Electronic Supplementary Information:

a The University of Manchester at Harwell, Diamond Light Source, Harwell Campus, OX11 0DE, UK
b Department of Chemistry, The University of Manchester, Manchester, M13 9PL, UK
c EP VI, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg, D-86159 Augsburg, Germany
d Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, OX11 0DE, UK
e Department of Chemistry, Stanford University, Stanford, CA 94305, USA
f Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, IRD, MNHN, UMR7590, 75252 Paris Cedex 05, France.
Contents

1. Kβ Comparison .. 3
2. Experimental XANES Results 4
3. L_{2,3}-edge background subtraction 5
4. Density of States ... 6
5. L_{2,3}-edge Experimental vs CASSCF 7
6. Quanty Calculation of Anisotropy Barrier 9
S.1 \(K\beta \) Comparison

To the authors knowledge there have been no published data of \(K\beta \) measurements performed on transition metal ions in linear complexes. Comprehensive studies are documented for Fe\(\text{II} \) and Fe\(\text{III} \) of standard symmetries (\(O_h\) and \(D_{4h}\)), Figure S1 which provides the only comparison for the measured spectrum. Intensity was normalised to the integrated trapezoidal area of each spectra. Li\(_2\)(Li\(_{1-x}\)Fe\(_x\))N displays closest resemblance to the \(S = 2\) or \(3/2\) Fe model complexes which infer a \(d^6\) or \(d^7\) occupation respectively. However, there exists a strong deviation of \(K\beta_{1,3}\) and \(K\beta'\) energy splitting and relative intensity limiting further comparative deductions to model complexes.

Figure S1: \(K\beta \) fluorescence mainline comparison of Li\(\text{2}(\text{Li}_{1-x}\text{Fe}_x)\text{N}\) with model Fe\(\text{III} \) and Fe\(\text{II} \) complexes with various spin moments of standard symmetries (\(O_h\) and \(D_{4h}\))^1.
S.2 Experimental XANES Results

XANES displays minimal spectral differences as a function of doping concentration, Figure S2. Slight discrepancies are likely correlated to fluctuating background subtraction or self-absorption effects. Rising edge feature (7113 eV) was isolated and fit with a two peak Pearson-VII fitting routine to extract transition angular dependence described by total area of the peak.

Figure S2: Fe K-edge XANES spectra for various concentrations, x (Values defined in legend) of Li$_2$(Li$_{1-x}$Fe$_x$)N.

Figure S3: Angular dependent Fe K-edge XANES fitting, isolating the rising-edge peak of Li$_2$(Li$_{0.985}$Fe$_{0.015}$)N. Dotted lines represent fitted Pearson-VII peaks and dashed lines the total fitted rising-edge area.
S.3 L\textsubscript{2,3}-edge background subtraction

Figure S4 illustrates the background normalisation steps undertaken for the Fe-L\textsubscript{2,3} spectra. Pre- and Post-Edge normalisation is achieved through a linear fit, while Equation S1 models the background subtraction for the 2\textit{p}\textsubscript{3/2} and 2\textit{p}\textsubscript{1/2} continuum states through a double arc-tangent function2.

\begin{equation}
\begin{align*}
f(2\textit{p}_{\text{ctm}}) = \frac{h_{L3}}{\pi} \left[\arctan(k \cdot (E - E_{L3})) \right] + \frac{h_{L2}}{\pi} \left[\arctan(k \cdot (E - E_{L2})) \right]
\end{align*}
\end{equation}

Heights of the arc-tangent (\(h_{L3}\) and \(h_{L2}\)) were set to the approximate minima of each edge while the energy shift is defined as the inflection point of the corresponding edges, \(E_{L3} = 705.7\) eV and \(E_{L2} = 720.3\) eV, \(k = 2.0\).

Figure S4: a) Background subtraction through linear fitting to pre-edge (690 - 700 eV), b) Normalisation of spectra through linear fitting to post-edge (735 - 750 eV), c) 2\textit{p} continuum subtraction of equation S1, d) Normalised and background subtracted L\textsubscript{2,3}-edge spectra of Li\textsubscript{2}(Li\textsubscript{1-x}Fe\textsubscript{x})N.
S.4 Density of States

As described in the main body of text DFT calculations were performed within Quantum-Espresso3 and CASTEP4 of a 3x3x3 supercell Li\textsubscript{3}N matrix doped with a single Fe atom at the Wyckoff 1b position. Interpretation of the converged system included mapping the partial density of states (pDOS), Figure S5. pDOS calculations are an extension of Mulliken population analysis capable of isolating the individual bands and orbitals of a selected atom. Unoccupied 4p\textsubscript{x,y} states characterise the observed rising-edge feature, 7113 eV and 4p\textsubscript{z} character is shifted to higher energy, as predicted for a linear coordination through a crystal field model.

Figure S5: (Top) Experimental K-edge XANES of Li\textsubscript{2}(Li\textsubscript{1-x}Fe\textsubscript{x})N with nominal concentration x = 0.0015. (Bottom) LDA+U Partial Density of States analysis of Fe s and p states
S.5 L$_{2,3}$-edge Experimental vs CASSCF

ab initio CASSCF calculations by Xu *et al.* predict the experimentally measured magnetic anisotropy of Li$_2$(Li$_{1-x}$Fe$_x$)N to be \sim27 meV with either a linear FeI or quasilinear FeII coordination complexes5. Figure S6 shows Quanty6 simulations of L$_{2,3}$-edge spectra of FeI and FeII valences. The Slater-Condon-Shortley parameters are reduced to 80% of the calculated Hartree-Fock values to account for over-estimation of the free ion values. Crystal field splittings were extracted from CASSCF calculations, Table S1. These simulations indicated Fe(I) provided the most suitable fit from which crystal field splitting was optimised to best reproduce the experimentally measured spectra.

Table S1: Quanty6 fitting parameters of simulations presented in Figure 6. Dq, Dt and Ds represent the ligand field splitting parameters of a D$_{6h}$ symmetry and ξ_{3d} the spin-orbit coupling parameter deduced from Hartree-Fock calculations. Dq set to zero for all calculations. All values defined in eV.

<table>
<thead>
<tr>
<th></th>
<th>CASSCF5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Best Sim.</td>
</tr>
<tr>
<td>Dt</td>
<td>0.1806</td>
</tr>
<tr>
<td>Ds</td>
<td>-0.0257</td>
</tr>
<tr>
<td>ξ_{3d}</td>
<td>0.0522</td>
</tr>
</tbody>
</table>
Figure S6: Comparisons of experimental (black), best simulated (red) and Xu et al.5 Fe(II) (blue) and Fe(I) (green) models of Fe L\textsubscript{2,3}-edge spectra. Calculation and experimental measurements undertaken at 4.5 K with L\textsubscript{3} peak maximum normalisation (704 - 708 eV). Ligand field parameters defined in Table S1.
S.6 Quanty Calculation of Anisotropy Barrier

Quanty calculations achieve a second quantisation approach of analytically simulating core-level spectroscopy6. Through this technique expectation values of quantum mechanical operators can be applied to the wavefunctions designated to the \(n \) electrons present within the basis set. As a result of this energy level separation each \(M_J \) doublet can be assigned and quantified.

To replicate the magnetic anisotropy determination undertaken experimentally, a temperature dependent \(L_3 \)-edge simulation was performed, Figure S7. Fitting of Equation 1 determines an anisotropy energy of \(E = 36.87 \pm 0.22 \) meV between the ground \(M_J = \pm 7/2 \) and first excited state, \(\pm 5/2 \). As reported for the experimental determination of the anisotropy barrier, the calculation assumes equal splitting of the \(M_J \) ground-states.

This result is aligned with all previously experimentally and theoretically deduced values of magnetic anisotropy7,8 and corroborates the technique of utilising \(L_{2,3} \)-edge temperature dependence to extract magnetic anisotropy of complex systems.

Figure S7: Quanty calculations of Fe \(L_3 \)-edge as a function of temperature. Normalised through \(P_1 \) intensity. (Inlay) Least-squares fit of Equation 1 to Quanty simulation \(L_3 \) peak ratio with respect to the inverse absolute temperature.

Figure S8 isolates the spectral contribution of each populated \(M_J \) doublet to identify the spectral dependence relative to the predominant \(P_1 \) and \(P_2 \) features. This figure shows that the intensity of \(P_1 \) is uniquely related to the \(\pm 7/2 \) state, verifying the relationship between the temperature
dependence of the P$_1$ to P$_2$ ratio and the magnetic anisotropy energy.

Figure S8: Fe L$_{2,3}$ Quanty calculations of the individual M_J ground-states compared to the experimental Li$_2$(Li$_{1-x}$Fe$_x$)N spectra. Vertical dashed lines represent P$_1$ and P$_2$.
Table S2: Expectation values for the $J=7/2$ manifold based on parameters obtained from the best fit to the $L_{2,3}$-edge spectrum of FeI, corresponding to the d-orbital electron occupation, spin, S, orbital angular momentum, L and total angular momentum, J, oriented parallel to the principle axis, corresponding with the crystallographic c axis.

<table>
<thead>
<tr>
<th>E (meV)</th>
<th>$\langle d_{xy} \rangle$</th>
<th>$\langle d_{xz} \rangle$</th>
<th>$\langle d_{yz} \rangle$</th>
<th>$\langle d_{x^2-y^2} \rangle$</th>
<th>$\langle S_z \rangle$</th>
<th>$\langle L_z \rangle$</th>
<th>$\langle J_z \rangle$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.9998</td>
<td>1.0002</td>
<td>1.9995</td>
<td>1.0005</td>
<td>2.0000</td>
<td>1.4992</td>
<td>2.0008</td>
</tr>
<tr>
<td>0</td>
<td>2.0000</td>
<td>1.0005</td>
<td>1.9995</td>
<td>1.0002</td>
<td>0.9998</td>
<td>-1.4992</td>
<td>-2.0008</td>
</tr>
<tr>
<td>31.94</td>
<td>1.9885</td>
<td>1.0010</td>
<td>1.9991</td>
<td>1.0005</td>
<td>1.0109</td>
<td>-0.4893</td>
<td>-1.9555</td>
</tr>
<tr>
<td>31.94</td>
<td>1.0109</td>
<td>1.0005</td>
<td>1.9991</td>
<td>1.0010</td>
<td>1.9885</td>
<td>0.4893</td>
<td>1.9555</td>
</tr>
<tr>
<td>66.17</td>
<td>1.9993</td>
<td>1.0010</td>
<td>1.9991</td>
<td>1.0003</td>
<td>1.0003</td>
<td>0.4987</td>
<td>1.9987</td>
</tr>
<tr>
<td>66.17</td>
<td>1.0003</td>
<td>1.0003</td>
<td>1.9991</td>
<td>1.0010</td>
<td>1.9993</td>
<td>-0.4987</td>
<td>-1.9987</td>
</tr>
<tr>
<td>102.19</td>
<td>1.9994</td>
<td>1.0006</td>
<td>1.9994</td>
<td>0.9996</td>
<td>1.0010</td>
<td>-1.4978</td>
<td>-1.9978</td>
</tr>
<tr>
<td>102.19</td>
<td>1.0010</td>
<td>0.9996</td>
<td>1.9994</td>
<td>1.0006</td>
<td>1.9994</td>
<td>1.4978</td>
<td>1.9978</td>
</tr>
</tbody>
</table>

References

