure S5d. IR (Nujol) spectra of 1-La(TPPO)₂. (*: Nujol).

Figure S6. ¹H-NMR (600 MHz, toluene-*d*₈) and ³¹P{¹H}-NMR (243 MHz, toluene-*d*₈) of **1-**La(**TPPO**)₂ at -30, -15, 0, 15 and 30 °C.

Figure S7. ¹H-NMR (400 MHz, C₆D₆, 298 K) and ³¹P{¹H}-NMR (162 MHz, C₆D₆, 298 K) of **1-La** (27 mM) in the presence of 0 (blue, bottom), 1 (red), 2 (green) and 3 (magenta, top) equiv of TPPO.

Figure S8a. ¹H-NMR (C₆D₆, 400 MHz, 25 mM) spectra of crystallized **1-Y(TPPO)**₂. (*: **1-Y(TPPO)**₂; **: [**1-Y(TPPO)**₂]₂; #: **1-Y(TPPO)**).

Figure S8b. ³¹P{¹H}-NMR (C₆D₆, 162 MHz, 25 mM) spectra of crystallized **1-Y(TPPO)**₂. (*: **1-Y(TPPO)**₂; **: [**1-Y(TPPO)**₂]₂; #: **1-Y(TPPO)**).

Figure S8c. ¹H-NMR (C₆D₆, 600 MHz, 75 mM) spectra of *in-situ* prepared **1-Y(TPPO)**₂. (**: [**1-Y(TPPO)**₂]₂; #: **1-Y(TPPO)**).

Figure S8d. ¹³C-NMR (C₆D₆, 152 MHz, 75 mM) spectra of *in-situ* prepared **1-Y(TPPO)**₂. (*: THF; **: toluene; ***: HN(SiHMe₂)₂).

Figure S8e. ³¹P{¹H}-NMR (C₆D₆, 243 MHz, 75 mM) spectra of *in-situ* prepared **1**-**Y**(**TPPO**)₂. (**: [**1-Y**(**TPPO**)₂]₂; #: **1-Y**(**TPPO**)).

Figure S8f. IR (Nujol) spectra of 1-Y(TPPO)₂. (*: Nujol).

Figure S9a. ¹H-NMR (600 MHz, C₆D₆, 298 K) of $1-Y(TPPO)_2$ prepared in-situ from $1-Y_2$ and TPPO (75 mM [Y], 2 equiv TPPO / [Y]; red, top) and re-dissolved crystalline $1-Y(TPPO)_2$ (25 mM, blue, bottom).

Figure S9b. ${}^{31}P{}^{1}H$ -NMR (243 MHz, C₆D₆, 298 K) of **1-Y(TPPO)**₂ prepared in-situ from **1-Y**₂ and TPPO (75 mM [Y], 2 equiv TPPO / [Y]; red, top) and re-dissolved crystalline **1-Y(TPPO)**₂ (25 mM, blue, bottom).

Table S3. Diffusion coefficients, *D*, and estimated hydrodynamic radii, r_H , measured by ¹H DOSY NMR of **1-RE** complexes (**1-La**, **1-La**(**TPPO**)₂, **1-Y**₂, **1-Y**(**TPPO**)₂ and [**1-Y**(**TPPO**)₂]₂)

Species	D _{Fc} (10 ⁻¹⁰ m²/s)ª	<i>D</i> (10 ⁻¹⁰ m²/s)	D _{Fc} /D	r _H (DOSY) [♭] (Å)	r _H (theo.) ^c (Å)
Fc ^d	-	-	-	-	2.166
1-La	13.2	5.10	2.59	5.61	6.011
1-La(TPPO)₂	12.8	4.13	3.10	6.71	6.764
1-Y ₂	11.8	3.56	3.31	7.18	7.361 ^e
1-Y(TPPO)2 ^f	11.1	3.54	3.14	6.79	6.791
[1-Y(TPPO) ₂] ₂ ^f	11.1	2.37	4.68	10.14	-

a - DOSY measured diffusion coefficient of ferrocene (Fc) in the experiment of the corresponding complex. DOSY measured diffusion coefficient of the sample $b - r_H = D_{Fc}/D_{sample} \cdot r_H(Fc, theo.)$. $c - r_H(theo.)$ is the average of half lengths of the principal axes of the homogeneous ellipsoid with the same principal moments of inertia of the molecule, which are determined from the crystal structure. d - Fc was added to each sample as an internal standard to cancel the fluctuation of temperature and viscosity, of which the diffusion coefficient varies. e - Estimated according to structure of **S1**,¹⁷ due to the lack of X-ray structure of **1-Y**₂. f - Prepared *in-situ* with **1-Y**₂ and addition of TPPO (2 equiv).

Figure S10. ¹H DOSY NMR (400 MHz, C₆D₆) of a mixture of **1-La** and ferrocene (Fc). In 0.5 mL C₆D₆, **1-La** (10 mg, 0.010 mmol, 1.0 equiv; MW: 957.27 g•mol⁻¹) and Fc (3.2 mg, 0.017 mmol, 1.7 equiv; MW: 186.04 g•mol⁻¹) were dissolved. Diffusion time was (Δ , d20) 100 ms, and the rectangular gradient pulse duration (δ , p30) was 1200 µs.

Figure S11. ¹H DOSY NMR (600 MHz, C₆D₆) of a mixture of **1-Y**₂ and Fc. In 0.5 mL C₆D₆, **1-Y**₂ (10 mg, 0.007 mmol, 1.0 equiv; MW: 1526.12 g•mol⁻¹) and Fc (0.4 mg, 0.002 mmol, 0.34 equiv; MW: 186.04 g•mol⁻¹) were dissolved. Diffusion time was (Δ , d20) 100 ms, and the rectangular gradient pulse duration (δ , p30) was 1000 µs.

Figure S12. ¹H DOSY NMR (400 MHz, C₆D₆) of a mixture of **1-La(TPPO)**₂ and Fc. In 0.5 mL C₆D₆, **1-La** (10 mg, 0.007 mmol, 1.0 equiv; MW: 1369.64 g•mol⁻¹) and Fc (0.5 mg, 0.003 mmol, 0.37 equiv; MW: 186.04 g•mol⁻¹) were dissolved. Diffusion time was (Δ , d20) 100 ms, and the rectangular gradient pulse duration (δ , p30) was 1200 µs.

Figure S13. ¹H DOSY NMR (600 MHz, C₆D₆) of a mixture of **1-Y(TPPO)**₂, Fc, and TPPO. In 0.5 mL C₆D₆, **1-Y(TPPO)**₂ (16 mg, 0.012 mmol, 1.0 equiv; MW: 1319.64 g•mol⁻¹), and Fc (0.4 mg, 0.002 mmol, 0.17 equiv; MW: 186.04 g•mol⁻¹) were dissolved. 1 h later, DOSY was taken. Diffusion time was (Δ , d20) 100 ms, and the rectangular gradient pulse duration (δ , p30) was 1400 µs.

Figure S14. ¹H DOSY NMR (600 MHz, C₆D₆) of a mixture of **1-Y**₂, Fc, and TPPO. In 0.5 mL C₆D₆, **1-Y**₂ (10 mg, 0.007 mmol, 1.0 equiv; MW: 1526.12 g•mol⁻¹), Fc (0.4 mg, 0.002 mmol, 0.34 equiv; MW: 186.04 g•mol⁻¹) and TPPO (7.3 mg, 0.007 mmol, 4.0 equiv; MW: 278.29 g•mol⁻¹) were dissolved. 7 h later, DOSY was taken. Diffusion time was (Δ , d20) 100 ms, and the rectangular gradient pulse duration (δ , p30) was 1400 µs. **Note:** Spectrum was nearly identical to authentic **1-Y(TPPO)**₂ (Figure S13, nearly the same [Y] concentration).

Figure S15a. ³¹P{¹H}-NMR (243 MHz, toluene, 298 K) of: **1-La** + 1 TPPO (bottom, blue), **1-La** + TPPO + i PrOH (middle, red), and **1-La** + TPPO + i PrOH + 200 BBL (top, green).

Figure S15b. ³¹P{¹H}-NMR (243 MHz, toluene, 298 K) of: **1-La** + 2 TPPO (bottom, blue), **1-La** + 2 TPPO + ^{*i*}PrOH (middle, red), and **1-La** + 2 TPPO + ^{*i*}PrOH + 200 BBL (top, green).

Figure S15c. ¹H-NMR (600 MHz, toluene, 298 K) of: **1-La** + 2 TPPO + ^{*i*}PrOH + 200 BBL (2.4 M). The NMR was taken after 40 min of reaction without quenching. The conversion of BBL was 91%. (The toluene as the solvent of reaction and NMR contained circa 0.05% DCM due to weak but endure vapor diffusion in the glovebox.)

Figure S16a. ¹H-NMR (600 MHz, toluene- d_8 , -30 °C) of **1-La(TPPO)**₂ (25 mM, blue, bottom), **1-La(TPPO)**₂ + ^{*i*}PrOH (red, middle), and **1-La(TPPO)**₂ + ^{*i*}PrOH + 100 BBL at 4 min (green, top).

Figure S16b. ${}^{31}P{}^{1}H$ -NMR (600 MHz, toluene- d_8 , -30 °C) of **1-La(TPPO)**₂ (25 mM, blue, bottom), **1-La(TPPO)**₂ + ${}^{i}PrOH$ (red, middle), and **1-La(TPPO)**₂ + ${}^{i}PrOH$ + 100 BBL at 4 min (green, top).

Figure S17. ³¹P{¹H}-NMR (600 MHz, toluene- d_8 , -30 °C – 0 °C) of the ROP of BBL by **1-La(TPPO)**₂ and ^{*i*}PrOH initially performed at -30 °C (38% conversion), followed by warming to -15 °C (55% conversion) and 0 °C (67% conversion).

Figure S18. ¹H-NMR (400 MHz, C₆D₆, 298 K), ${}^{31}P{}^{1}H$ -NMR (162 MHz, C₆D₆, 298 K) of adding 0, 1 and 2 equiv. of OPPh₃ to **2-Y**.

Figure S19. (*a*) ¹H-NMR (600 MHz, CDCl₃), (*b*) ¹³C-NMR (152 MHz, CDCl₃) spectra of P3HB (Table 1, entry 6). Reaction was performed in toluene at ambient temperature with $[BBL]/[1-La]/[TPPO]/[i^{i}PrOH] = 200/1/2/1$ and [BBL] = 2.4 M within 1 h. Conversion = 97%, M_n = 9.6 kg/mol (corrected by Mark-Houwink factor of 0.54), D = 1.18.

Figure S20. GPC calibration curve using polystyrene standards (orange) and GPC trace (blue) of Table 1, entry 6. Reaction was performed in toluene at ambient temperature with [BBL]/[**1-La**]/[TPPO]/[^{*i*}PrOH] = 200/1/2/1 and [BBL] = 2.4 M within 1 h. Conversion = 97%, $M_n = 9.6$ kg/mol (corrected by Mark-Houwink factor of 0.54), D = 1.18

Figure S21. Carbonyl region of IG-¹³C-NMR (152 MHz, CDCl₃) of P3HB with different P_m. (a) Table 1, entry 15 (**1-La** + 2 TPPO + i PrOH, -30 °C), (b) Table 2, entry 7 (**1-Y(TPPO)**₂ + i PrOH), (c) Table 2, entry 8 (**2-Y** + i PrOH).

Figure S22. MALDI-TOF spectrum of P3HB, produced in toluene at ambient temperature with [BBL]/[1-La]/[TPPO]/[iPrOH] = 40/1/2/1 and [BBL] = 2.4 M within 1 h. Conversion = 99%. M_n = 3.8 kg/mol (corrected by Mark-Houwink factor of 0.54), D = 1.30.

Note: The ^{*i*}Pr methine of 2-isopropoxyl butyrate should appear at ~3.6 ppm, analogous to that of 4-isopropoxypentan-2-one $(3.60-3.66, m, CDCl_3)^{18}$. No isopropyl ether (i.e. product of O-Alkyl cleavage) is formed as there is no multiplet present in this range.

$\begin{array}{c} \textbf{O} \textbf{1-La(TPPO)_2} \\ \hline \textbf{PrOH} (\textbf{1 equiv}) \\ \hline \textbf{Tol, 25 °C, Time} \end{array} \begin{array}{c} \textbf{O} \\ \textbf{O} \\ \textbf{P3HB} \end{array} \begin{array}{c} [BBL] = 2.4 \text{ M} \\ \hline \textbf{BBL]} = 200 \\ \hline \textbf{La]} \end{array}$											
Entry	Time (min)	Conv. (%)ª	<i>M</i> n, calc ^c (kg/mol)	<i>M</i> n, _{exp} ^c (kg/mol)	${\cal B}^{c,d}$						
1	0.25	22	3.9	3.2	1.054						
2	0.50	28	4.9	4.0	1.042						
3	0.75	34	5.9	4.6	1.050						
4	1.0	39	6.7	5.1	1.050						
5	1.5	46	7.9	5.8	1.056						
6	2.0	50	8.7	6.3	1.069						
7	5.0	62	10.6	7.6	1.056						
8	15	74	12.7	8.7	1.074						
9	30	82	14.1	8.9	1.116						
10	60	88	15.1	9.2	1.145						

Table S4. ROP of *rac*-BBL with $1-La(TPPO)_2 + {}^{i}PrOH$ quenched at different time points.

a – Determined by ¹H-NMR integration of BBL and PHB methine resonances in the crude reaction mixture. *b* – [BBL]/[La]/[ⁱPrOH] × Conv. × 0.08609 kg•mol⁻¹. *c* – Determined by gel permeation chromatography (GPC) at 30 °C in THF using polystyrene standards and corrected by Mark-Houwink factor of 0.54.¹⁶ d – M_w/M_n .

Figure S24. Calculated M_n (blue circle), Experimental M_n (blue dot) and \tilde{D} (orange squares) as functions of conversion of BBL. Reaction was performed in toluene at ambient temperature with [BBL]/[**1-La(TPPO)**₂]/[^{*i*}PrOH] = 200/1/1 and [BBL] = 2.4 M.

Figure S25. Reactivity studies of (a) **1-La** and (b) **1-La(TPPO)**₂ in the presence of 1 equiv ^{*i*}PrOH and 15 equiv (*R*)-**3-OAcB**^{Me} in C₆D₆ followed by ¹H-NMR after 0.5 h, 7 h. Dashed lines provided to help track the formation of $H_2^{1}L$ during the reaction time course. **Note:**

- 1. MeOAc is assigned according to previously reported NMR data $(3.34 \text{ ppm in } C_6D_6)$.¹⁹
- 2. There are minor singlets, other than (*R*)-3-OAcB^{Me} and (*R*)-3-OAcB^{*i*Pr}, from 1.6-1.7 ppm, representing La acetate species and other transesterification products, but cannot be unambiguously assigned.

	1-La	1-La(TPPO) ₂	1-Y(TPPO)2
Empirical formula	$C_{49}H_{83}LaN_2O_4Si_2$	$C_{91}H_{111}LaN_2O_4P_2Si_2$	$C_{91}H_{111}N_2O_4P_2Si_2Y$
Formula weight	959.26	1553.84	1503.84
Temperature/K	173.2	173.21	173.19
Crystal system	monoclinic	monoclinic	monoclinic
Space group	P21/c	$P2_1/n$	$P2_1/n$
a/Å	17.0458(16)	15.355(2)	15.2210(16)
b/Å	16.5877(16)	15.378(2)	15.3725(15)
c/Å	19.5942(17)	35.734(5)	35.552(4)
α/°	90	90	90
β/°	112.851(3)	94.563(5)	93.759(3)
$\gamma/^{\circ}$	90	90	90
Volume/Å ³	5105.5(8)	8411(2)	8300.7(15)
Z	4	4	4
$\rho_{calc}g/cm^3$	1.248	1.227	1.203
µ/mm⁻¹	0.925	0.624	0.820
F(000)	2032.0	3272.0	3200.0
Crystal size/mm ³	$0.25 \times 0.25 \times 0.2$	$0.14 \times 0.12 \times 0.1$	$0.3\times0.2\times0.1$
Radiation	MoK α ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3.57 to 55.872	3.862 to 55.2	3.992 to 55.156
Index ranges	$\begin{array}{l} -22 \leq h \leq 22, -21 \leq k \leq \\ 21, -25 \leq l \leq 25 \end{array}$	$\begin{array}{l} \text{-19} \leq h \leq 20, \text{-20} \leq k \leq \\ \text{19}, \text{-46} \leq l \leq 44 \end{array}$	$\begin{array}{l} \textbf{-19} \leq h \leq 19, \textbf{-19} \leq k \\ \leq 19, \textbf{-46} \leq \textbf{1} \leq \textbf{46} \end{array}$
Reflections collected	192582	152196	166733
Independent reflections	11709 [$R_{int} = 0.1329$, $R_{sigma} = 0.0585$]	$\begin{array}{l} 19424 \; [R_{int}=0.1040, \\ R_{sigma}=0.0594] \end{array}$	$19123 \ [R_{int} = 0.0829, \\ R_{sigma} = 0.0489]$
Data/restraints/para meters	11709/0/549	19424/175/886	19123/164/875
$\begin{array}{l} Goodness-of-fit \ on \\ F^2 \end{array}$	1.022	1.046	1.018
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0527, wR_2 = 0.0906$	$R_1 = 0.0528, wR_2 = 0.1315$	$R_1 = 0.0477, wR_2 = 0.1238$
Final R indexes [all	$R_1 = 0.0847 \text{ w}R_2 =$	$R_1 = 0.0659 \text{ w}R_2 =$	$R_1 = 0.0615 \text{ w}R_2 =$
data]	0.1021	0.1399	0.1332
Largest diff. peak/hole / e Å ⁻³	1.17/-0.83	0.48/-0.89	0.94/-0.81
CCDC Dep. #	1980000	1980001	1980002

Table S5. Crystallographic parameters for compounds 1-La, 1-La(TPPO)₂, and 1-Y(TPPO)₂

Table S6a. Bond distances for 1-La.

Jua D	Jud distances for 1	LLu.					
Si1	3.3497(13)	C1	C2	1.414(5)	C23	C24	1.503(5)
01	2.258(3)	C1	C14	1.405(5)	C24	C25	1.386(5)
O2	2.263(2)	C2	C3	1.544(5)	C24	C37	1.406(5)
03	2.703(3)	C2	C7	1.392(5)	C25	C26	1.386(5)
O4	2.650(3)	C3	C4	1.537(6)	C26	C27	1.530(5)
N1	2.712(3)	C3	C5	1.536(6)	C26	C31	1.396(5)
N2	2.429(3)	C3	C6	1.529(6)	C27	C28	1.517(6)
N2	1.681(4)	C7	C8	1.395(5)	C27	C29	1.525(7)
C38	1.872(5)	C8	C9	1.532(5)	C27	C30	1.516(6)
C39	1.864(6)	C8	C13	1.398(5)	C31	C32	1.390(5)
N2	1.708(3)	C9	C10	1.529(6)	C32	C33	1.533(5)
C40	1.873(5)	C9	C11	1.527(6)	C32	C37	1.424(5)
C41	1.865(5)	C9	C12	1.526(6)	C33	C34	1.539(6)
C1	1.344(4)	C13	C14	1.386(5)	C33	C35	1.539(5)
C37	1.333(4)	C14	C15	1.508(5)	C33	C36	1.531(6)
C42	1.434(5)	C16	C17	1.524(5)	C42	C43	1.506(7)
C45	1.442(5)	C17	C18	1.378(5)	C43	C44	1.503(7)
C47	1.507(6)	C17	C22	1.391(5)	C44	C45	1.527(6)
C48	1.388(6)	C18	C19	1.385(6)	C46	C47	1.405(8)
C15	1.488(4)	C19	C20	1.373(6)	C48	C49	1.465(9)
C16	1.486(4)	C20	C21	1.377(7)			
C23	1.488(5)	C21	C22	1.387(6)			
	Si1 O1 O2 O3 O4 N1 N2 C38 C39 N2 C40 C41 C1 C37 C42 C45 C47 C48 C15 C16 C23	Si1 $3.3497(13)$ O1 $2.258(3)$ O2 $2.263(2)$ O3 $2.703(3)$ O4 $2.650(3)$ N1 $2.712(3)$ N2 $2.429(3)$ N2 $1.681(4)$ C38 $1.872(5)$ C39 $1.864(6)$ N2 $1.708(3)$ C40 $1.873(5)$ C41 $1.865(5)$ C1 $1.344(4)$ C37 $1.333(4)$ C42 $1.434(5)$ C45 $1.442(5)$ C47 $1.507(6)$ C48 $1.388(6)$ C15 $1.488(4)$ C16 $1.488(4)$ C23 $1.488(5)$	Sil $3.3497(13)$ C1O1 $2.258(3)$ C1O2 $2.263(2)$ C2O3 $2.703(3)$ C2O4 $2.650(3)$ C3N1 $2.712(3)$ C3N2 $2.429(3)$ C3N2 $1.681(4)$ C7C38 $1.872(5)$ C8C39 $1.864(6)$ C8N2 $1.708(3)$ C9C40 $1.873(5)$ C9C41 $1.865(5)$ C9C1 $1.344(4)$ C13C37 $1.333(4)$ C14C42 $1.434(5)$ C16C45 $1.442(5)$ C17C47 $1.507(6)$ C17C48 $1.388(6)$ C18C15 $1.486(4)$ C20C23 $1.488(5)$ C21	Sii 3.3497(13) C1 C2 O1 2.258(3) C1 C14 O2 2.263(2) C2 C3 O3 2.703(3) C2 C7 O4 2.650(3) C3 C4 N1 2.712(3) C3 C4 N2 2.429(3) C3 C6 N2 1.681(4) C7 C8 C38 1.872(5) C8 C9 C39 1.864(6) C8 C13 N2 1.708(3) C9 C10 C40 1.873(5) C9 C11 C41 1.865(5) C9 C12 C1 1.344(4) C13 C14 C37 1.333(4) C14 C15 C42 1.434(5) C16 C17 C45 1.442(5) C16 C17 C45 1.488(6) C18 C19 C15 1.488(4) C19 C20 <td< td=""><td>Sin Doine distances for 1 Eu.Si1$3.3497(13)$C1C2$1.414(5)$O1$2.258(3)$C1C14$1.405(5)$O2$2.263(2)$C2C3$1.544(5)$O3$2.703(3)$C2C7$1.392(5)$O4$2.650(3)$C3C4$1.537(6)$N1$2.712(3)$C3C5$1.536(6)$N2$2.429(3)$C3C6$1.529(6)$N2$1.681(4)$C7C8$1.395(5)$C38$1.872(5)$C8C9$1.532(5)$C39$1.864(6)$C8C13$1.398(5)$N2$1.708(3)$C9C10$1.529(6)$C40$1.873(5)$C9C11$1.527(6)$C41$1.865(5)$C9C12$1.526(6)$C1$1.344(4)$C13C14$1.386(5)$C37$1.333(4)$C14C15$1.508(5)$C42$1.434(5)$C16C17$1.524(5)$C45$1.442(5)$C17C18$1.378(5)$C47$1.507(6)$C17C22$1.391(5)$C48$1.388(6)$C18C19$1.385(6)$C15$1.488(4)$C19C20$1.377(7)$C23$1.488(5)$C21C22$1.387(6)$</td><td>Sill$3.3497(13)$C1C2$1.414(5)$C23O1$2.258(3)$C1C14$1.405(5)$C24O2$2.263(2)$C2C3$1.544(5)$C24O3$2.703(3)$C2C7$1.392(5)$C25O4$2.650(3)$C3C4$1.537(6)$C26N1$2.712(3)$C3C5$1.536(6)$C26N2$2.429(3)$C3C6$1.529(6)$C27N2$1.681(4)$C7C8$1.395(5)$C27C38$1.872(5)$C8C9$1.532(5)$C31N2$1.708(3)$C9C10$1.529(6)$C32C40$1.873(5)$C9C11$1.527(6)$C32C41$1.865(5)$C9C12$1.526(6)$C33C1$1.344(4)$C13C14$1.386(5)$C33C37$1.333(4)$C14C15$1.508(5)$C33C42$1.434(5)$C16C17$1.524(5)$C42C45$1.442(5)$C17C18$1.378(5)$C43C47$1.507(6)$C17C22$1.391(5)$C44C48$1.388(6)$C18C19$1.387(6)$C48C16$1.486(4)$C20C21$1.377(7)$C23$1.488(5)$C21C22$1.387(6)$</td><td>Sill 3.3497(13)C1C2$1.414(5)$C23C24O12.258(3)C1C14$1.405(5)$C24C25O22.263(2)C2C3$1.544(5)$C24C37O32.703(3)C2C7$1.392(5)$C25C26O42.650(3)C3C4$1.537(6)$C26C27N12.712(3)C3C5$1.536(6)$C26C31N22.429(3)C3C6$1.529(6)$C27C28N2$1.681(4)$C7C8$1.395(5)$C27C29C38$1.872(5)$C8C9$1.532(5)$C27C30C39$1.864(6)$C8C13$1.398(5)$C31C32N2$1.708(3)$C9C10$1.529(6)$C32C37C41$1.865(5)$C9C12$1.526(6)$C33C34C1$1.344(4)$C13C14$1.386(5)$C33C36C42$1.434(5)$C16C17$1.524(5)$C42C43C45$1.442(5)$C17C18$1.378(5)$C43C44C47$1.507(6)$C17C22$1.391(5)$C44C45C48$1.388(6)$C18C19$1.385(6)$C46C47C16$1.486(4)$C20C21$1.377(7)$C23$1.488(5)$C21C22$1.387(6)$</td></td<>	Sin Doine distances for 1 Eu.Si1 $3.3497(13)$ C1C2 $1.414(5)$ O1 $2.258(3)$ C1C14 $1.405(5)$ O2 $2.263(2)$ C2C3 $1.544(5)$ O3 $2.703(3)$ C2C7 $1.392(5)$ O4 $2.650(3)$ C3C4 $1.537(6)$ N1 $2.712(3)$ C3C5 $1.536(6)$ N2 $2.429(3)$ C3C6 $1.529(6)$ N2 $1.681(4)$ C7C8 $1.395(5)$ C38 $1.872(5)$ C8C9 $1.532(5)$ C39 $1.864(6)$ C8C13 $1.398(5)$ N2 $1.708(3)$ C9C10 $1.529(6)$ C40 $1.873(5)$ C9C11 $1.527(6)$ C41 $1.865(5)$ C9C12 $1.526(6)$ C1 $1.344(4)$ C13C14 $1.386(5)$ C37 $1.333(4)$ C14C15 $1.508(5)$ C42 $1.434(5)$ C16C17 $1.524(5)$ C45 $1.442(5)$ C17C18 $1.378(5)$ C47 $1.507(6)$ C17C22 $1.391(5)$ C48 $1.388(6)$ C18C19 $1.385(6)$ C15 $1.488(4)$ C19C20 $1.377(7)$ C23 $1.488(5)$ C21C22 $1.387(6)$	Sill $3.3497(13)$ C1C2 $1.414(5)$ C23O1 $2.258(3)$ C1C14 $1.405(5)$ C24O2 $2.263(2)$ C2C3 $1.544(5)$ C24O3 $2.703(3)$ C2C7 $1.392(5)$ C25O4 $2.650(3)$ C3C4 $1.537(6)$ C26N1 $2.712(3)$ C3C5 $1.536(6)$ C26N2 $2.429(3)$ C3C6 $1.529(6)$ C27N2 $1.681(4)$ C7C8 $1.395(5)$ C27C38 $1.872(5)$ C8C9 $1.532(5)$ C31N2 $1.708(3)$ C9C10 $1.529(6)$ C32C40 $1.873(5)$ C9C11 $1.527(6)$ C32C41 $1.865(5)$ C9C12 $1.526(6)$ C33C1 $1.344(4)$ C13C14 $1.386(5)$ C33C37 $1.333(4)$ C14C15 $1.508(5)$ C33C42 $1.434(5)$ C16C17 $1.524(5)$ C42C45 $1.442(5)$ C17C18 $1.378(5)$ C43C47 $1.507(6)$ C17C22 $1.391(5)$ C44C48 $1.388(6)$ C18C19 $1.387(6)$ C48C16 $1.486(4)$ C20C21 $1.377(7)$ C23 $1.488(5)$ C21C22 $1.387(6)$	Sill 3.3497(13)C1C2 $1.414(5)$ C23C24O12.258(3)C1C14 $1.405(5)$ C24C25O22.263(2)C2C3 $1.544(5)$ C24C37O32.703(3)C2C7 $1.392(5)$ C25C26O42.650(3)C3C4 $1.537(6)$ C26C27N12.712(3)C3C5 $1.536(6)$ C26C31N22.429(3)C3C6 $1.529(6)$ C27C28N2 $1.681(4)$ C7C8 $1.395(5)$ C27C29C38 $1.872(5)$ C8C9 $1.532(5)$ C27C30C39 $1.864(6)$ C8C13 $1.398(5)$ C31C32N2 $1.708(3)$ C9C10 $1.529(6)$ C32C37C41 $1.865(5)$ C9C12 $1.526(6)$ C33C34C1 $1.344(4)$ C13C14 $1.386(5)$ C33C36C42 $1.434(5)$ C16C17 $1.524(5)$ C42C43C45 $1.442(5)$ C17C18 $1.378(5)$ C43C44C47 $1.507(6)$ C17C22 $1.391(5)$ C44C45C48 $1.388(6)$ C18C19 $1.385(6)$ C46C47C16 $1.486(4)$ C20C21 $1.377(7)$ C23 $1.488(5)$ C21C22 $1.387(6)$

Table S6b. Bond angles for 1-La.

	Donu an	gies ioi i	-L/a.				
01	La1	Si1	130.53(7)	C6	C3	C5	107.5(4)
O1	La1	O2	123.05(10)	C2	C7	C8	123.9(3)
O1	La1	O3	82.31(10)	C7	C8	C9	122.7(3)
O1	La1	O4	118.24(10)	C7	C8	C13	116.4(4)
O1	La1	N1	74.84(9)	C13	C8	C9	120.8(3)
O1	La1	N2	102.24(11)	C10	C9	C8	109.0(3)
O2	La1	Si1	96.16(7)	C11	C9	C8	112.0(3)
O2	La1	O3	75.49(9)	C11	C9	C10	108.2(4)
O2	La1	O4	101.62(10)	C12	C9	C8	111.2(4)
O2	La1	N1	70.39(9)	C12	C9	C10	109.1(4)
O2	La1	N2	121.18(11)	C12	C9	C11	107.4(4)
O3	La1	Si1	141.03(7)	C14	C13	C8	121.9(3)
O3	La1	N1	117.10(9)	C1	C14	C15	120.5(3)
O4	La1	Si1	75.62(8)	C13	C14	C1	120.1(3)
O4	La1	O3	69.23(10)	C13	C14	C15	119.3(3)
O4	La1	N1	166.75(10)	N1	C15	C14	115.8(3)
N1	La1	Si1	94.39(7)	N1	C16	C17	119.2(3)
N2	La1	Si1	28.53(8)	C18	C17	C16	122.3(3)
N2	La1	O3	152.34(10)	C18	C17	C22	117.8(4)

N2	La1	O4	85.01(11)	C22	C17	C16	119.7(4)
N2	La1	N1	90.22(10)	C17	C18	C19	121.3(4)
N2	Si1	La1	43.67(11)	C20	C19	C18	120.6(4)
N2	Si1	C38	116.2(3)	C19	C20	C21	118.8(4)
N2	Si1	C39	116.6(2)	C20	C21	C22	120.8(4)
C38	Si1	La1	123.4(2)	C21	C22	C17	120.6(4)
C39	Si1	La1	129.54(19)	N1	C23	C24	116.8(3)
C39	Si1	C38	107.1(3)	C25	C24	C23	117.9(3)
N2	Si2	C40	113.5(2)	C25	C24	C37	120.4(3)
N2	Si2	C41	114.5(2)	C37	C24	C23	121.6(3)
C41	Si2	C40	107.8(2)	C26	C25	C24	122.2(3)
C1	01	La1	141.0(2)	C25	C26	C27	122.2(3)
C37	O2	La1	148.1(2)	C25	C26	C31	116.7(3)
C42	O3	La1	138.7(3)	C31	C26	C27	121.1(3)
C42	O3	C45	108.2(3)	C28	C27	C26	112.4(3)
C45	O3	La1	112.7(2)	C28	C27	C29	107.1(4)
C47	O4	La1	118.0(3)	C29	C27	C26	108.5(4)
C48	O4	La1	127.4(4)	C30	C27	C26	110.3(4)
C48	O4	C47	114.5(4)	C30	C27	C28	108.0(4)
C15	N1	La1	108.4(2)	C30	C27	C29	110.5(5)
C16	N1	La1	104.9(2)	C32	C31	C26	123.9(3)
C16	N1	C15	110.3(3)	C31	C32	C33	121.4(3)
C16	N1	C23	114.1(3)	C31	C32	C37	117.9(3)
C23	N1	La1	110.4(2)	C37	C32	C33	120.7(3)
C23	N1	C15	108.6(3)	C32	C33	C34	110.4(3)
Si1	N2	La1	107.80(16)	C32	C33	C35	112.7(3)
Si1	N2	Si2	129.1(2)	C34	C33	C35	106.6(3)
Si2	N2	La1	122.81(18)	C36	C33	C32	109.1(3)
01	C1	C2	122.4(3)	C36	C33	C34	110.4(3)
O1	C1	C14	118.4(3)	C36	C33	C35	107.5(3)
C14	C1	C2	119.2(3)	O2	C37	C24	119.6(3)
C1	C2	C3	121.2(3)	O2	C37	C32	121.6(3)
C7	C2	C1	117.8(3)	C24	C37	C32	118.9(3)
C7	C2	C3	121.0(3)	O3	C42	C43	105.7(4)
C4	C3	C2	108.6(3)	C44	C43	C42	102.0(4)
C5	C3	C2	110.7(3)	C43	C44	C45	104.6(4)
C5	C3	C4	110.2(4)	O3	C45	C44	106.6(4)
C6	C3	C2	112.1(3)	C46	C47	O4	115.1(5)
C6	C3	C4	107.7(4)	O4	C48	C49	108.8(5)

Table S7a. Bond distances for 1-La(TPPO)₂.

	57 a. D 0	nu uistances tor	1-La(1110)	/ <u>/</u> •			
La1	Si1	3.3964(10)	C8 C13	1.391(4)	C43	C44	1.388(5)
La1	01	2.276(2)	C9 C10	1.504(10)	C44	C45	1.379(6)
La1	O2	2.267(2)	C9 C11	1.501(10)	C45	C46	1.351(6)
La1	O3	2.4821(19)	C9 C12	1.519(10)	C46	C47	1.377(5)
La1	O4	2.456(2)	C9 C10A	1.506(10)	C48	C49	1.378(4)
La1	N1	2.828(2)	C9 C11A	1.507(10)	C48	C53	1.388(4)
La1	N2	2.459(3)	C9 C12A	1.546(10)	C49	C50	1.386(5)
P1	O3	1.502(2)	C13 C14	1.392(4)	C50	C51	1.358(6)
P1	C42	1.792(3)	C14 C15	1.511(4)	C51	C52	1.378(6)
P1	C48	1.808(3)	C16 C17	1.516(4)	C52	C53	1.377(5)
P1	C54	1.805(3)	C17 C18	1.385(5)	C54	C55	1.383(4)
P2	O4	1.502(2)	C17 C22	1.391(5)	C54	C59	1.397(4)
P2	C60	1.797(3)	C18 C19	1.382(5)	C55	C56	1.374(5)
P2	C66	1.795(3)	C19 C20	1.387(7)	C56	C57	1.389(5)
P2	C72	1.792(3)	C20 C21	1.359(6)	C57	C58	1.374(5)
Si1	N2	1.681(3)	C21 C22	1.380(5)	C58	C59	1.379(5)
Si1	C38	1.853(4)	C23 C24	1.513(4)	C60	C61	1.382(5)
Si1	C39	1.865(4)	C24 C25	1.384(4)	C60	C65	1.381(5)
Si2	N2	1.686(3)	C24 C37	1.407(4)	C61	C62	1.379(5)
Si2	C40	1.851(4)	C25 C26	1.388(4)	C62	C63	1.378(6)
Si2	C41	1.728(8)	C26 C27	1.526(5)	C63	C64	1.357(6)
Si2	C41A	1.685(8)	C26 C31	1.390(5)	C64	C65	1.387(5)
01	C1	1.329(4)	C27 C28	1.614(9)	C66	C67	1.389(4)
O2	C37	1.325(4)	C27 C29	1.557(10)	C66	C71	1.388(4)
N1	C15	1.494(3)	C27 C30	1.468(11)	C67	C68	1.378(4)
N1	C16	1.477(4)	C27 C28A	1.541(9)	C68	C69	1.380(5)
N1	C23	1.491(3)	C27 C29A	1.485(8)	C69	C70	1.369(5)
C1	C2	1.420(4)	C27 C30A	1.487(10)	C70	C71	1.371(5)
C1	C14	1.403(4)	C31 C32	1.398(5)	C72	C73	1.392(5)
C2	C3	1.527(5)	C32 C33	1.534(5)	C72	C77	1.386(5)
C2	C7	1.401(5)	C32 C37	1.423(4)	C73	C74	1.384(5)
C3	C4	1.528(5)	C33 C34	1.529(5)	C74	C75	1.359(7)
C3	C5	1.534(5)	C33 C35	1.526(6)	C75	C76	1.364(6)
C3	C6	1.539(5)	C33 C36	1.538(5)	C76	C77	1.382(5)
C7	C8	1.382(5)	C42 C43	1.387(5)			
C8	C9	1.535(4)	C42 C47	1.371(5)			

Table S7b. Bond angles for 1-La(TPPO)2.

01	La1	Si1	89.35(5)	N1	C16	C17	119.8(2)
O1	La1	O3	96.73(7)	C18	C17	C16	121.8(3)
O1	La1	O4	84.03(8)	C18	C17	C22	117.5(3)
O1	La1	N1	71.33(7)	C22	C17	C16	120.6(3)
O1	La1	N2	109.07(9)	C19	C18	C17	121.4(4)
O2	La1	Si1	125.22(5)	C18	C19	C20	119.8(4)

O2	La1	01	144.91(7)	C21	C20	C19	119.4(4)
O2	La1	O3	85.42(7)	C20	C21	C22	120.9(4)
O2	La1	O4	87.84(8)	C21	C22	C17	121.0(4)
O2	La1	N1	73.91(7)	N1	C23	C24	117.9(2)
O2	La1	N2	105.42(9)	C25	C24	C23	118.6(3)
03	La1	Si1	79.42(5)	C25	C24	C37	120.5(3)
03	La1	N1	85.96(7)	C37	C24	C23	120.2(3)
O4	La1	Si1	111.34(5)	C24	C25	C26	122.6(3)
O4	La1	O3	169.24(7)	C25	C26	C27	122.2(3)
O4	La1	N1	84.11(7)	C25	C26	C31	116.0(3)
O4	La1	N2	93.24(8)	C31	C26	C27	121.8(3)
N1	La1	Si1	154.26(5)	C26	C27	C28	114.3(5)
N2	La1	Si1	27.94(7)	C26	C27	C29	109.7(5)
N2	La1	O3	96.63(8)	C26	C27	C28A	106.3(4)
N2	La1	N1	177.28(7)	C29	C27	C28	104.3(8)
O3	P1	C42	114.42(14)	C30	C27	C26	111.7(8)
O3	P1	C48	109.78(13)	C30	C27	C28	107.2(9)
O3	P1	C54	110.62(13)	C30	C27	C29	109.3(10)
C42	P1	C48	107.67(15)	C29A	C27	C26	106.8(4)
C42	P1	C54	105.69(14)	C29A	C27	C28A	107.0(7)
C54	P1	C48	108.43(14)	C29A	C27	C30A	116.7(8)
O4	P2	C60	111.28(13)	C30A	C27	C26	110.7(7)
O4	P2	C66	112.55(13)	C30A	C27	C28A	108.7(9)
O4	P2	C72	110.65(15)	C26	C31	C32	124.8(3)
C66	P2	C60	107.45(15)	C31	C32	C33	121.5(3)
C72	P2	C60	108.17(15)	C31	C32	C37	117.3(3)
C72	P2	C66	106.51(14)	C37	C32	C33	121.1(3)
N2	Si1	La1	43.26(9)	C32	C33	C36	110.2(3)
N2	Si1	C38	116.0(2)	C34	C33	C32	112.8(3)
N2	Si1	C39	115.45(17)	C34	C33	C36	106.4(3)
C38	Si1	La1	129.53(17)	C35	C33	C32	108.8(3)
C38	Si1	C39	106.3(2)	C35	C33	C34	107.1(3)
C39	Si1	La1	124.18(15)	C35	C33	C36	111.5(4)
N2	Si2	C40	112.26(17)	O2	C37	C24	119.3(3)
N2	Si2	C41	120.1(4)	O2	C37	C32	121.9(3)
C41	Si2	C40	112.0(4)	C24	C37	C32	118.9(3)
C41A	Si2	N2	124.4(5)	C43	C42	P1	118.6(3)
C41A	Si2	C40	111.8(4)	C47	C42	P1	122.1(3)
C1	O 1	La1	148.58(18)	C47	C42	C43	119.3(3)
C37	O2	La1	141.29(18)	C42	C43	C44	119.5(4)
P1	O3	La1	167.60(13)	C45	C44	C43	119.9(4)
P2	O4	La1	162.97(14)	C46	C45	C44	120.2(4)
C15	N1	La1	106.97(16)	C45	C46	C47	120.4(4)
C16	N1	La1	112.18(16)	C42	C47	C46	120.7(4)
C16	N1	C15	112.5(2)	C49	C48	P1	118.2(2)

C16	N1	C23	113.7(2)	C49	C48	C53	119.1(3)
C23	N1	La1	106.23(15)	C53	C48	P1	122.7(3)
C23	N1	C15	104.7(2)	C48	C49	C50	120.1(3)
Si1	N2	La1	108.81(13)	C51	C50	C49	120.8(4)
Si1	N2	Si2	123.12(16)	C50	C51	C52	119.4(4)
Si2	N2	La1	126.39(15)	C53	C52	C51	120.7(4)
O1	C1	C2	121.3(3)	C52	C53	C48	119.9(4)
O1	C1	C14	119.7(3)	C55	C54	P1	119.3(2)
C14	C1	C2	118.9(3)	C55	C54	C59	119.1(3)
C1	C2	C3	121.6(3)	C59	C54	P1	121.6(2)
C7	C2	C1	117.8(3)	C56	C55	C54	120.4(3)
C7	C2	C3	120.4(3)	C55	C56	C57	120.4(3)
C2	C3	C4	111.4(3)	C58	C57	C56	119.5(3)
C2	C3	C5	109.1(3)	C57	C58	C59	120.6(3)
C2	C3	C6	112.1(3)	C58	C59	C54	120.0(3)
C4	C3	C5	109.6(3)	C61	C60	P2	122.3(3)
C4	C3	C6	106.8(3)	C65	C60	P2	117.9(2)
C5	C3	C6	107.7(3)	C65	C60	C61	119.7(3)
C8	C7	C2	124.0(3)	C62	C61	C60	119.6(3)
C7	C8	C9	121.4(3)	C63	C62	C61	120.5(4)
C7	C8	C13	116.6(3)	C64	C63	C62	120.1(4)
C13	C8	C9	121.9(3)	C63	C64	C65	120.3(4)
C8	C9	C12A	109.6(7)	C60	C65	C64	119.9(3)
C10	C9	C8	108.7(7)	C67	C66	P2	121.9(2)
C10	C9	C12	110.2(10)	C67	C66	C71	119.1(3)
C11	C9	C8	108.5(6)	C71	C66	P2	118.9(2)
C11	C9	C10	110.0(9)	C68	C67	C66	120.7(3)
C11	C9	C12	108.9(9)	C67	C68	C69	119.4(3)
C12	C9	C8	110.6(6)	C70	C69	C68	120.3(3)
C10A	C9	C8	113.7(6)	C69	C70	C71	120.8(3)
C10A	C9	C11A	111.7(8)	C70	C71	C66	119.9(3)
C10A	C9	C12A	104.8(7)	C73	C72	P2	121.9(3)
C11A	C9	C8	110.3(6)	C77	C72	P2	118.8(3)
C11A	C9	C12A	106.2(8)	C77	C72	C73	119.3(3)
C8	C13	C14	122.3(3)	C74	C73	C72	119.7(4)
C1	C14	C15	122.4(2)	C75	C74	C73	120.2(4)
C13	C14	C1	120.1(3)	C74	C75	C76	120.8(4)
C13	C14	C15	116.5(3)	C75	C76	C77	120.2(4)
N1	C15	C14	119.9(2)	C76	C77	C72	119.8(4)

Table S8a. Bond distances for 1-Y(TPPO)2.

Table	50a. D	ond distances for	1 = 1(1110)2.			
Y1	Si1	3.3926(8)	C8 C13	1.393(3)	C42 C47	1.392(3)
Y1	01	2.1610(15)	C9 C10	1.546(8)	C43 C44	1.385(4)
Y1	O2	2.1557(15)	C9 C11	1.513(9)	C44 C45	1.375(4)
Y1	03	2.3160(15)	C9 C12	1.513(9)	C45 C46	1.377(5)
Y1	O4	2.2948(15)	C9 C10A	1.511(9)	C46 C47	1.376(4)
Y1	N1	2.6578(18)	C9 C11A	1.509(8)	C48 C49	1.381(3)
Y1	N2	2.301(2)	C9 C12A	1.494(9)	C48 C53	1.399(3)
P1	03	1.5060(15)	C13 C14	1.396(3)	C49 C50	1.389(4)
P1	C42	1.806(2)	C14 C15	1.507(3)	C50 C51	1.375(4)
P1	C48	1.807(2)	C16 C17	1.517(3)	C51 C52	1.386(4)
P1	C54	1.796(2)	C17 C18	1.390(4)	C52 C53	1.374(4)
P2	O4	1.5019(16)	C17 C22	1.392(4)	C54 C55	1.395(4)
P2	C60	1.797(2)	C18 C19	1.389(4)	C54 C59	1.377(4)
P2	C66	1.796(2)	C19 C20	1.377(5)	C55 C56	1.384(4)
P2	C72	1.798(2)	C20 C21	1.366(5)	C56 C57	1.380(5)
Si1	N2	1.696(2)	C21 C22	1.388(4)	C57 C58	1.360(5)
Si1	C38	1.868(3)	C23 C24	1.507(3)	C58 C59	1.383(4)
Si1	C39	1.873(3)	C24 C25	1.389(3)	C60 C61	1.396(3)
Si2	N2	1.723(2)	C24 C37	1.415(3)	C60 C65	1.389(3)
Si2	C40	1.865(3)	C25 C26	1.388(3)	C61 C62	1.384(3)
Si2	C41	1.816(4)	C26 C27	1.534(3)	C62 C63	1.375(4)
01	C1	1.332(3)	C26 C31	1.388(4)	C63 C64	1.385(4)
O2	C37	1.320(3)	C27 C28	1.599(7)	C64 C65	1.376(4)
N1	C15	1.491(3)	C27 C29	1.495(6)	C66 C67	1.390(3)
N1	C16	1.493(3)	C27 C30	1.495(7)	C66 C71	1.390(4)
N1	C23	1.496(3)	C27 C28A	1.546(9)	C67 C68	1.379(4)
C1	C2	1.423(3)	C27 C29A	1.537(9)	C68 C69	1.359(5)
C1	C14	1.411(3)	C27 C30A	1.450(10)	C69 C70	1.371(5)
C2	C3	1.538(4)	C31 C32	1.394(3)	C70 C71	1.389(4)
C2	C7	1.390(3)	C32 C33	1.538(3)	C72 C73	1.385(3)
C3	C4	1.536(4)	C32 C37	1.421(3)	C72 C77	1.387(3)
C3	C5	1.536(4)	C33 C34	1.532(4)	C73 C74	1.386(4)
C3	C6	1.527(4)	C33 C35	1.524(4)	C74 C75	1.371(4)
C7	C8	1.390(4)	C33 C36	1.537(4)	C75 C76	1.365(4)
C8	C9	1.533(3)	C42 C43	1.382(3)	C76 C77	1.382(4)
Table S	S8b. B	ond angles for 1-	Y(TPPO) ₂ .			
C	01	Y1 Si1	86.00(4)	C18 C17	C16	121.4(2)
C	01	Y1 O3	95.21(6)	C18 C17	C22	117.9(2)

-		. –					
01	Y1	O3	95.21(6)	C18	C17	C22	117.9(2)
01	Y1	O4	85.47(6)	C22	C17	C16	120.4(2)
01	Y1	N1	75.57(6)	C19	C18	C17	120.5(3)
01	Y1	N2	104.91(7)	C20	C19	C18	120.7(3)
O2	Y1	Si1	120.94(4)	C21	C20	C19	119.3(3)
O2	Y1	01	152.65(6)	C20	C21	C22	120.6(3)

O2	Y1	03	87.44(6)	C21	C22	C17	120.9(3)
O2	Y1	O4	88.30(6)	N1	C23	C24	117.15(17)
O2	Y1	N1	77.39(5)	C25	C24	C23	118.76(19)
O2	Y1	N2	102.06(7)	C25	C24	C37	120.6(2)
03	Y1	Si1	76.52(4)	C37	C24	C23	120.00(19)
03	Y1	N1	87.15(5)	C26	C25	C24	122.2(2)
O4	Y1	Si1	111.55(4)	C25	C26	C27	121.6(2)
O4	Y1	O3	171.93(5)	C25	C26	C31	116.5(2)
O4	Y1	N1	85.23(5)	C31	C26	C27	121.9(2)
O4	Y1	N2	93.84(6)	C26	C27	C28	107.1(3)
N1	Y1	Si1	154.17(4)	C26	C27	C28A	113.2(4)
N2	Y1	Si1	26.86(5)	C26	C27	C29A	109.7(5)
N2	Y1	03	93.75(6)	C29	C27	C26	108.7(3)
N2	Y1	N1	178.93(6)	C29	C27	C28	106.7(4)
03	P1	C42	110.02(10)	C29	C27	C30	112.7(6)
03	P1	C48	110.76(10)	C30	C27	C26	112.6(4)
03	P1	C54	115.22(10)	C30	C27	C28	108.8(6)
C42	P1	C48	108.54(11)	C29A	C27	C28A	102.3(8)
C54	P1	C42	107.20(12)	C30A	C27	C26	111.0(5)
C54	P1	C48	104.79(11)	C30A	C27	C28A	107.8(9)
O4	P2	C60	112.55(10)	C30A	C27	C29A	112.7(9)
O4	P2	C66	110.68(10)	C26	C31	C32	124.3(2)
O4	P2	C72	111.87(10)	C31	C32	C33	120.9(2)
C60	P2	C72	107.27(11)	C31	C32	C37	118.2(2)
C66	P2	C60	105.99(10)	C37	C32	C33	120.8(2)
C66	P2	C72	108.20(11)	C34	C33	C32	112.6(2)
N2	Si1	Y1	37.81(7)	C34	C33	C36	106.2(2)
N2	Si1	C38	115.11(16)	C35	C33	C32	108.9(2)
N2	Si1	C39	115.60(13)	C35	C33	C34	107.4(2)
C38	Si1	Y1	129.97(13)	C35	C33	C36	111.4(2)
C38	Si1	C39	105.17(17)	C36	C33	C32	110.3(2)
C39	Si1	Y1	124.12(12)	O2	C37	C24	119.05(18)
N2	Si2	C40	112.96(12)	O2	C37	C32	122.8(2)
N2	Si2	C41	116.6(2)	C24	C37	C32	118.2(2)
C41	Si2	C40	106.16(19)	C43	C42	P1	118.05(19)
C1	01	Y1	146.10(14)	C43	C42	C47	118.8(2)
C37	O2	Y1	140.54(13)	C47	C42	P1	123.1(2)
P1	O3	Y1	169.93(10)	C42	C43	C44	120.5(3)
P2	O4	Y1	164.03(10)	C45	C44	C43	120.0(3)
C15	N1	Y1	107.66(12)	C44	C45	C46	120.0(3)
C15	N1	C16	111.60(16)	C47	C46	C45	120.2(3)
C15	N1	C23	104.54(15)	C46	C47	C42	120.4(3)
C16	N1	Y1	112.60(12)	C49	C48	P1	119.58(17)
C16	N1	C23	112.88(17)	C49	C48	C53	118.9(2)
C23	N1	Y1	107.07(12)	C53	C48	P1	121.48(18)

				÷.			
Si1	N2	Y1	115.33(11)	C48	C49	C50	120.3(2)
Si1	N2	Si2	117.77(12)	C51	C50	C49	120.3(2)
Si2	N2	Y1	124.71(11)	C50	C51	C52	119.7(2)
O1	C1	C2	122.0(2)	C53	C52	C51	120.2(2)
O1	C1	C14	119.35(19)	C52	C53	C48	120.4(2)
C14	C1	C2	118.6(2)	C55	C54	P1	119.03(19)
C1	C2	C3	121.8(2)	C59	C54	P1	121.9(2)
C7	C2	C1	118.2(2)	C59	C54	C55	119.1(2)
C7	C2	C3	119.8(2)	C56	C55	C54	119.4(3)
C4	C3	C2	111.1(2)	C57	C56	C55	120.6(3)
C4	C3	C5	109.8(2)	C58	C57	C56	120.0(3)
C5	C3	C2	108.6(2)	C57	C58	C59	120.1(3)
C6	C3	C2	112.5(2)	C54	C59	C58	120.9(3)
C6	C3	C4	107.5(2)	C61	C60	P2	121.39(17)
C6	C3	C5	107.4(2)	C65	C60	P2	119.37(18)
C8	C7	C2	124.1(2)	C65	C60	C61	119.2(2)
C7	C8	C9	121.5(2)	C62	C61	C60	120.3(2)
C7	C8	C13	116.5(2)	C63	C62	C61	119.7(2)
C13	C8	C9	121.9(2)	C62	C63	C64	120.3(2)
C8	C9	C10	110.0(6)	C65	C64	C63	120.3(2)
C11	C9	C8	111.0(5)	C64	C65	C60	120.2(2)
C11	C9	C10	107.3(7)	C67	C66	P2	121.6(2)
C11	C9	C12	109.2(7)	C71	C66	P2	119.01(19)
C12	C9	C8	114.4(5)	C71	C66	C67	119.3(2)
C12	C9	C10	104.4(7)	C68	C67	C66	120.1(3)
C10A	C9	C8	111.9(5)	C69	C68	C67	120.5(3)
C11A	C9	C8	108.2(4)	C68	C69	C70	120.3(3)
C11A	C9	C10A	109.4(7)	C69	C70	C71	120.5(3)
C12A	C9	C8	107.8(5)	C70	C71	C66	119.3(3)
C12A	C9	C10A	110.0(9)	C73	C72	P2	122.31(19)
C12A	C9	C11A	109.4(7)	C73	C72	C77	119.3(2)
C8	C13	C14	122.2(2)	C77	C72	P2	118.37(19)
C1	C14	C15	122.54(19)	C72	C73	C74	119.8(3)
C13	C14	C1	120.0(2)	C75	C74	C73	120.4(3)
C13	C14	C15	116.6(2)	C76	C75	C74	120.1(3)
N1	C15	C14	119.76(17)	C75	C76	C77	120.4(3)
N1	C16	C17	119.38(18)	C76	C77	C72	120.1(3)

Figure S26. Thermal ellipsoid plot of **1-La** ($[La({}^{1}L)(N(SiHMe_2)_2)(Et_2O)(THF)]$) shown at 50% probability. Hydrogen atoms other than those attached to Si(1) and Si(2) have been removed for clarity.

Figure S27. Thermal ellipsoid plot of $1-La(TPPO)_2$ ([La(¹L)(N(SiHMe₂)₂)(TPPO)₂]) shown at 50% probability. Second components of the two disordered tert-butyl groups and the (Me₂H) unit on Si(2) have been removed for clarity. Hydrogen atoms other than those attached to Si(1) and Si(2) have been removed for clarity.

Figure S28. Thermal ellipsoid plot of $1-Y(TPPO)_2$ ([Y(¹L)(N(SiHMe₂)₂)(TPPO)₂]) shown at 50% probability. Second components of the two disordered tert-butyl groups have been removed for clarity. Hydrogen atoms other than those attached to Si(1) and Si(2) have been removed for clarity.

5. References

- 1. Sandström, J. Dynamic NMR Spectroscopy; Academic Press: New York, 1982.
- 2. Amgoune, A.; Thomas, C. M.; Ilinca, S.; Roisnel, T.; Carpentier, J.-F. Angew. Chem., Int. Ed. 2006, 45, 2782–2784.
- 3. Save, M.; Schappacher, M.; Soum, A. Macromol. Chem. Phys. 2002, 203, 889-899.
- 4. Bradley, D. C.; Ghotra, J. S.; Hart, F. A. J. Chem. Soc., Dalton Trans. 1973, 1021–1023.
- 5. Smith, A. R.; Livinghouse, T. Organometallics 2013, 32, 1528–1530.
- 6. Amgoune, A.; Thomas, C. M.; Roisnel, T.; Carpentier, J.-F. Chem. Eur. J. 2006, 12, 169–179.
- 7. Cai, C.-X.; Amgoune, A.; Lehmann, C. W.; Carpentier, J.-F. Chem. Commun. 2004, 330–331.
- 8. Bruker SAINT, v8.37a; Bruker AXS Inc.: Madison, Wisconsin, 2012.
- 9. Sheldrick, G. M. SHELXT Integrated space-group and crystal-structure determination, *Acta Crystallogr. Sect. A: Found. Crystallogr.* **2015**, *71*, 3–8.
- 10. Bruker SADABS, v2014/5; Bruker AXS Inc.: Madison, Wisconsin, 2001.
- 11. Sheldrick, G. M. Crystal structure refinement with SHELXL, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 2015, 71, 3–8.

- Müller, P.; Herbst-Irmer, R.; Spek, A. L.; Schneider, T. R.; Sawaya, M. R. Crystal Structure Refinement: A Crystallographer's Guide to SHELXL; Oxford University Press, New York, 2006.
- 13. Thorn, A.; Dittrich, B.; Sheldrick, G. M. Enhanced rigid-bond restraints, *Acta Cryst.* 2012, *A68*, 448-451.
- 14. Spek, A. L. PLATON SQUEEZE: a tool for the calculation of the disordered solvent contribution to the calculated structure factors. *Acta Cryst.* **2015**, *C71*, 9-18.
- 15. Fleming, W. J.; Muller-Bunz, H.; Lillo, V; Fernandez, E; Guiry, P. J., *Org. Biomol. Chem.*, **2009**, *7*, 2520–2524.
- 16. Save, M.; Schappacher, M.; A. Soum, Macromol. Chem. Phys 2002, 203, 889-899.
- 17. Ouyang, H.; Nie, K.; Yuan, D.; Yao, Y. Dalton Trans., 2017, 46, 15928–15938.
- 18. Han, F.; Yang, L.; Li, Z.; Xia, C. Org. Biomol. Chem., 2012, 10, 346-354.
- 19. Griesbaum, K.; Zwick, G. Chem. Ber., 1986, 119, 229-243.