Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Iron-catalyzed remote functionalization of inert C(sp³)-H bonds of alkenes *via* 1,n-hydrogen-atom-transfer by C-centered radical relay

Kang-Jie Bian, Yan Li, Kai-Fan Zhang, Yan He, Tian-Rui Wu, Cheng-Yu Wang, Xi-Sheng Wang

Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, Center for Excellence in Molecular Synthesis of CAS, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China

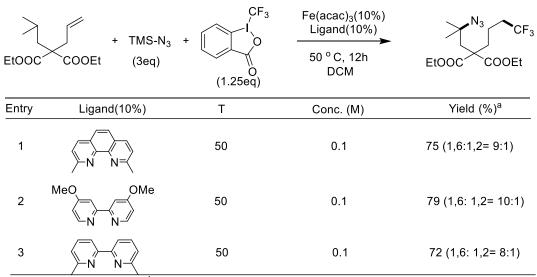
Contents

I. General Information	2
II. Optimization of Conditions	3
III. Synthesis and Characterization of New Molecules	6
General procedure A for substrates synthesis	6
General procedure B for remote azidotrifluoromethylation	14
Derivatization studies	28
IV. Mechanistic Research	29
1,5- or 1,6-deuterium shift	29
KIE experiments	31
V. Alternative Testings	36
Reference	37
NMR Spectrum Data for New Compounds	38

I. General Information

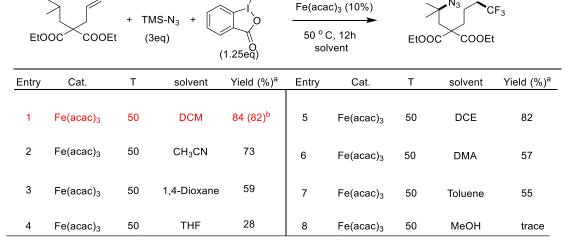
NMR spectra were recorded on Bruker-400 (400 MHz for ¹H; 101 MHz for ¹³C and 376 MHz for ¹⁹F instruments internally referenced to SiMe₄ signal for ¹H, and CDCl₃ for ¹³C (note: some of the NMR spectra were recorded on Bruker-500 (500 MHz for ¹H; 126 MHz for ¹³C and 471 MHz for ¹⁹F). High resolution mass spectra were recorded on P-SIMS-Gly of Bruker Daltonics Inc. using ESI-TOF (electrospray ionization-time of flight) or Micromass GCT using EI (electron impact). Cu salts, Fe salts, TMSN₃, and superdry solvent were obtained from J&K, STREM (high quality>99%) and used as received. Togni-II reagent¹ and BIOH² was synthesized according to reported method.

II. Optimization of Conditions


Optimization of Reaction Condition (Catalyst)

EtOOC COOEt (3eq)
$$CF_3$$
 $Cat.(10\%)$ $Cat.(10\%)$ $Cooler Cooler Cooler$

Entry	Cat.	Т	solvent	Yield (%) ^a	Entry	Cat.	Т	solvent Y	ield (%) ^a
1	FeCl ₂	50	DCM	42	9	Fe(acac) ₃	60	DCM	71
2	Fe(OTf) ₂	50	DCM	18	10	FeF ₂	50	DCM	72
3	FeCp ₂	50	DCM	27	11	CoCl ₂	50	DCM	21
4	Fe(BF ₄) ₂ 6H ₂ O	50	DCM	20	12	Nil ₂	50	DCM	20
5	Fe(OAc) ₂	50	DCM	50	13	MnBr ₂	50	DCM	trace
6	Fe ₂ (SO ₄) ₃ xH ₂ O	50	DCM	57	14 ^d	CuTc	30	DCM/1,4-dioxane	30
7	Fe(acac) ₃	50	DCM	84 ^b (82) ^c	15 ^e	Cul	45	DCE	45
8	Fe(acac) ₃	40	DCM	73	16 ^f	Cul	80	DCM/1,4-dioxane	40


^a yield was determined by ¹H NMR with CH₂Br₂ as internal standard. ^b 1,6: 1,2> 139:1. ^c the isolated yield. ^d 1,6: 1,2> 5:1. ^e Liu's conditions: 1,6:1,2 = 4:5:1. ^f Sodeoka's conditions: 1,6:1,2 = 4:1.

Optimization of Reaction Condition (Ligand)

^a yield was determined by ¹H NMR with CH₂Br₂ as internal standard.

Optimization of Reaction Condition (Solvent)

 $^{^{\}mathrm{a}}\mathrm{yield}$ was determined by $^{\mathrm{1}}\mathrm{H}$ NMR with CH $_{\mathrm{2}}\mathrm{Br}_{\mathrm{2}}$ as internal standard. $^{\mathrm{b}}\mathrm{the}$ isolated yield.

^a yield was determined by ¹H NMR with CH₂Br₂ as internal standard.

Optimization of Reaction Condition for ${\bf S13}$

Entry	Cat.	Т	solvent	Yield (%) ^a	Entry	Cat.	T	solvent	Yield (%) ^a
1 ^b	Cul	45	DCE	52	12	FeCl ₂	50	DCM	72
2	Cul	40	MeCN	45	13	FeCl ₃	50	DCM	trace
3	Cul	40	1,4-Dioxane	44	14	FeBr ₃	50	DCM	12
4	CuTc	40	DCM	64	15	Fe(acac) ₃	50	DCM	80 (85) ^c
5	CuTc	30	DCM	60	16	Fe(acac) ₃	50	1,4-Dioxane	44
6	CuTc	30	DCM/dioxane=1	:1 68	17	Fe(acac) ₃	50	CH ₃ CN	47
7	Fe(OAc) ₂	30	DCM	48	18	Fe(acac) ₃	50	Toluene	trace
8	Fe(OAc) ₂	40	DCM	64	19	Fe(acac) ₃	50	MeOH	48
9	Fe(OAc) ₂	50	DCM	77	20	Fe(acac) ₃	50	Acetone	70
10	Fe(OTf) ₂	50	DCM	65	21	Fe(acac) ₃	50	EA	64
11	Fe(acac) ₂	50	DCM	76	22	Fe(acac) ₃	50	DMF	40

^ayield was determined by ¹H NMR with CH₂Br₂ as internal standard. ^bLiu's conditions. ^cthe isolated yield.

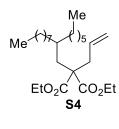
III. Synthesis and Characterization of New Molecules

All Substrates were synthesized through the known method.^{3,4}

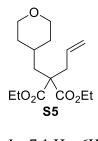
General procedure A for substrates synthesis

$$R_1$$
 OH Ph_3 R_2 Ph_3 R_2 Ph_3 R_2 Ph_4 R_2 Ph_5 Ph_5 Ph_6 Ph

To a solution of alcohol (10 mmol) in dichloromethane (20 mL) was added triphenylphosphine (15 mmol, 1.5 equiv) and N-Bromosuccinimide (15 mmol, 1.5 equiv) in one patch in an ice bath. After reaction reached completion, monitored by TLC, it was quenched with saturated aqueous NaHCO₃. The aqueous layer was extracted with dichloromethane three times, and the combined organic phase was washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was then purified by flash column chromatography to give the alkyl bromide.

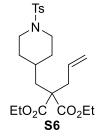

To a solution of diethyl allylmalonate (1.0 equiv) in DMF (0.5 M) was added NaH (1.5 equiv) slowly in an ice bath. After 20 mins when solution stopped bubbling at room temperature, the afforded alkyl bromide (1.2 equiv) was added into the mixture dropwise. The resulting solution was stirred at 50 °C under air and monitored by TLC. Upon completion, the reaction was quenched with saturated aqueous NH₄Cl, and the aqueous layer was extracted with EtOAc three times. The combined organic phase was washed with brine (20 mL), dried over anhydrous Na₂SO₄, filtered and concentrated under vacuum. The residue was then purified by flash column chromatography to give the target substrate.

Me Me Prepared according to general procedure A and obtained as colorless oil.
1
H NMR (400 MHz, CDCl₃) δ 5.73 – 5.56 (m, 1H), 5.14 – 5.03 (m, EtO₂C CO₂Et 2H), 4.17 (qd, J = 7.1, 2.9 Hz, 4H), 2.69 (d, J = 7.4 Hz, 2H), 1.87 (d, J = 6.3 Hz, 2H), 1.74 – 1.62 (m, 1H), 1.25 (t, J = 7.1 Hz, 6H), 0.88 (d, J = 6.6 Hz, 6H). 13 C NMR (101 MHz, CDCl₃) δ 171.83, 132.91, 118.90, 61.23, 57.07, 40.63, 37.28, 24.06, 23.78, 14.20. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₄H₂₄NaO₄: 279.1572, found: 279.1569.

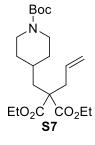

Prepared according to general procedure A and obtained as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.74 – 5.58 (m, 1H), 5.16 - 5.04 (m, 2H), 4.26 - 4.08 (m, 4H), 2.78 - 2.59 (m, 2H), 1.97(dd, J = 14.6, 4.5 Hz, 1H), 1.77 (dd, J = 14.6, 7.6 Hz, 1H), 1.51 -1.27 (m, 2H), 1.24 (td, J = 7.1, 2.4 Hz, 6H), 1.21 – 1.06 (m, 1H), 0.85 (t, J = 7.0 Hz, 3H), 0.84 (d, J = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.00, 171.76, 132.90, 118.91, 61.23, 61.19, 57.08, 38.76, 37.31, 30.82, 30.22, 20.04, 14.21, 14.17, 11.40. HRMS ESI (m/z): $[M+Na]^+$ calcd. for $C_{15}H_{26}NaO_4$: 293.1729, found: 293.1726.

Me Me CO₂Et

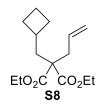
Prepared according to general procedure A and obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.75 – 5.57 (m, 1H), 5.17 - 5.00 (m, 2H), 4.26 - 4.02 (m, 4H), 2.67 (d, J = 7.3 Hz, 2H), 1.93 - 1.80 (m, 2H), 1.40 - 1.32 (m, 1H), 1.30 - 1.15 (m, 5H), 1.24 (t, J = 7.0 Hz, 9H), 0.88 (t, J = 6.8 Hz, 3H), 0.81 (t, J = 6.8 Hz, 3 = 7.3 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 171.97, 171.92, 132.85, 118.99, 61.22, 57.15, 37.22, 35.76, 34.23, 33.41, 28.54, 26.33, 23.23, 14.30, 14.18, 10.42. HRMS ESI (m/z): $[M+Na]^+$ calcd. for $C_{18}H_{32}NaO_4$: 335.2198, found: 335.2205.



Prepared according to general procedure A and obtained as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.73 – 5.59 (m, 1H), 5.16 - 5.00 (m, 2H), 4.24 - 4.06 (m, 4H), 2.67 (d, J = 7.3 Hz, 2H), 1.87 (d, J = 5.7 Hz, 2H), 1.44 - 1.14 (m, 31H), 0.88 (t, J = 6.7 Hz,6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.90, 132.91, 118.91, 61.19, 57.22, 37.25, 36.36, 34.27, 33.15, 32.05, 30.23, 29.90, 29.79, 29.49, 26.31, 26.28, 22.82, 14.26, 14.18. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₆H₄₈NaO₄: 447.3450, found:

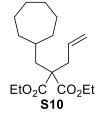


447.3443.


Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 5.70 – 5.59 (m, 1H), 5.17 – 5.04 (m, 2H), 4.23 - 4.13 (m, 4H), 3.89 (dd, J = 11.0, 3.1 Hz, 2H), 3.34 (td, J =11.8, 2.0 Hz, 2H), 2.69 (d, J = 7.4 Hz, 2H), 1.89 (d, J = 6.1 Hz, 2H), 1.66 - 1.55 (m, 1H), 1.54 - 1.46 (m, 2H), 1.38 - 1.27 (m, 2H), 1.25 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.61, 132.59, 119.14, 68.00, 61.35, 56.54, 39.01, 37.58, 33.81, 30.98, 14.18. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₂₆NaO₅: 321.1678, found: 321.1678.

Prepared according to general procedure A and obtained as yellowish solid. 1 H NMR (500 MHz, CDCl₃) δ 7.61 (d, J = 7.8 Hz, 2H), 7.32 (d, J = 7.8 Hz, 2H, 5.63 - 5.51 (m, 1H), 5.10 - 5.01 (m, 2H), 4.21 - 4.08(m, 4H), 3.69 (d, J = 11.5 Hz, 2H), 2.60 (d, J = 7.3 Hz, 2H), 2.44 (s, 3H), 2.16 (t, J = 11.5 Hz, 2H), 1.84 (d, J = 5.5 Hz, 2H), 1.62 (d, J =12.5 Hz, 2H), 1.40 - 1.26 (m, 3H), 1.23 (t, J = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 171.51, 143.65, 132.36, 129.76, 127.87, 119.36, 61.48, 56.49, 46.49, 38.11, 37.45, 32.21, 31.05, 21.69, 14.19. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₃H₃₃NO₆SNa: 474.1926, found: 474.1935

Prepared according to general procedure A and obtained as colorless oil. ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 5.71 – 5.55 (m, 1H), 5.16 – 5.05 (m, 2H), 4.18 (q, J = 7.1 Hz, 4H), 4.13 - 3.95 (m, 2H), 2.75 - 2.59 (m, 2H), 2.63 (d, J = 7.4 Hz, 2H), 1.95 - 1.84 (m, 2H), 1.66 (d, J = 12.5 Hz, 2H), 1.45 (s, 9H), 1.24 (t, J = 7.1 Hz, 6H), 1.12 – 1.03 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 171.35, 154.95, 132.49, 119.05, 79.33, 61.30, 57.28, 36.76, 36.36, 32.17, 30.55, 29.34, 28.58, 14.26. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₁H₃₅NaO₆: 420.2362, found: 420.2356.

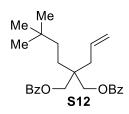

Prepared according to general procedure A and obtained as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.69 – 5.57 (m, 1H), 5.17 – 5.00 (m, 2H), 4.22 - 4.08 (m, 4H), 2.62 (d, J = 7.3 Hz, 2H), 2.37 - 2.24 (m, 1H), 1.98 (dd, J = 17.5, 4.7 Hz, 4H), 1.88 - 1.77 (m, 1H), 1.74 - 1.60 (m, 1H)3H), 1.24 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.51, 132.85, 118.89, 61.17, 56.94, 39.17, 37.05, 31.96, 29.53, 19.09, 14.20. HRMS ESI

EtO₂C CO₂Et

Prepared according to general procedure A and obtained as colorless oil. ${}^{1}H$ NMR (400 MHz, CDCl₃) δ 5.73 – 5.59 (m, 1H), 5.15 – 5.03 (m, 2H), 4.24 - 4.11 (m, 4H), 2.70 (d, J = 7.4 Hz, 2H), 2.01 (d, J = 5.6 Hz, 2H), 1.79 – 1.68 (m, 3H), 1.66 – 1.54 (m, 2H), 1.53 – 1.42 (m, 2H), 1.24 (t, J = 7.1 Hz, 6H), 1.12 - 1.00 (m, 2H). ¹³C NMR (101 MHz, $CDCl_3$) δ 171.84, 132.90, 118.90, 61.20, 57.41, 38.00, 37.20, 36.02, 33.64, 24.95, 14.21.

HRMS ESI (m/z): $[M+Na]^+$ calcd. for $C_{16}H_{26}NaO_4$: 305.1729, found: 305.1720.

(m/z): $[M+Na]^+$ calcd. for $C_{15}H_{24}NaO_4$: 291.1572, found: 291.1573.



Prepared according to general procedure A and obtained as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 5.73 – 5.58 (m, 1H), 5.15 – 5.01 (m, 2H), 4.23 - 4.10 (m, 4H), 2.67 (d, J = 7.4 Hz, 2H), 1.87 (d, J = 5.5 Hz, 2H), 1.65 – 1.51 (m, 7H), 1.51 – 1.31 (m, 4H), 1.29 – 1.13 (m, 2H),

1.24 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.84, 132.96, 118.89, 61.19, 57.25, 40.13, 37.55, 35.81, 34.99, 28.51, 26.18, 14.20. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₈H₃₀NaO₄: 333.2042, found: 333.2037.

Prepared according to general procedure A and obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 5.72 – 5.56 (m, 1H), 5.15 – 5.00 (m, 2H), 4.28 - 4.00 (m, 4H), 2.84 - 1.67 (m, 6H), 1.60 - 1.52 (m, 4H)1H), 1.51 - 1.39 (m, 2H), 1.34 - 1.20 (m, 9H), 1.15 - 0.98 (m, 2H), 0.67 - 0.53 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 171.93, 171.74,

132.89, 118.95, 61.24, 61.18, 57.48, 42.58, 41.56, 40.27, 40.03, 37.74, 37.56, 37.35, 37.19, 36.68, 35.71, 35.52, 35.38, 30.39, 30.13, 28.64, 22.57, 14.23, 14.20. HRMS ESI (m/z): $[M+Na]^+$ calcd. for $C_{18}H_{28}NaO_4$: 331.1885, found: 331.1896.

Prepared according to general procedure A and obtained as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.06 – 7.99 (m, 4H), 7.59 - 7.53 (m, 2H), 7.46 - 7.40 (m, 4H), 5.93 - 5.75 (m, 1H), 5.18OBz -5.07 (m, 2H), 4.30 (s, 4H), 2.30 (d, J = 7.5 Hz, 2H), 1.53 - 1.46(m, 2H), 1.31 – 1.23 (m, 2H), 0.88 (s, 9H). ¹³C NMR (101 MHz,

CDCl₃) 8 166.47, 133.17, 132.60, 130.21, 129.68, 128.58, 119.25, 66.84, 40.36, 36.40, 36.36, 30.34, 29.39, 26.28. ESI (m/z): [M+Na]⁺ calcd. for C₂₆H₃₂NaO₄: 431.2198, found: 431.2202.

Prepared according to general procedure A and obtained as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 7.3 Hz, 2H), 7.51 (d, J = 8.1 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.33 (t, EtO_2C' CO_2Et J = 7.3 Hz, 1H), 7.25 (d, J = 9.5 Hz, 2H), 5.76 - 5.65 (m, 1H), 5.21 - 5.12 (m, 2H), 4.21 (q, J = 7.1 Hz, 4H), 2.76 (d, J = 7.4

Hz, 2H), 2.61 - 2.54 (m, 2H), 2.25 - 2.18 (m, 2H), 1.28 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.24, 141.13, 140.66, 139.17, 132.53, 128.93, 128.86, 127.29, 127.20, 127.14, 119.26, 61.44, 57.38, 37.31, 34.32, 30.21, 14.32. HRMS ESI (m/z): $[M+Na]^+$ calcd. for $C_{24}H_{28}NaO_4$: 403.1885, found: 403.1885.

Prepared according to general procedure A and obtained as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 7.9Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 5.76 - 5.61 (m, 1H), 5.23 - CO_2Et 5.11 (m, 2H), 4.21 (q, J = 7.1 Hz, 4H), 2.75 (d, J = 7.4 Hz, 2H), 2.63 - 2.54 (m, 2H), 2.19 - 2.11 (m, 2H), 1.27 (t, J = 7.1

Hz, 6H). 13 C NMR (101 MHz, CDCl₃) δ 170.95, 145.56, 132.23, 128.70, 128.44 (q, J

= 32.2 Hz), 125.35 (q, J = 3.8 Hz), 124.23 (q, J = 2.7 Hz), 119.26, 61.40, 57.09, 37.26, 34.02, 30.38, 14.16. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₃F₃NaO₄: 395.1446, found: 395.1446.

MeO₂C

EtO₂C CO₂Et

S22

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 8.4 Hz, 2H), 7.23 (d, J = 8.4 Hz, 2H), 5.78 – 5.62 (m, 1H), 5.25 – 5.06 (m, 2H), 4.21 (q, J = 7.1 Hz, 4H), 3.90 (s, 3H), 2.75 (d, J = 7.4 Hz, 2H), 2.64 – 2.54 (m, 2H), 2.23 – 2.12

(m, 2H), 1.27 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.03, 167.11, 147.01, 132.36, 129.86, 128.50, 128.14, 119.30, 61.44, 57.23, 52.10, 37.30, 34.00, 30.65, 14.25. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₀H₂₆NaO₆: 385.1627, found: 385.1824.

EtO₂C CO₂Et **S23**

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 8.1 Hz, 2H), 7.27 (d, J = 8.1 Hz, 2H), 5.74 – 5.59 (m, 1H), 5.22 – 5.10 (m, 2H), 4.21 (q, J = 7.1 Hz, 4H), 2.74 (d, J = 7.4 Hz, 2H), 2.67 – 2.55 (m, 2H), 2.20 – 2.10 (m, 2H), 1.27 (t, J = 7.1 Hz,

6H). 13 C NMR (101 MHz, CDCl₃) δ 170.95, 147.23, 132.39, 132.27, 129.32, 119.44, 119.10, 110.13, 61.56, 57.14, 37.43, 33.96, 30.85, 14.27. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₃NNaO₄: 352.1525, found: 352.1521.

Prepared according to general procedure A and obtained as white solid. 1 H NMR (400 MHz, CDCl₃) δ 8.15 (d, J = 8.7 Hz, 2H), 7.33 (d, J = 8.6 Hz, 2H), 5.75 – 5.60 (m, 1H), 5.23 – 5.13 (m, 2H), 4.22 (q, J = 7.1 Hz, 4H), 2.75 (d, J = 7.4 Hz, 2H), 2.70 – 2.62 (m, 2H), 2.21 – 2.12 (m, 2H), 1.28 (t, J = 7.1 Hz,

6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.93, 149.41, 146.59, 132.23, 129.33, 123.85, 119.50, 61.60, 57.12, 37.46, 33.98, 30.63, 14.27. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₈H₂₃NNaO₆: 372.1423, found: 372.1423.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 6.8 Hz, 2H), 7.14 (t, J = 8.0 Hz, 1H), 7.09 (d, J = 7.6 Hz, 1H), 5.75 – 5.61 (m, 1H), 5.22 – 5.10 (m, 2H), 4.20 (q, J = 7.1 Hz, 4H), 2.73 (d, J = 7.3 Hz, 2H), 2.58 – 2.42 (m, 2H), 2.20 – 2.08 (m,

2H), 1.27 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.09, 143.89, 132.39, 131.54, 130.11, 129.31, 127.20, 122.54, 119.35, 61.50, 57.25, 37.35, 34.19, 30.31, 14.29. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₈H₂₃BrNaO₄: 405.0677, found:

405.0677.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.9 Hz, 1H), 7.27 – 7.17 (m, 2H), 7.13 – 7.00 (m, 1H), 5.82 – 5.65 (m, 1H), 5.25 – 5.09 (m, 2H), 4.22 (q, J = 7.1 Hz, 4H), 2.77 (d, J = 7.4 Hz, 2H), 2.72 – 2.62 (m, 2H), 2.19 – 2.11 (m, 2H), 1.28 (t, J = 7.1 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.07, 140.84, 132.89, 132.46, 130.52, 127.93, 127.70, 124.32, 119.27, 61.42, 57.34, 37.13, 32.74, 30.99, 14.28. HRMS ESI (m/z): $[M+Na]^+$ calcd. for $C_{18}H_{23}BrNaO_4$: 455.0677, found: 455.0668.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.19 – 7.02 (m, 4H), 5.77 – 5.65 (m, 1H), 5.24 – 5.10 (m, 2H), 4.22 (q, J = 7.1 Hz, 4H), 2.77 (d, J = 7.4 Hz, 2H), 2.55 – 2.45 (m, 2H), 2.29 (s, 3H), 2.14 – 2.04 (m, 2H), 1.32 – 1.24 (m, 6H). 13 C NMR (101 MHz, CDCl₃) δ 35.96, 132.55, 130.35, 129.10, 126.35, 126.23, 119.24, 61.43, 57.47.

171.26, 139.73, 135.96, 132.55, 130.35, 129.10, 126.35, 126.23, 119.24, 61.43, 57.47, 37.33, 33.25, 28.02, 19.24, 14.31. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₆NaO₄: 341.1729, found: 341.1729.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.18 (td, J = 8.0, 1.7 Hz, 1H), 7.10 (dd, J = 7.4, 1.6 Hz, 1H), 6.87 (td, J = 7.4, 1.1 Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 5.81 – 5.65 (m, 1H), 5.24 – 5.07 (m, 2H), 4.20 (q, J = 7.1 Hz, 4H), 3.80 (s, 3H), 2.76 (d, J = 7.4 Hz, 2H),

2.56 - 2.47 (m, 2H), 2.20 - 2.09 (m, 2H), 1.26 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.38, 157.45, 132.69, 129.92, 129.87, 127.42, 120.52, 119.03, 110.27, 61.29, 57.56, 55.28, 36.81, 32.31, 24.97, 14.30. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₆NaO₅: 357.1678, found: 357.1678.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.33 (d, J = 8.2 Hz, 1H), 7.25 (d, J = 1.9 Hz, 1H), 6.99 (dd, J = 8.2, 2.0 Hz, 1H), 5.73 – 5.62 (m, 1H), 5.20 – 5.08 (m, 2H), 4.20 (q, J = 7.1 Hz, 4H), 2.72 (d, J = 7.4 Hz, 2H), 2.56 – 2.43 (m, 2H), 2.19 – 2.07

(m, 2H), 1.27 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.02, 141.81, 132.40, 132.35, 130.45, 130.15, 128.00, 119.42, 61.55, 57.19, 37.46, 34.17, 29.87, 14.30. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₈H₂₂Cl₂NaO₄: 395.0793, found: 385.0787.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.72 (s, 1H), 7.61 (s, 2H), 5.76 – 5.60 (m, 1H), 5.28 – 5.08 (m, 2H), 4.37 – 4.07 (m, 4H), 2.76 (d, J = 7.3 Hz, 2H), 2.69 (dd, J = 10.5, 6.4 Hz, 2H), 2.22 – 2.07 (m, 2H), 1.29 (t, J = 7.1 Hz, 6H). 13 C NMR (101 MHz, CDCl₃) δ 170.91, 144.00, 132.29, 132.23, 131.97,

131.64, 131.35, 128.68, 124.83, 122.12, 120.38, 119.58, 61.67, 57.14, 37.60, 34.17, 30.50, 14.27. HRMS ESI (m/z): $[M+Na]^+$ calcd. for $C_{20}H_{22}F_6NaO_4$: 463.1320, found: 463.1320.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.80 (d, J = 7.4 Hz, 1H), 7.77 (d, J = 8.1 Hz, 2H), 7.60 (s, 1H), 7.47 – 7.39 (m, 2H), 7.31 (dd, J = 8.4, 1.5 Hz, 1H), 5.79 – 5.65 (m, 1H), 5.23 – 5.11 (m, 2H), 4.21 (q, J = 7.1 Hz, 4H), 2.78 (d, J = 7.4 Hz,

2H), 2.73 - 2.66 (m, 2H), 2.31 - 2.22 (m, 2H), 1.28 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.27, 139.05, 133.71, 132.55, 132.17, 128.12, 127.74, 127.54, 127.32, 126.47, 126.10, 125.39, 119.28, 61.45, 57.45, 37.40, 34.29, 30.76, 14.32. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₂H₂₆NaO₄: 377.1729, found: 377.1729.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 4.3 Hz, 1H), 7.59 (td, J = 7.7, 1.8 Hz, 1H), 7.15 (d, J = 7.8 Hz, 1H), 7.11 (dd, J = 7.3, 5.5 Hz, 1H), 5.78 – 5.66 (m, 1H), 5.21 – 5.07 (m, 2H), 4.20 (qd, J = 7.1, 2.3 Hz, 4H), 2.79 – 2.69 (m, 4H), 2.36 – 2.25 (m, 2H),

1.26 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.18, 161.25, 149.36, 136.53, 132.52, 122.83, 121.35, 119.22, 61.42, 57.37, 37.43, 33.11, 32.48, 14.26. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₇H₂₃NNaO₄: 328.1525, found: 328.1525.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.29 – 7.23 (m, 2H), 7.20 – 7.10 (m, 3H), 5.66 – 5.50 (m, 1H), 5.12 – 4.98 (m, 2H), 4.10 (qd, J = 7.1, 1.4 Hz, 2H), 3.82 (dq, J = 10.8, 7.1 Hz, 1H), 3.58 (dq, J = 10.8, 7.1 Hz, 1H), 2.83 – 2.75 (m, 1H), 2.70 (dd, J = 14.4, 7.7

Hz, 1H), 2.60 (dd, J = 14.4, 7.2 Hz, 1H), 2.37 (dd, J = 14.6, 8.9 Hz, 1H), 2.21 (dd, J = 14.6, 4.2 Hz, 1H), 1.23 (d, J = 7.0 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H), 1.06 (t, J = 7.1 Hz, 3H). 13 C NMR (101 MHz, CDCl₃) δ 171.50, 170.83, 146.66, 132.67, 128.31, 127.53,

126.30, 119.08, 61.27, 61.00, 57.00, 39.53, 36.94, 35.84, 25.02, 14.19, 13.93. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₆NaO₄: 341.1729, found: 341.1723.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (500 MHz, CDCl₃) δ 7.29 – 7.24 (m, 2H), 6.93 (t, J = 7.3 Hz, 1H), 6.85 (d, J = 8.0 Hz, 2H), 5.73 – 5.64 (m, 1H), 5.23 – 5.05 (m, 2H), 4.19 (qq, J = 10.8, 7.1 Hz,

4H), 4.04 (t, J = 6.4 Hz, 2H), 2.75 (d, J = 7.4 Hz, 2H), 2.41 (t, J = 6.4 Hz, 2H), 1.23 (t, J = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 171.08, 158.67, 132.45, 129.56, 120.92, 119.49, 114.49, 63.76, 61.54, 55.81, 37.65, 31.99, 14.17. ESI (m/z): [M+Na]⁺ calcd. for C₁₈H₂₄NaO₅: 343.1516, found: 343.1520.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (500 MHz, CDCl₃) δ 7.84 (dd, J = 5.4, 3.1 Hz, 2H), 7.71 (dd, J = 5.4, 3.0 Hz, 1H), 5.72 (ddt, J = 17.4, 10.1, 7.4 Hz, 1H), 5.23 (dd, J = 17.0, 1.5 Hz, 2H), 5.17 (dd, J = 10.1, 1.4 Hz, 2H), 4.19 (2*q, J = 7.1Hz, 4H), 3.79 – 3.65 (m,

2H), 2.76 (d, J = 7.4 Hz, 2H), 2.30 – 2.21 (m, 2H), 1.28 (t, J = 7.1 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 170.65, 168.05, 134.10, 132.27, 131.98, 123.34, 119.89, 61.73, 56.14, 37.01, 33.68, 30.66, 14.20. ESI (m/z): [M+Na]⁺ calcd. for C₂₀H₂₃NaO₆: 396.1418, found: 396.1425.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 7.2 Hz, 4H), 7.56 (t, J = 7.4 Hz, 2H), 7.43 (t, J = 7.7 Hz, 4H), 5.93 – 5.77 (m, 1H), 5.20 – 5.07 (m, 2H), 4.30 (s, 4H), 2.31 (d, J = 7.5 Hz, 2H), 1.57 – 1.45 (m, 3H), 1.36 – 1.19 (m, 2H), 0.89 (d, J = 6.6 Hz, 6H). 13 C NMR (101 MHz, CDCl₃) $_{\delta}$ 166.48, 133.17, 132.67,

130.20, 129.68, 128.58, 119.20, 66.94, 40.46, 36.54, 31.78, 29.61, 28.76, 22.71. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₅H₃₀NaO₄: 417.2042, found: 417.2043.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.29 – 7.24 (m, 2H), 7.20 – 7.13 (m, 3H), 5.66 – 5.53 (m, 1H), 5.10 – 5.01 (m, 2H), 45 4.15 (q, J = 7.1 Hz, 4H), 2.66 – 2.58 (m, 4H), 1.95 – 1.87 (m,

2H), 1.58 - 1.48 (m, 2H), 1.21 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) $_{\delta}$ 171.36, 141.92, 132.54, 128.48, 128.43, 125.96, 118.99, 61.28, 57.39, 36.94, 36.04, 31.74, 25.78, 14.23. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₆NaO₄: 341.1729, found: 341.1725.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.35-7.26 (m, J = 6.4 Hz, 3H), 7.22-7.16 (m, 2H), 5.93 – 5.70 (m, 1H), 5.07-4.93 (m, 2H), 4.20 (q, J = 7.1Hz, 4H), 2.64 – 2.47 (m, 2H), 2.27-2.17 (m, 2H), 2.17 – 1.92 (m, 4H), 1.27 (t, J = 7.0 Hz, 6H). 13 C NMR

(101 MHz, CDCl₃) 171.58, 141.56, 137.69, 128.57, 128.48, 126.19, 115.24, 61.34, 57.40, 34.55, 32.00, 30.78, 28.59, 14.28. HRMS ESI (m/z): $[M+Na]^+$ calcd. for $C_{19}H_{26}NaO_4$: 341.1729, found: 341.1725.

Prepared according to general procedure A and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.09 (d, J = 8.6 Hz, 2H), 6.83 (d, J = 8.6 Hz, 2H), 5.87 – 5.74 (m, 1H), 5.04 (dd, J = 17.1, 1.5 Hz, 1H), 5.01 – 4.94 (m, 1H), 4.20 (q, J = 7.1 Hz, 4H), 3.79 (s, 3H), 2.50 – 2.41 (m, 2H), 2.21 – 2.13 (m,

2H), 2.10 - 1.93 (m, 4H), 1.27 (t, J = 7.1 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) $_{\delta}$ 171.62, 158.06, 137.72, 133.62, 129.37, 115.22, 113.98, 61.32, 57.37, 55.43, 34.78, 31.99, 29.84, 28.59, 14.28. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₀H₂₈NaO₅: 371.1834, found: 371.1828.

General procedure B for remote azidotrifluoromethylation

Fe salt (0.01 mmol, 10 mol %), Togni-II (0.125mmol, 1.25 equiv) were combined in a 25 mL oven-dried sealed tube. The vessel was evacuated and backfilled with N_2 (repeated for 3 times), after that, alkenes (0.1 mmol), TMSN₃ (0.3 mmol, 3.0 equiv) and DCM (1.0 mL) were then added via syringe under N_2 . The tube was sealed with a Teflon lined cap and moved into a preheated oil bath at 50 °C for 12 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (10 mL) and filtered through a pad of celite. The filtrate was concentrated, and the residue was then purified by flash column chromatography to give the difunctional products.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 4.29 – 4.11 (m, 4H), 2.22 (s, 2H), 2.18 – 2.00 (m, 4H), 1.56 – 1.40 (m, 2H), 1.32 (s, 6H), 1.26 (t, J = 7.1 Hz, 6H). 19 F NMR (376 MHz, CDCl₃) δ -66.38 (t, J

= 10.6 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 171.24, 126.98 (q, J = 276.5 Hz), 61.70, 60.32, 56.34, 42.00, 33.98 (q, J = 28.8 Hz), 32.33, 27.27, 17.46 (q, J = 2.9 Hz), 14.05. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₂₄F₃N₃O₄Na: 390.1617, found: 390.1611.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 4.29 – 4.12 (m, 4H), 2.19 (s, 2H), 2.17 – 2.02 (m, 4H), 1.71 – 1.35 (m, 4H), 1.27 (t, J = 7.1 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H), 1.25 (s, 3H), 0.96 (t, J = 7.4

Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.38 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 171.47, 171.17, 126.98 (q, J = 276.3 Hz), 63.04, 61.70, 56.27, 40.25, 34.80, 34.02 (q, J = 28.7 Hz), 32.51, 22.43, 17.53 (q, J = 3.0 Hz), 14.08, 14.05, 8.46. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₂₆F₃N₃O₄Na: 404.1773, found: 404.1770.

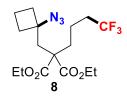
Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (500 MHz, CDCl₃) δ 4.25 – 4.15 (m, 4H), 2.24 (s, 2H), 2.16 – 2.07 (m, 4H), 1.70 – 1.42 (m, 6H), 1.35 – 1.23 (m, 4H), 1.26 (t, J = 7.1 Hz, 6H), 0.93 (t, J = 6.7 Hz, 3H), 0.91 (t, J = 6.9 Hz, 3H). 19 F NMR (471 MHz, CDCl₃) δ -66.40

(t, J = 10.5 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 171.41, 171.39, 126.96 (q, J = 276.4 Hz), 65.48, 61.68, 56.24, 38.28, 36.22, 34.00 (q, J = 28.8 Hz), 32.39, 29.59, 25.83, 23.09, 17.61 (q, J = 3.2 Hz), 14.10, 14.05, 8.27. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₃₂F₃N₃O₄Na: 446.2243, found: 446.2256.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 4.31 – 4.09 (m, 4H), 2.24 (s, 2H), 2.20 – 2.02 (m, 4H), 1.60 – 1.40 (m, 6H), 1.40 – 1.08 (m, 26H), 0.98 – 0.80 (m, 6H). 19 F NMR (376 MHz, CDCl₃) δ - 66.41 (t, J = 10.8 Hz, 3F). 13 C NMR (101 MHz, CDCl₃) δ 171.37,

126.96 (q, J = 276.4 Hz), 65.30, 61.68, 56.33, 38.83, 37.16, 34.06 (q, J = 28.7 Hz), 32.43, 31.96, 31.83, 30.01, 29.68, 29.59, 29.37, 23.79, 23.78, 22.78, 22.74, 17.67 (q, J = 2.9 Hz), 14.22, 14.16, 14.07. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₇H₄₈F₃N₃O₄Na: 558.3495, found: 558.3499.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 4.29 – 4.13 (m, 4H), 3.82 – 3.74 (m, 2H), 3.68 – 3.58 (m, 2H), 2.31 (s, 2H), 2.19 – 2.04 (m, 4H), 1.76 – 1.66 (m, 4H), 1.52 – 1.44 (m, 2H), 1.27 (t, J = 7.1 Hz, 6H). 19 F NMR (376 MHz, CDCl₃) δ -66.34 (t, J = 10.7


Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 171.12, 126.89 (q, J = 276.5 Hz), 63.68, 61.93, 60.65, 55.85, 42.14, 35.45, 34.00 (q, J = 29.0 Hz), 33.19, 17.60 (q, J = 2.9 Hz), 14.08. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₇H₂₆F₃N₃O₅Na: 432.1722, found: 432.1719.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (500 MHz, CDCl₃) δ 7.63 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.1 Hz, 2H), 4.26 – 4.11 (m, 4H), 3.60 (d, J = 12.0 Hz, 2H), 2.50 – 2.37 (m, 2H), 2.45 (s, 3H), 2.27 (s, 2H), 2.14 – 2.05 (m, 4H), 1.85 – 1.66 (m, 4H), 1.47 – 1.38

(m, 2H), 1.25 (t, J = 7.1 Hz, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -66.28 (t, J = 10.7 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 170.84, 143.92, 132.73, 129.90, 127.67, 126.77 (q, J = 277.8 Hz), 61.91, 60.51, 55.61, 42.10, 41.40, 34.02, 33.80 (q, J = 29.1 Hz), 33.22, 21.62, 17.42 (q, J = 2.6 Hz), 13.95. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₄H₃₃F₃N₄O₆SNa: 585.1971, found: 585.1979.

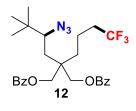
Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 4.19 (q, J = 7.1 Hz, 4H), 4.07 (s, 2H), 2.66 (s, 2H), 2.13 – 2.02 (m, 2H), 1.99 – 1.83 (m, 4H), 1.67 (d, J = 12.5 Hz, 2H), 1.51 – 1.39 (m, 1H), 1.45 (s, 9H), 1.25 (t, J = 7.1 Hz, 6H), 1.16 – 0.96 (m,

3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.33 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 171.41, 154.96, 126.96 (q, J = 276.3 Hz), 79.39, 61.45, 57.29, 36.35, 34.02 (q, J = 28.7 Hz), 32.15, 31.49, 30.76, 29.74, 28.59, 17.13 (q, J = 2.9 Hz), 14.22. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₂H₃₅F₃N₄O₆Na: 531.2407, found: 531.2404.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 4.26 – 4.15 (m, 4H), 2.38 (s, 2H), 2.28 – 2.20 (m, 2H), 2.15 – 2.02 (m, 4H), 2.02 – 1.94 (m, 3H), 1.91 – 1.81 (m, 1H), 1.54 – 1.42 (m, 2H), 1.27 (d, J = 7.1

Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.39 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 171.13, 126.93 (q, J = 276.3 Hz), 64.29, 61.72, 56.27, 40.36, 34.01 (q, J = 28.7 Hz), 33.41, 31.95, 17.63 (q, J = 3.0 Hz), 15.06, 14.07. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₆H₂₄F₃N₃O₄Na: 402.1617, found: 402.1613.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 4.32 – 4.10 (m, 4H), 2.41 (s, 2H), 2.19 – 2.03 (m, 4H), 1.96 – 1.87 (m, 2H), 1.78 – 1.69 (m, 4H), 1.60 – 1.52 (m, 2H), 1.50 – 1.42 (m, 2H), 1.27 (t, J = 7.1


Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.40 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 171.30, 126.93 (q, J = 276.4 Hz), 71.62, 61.72, 56.60, 40.54, 38.03, 34.02 (q, J = 28.8 Hz), 32.34, 23.04, 17.62 (q, J = 3.0 Hz), 14.06. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₇H₂₆F₃N₃O₄Na: 416.1773, found: 416.1768.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 4.28 – 4.12 (m, 4H), 2.27 (s, 2H), 2.19 – 2.04 (m, 4H), 1.86 (dd, J = 13.5, 9.0 Hz, 2H), 1.66 – 1.41 (m, 12H), 1.26 (t, J = 7.1 Hz, 6H). 19 F NMR (376 MHz, CDCl₃) δ -66.38 (t, J = 10.8 Hz, 3F). 13 C NMR (101 MHz,

CDCl₃) δ 171.36, 126.97 (q, J = 276.3 Hz), 66.60, 61.71, 56.31, 41.83, 38.97, 34.04 (q, J = 28.8 Hz), 32.69, 30.08, 22.52, 17.57 (q, J = 3.0 Hz), 14.09. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₃₀F₃N₃O₄Na: 444.2086, found: 444.2086.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (500 MHz, CDCl₃) δ 4.30 – 4.14 (m, 4H), 2.47 (d, J = 15.2 Hz, 1H), 2.38 (d, J = 15.2 Hz, 1H), 2.33 – 2.25 (m, 2H), 2.18 – 2.02 (m, 3H), 2.02 – 1.93 (m, 1H), 1.85 – 1.77 (m, 1H), 1.70 (d, J = 10.2 Hz, 1H), 1.61 – 1.43 (m, 5H), 1.30 –

1.12 (m, 3H), 1.27 (td, J = 7.1, 2.9 Hz, 6H). ¹⁹F NMR (471 MHz, CDCl₃) δ -66.35 (t, J = 10.8 Hz). ¹³C NMR (126 MHz, CDCl₃) δ 171.44, 171.38, 126.92 (q, J = 276.6 Hz), 69.65, 61.76, 56.79, 47.42, 44.34, 39.28, 37.53, 36.45, 34.02 (q, J = 28.8 Hz), 32.26, 28.84, 23.20, 17.88 (q, J = 3.3 Hz), 14.09. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₈F₃N₃O₄Na: 442.1930, found: 442.1941.

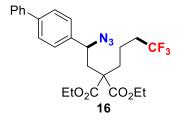
Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 8.3 Hz, 4H), 7.56 (t, J = 7.4 Hz, 2H), 7.43 (t, J = 7.6 Hz, 4H), 4.30 (s, 4H), 2.17 – 2.01 (m, 2H), 1.72 – 1.61 (m, 2H), 1.57 – 1.53 (m, 1H),

1.53 – 1.46 (m, 2H), 1.28 – 1.18 (m, 2H), 0.88 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.14 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 166.44, 133.26, 130.05, 129.65, 128.61, 127.0 8 (q, J = 277.6 Hz), 66.68, 40.05, 36.34, 34.44 (q, J = 28.7 Hz), 30.97, 30.29, 29.33, 25.98, 15.90 (q, J = 2.7Hz). HRMS ESI (m/z): [M+H]⁺ calcd. for C₂₇H₃₃N₃O₄F₃: 520.2423, found: 520.2417.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.45 – 7.30 (m, 5H), 4.52 (dd, J = 8.8, 4.6 Hz, 1H), 4.27 – 4.11 (m, 4H), 2.44 – 2.30 (m, 2H), 2.14 – 1.93 (m, 4H), 1.57 – 1.43 (m, 1H), 1.43 – 1.32 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.3 Hz, 3H). 19 F

NMR (376 MHz, CDCl₃) δ -66.30 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.84, 170.74, 139.57, 129.09, 128.74, 126.97, 126.90 (q, J = 276.4 Hz), 62.63, 61.84, 61.77, 56.22, 38.98, 33.91 (q, J = 29.1 Hz), 32.09, 17.21 (q, J = 2.9 Hz), 14.12, 14.10.

HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₄F₃N₃NaO₄: 438.1617, found: 438.1617.


Me
N₃
CF₃
EtO₂C CO₂Et
14

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.21 (s, 4H), 4.47 (dd, J = 9.1, 4.3 Hz, 1H), 4.27 – 4.07 (m, 4H), 2.40 – 2.29 (m, 2H), 2.36 (s, 3H), 2.13 – 1.95 (m, 4H), 1.54 – 1.43 (m, 1H), 1.41 – 1.33 (m, 1H), 1.28 (t, J = 7.0 Hz, 3H), 1.24

(t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.31 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.88, 170.78, 138.60, 136.49, 129.71, 126.91, 126.89 (q, J = 276.6 Hz), 62.36, 61.82, 61.75, 56.21, 38.86, 33.91 (q, J = 28.9 Hz), 32.01, 21.28, 17.19 (q, J = 2.9 Hz), 14.13, 14.10. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₀H₂₆F₃N₃NaO₄: 452.1773, found: 452.1773.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.40 (d, J = 8.3 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 4.47 (dd, J = 8.5, 4.9 Hz, 1H), 4.25 – 4.08 (m, 4H), 2.44 – 2.30 (m, 2H), 2.13 – 1.92 (m, 4H), 1.52 – 1.35 (m, 2H), 1.32 (s, 9H),

1.28 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.31 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ = 170.89, 170.77, 151.74, 136.48, 126.88 (q, J = 276.5 Hz), 126.71, 125.96, 62.32, 61.82, 61.76, 56.21, 38.77, 34.76, 33.92 (q, J = 28.9 Hz), 31.98, 31.39, 17.18, 17.15, 14.14, 14.12. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₃H₃₂F₃N₃NaO₄: 494.2243 found: 494.2243.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.60 (dd, J = 12.3, 8.0 Hz, 4H), 7.46 (t, J = 7.6 Hz, 2H), 7.38 (dd, J = 16.4, 7.4 Hz, 3H), 4.58 (dd, J = 8.4, 4.8 Hz, 1H), 4.28 – 4.09 (m, 4H), 2.50 – 2.29 (m, 2H), 2.19 – 1.95 (m, 4H),

1.60 - 1.47 (m, 1H), 1.46 - 1.34 (m, 1H), 1.29 (d, J = 7.1 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.26 (t, J = 10.7 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.88, 170.77, 141.70, 140.51, 138.54, 128.98, 127.81, 127.71, 127.43, 127.24, 126.90 (q, J = 276.5 Hz), 62.38, 61.90, 61.82, 56.23, 39.05, 33.94 (q, J = 28.9 Hz), 32.17, 17.25 (q, J = 2.9 Hz), 14.16, 14.14. HRMS ESI (m/z): [M+Na]⁺ calcd. for $C_{25}H_{28}F_3N_3NaO_4$: 514.1930, found: 514.1930.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 9.3 Hz, 2H), 6.91 (d, J = 7.7 Hz, 2H), 4.46 (dd, J = 8.9, 4.1 Hz, 1H), 4.33 – 4.04 (m, 4H), 3.82 (s, 3H), 2.49 – 2.28 (m, 2H), 2.23 – 1.90 (m, 4H), 1.51 – 1.45 (m, 1H), 1.39

-1.35 (m, 1H), 1.31 - 1.19 (m, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.28 (t, J = 10.7 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 170.89, 170.78, 159.83, 131.49, 128.31, 126.90 (q, J = 277.4Hz), 114.35, 62.09, 61.84, 61.77, 56.19, 55.47, 38.82, 33.93 (q, J = 28.8Hz), 31.98, 17.21 (q, J = 3.0Hz), 14.14, 14.12. HRMS ESI (m/z): [M+Na]⁺ calcd. for $C_{20}H_{26}F_{3}N_{3}NaO_{5}$: 468.1722, found: 468.1722.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.31 (dd, J = 8.7, 5.2 Hz, 2H), 7.09 (t, J = 8.6 Hz, 2H), 4.53 (dd, J = 8.9, 4.5 Hz, 1H), 4.25 – 4.11 (m, 4H), 2.36 – 2.25 (m, 2H), 2.14 – 1.99 (m, 4H), 1.56 – 1.47 (m, 1H), 1.41 – 1.32 (m, 1H), 1.28

(t, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.27 (t, J = 11.0 Hz, 3F), -113.00 (tt, J = 8.8, 5.4 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 170.80, 170.70, 162.76 (d, J = 247.7 Hz), 135.49 (d, J = 3.3 Hz), 128.72 (d, J = 8.2 Hz), 126.88 (q, J = 276.5 Hz), 116.05 (d, J = 21.6 Hz), 61.94, 61.92, 61.83, 56.15, 39.21, 33.90 (q, J = 28.9 Hz), 32.20, 17.23 (q, J = 2.9 Hz), 14.13, 14.12. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₃F₄N₃NaO₄: 456.1522, found: 456.1522.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 4.53 (dd, J = 8.5, 4.8 Hz, 1H), 4.29 – 4.08 (m, 4H), 2.35 – 2.24 (m, 2H), 2.18 – 1.95 (m, 4H), 1.59 – 1.45 (m, 1H), 1.42 – 1.33 (m, 1H), 1.28 (t,

J = 7.1 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.26 (t, J = 10.7 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.78, 170.67, 138.21, 134.55, 129.30, 128.30, 126.88 (q, J = 276.0 Hz), 62.01, 61.95, 61.84, 56.16, 39.24, 33.90 (q, J = 28.9Hz), 32.29, 17.24 (q, J = 2.9Hz), 14.12, 14.11. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₃ClF₃N₃NaO₄: 472.1227, found: 472.1227.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.53 (d, J = 8.4 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 4.52 (dd, J = 8.3, 4.9 Hz, 1H), 4.27 – 4.08 (m, 4H), 2.35 – 2.23 (m, 2H), 2.21 –

1.94 (m, 4H), 1.58 – 1.44 (m, 1H), 1.44 – 1.31 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.26 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 190.19, 170.76, 170.66, 138.75, 132.26, 128.60, 126.87 (q, J = 276.4 Hz), 122.66, 62.07, 61.95, 61.84, 56.15, 39.22, 33.89 (q, J = 28.9 Hz), 32.31, 17.23 (q, J = 2.9 Hz), 14.12, 14.11. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₃BrF₃N₃NaO₄: 516.0722, found: 516.0722.

$$\mathbb{F}_3\mathbb{C}$$
 \mathbb{N}_3
 $\mathbb{C}\mathbb{F}_3$
 $\mathbb{E}_{tO_2}\mathbb{C}_{CO_2}\mathbb{E}_{t}$
 \mathbb{C}_2

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.67 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 8.1 Hz, 2H), 4.65 (t, J = 6.6 Hz, 1H), 4.29 – 4.06 (m, 4H), 2.29 (d, J = 6.6 Hz, 2H), 2.17 – 1.97 (m, 4H), 1.61 – 1.47 (m, 1H), 1.43 – 1.33 (m, 1H),

1.29 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.72 (s, 3F), -66.30 (t, J = 10.7 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.75, 170.63, 143.85, 130.88 (q, J = 32.6 Hz), 127.29, 126.87 (q, J = 277.4 Hz), 126.14 (q, J = 3.7 Hz), 123.97 (q, J = 272.2 Hz), 62.23, 62.01, 61.89, 56.18, 39.49, 33.88 (q, J = 28.8 Hz), 32.48, 17.24 (q, J = 3.0 Hz), 14.11, 14.09. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₀H₂₃F₆N₃NaO₄: 506.1490, found: 506.1490.

$$\begin{array}{c|c} \mathsf{MeO_2C} \\ \hline \\ \mathsf{EtO_2C} & \mathsf{CO_2Et} \\ \hline \\ \mathbf{22} \\ \end{array}$$

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 4.62 (dd, J = 7.7, 5.5 Hz, 1H), 4.30 – 4.11 (m, 4H), 3.93 (s, 3H), 2.37 – 2.27 (m, 2H), 2.17 – 1.96 (m, 4H),

1.61 – 1.50 (m, 1H), 1.44 – 1.34 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H), 1.26 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.27 (t, J = 10.7 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 170.75, 170.65, 166.61, 144.66, 130.48, 130.43, 126.92, 126.88 (q, J = 277.5 Hz), 62.34, 61.96, 61.85, 56.19, 52.38, 39.26, 33.90 (q, J = 28.8 Hz), 32.38, 17.25 (q, J = 3.0 Hz), 14.11, 14.10. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₁H₂₆F₃N₃NaO₆: 496.1671, found: 496.1668.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.71 (d, J = 8.4 Hz, 2H), 7.47 (d, J = 8.3 Hz, 2H), 4.67 (dd, J = 8.6, 4.4 Hz, 1H), 4.28 – 4.10 (m, 4H), 2.29 – 2.20 (m, 2H), 2.16 – 2.01 (m, 4H), 1.58 – 1.48 (m, 1H), 1.43 – 1.33 (m, 1H),

1.29 (t, J = 7.1 Hz, 3H), 1.28 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.24 (t, J = 10.7 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 170.70, 170.56, 145.22, 132.98, 127.61,

126.86 (q, J = 277.6 Hz), 118.42, 112.62, 62.31, 62.08, 61.94, 56.18, 39.67, 33.88 (q, J = 28.9 Hz), 32.67, 17.27 (q, J = 2.9 Hz), 14.12. HRMS ESI (m/z): [M+Na]⁺ calcd. for $C_{20}H_{23}F_3N_4NaO_4$: 463.1569, found: 463.1566.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 8.27 (d, J = 8.7 Hz, 2H), 7.54 (d, J = 8.7 Hz, 2H), 4.74 (dd, J = 9.0, 3.9 Hz, 1H), 4.30 – 4.09 (m, 4H), 2.30 – 2.21 (m, 2H), 2.17 – 1.97 (m, 4H), 1.57 – 1.50 (m, 1H), 1.45 – 1.35 (m,

1H), 1.30 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.23 (t, J = 10.7 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.72, 170.57, 147.97, 147.18, 127.76, 126.85 (q, J = 277.4 Hz), 124.44, 62.13, 62.09, 61.98, 56.18, 39.81, 33.87 (q, J = 28.7 Hz), 32.75, 17.28 (q, J = 3.1 Hz), 14.14. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₃F₃N₄NaO₆: 483.1467, found: 483.1467.

Me
$$N_3$$
 CF_3 EtO_2C CO_2Et **25**

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.28 (s, 1H), 7.15 (d, J = 7.7 Hz, 1H), 7.12 (s, 1H), 7.11 (d, J = 8.4 Hz, 1H), 4.47 (dd, J = 9.0, 4.4 Hz, 1H), 4.30 – 4.06 (m, 4H), 2.42 – 2.27 (m, 5H), 2.14 – 1.93 (m, 4H), 1.55 – 1.47 (m,

1H), 1.42 - 1.34 (m, 1H), 1.29 (t, J = 7.2 Hz, 3H), 1.25 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.29 (t, J = 10.7 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.90, 170.80, 139.51, 138.88, 129.50, 128.96, 127.58, 126.90 (q, J = 277.5Hz), 124.04, 62.63, 61.86, 61.78, 56.23, 38.93, 33.93 (q, J = 28.9Hz), 32.07, 21.59, 17.21 (q, J = 2.9 Hz), 14.15, 14.13. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₀H₂₆F₃N₃NaO₄: 452.1773, found: 452.1773.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.31 (t, J = 7.9 Hz, 1H), 6.94 – 6.82 (m, 3H), 4.49 (dd, J = 8.4, 4.9 Hz, 1H), 4.28 – 4.11 (m, 4H), 3.83 (s, 3H), 2.39 – 2.27 (m, 2H), 2.14 – 1.98 (m, 4H), 1.56 – 1.47 (m, 1H), 1.42

-1.33 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.29 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.86, 170.78, 160.10, 141.18, 130.15, 126.90 (q, J = 276.3 Hz), 119.19, 114.04, 112.52, 62.57, 61.88, 61.78, 56.20, 55.43, 39.01, 33.92 (q, J = 28.9 Hz), 32.11, 17.22 (q, J = 2.9 Hz), 14.14, 14.13. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₀H₂₆F₃N₃NaO₅: 468.1722, found: 468.1722.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.29 – 7.24 (m, 2H), 4.53 (t, J = 6.6 Hz, 1H), 4.26 – 4.10 (m, 4H), 2.28 (d, J = 6.7 Hz, 2H), 2.14 – 1.96 (m, 4H), 1.58 – 1.45 (m, 1H), 1.45 – 1.33 (m, 1H), 1.29 (t, J =

7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.24 (t, J = 10.7 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.75, 170.65, 142.07, 131.84, 130.69, 129.95, 126.88 (q, J = 277.4 Hz), 125.58, 123.14, 62.13, 61.99, 61.87, 56.17, 39.35, 33.91 (q, J = 28.9 Hz), 32.39, 17.25 (q, J = 2.9 Hz), 14.14, 14.13. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₃BrF₃N₃NaO₄: 516.0722, found: 516.0722.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.41 – 7.34 (m, 1H), 7.28 – 7.18 (m, 3H), 4.80 (dd, J = 9.8, 3.8 Hz, 1H), 4.26 – 4.08 (m, 4H), 2.40 (dd, J = 15.1, 9.8 Hz, 1H), 2.38 (s, 3H), 2.28 (dd, J = 15.0, 3.8 Hz, 1H), 2.20 – 1.95 (m, 4H), 1.57 – 1.49 (m, 1H),

1.43 - 1.31 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.31 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.93, 170.85, 137.62, 135.36, 131.10, 128.45, 126.91 (q, J = 277.4 Hz), 126.80, 126.72, 61.89, 61.78, 58.75, 56.28, 38.09, 33.96 (q, J = 28.8 Hz), 32.19, 19.36, 17.28 (q, J = 3.0 Hz), 14.15, 14.12. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₀H₂₆F₃N₃NaO₄: 452.1773, found: 452.1773.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 7.6 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.90 (d, J = 8.2 Hz, 1H), 4.98 (dd, J = 10.0, 3.8 Hz, 1H), 4.31 – 4.19 (m, 2H), 4.19 – 4.08 (m, 2H), 3.83 (s, 3H), 2.42 – 2.25 (m, 2H), 2.22

-2.01 (m, 4H), 1.63 - 1.51 (m, 1H), 1.48 - 1.36 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H), 1.23 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.36 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 171.04, 170.88, 156.12, 129.45, 127.86, 127.19, 126.97 (q, J = 276.1 Hz), 121.05, 110.69, 61.73, 61.66, 56.12, 56.03, 55.39, 37.25, 34.11 (q, J = 28.9 Hz), 30.95, 16.93 (q, J = 2.9 Hz), 14.10. HRMS ESI (m/z): [M+Na]⁺ calcd. for $C_{20}H_{26}F_{3}N_{3}NaO_{5}$: 468.1722, found: 468.1722.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.41 (td, J = 7.5, 1.7 Hz, 1H), 7.36 – 7.28 (m, 1H), 7.20 (td, J = 7.6, 1.1 Hz, 1H), 7.13 – 7.07 (m, 1H), 4.89 (dd, J = 9.7, 3.8 Hz, 1H), 4.27 – 4.08 (m, 4H), 2.42 (dd, J = 15.0, 9.7 Hz, 1H), 2.31 (dd, J = 15.1, 3.8

Hz, 1H), 2.21 - 1.99 (m, 4H), 1.58 - 1.38 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.37 (t, J = 11.1 Hz, 3F), -118.38 – 118.47 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 170.75, 170.67, 159.86 (d, J = 247.1 Hz), 130.25 (d, J = 8.4 Hz), 128.10 (d, J = 3.5 Hz), 126.92 (q, J = 277.6 Hz), 126.83 (d, J = 13.5 Hz), 124.87 (d, J = 3.6 Hz), 116.00 (d, J = 21.9 Hz), 61.89, 61.80, 56.21, 55.81, 55.78, 37.91, 33.98 (q, J = 29.0 Hz), 31.67, 17.13 (q, J = 2.9Hz), 14.10, 14.07. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₃F₄N₃NaO₄: 456.1522, found: 456.1522.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.61 – 7.55 (m, 1H), 7.48 (dd, J = 7.8, 1.7 Hz, 1H), 7.43 – 7.35 (m, 1H), 7.20 (td, J = 7.9, 1.7 Hz, 1H), 5.08 (dd, J = 10.3, 3.3 Hz, 1H), 4.35 – 4.06 (m, 4H), 2.48 – 1.98 (m, 6H), 1.71 – 1.41 (m, 2H), 1.30 (t, J =

7.1 Hz, 3H), 1.25 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.29 (t, J = 10.7 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.78, 170.67, 139.11, 133.26, 130.05, 128.45, 128.40, 126.93 (q, J = 277.8 Hz), 122.79, 61.92, 61.78, 61.12, 56.16, 37.97, 34.05 (q, J = 28.9Hz), 31.39, 17.28 (q, J = 2.9Hz), 14.13, 14.12. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₃BrF₃N₃NaO₄: 516.0721, found: 516.0714.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.17 (s, 1H), 7.04 (d, J = 8.2 Hz, 1H), 6.77 (d, J = 8.2 Hz, 1H), 4.59 (t, J = 8.6 Hz, 2H), 4.50 – 4.36 (m, 1H), 4.29 – 4.09 (m, 4H), 3.22 (t, J = 8.5 Hz, 2H), 2.40 – 2.21 (m, 2H), 2.13 – 1.94

(m, 4H), 1.53 - 1.43 (m, 1H), 1.41 - 1.32 (m, 1H), 1.28 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.30 (t, J = 10.3 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 170.88, 170.78, 160.47, 131.53, 128.01, 127.19, 126.91 (q, J = 277.4 Hz), 123.61, 109.46, 71.61, 62.43, 61.80, 61.74, 56.21, 38.95, 33.92 (q, J = 28.8 Hz), 31.96, 29.72, 17.20 (q, J = 2.9 Hz), 14.12, 14.11. HRMS ESI (m/z): [M+Na]⁺ calcd. for $C_{21}H_{26}F_3N_3NaO_5$: 480.1722, found: 480.1716.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.3 Hz, 1H), 7.44 (s, 1H), 7.18 (dd, J = 8.3, 2.0 Hz, 1H), 4.56 (dd, J = 7.4, 5.7 Hz, 1H), 4.31 – 4.07 (m, 4H), 2.30 – 2.19 (m, 2H), 2.16 – 1.99 (m, 4H), 1.59 – 1.47 (m, 1H), 1.44 –

1.33 (m, 1H), 1.28 (q, J = 7.0 Hz, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.24 (t, J = 10.7 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 170.71, 170.59, 140.15, 133.30, 132.80, 131.11, 128.86, 126.88 (q, J = 276.6Hz), 126.19, 62.04, 61.91, 61.70, 56.15, 39.55, 33.90 (q, J = 28.90 Hz), 32.57, 17.27 (q, J = 3.0 Hz), 14.12, 14.11. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₂Cl₂F₃N₃NaO₄: 506.0837, found: 506.0830.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.87 (s, 1H), 7.81 (s, 2H), 4.80 (dd, J = 8.9, 3.9 Hz, 1H), 4.33 – 4.12 (m, 4H), 2.35 – 2.22 (m, 2H), 2.22 – 2.00 (m, 4H), 1.64 – 1.50 (m, 1H), 1.46 – 1.34 (m, 1H), 1.30 (t, J = 7.1 Hz, 3H), 1.29 (t, J = 7.1 Hz, 3H). 19 F NMR (376 MHz, CDCl₃) δ -62.92

(s), -66.28 (t, J = 10.7 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 170.67, 170.55, 143.13, 132.59 (q, J = 33.6 Hz), 127.00, 126.97, 126.87 (d, J = 276.4 Hz), 123.16 (d, J = 272.8 Hz), 122.77 – 122.53 (m), 56.26, 40.32, 33.89 (q, J = 28.9 Hz), 33.02, 17.34 (q, J = 2.8 Hz), 14.11, 14.09. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₁H₂₂F₉N₃NaO₄: 574.1364, found: 574.1360.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 8.6 Hz, 1H), 7.88 – 7.82 (m, 2H), 7.77 (s, 1H), 7.56 – 7.49 (m, 2H), 7.46 (dd, J = 8.5, 1.7 Hz, 1H), 4.71 (dd, J = 8.7, 4.6 Hz, 1H), 4.26 – 4.05 (m, 4H), 2.50 – 2.36 (m, 2H),

2.19 - 1.96 (m, 4H), 1.56 - 1.47 (m, 1H), 1.46 - 1.34 (m, 1H), 1.29 (t, J = 7.1 Hz, 3H), 1.24 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.27 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.91, 170.80, 136.91, 133.37, 133.23, 129.21, 128.18, 127.88, 127.07 (q, J = 254.6 Hz), 126.76, 126.66, 126.15, 124.41, 62.85, 61.90, 61.82, 56.27, 39.04, 33.93 (q, J = 28.9 Hz), 32.24, 17.26 (q, J = 2.9 Hz), 14.16, 14.12. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₃H₂₆F₃N₃NaO₄: 488.1773, found: 488.1773.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.30 – 7.22 (m, 1H), 7.03 – 6.96 (m, 1H), 6.96 – 6.89 (m, 1H), 4.70 (t, J = 6.1 Hz, 1H), 4.24 – 4.03 (m, 4H), 2.44 – 2.37 (m, 2H), 2.18 – 1.83 (m, 4H), 1.49 – 1.39 (m, 1H), 1.37 – 1.28 (m, 1H), 1.20 (t, J = 7.1

Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.29 (t, J = 10.5 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.71, 170.64, 142.29, 126.99, 126.90 (q, J = 277.3 Hz), 125.98, 125.82, 61.97, 61.87, 57.75, 56.18, 39.41, 33.96 (q, J = 28.7 Hz), 32.14, 17.29 (q, J = 3.1 Hz), 14.12. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₇H₂₂F₃N₃NaO₄S: 444.1181, found: 444.1181.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 8.62 (d, J = 4.3 Hz, 1H), 7.74 (td, J = 7.7, 1.7 Hz, 1H), 7.34 (d, J = 7.8 Hz, 1H), 7.31 – 7.23 (m, 1H), 4.55 (dd, J = 9.1, 4.1 Hz, 1H), 4.29 – 4.12 (m, 4H), 2.55 (dd, J = 15.0, 4.1 Hz, 1H), 2.47 (dd, J = 15.0, 9.2

Hz, 1H), 2.17 – 1.94 (m, 4H), 1.59 – 1.37 (m, 2H), 1.28 (t, J = 7.2 Hz, 3H), 1.26 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.29 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.89, 170.80, 158.81, 149.83, 137.27, 126.89 (q, J = 276.5 Hz), 123.41, 121.56, 62.88, 61.88, 61.79, 56.13, 37.36, 33.94 (q, J = 28.7 Hz), 32.16, 17.17 (q, J = 3.0 Hz), 14.10. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₈H₂₃F₃N₄NaO₄: 439.1569, found: 439.1569.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.5 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.31 – 7.25 (m, 1H), 4.31 – 4.15 (m, 2H), 4.10 – 3.965 (m, 2H), 2.68 (d, J = 15.4 Hz, 1H), 2.58 (d, J = 15.4 Hz, 1H), 1.85 (td, J = 13.5, 4.7 Hz, 1H), 1.74 (s,

3H), 1.71 - 1.62 (m, 1H), 1.48 - 1.34 (m, 2H), 1.28 (t, J = 7.1 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H), 1.14 - 0.94 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.54 (t, J = 10.8 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 171.09, 170.74, 143.39, 128.70, 127.61, 126.93 (q, J = 276.74 Hz), 125.64, 65.04, 61.75, 61.61, 56.43, 42.87, 33.65 (q, J = 28.6 Hz), 30.60, 28.57, 17.13 (q, J = 3.0Hz), 14.09, 14.02. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₀H₂₆F₃N₃NaO₄: 452.1773, found: 452.1776.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.51 – 7.41 (m, 3H), 7.41 – 7.34 (m, 2H), 4.90 (dd, J = 9.9, 4.5 Hz, 1H), 2.40 (dd, J = 14.4, 9.9 Hz, 1H), 2.29 – 1.95 (m, 7H). 19 F NMR (376 MHz, CDCl₃) δ -65.91 (t, J = 10.4 Hz, 3F). 13 C NMR (101 MHz,

CDCl₃) δ 136.99, 129.80, 129.63, 127.04, 126.45 (q, J = 277.5 Hz), 114.64, 114.31, 62.86, 43.30, 37.69, 35.47, 32.91 (q, J = 29.6 Hz), 18.51 (q, J = 3.1 Hz). HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₄F₃N₅Na: 344.1099, found: 344.1099.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.38 – 7.31 (m, 2H), 7.30 – 7.20 (m, 4H), 4.17 – 4.04 (m, 1H), 3.12 – 2.93 (m, 2H), 2.63 – 2.48 (m, 1H), 2.46 – 2.36 (m, 1H), 2.34 – 2.23 (m, 2H), 2.23 – 2.07 (m, 2H). 19 F NMR (376 MHz, CDCl₃) δ -63.46 (t, J

= 10.1 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 138.02, 129.13, 128.54, 127.33, 124.99 (q, J = 277.4 Hz), 114.63, 114.43, 54.01 (q, J = 2.7 Hz), 41.81, 40.66, 39.05 (q, J = 28.9 Hz), 35.27, 31.86. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₅H₁₄F₃N₅Na: 344.1099, found: 344.1099.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.3 Hz, 2H), 7.44 – 7.35 (m, 3H), 7.35 – 7.30 (m, 4H), 4.94 (dd, J = 8.9, 4.9 Hz, 1H), 3.36 – 3.20 (m, 2H), 3.14 – 2.97 (m, 2H), 2.43 (s, 3H), 2.24 – 2.07 (m, 1H), 2.04 – 1.90 (m, 1H), 1.83 – 1.66 (m,

2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.11 (t, J = 10.9 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 144.10, 137.18, 135.61, 130.05, 129.22, 129.04, 127.40, 127.14, 127.04 (q, J = 276.2 Hz), 66.20, 55.09, 49.74, 31.11 (q, J = 29.1 Hz), 21.67, 21.26 (q, J = 2.8 Hz). HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₁F₃N₄NaO₂S: 449.1235, found: 449.1235.

N₃ CF₃

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.44 - 7.40 (m, 1H), 7.32 - 7.26 (m, 2H), 7.21 - 7.17 (m, 1H), 4.82 (q, J = 6.8 Hz, 1H), 2.81 - 2.70 (m, 2H), 2.23 - 2.09 (m, 2H), 1.88 (dt, J = 15.3, 7.7 Hz, 2H), 1.55 (d,

J = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.10 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 138.44, 138.13, 129.78, 128.37, 127.27, 127.16 (q, J = 277.4 Hz), 126.44, 56.73, 33.51 (q, J = 28.6 Hz), 31.33, 23.75 (q, J = 2.8 Hz), 21.22. HRMS ESI (m/z): [M-N₂+H]⁺ calcd. for C₁₂H₁₅F₃N: 230.1157, found: 230.1157.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (500 MHz, CDCl₃) δ 7.32 (dd, J = 8.6, 7.5 Hz, 2H), 7.07 (t, J = 7.4 Hz, 1H), 7.03 – 6.96 (m, 2H), 5.12 (dd, J = 7.8, 4.1 Hz, 1H), 4.24 (q, J = 7.2 Hz, 2H), 4.21 – 4.16 (m, 1H),

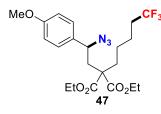
4.13 - 4.05 (m, 1H), 2.71 - 2.50 (m, 2H), 2.14 - 1.95 (m, 4H), 1.60 - 1.53 (m, 1H), 1.51 - 1.43 (m, 1H), 1.26 (t, J = 7.0 Hz, 3H), 1.19 (t, J = 7.1 Hz, 3H). 13 C NMR (126 MHz, CDCl₃) δ 170.50, 156.19, 129.91, 126.89 (q, J = 277.2 Hz), 123.29, 116.70, 86.83, 62.07, 61.91, 55.36, 37.64, 33.94 (q, J = 28.7 Hz), 32.54, 29.84, 17.32 (q, J = 3.1 Hz), 14.11, 13.99. 19 F NMR (471 MHz, CDCl₃) δ -66.28 (t, J = 11.1 Hz). HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₄F₃N₃NaO₅: 454.1560, found: 454.1570.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (500 MHz, CDCl₃) δ 7.90 (dd, J = 5.4, 3.1 Hz, 2H), 7.79 (dd, J = 5.5, 3.0 Hz, 2H), 5.73 (t, J = 6.6 Hz, 1H), 4.19 (qd, J = 7.1, 2.9 Hz, 2H), 4.17 – 4.09 (m, 1H), 4.08 – 4.00 (m, 1H), 2.84 (qd, J = 15.1, 6.6 Hz, 2H), 2.18 – 1.98 (m, 4H), 1.58 – 1.52 (m, 1H), 1.50 – 1.41

(m, 1H), 1.26 - 1.22 (m, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 170.21, 166.82, 134.72, 131.39, 126.73 (q, J = 275.9 Hz), 123.89, 63.35, 61.99, 55.63, 35.01, 33.81 (q, J = 28.7 Hz), 32.32, 17.12, 13.93, 13.85. ¹⁹F NMR (471 MHz, CDCl₃) δ -66.32 (t, J = 11.0 Hz). HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₁H₂₃F₃N₄NaO₆: 507.1462, found: 507.1465.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 8.05 – 7.98 (m, 4H), 7.60 – 7.54 (m, 2H), 7.44 (t, J = 7.7 Hz, 4H), 4.30 (s, 4H), 2.18 – 2.05 (m, 2H), 1.73 – 1.49 (m, 8H), 1.27 (s, 6H). 19 F NMR (376 MHz, CDCl₃) δ -66.04 (t, J = 10.8 Hz, 3F). 13 C NMR (101 MHz,

CDCl₃) $_{\delta}$ 166.38, 133.38, 129.91, 129.68, 128.67, 127.04 (q, J=276.5 Hz), 66.40, 61.32, 40.09, 34.53, 34.39 (q, J=28.5 Hz), 31.12, 26.09, 25.85, 15.96 (q, J=3.0 Hz). HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₆H₃₀N₃O₄F₃Na: 528.2086, found: 528.2086.


Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.43 – 7.31 (m, 3H), 7.31 – 7.27 (m, 2H), 4.40 (t, J = 6.9 Hz, 1H), 4.24 – 4.10 (m, 4H), 2.13 – 1.98 (m, 3H), 1.94 – 1.86 (m, 2H), 1.86 – 1.75 (m, 1H), 1.76 – 1.61 (m, 2H), 1.43 – 1.32 (m, 2H), 1.23 (d, J

= 7.1 Hz, 3H), 1.21 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.28 (t, J = 10.8 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 171.08, 139.08, 129.05, 128.65 (q, J = 277.6

Hz), 126.96, 126.84, 66.18, 61.63, 61.60, 56.94, 33.95 (q, J = 28.7 Hz), 31.70, 30.91, 29.17, 17.05 (q, J = 2.3 Hz), 14.19, 14.17. HRMS ESI (m/z): [M+Na]⁺ calcd. for $C_{20}H_{26}N_3O_4F_3Na$: 452.1773, found: 452.1770.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.43 – 7.31 (m, 3H), 7.31 – 7.26 (m, 2H), 4.40 (t, J = 6.9 Hz, 1H), 4.28 – 4.08 (m, 4H), 2.14 – 1.96 (m, 3H), 1.97 – 1.86 (m, 2H), 1.86 – 1.75 (m, 1H), 1.75 – 1.58 (m, 3H), 1.48 – 1.29 (m, 2H), 1.24 (t, J = 7.1 Hz, 2H),

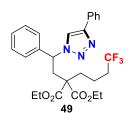
1.21 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.28 (t, J = 10.8 Hz). ¹³C NMR (101 MHz, CDCl₃) δ 171.07, 139.10, 129.04, 128.64, 126.97, 126.92 (d, J = 276.3 Hz), 66.20, 61.62, 61.59, 56.97, 33.97 (q, J = 28.7 Hz), 31.74, 30.92, 29.21, 17.07 (d, J = 3.0 Hz), 14.19, 14.16. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₀H₂₆N₃O₄F₃Na: 452.1773, found: 452.1770.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, CDCl₃) δ 7.25 (d, J = 8.7 Hz, 2H), 6.91 (d, J = 8.6 Hz, 2H), 4.45 (dd, J = 8.9, 4.6 Hz, 1H), 4.20 (q, J = 7.2 Hz, 2H), 4.16 – 4.04 (m, 2H), 3.81 (s, 3H), 2.38 (dd, J = 14.9, 8.9 Hz, 1H), 2.30 (dd, J = 14.9, 4.6

Hz, 1H), 2.11 – 1.87 (m, 4H), 1.59 – 1.50 (m, 2H), 1.32 – 1.07 (m, 2H), 1.27 (t, J = 7.2 Hz, 3H), 1.23 (t, J = 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.32 (t, J = 10.9 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 171.13, 171.02, 159.84, 131.61, 128.35, 127.16 (q, J = 277.5 Hz), 114.33, 62.13, 61.70, 61.65, 56.24, 55.45, 38.79, 33.46 (q, J = 28.6 Hz), 32.43, 23.40, 22.20 (q, J = 3.0 Hz), 14.15, 14.12. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₂₁H₂₈N₃O₅F₃Na: 482.1879, found: 482.1880.

Derivatization studies

General procedure C for reduction


13 (0.2 mmol) and Pd/C (10%) were combined in a 25 mL oven-dried Schleck tube. The vessel was evacuated and backfilled with H₂. After that, MeOH was added via syringe H₂ stream. The tube was sealed with a rubber cap and inserted with a balloon of H₂. Until completion, the reaction mixture was diluted with EtOAc (10 mL) and filtered through a pad of celite. The filtrate was concentrated, and the residue was then purified by flash column chromatography to give the amide.

¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.25 (m, 5H), 6.92 (s, 0.5H), 6.74 (s, 0.5H), 4.87 (t, J = 7.8 Hz, 0.5H), 4.71 (t, J = 7.4 Hz, 0.5H), 4.34 – 4.20 (m, 1H), 4.16 (q, J = 7.1 Hz, 1H), 2.96 (dd, J = 13.1, 6.8 Hz, 0.5H), 2.63 – 2.46 (m, 1H), 2.25 – 1.42 (m,

6.5H), 1.31 (t, J = 7.1 Hz, 1.5H), 1.22 (t, J = 7.1 Hz, 1.5H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.20 (t, J = 10.8 Hz, 3F), -66.37 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 175.49, 174.72, 171.38, 170.83, 141.91, 141.52, 129.12, 128.94, 128.32, 128.19, 126.97 (q, J = 277.75 Hz), 126.90 (q, J = 277.75 Hz),126.05, 125.80, 62.06, 61.87, 56.37, 56.02, 55.44, 55.38, 41.45, 40.48, 33.98 (q, J = 28.3 Hz),33.94 (q, J = 28.3 Hz), 33.24, 33.05, 17.66 – 17.45 (m), 14.19, 14.02. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₇H₂₀F₃NO₃Na: 366.1293, found: 366.1287.

General procedure D for the synthesis of triazoles

CuI (0.01 mmol) was added in a 25 mL oven-dried sealed tube. The vessel was evacuated and backfilled with N_2 (repeated for 3 times), after that, 13 (0.1 mmol), phenylacetylene (0.3 mmol, 3.0 equiv) and THF (2.0 mL) were then added via syringe under N_2 . The tube was sealed with a Teflon lined cap and moved into a preheated oil bath at 60 °C for 16 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (10 mL) and filtered through a pad of celite. The filtrate was concentrated, and the residue was then purified by flash column chromatography to give the triazoles.

¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.2 Hz, 2H), 7.70 (s, 1H), 7.44 – 7.28 (m, 8H), 5.80 (dd, J = 8.0, 4.3 Hz, 1H), 4.11 – 4.02 (m, 2H), 4.00 – 3.80 (m, 2H), 3.34 (dd, J = 15.1, 8.4 Hz, 1H), 2.91 (dd, J = 15.2, 3.9 Hz, 1H), 2.07 – 1.87 (m, 4H), 1.57 – 1.47 (m, 1H), 1.43 – 1.35 (m, 1H), 1.21 (t, J = 7.2 Hz, 3H), 1.16 (t, J = 7.2 Hz, 3H)

7.6 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -66.24 (t, J = 10.8 Hz, 3F). ¹³C NMR (101 MHz, CDCl₃) δ 170.60, 170.39, 147.82, 139.49, 130.50, 129.17, 128.90, 128.83, 128.27, 126.94, 126.82 (q, J = 277.4 Hz), 125.73, 119.69, 61.94, 61.90, 56.42, 37.98, 33.77 (q, J = 28.9 Hz), 32.46, 17.22 (q, J = 2.9 Hz), 13.99, 13.93. HRMS ESI (m/z): [M+H]⁺ calcd. for C₂₇H₃₁F₃N₃O₄: 518.2267, found: 518.2274.

IV. Mechanistic Research

1,5- or 1,6-deuterium shift

Prepared according to General Procedure B and obtained as colorless oil. The product **13-d2** and **13'-d2** was obtained as mixture with the ratio of 1.8: 1. ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 4H),

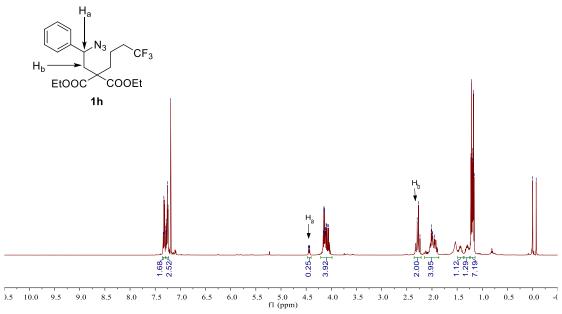
7.26 – 7.12 (m, 1H), 4.29 – 4.08 (m, 4H), 3.80 – 3.71 (m, 0.25H), 2.45 – 2.28 (m, 2H), 2.20-1.95 (m, 4H), 1.55 –1.34 (m, 0.75H), 1.31 – 1.22 (m, 6H). ¹⁹F NMR (376 MHz, CDCl₃) δ -63.95 (t, J = 10.4 Hz, 0.75F), -66.28 (t, J = 10.8 Hz, 2.25F). ¹³C NMR (101 MHz, CDCl₃) δ 170.95, 170.89, 170.87, 170.77, 140.82, 139.50, 129.10, 128.76, 128.72, 128.44, 126.97, 126.91 (q, J = 277.3 Hz), 126.45, 125.48 (q, J = 278.4 Hz), 62.22 (t, J = 21.6 Hz), 62.10, 61.86, 61.78, 56.19, 56.13, 53.64 (q, J = 2.7 Hz), 39.63 (q, J = 28.4 Hz), 38.87, 38.03, 34.83, 33.83 (q, J = 28.8 Hz), 32.03, 29.72, 17.05 – 16.52 (m), 14.17, 14.13, 14.11. HRMS ESI (m/z): [M+Na]⁺ calcd. for C₁₉H₂₂D₂F₃N₃NaO₄: 440.1742, found: 440.1735.

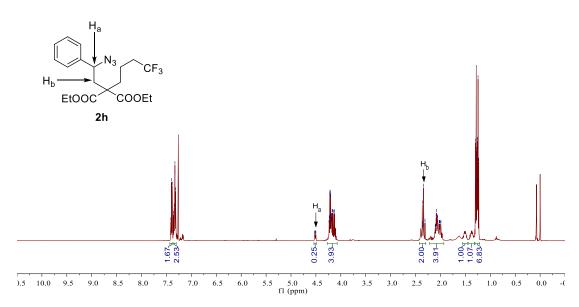
Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, $C_{6}D_{6}$) δ 7.02 (d, J = 2.2 Hz, 3H), 6.99 – 6.88 (m, 1H), 3.84 (qd, J = 7.1, 1.3 Hz, 4H), 2.99 (dt, J = 8.1, 4.0 Hz, 1H), 2.19 (s, 2H), 2.03 (ddd, J = 13.9, 11.6, 5.6 Hz, 1H), 1.86 (ddd, J = 14.0, 11.5, 5.4 Hz, 1H), 1.64 – 1.47

(m, 1H), 1.46 - 1.30 (m, 1H), 1.24 - 1.09 (m, 2H), 0.81 (t, J = 7.1 Hz, 3H), 0.80 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, C_6D_6) δ -63.83 (t, J = 10.6 Hz, 3F). ¹³C NMR (101 MHz, C_6D_6) δ 171.03, 171.01, 141.59, 128.92, 128.70, 128.30, 128.06, 127.82, 126.57, 126.16 (d, J = 277.2 Hz), 61.34, 57.39, 56.53 (q, J = 2.6 Hz), 37.88 (q, J = 28.0 Hz), 35.21, 29.44, 29.01, 14.10. HRMS ESI (m/z): [M+Na]⁺ calcd. for $C_{19}H_{22}D_2F_3N_3NaO_4$: 454.1899, found: 454.1903.

Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (400 MHz, $C_{6}D_{6}$) δ 7.20 – 7.13 (m, 2H), 7.10 – 6.99 (m, 3H), 4.57 (s, 1H), 4.03 (q, J = 7.1 Hz, 2H), 4.00 – 3.85 (m, 2H), 1.98 (dddd, J = 39.7, 14.2, 12.1, 4.9 Hz, 2H), 1.49 (ddd, J = 15.4, 8.8, 4.4 Hz, 2H), 1.24 – 1.12 (m, 2H), 1.09

-0.83 (m, 2H), 0.98 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 7.1 Hz, 3H). ¹⁹F NMR (376 MHz, C_6D_6) δ -66.15 (t, J = 11.0 Hz, 3F). ¹³C NMR (101 MHz, C_6D_6) δ 170.96, 170.83, 140.20, 129.20, 128.70, 127.68 (q, J = 276.2 Hz), 127.20, 62.94, 61.47, 61.44, 56.37, 33.63, 33.21 (q, J = 28.3 Hz), 32.93, 23.48, 22.20 (q, J = 2.9 Hz), 14.04, 13.99. HRMS ESI (m/z): [M+Na]⁺ calcd. for $C_{19}H_{22}D_2F_3N_3NaO_4$: 454.1899, found: 454.1894.


KIE experiments


Intramolecular

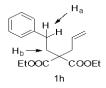
EtOOC COOEt EtOOC COOEt EtOOC COOEt 13-d
$$H$$
 N₃ CF_3 $EtOOC$ COOEt 13-d H N₃ CF_3 H N₃ CF_3 H N₃ CF_3 H N₃ H

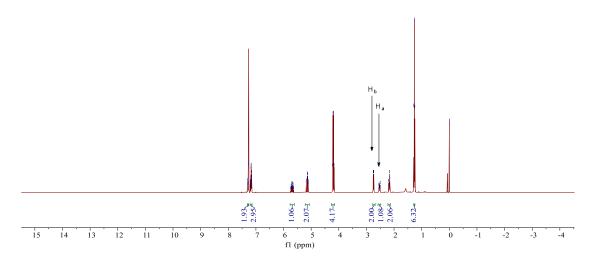
Fe (acac)₃ (10 mol%, 0.01 mmol, 3.53 mg), Togni-II (1.25 equiv, 0.125 mmol, 39.5 mg) were combined in a 25 mL oven-dried sealed tube. The vessel was evacuated and backfilled with N₂ (repeated for 3 times), after that, monodeuterated alkene **13-d** (1 equiv, 0.1 mmol), TMSN₃ (3.0 equiv, 0.3 mmol) and superdry DCM (1.0 mL) were then added via syringe under N₂. The tube was sealed with a Teflon lined cap and moved into a preheated oil bath at 50 °C for 12 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (10 mL) and filtered through a pad of celite. The filtrate was concentrated, and the residue was then purified by flash column chromatography. Both recovered substrate and product ratios were determined by ¹H NMR.

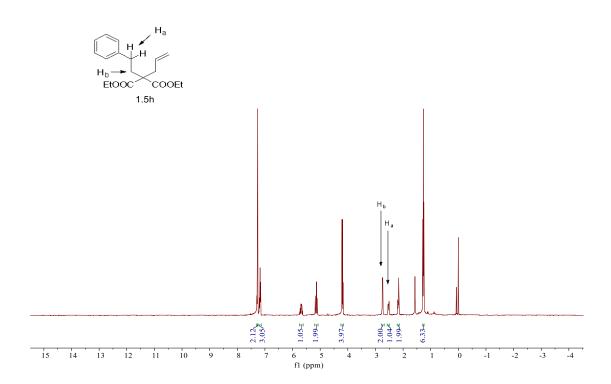
Intermolecular (one-pot)

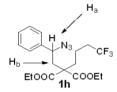
EtOOC COOEt S13

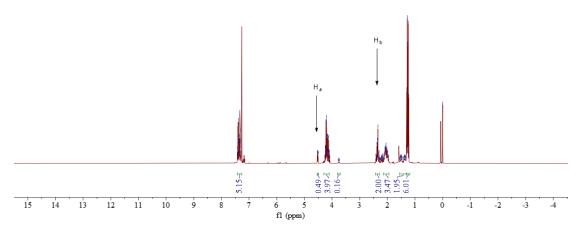
EtOOC COOEt S13

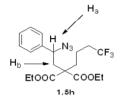

$$+$$
 Standard conditions

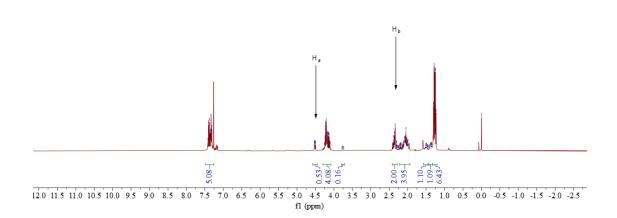

EtOOC COOEt S13-d₂
 $+$ EtOOC S13-d₂
 $+$ S13-d₂
 $+$

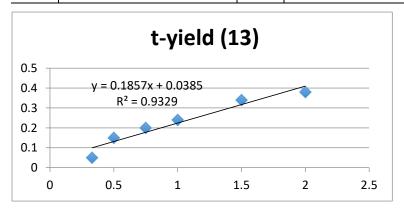

Fe (acac)₃ (10 mol%, 0.01 mmol, 3.53 mg), Togni-II (1.25 equiv, 0.125 mmol, 39.5 mg) were combined in a 25 mL oven-dried sealed tube. The vessel was evacuated and backfilled with N_2 (repeated for 3 times), after that, alkene **S13** (0.5 equiv, 0.05mmol), deuterated alkene **S13-d₂** (0.5 equiv, 0.05mmol), TMSN₃ (3.0 equiv, 0.3 mmol) and superdry DCM (1.0 mL) were then added via syringe under N_2 . The tube was sealed with a Teflon lined cap and moved into a preheated oil bath at 50 °C for 12 h. The reaction mixture was then cooled to room temperature, diluted with EtOAc (10 mL) and filtered through a pad of celite. The filtrate was concentrated, and the residue was then purified by flash column chromatography. Both recovered substrate and product


ratios were determined by ¹H NMR.







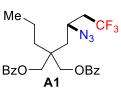


Intermolecular (parallel)

Reaction progress was monitored by ¹⁹F NMR. Rate constants were determined by adding the corresponding products with PhCF₃ as internal standard over time and extracting the slope after linear fitting of the data (simulating the linear function and slope as the rate constants)

t/h	Reaction of S13	t/h	Reaction of S13-d2
	(yield of product 13)		(yield of product 13-d2)
0.33	0.05	0.33	0.04
0.50	0.15	0.50	0.06
0.75	0.2	0.75	0.15
1.00	0.24	1.00	0.14
1.50	0.34	1.50	0.24
2.00	0.38	2.00	0.28

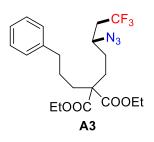
Reaction of **S13**: $y = 0.1857 (k_H)x + 0.0385, R^2 = 0.9329$


Reaction of **S13-d2**: $y = 0.0.1460 (k_D)x + 0.0037$, $R^2 = 0.9467$ $k_H/k_D = 0.1857/0.1460 = 1.272$

V. Alternative Testings

Me. BzO

Prepared according to general procedure A and obtained as colorless oil. ¹H NMR (500 MHz, CDCl₃) δ 8.02 (d, J = 7.3 Hz, 4H), 7.56 (t, J = 7.4 Hz, 2H), 7.43 (t, J = 7.8 Hz, 4H), 5.92 – 5.79 (m, 1H), 5.20 -5.07 (m, 2H), 4.31 (d, J = 2.7 Hz, 4H), 2.32 (d, J = 7.5 Hz, 2H), 1.52 –1.40 (m, 4H), 0.94 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.52, 133.20, 132.76, 130.22, 129.71, 128.60, 119.18, 67.05, 40.65, 36.78, 34.61, 16.34, 15.03. ESI (m/z): $[M+Na]^+$ calcd. for $C_{23}H_{26}NaO_4$: 389.1723, found: 389.1725.


Prepared according to General Procedure B and obtained as

colorless oil. H NMR (500 MHz, CDCl₃) δ 8.01 (ddd, J = 7.1, 6.3, 1.3 Hz, 4H), 7.61 - 7.54 (m, 2H), 7.44 (t, J = 7.8 Hz, 4H), 4.47 -4.31 (m, 4H), 3.96 – 3.76 (m, 1H), 2.57 – 2.42 (m, 1H), 2.40 – 2.28 (m, 1H), 1.95 - 1.90 (m, 1H), 1.72 (dd, J = 15.1, 2.1 Hz, 1H), 1.68 - 1.61 (m, 1H),1.59 - 1.53 (m, 1H), 1.50 - 1.42 (m, 1H), 1.40 - 1.33 (m, 1H), 0.97 (t, J = 7.1 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.37, 133.42, 133.37, 129.71, 129.70, 128.68, 128.66, 127.63 (q, J = 274.7 Hz), 66.93, 66.68, 52.88, 40.44, 40.03 (q, J = 28.0 Hz), 36.80, 35.01, 16.48, 14.96. ¹⁹F NMR (471 MHz, CDCl₃) δ -63.70 (t, J = 10.3 Hz). ESI (m/z): [M+Na]⁺ calcd. for C₂₄H₂₆F₃N₃NaO₄: 500.1768, found: 500.1754.

Prepared according to General Procedure B and obtained as colorless oil. H NMR (500 MHz, CDCl₃) δ 7.88 (d, J = 8.2 Hz, 2H), 7.62 – 7.57 (m, 1H), 7.53 (t, J = 7.7 Hz, 2H), 5.02 - 4.90 (m, 1H), 3.56 (tt, J =

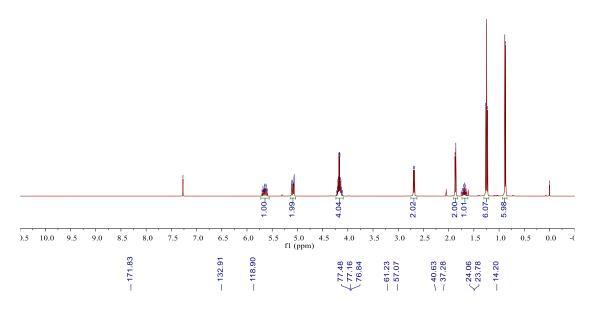
8.9, 4.9 Hz, 1H), 2.97 (q, J = 6.5 Hz, 2H), 2.25 (dtdt, J = 26.0, 15.2, 10.0, 4.7 Hz, 2H), 1.56 – 1.33 (m, 7H). ¹³C NMR (126 MHz, CDCl₃) δ 139.95, 132.87, 129.31, 128.89, 127.14,125.72 (q, J = 277.4 Hz), 56.69 (q, J = 2.4 Hz), 42.93, 38.58 (q, J = 28.1 Hz), 34.22, 29.25, 22.70. ¹⁹F NMR (471 MHz, CDCl₃) δ -64.03 (t, J = 10.7 Hz). ESI (m/z): [M+Na]⁺ calcd. for C₁₃H₁₇F₃N₄NaO₂S: 373.0917, found: 373.0917.

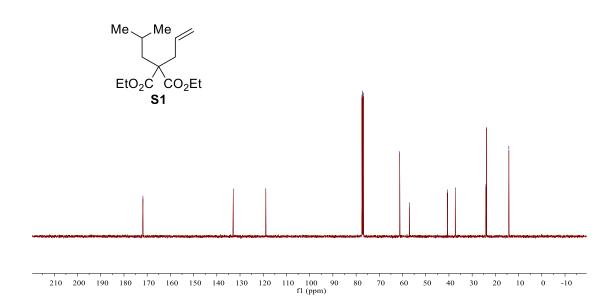
Prepared according to General Procedure B and obtained as colorless oil. 1 H NMR (500 MHz, CDCl₃) δ 7.28 (d, J = 7.3 Hz, 2H), 7.23 – 7.13 (m, 3H), 4.17 (qd, J = 7.1, 1.4 Hz, 4H), 3.57 (tt, J = 8.4, 4.6 Hz, 1H), 2.68 – 2.58 (m, 2H), 2.35 – 2.16 (m, 2H), 2.09 – 2.00 (m, 1H), 1.96 – 1.85 (m, 3H), 1.55 – 1.47 (m, 2H), 1.45 – 1.35(m, 2H), 1.22 (td, J = 7.1, 1.0 Hz, 7H). 13 C NMR (126

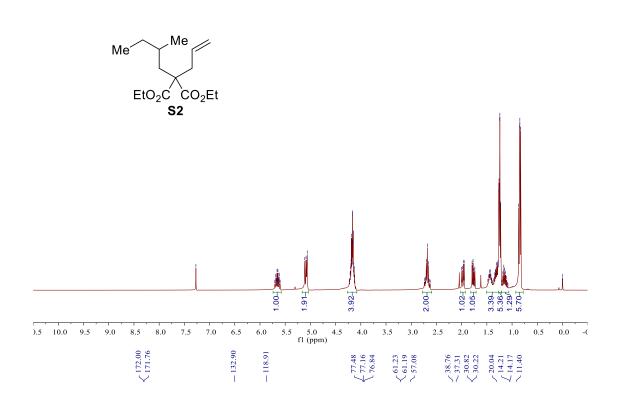
MHz, CDCl₃) δ 171.23, 141.58, 128.45, 128.41, 125.99, 125.55 (q, J =277.2 Hz), 61.40, 56.89, 56.63 (q, J = 3.0 Hz), 38.39 (q, J =28.1 Hz), 35.76, 31.86, 29.71, 29.24, 28.31, 25.69, 14.05. ¹⁹F NMR (471 MHz, CDCl₃) δ -64.06 (t, J = 10.4 Hz). ESI (m/z): [M+Na]⁺ calcd. for C₂₁H₂₈F₃N₃NaO₄: 466.1924, found: 466.1915.

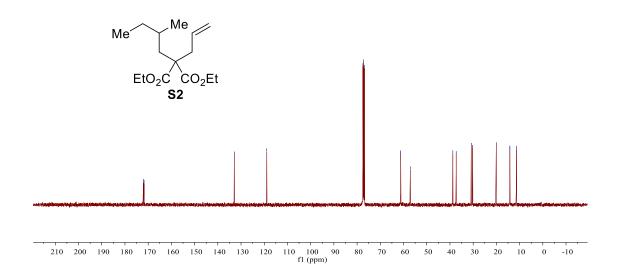
Reference

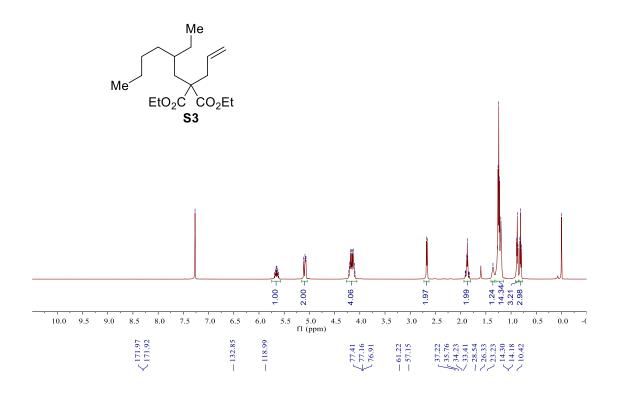
[1] P. Eisenberger, S. GIschig, A. Togni, Chem. Eur. J. 2006, 12, 2579.

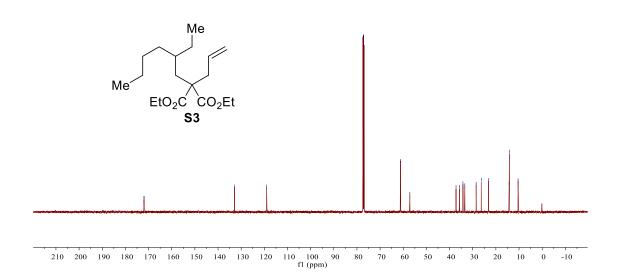

[2] D. F. González, J. P. Brand, J. Waser, Chem. Eur. J. 2010, 16, 9457.

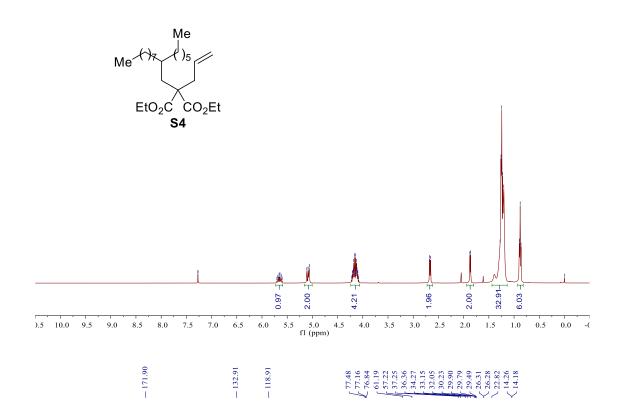

[3] L. Li, H. Luo, Z. Zhao, Y. Li, Q. Zhou, J. Xu, J. Li, Y.-N. Ma, Org. Lett. **2019**, 21, 9228.

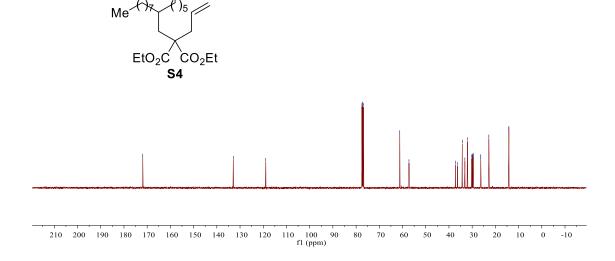

[4] W. Shu, E. Merino, C. Nevado, ACS Catal. 2018, 8, 6401.

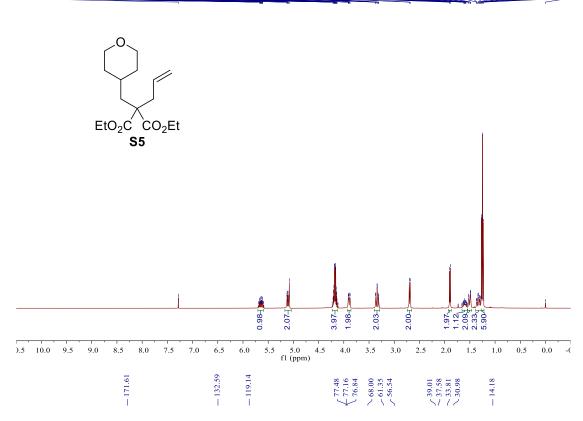

NMR Spectrum Data for New Compounds

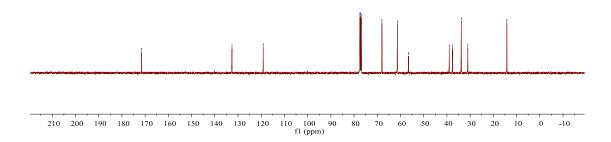


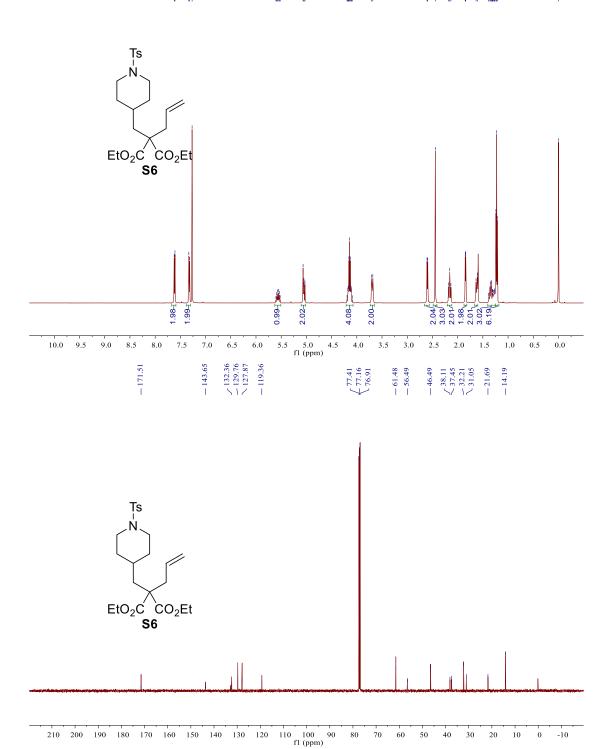


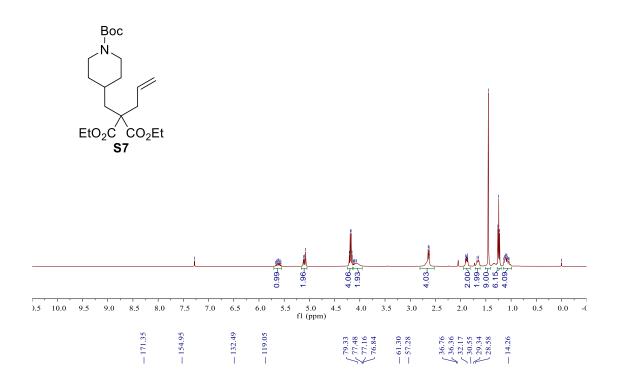


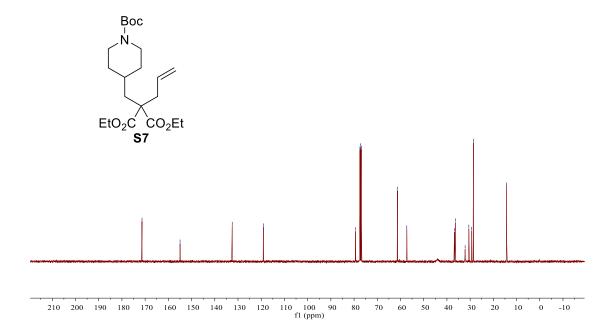




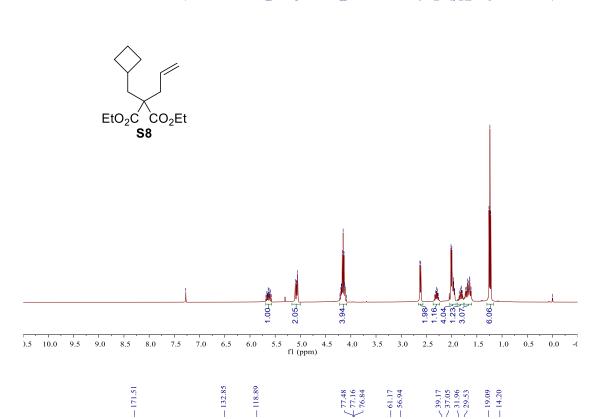


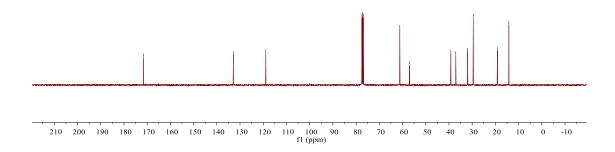

Ме

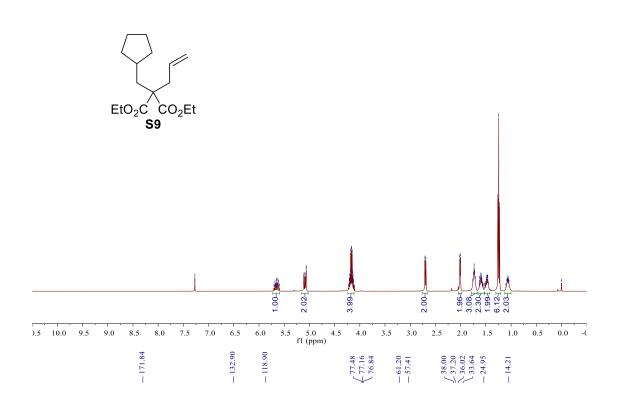


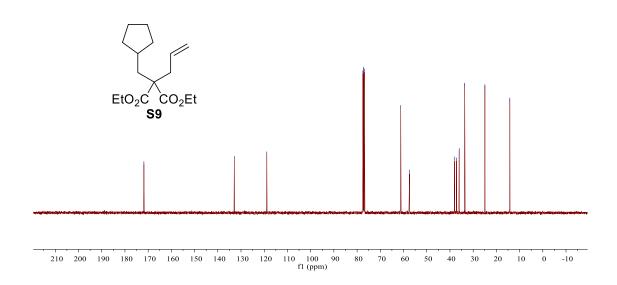


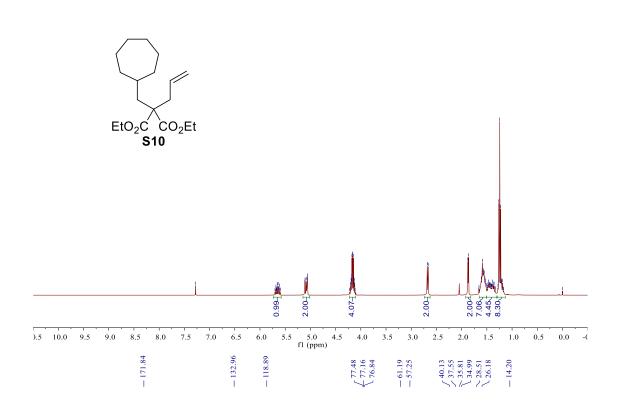
7.6.2 7.

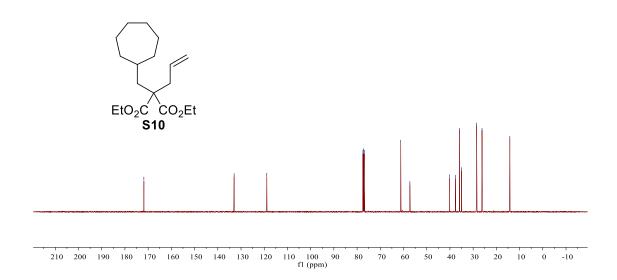


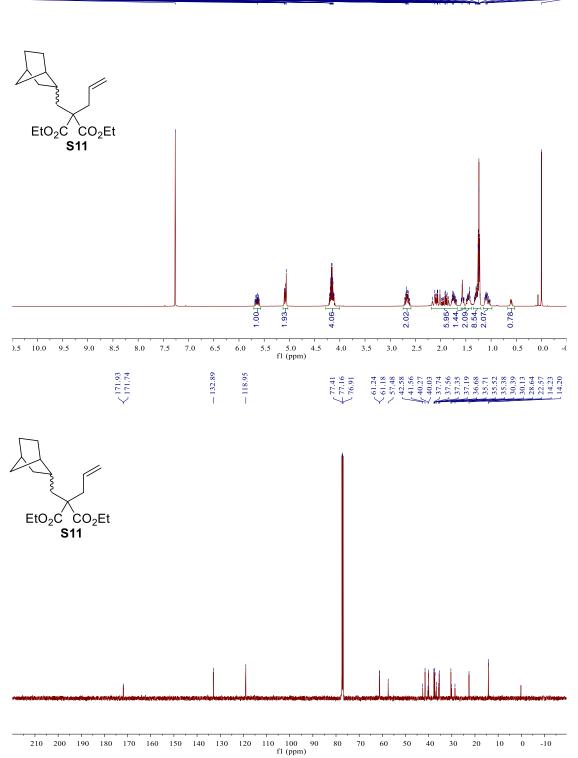


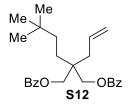


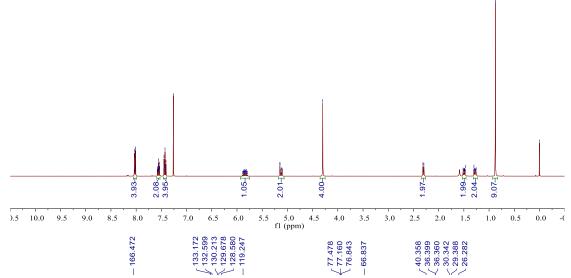


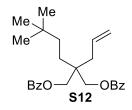


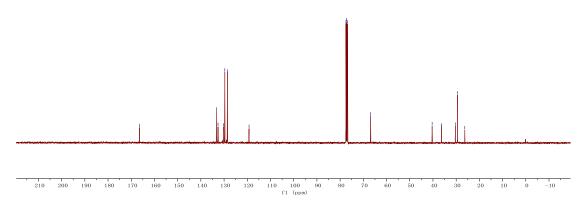


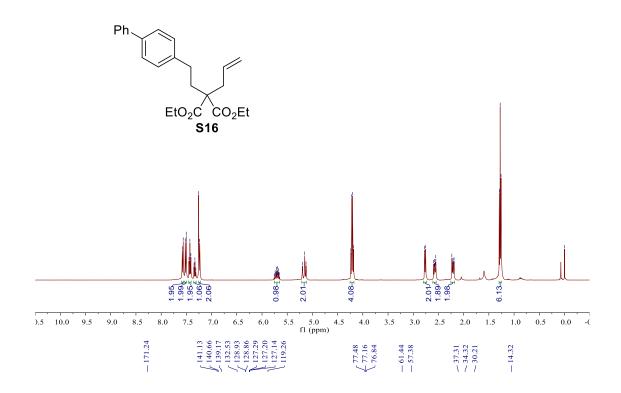


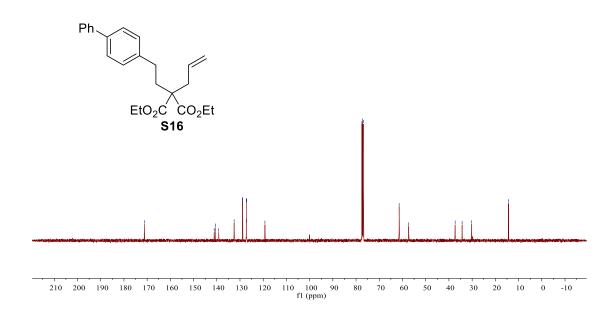


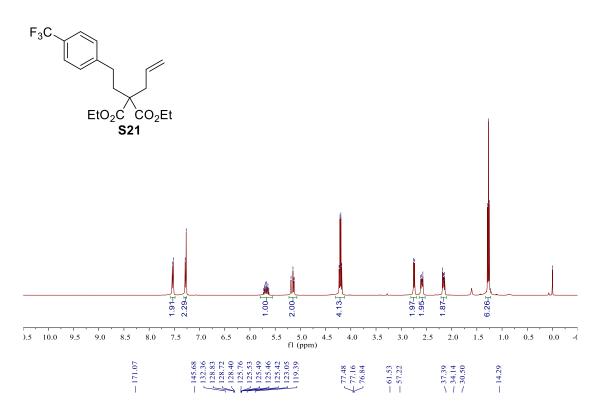


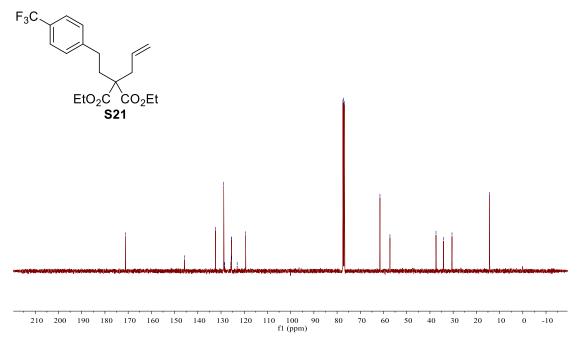


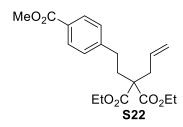


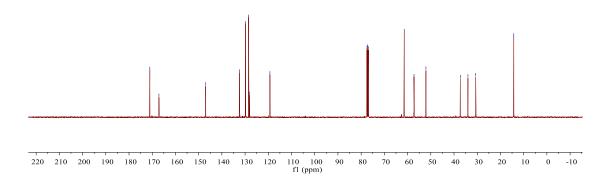


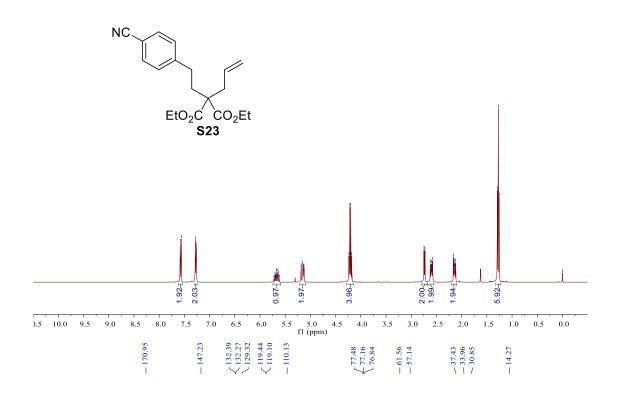


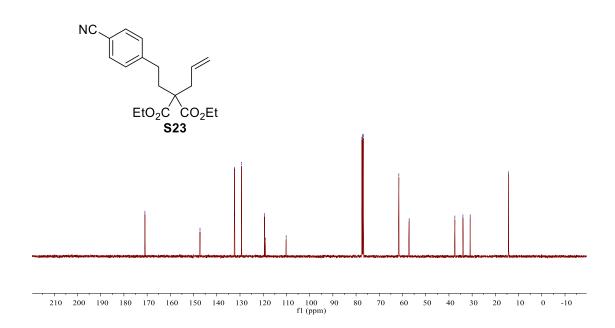


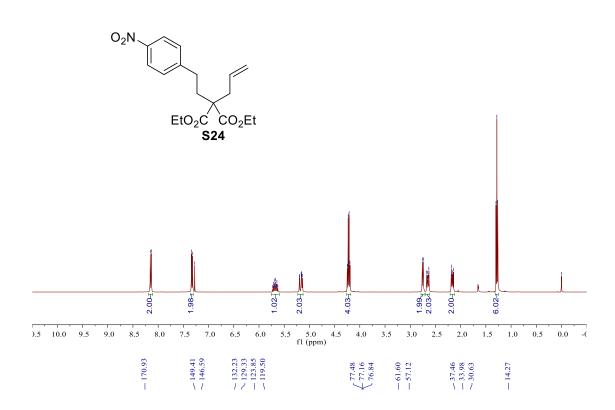


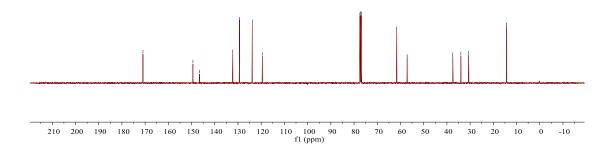


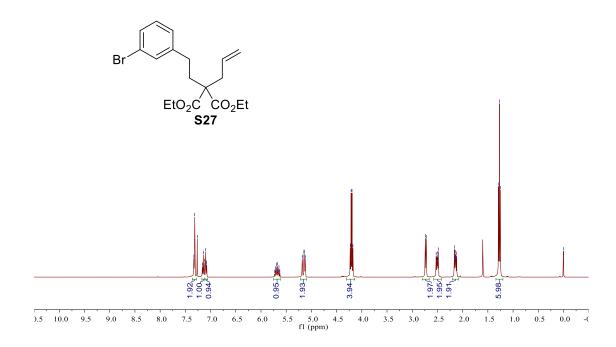


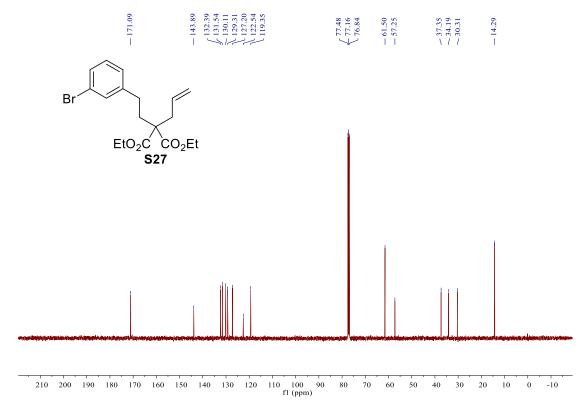


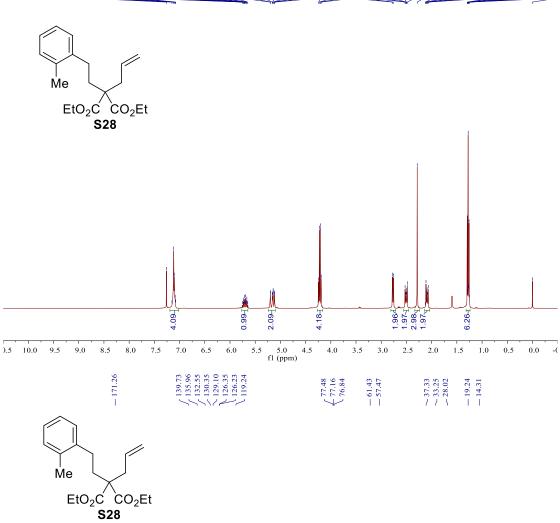


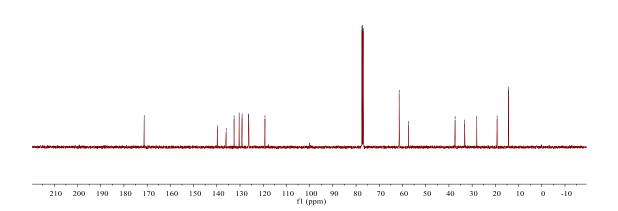


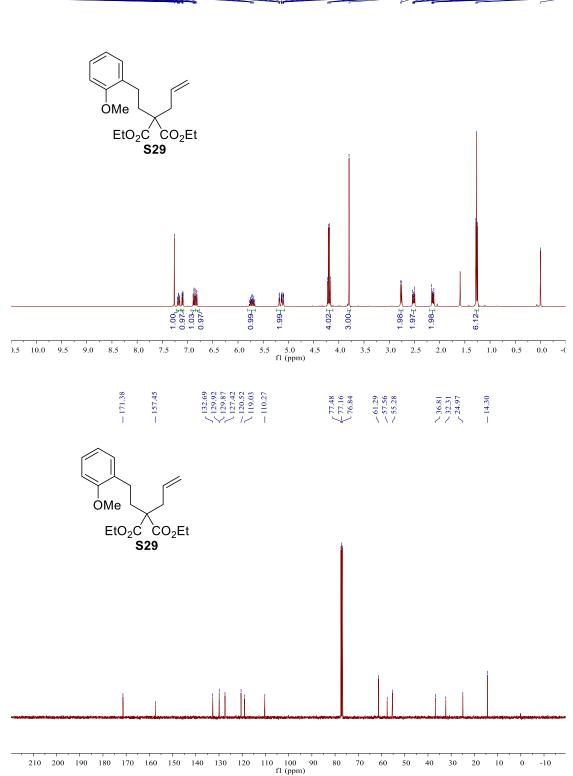


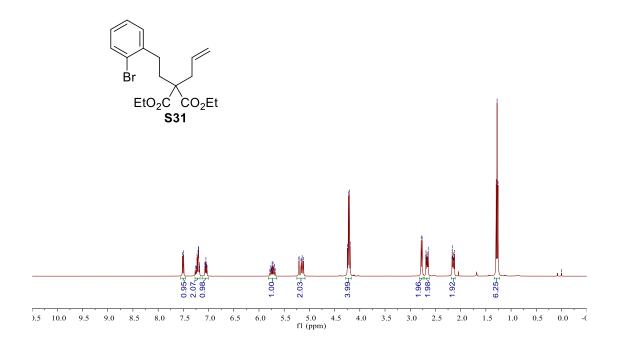


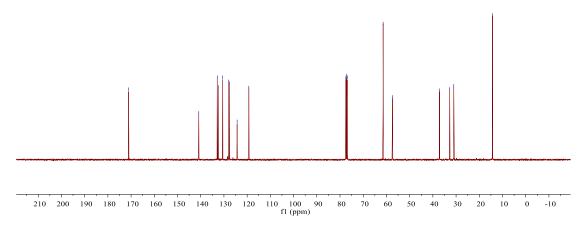


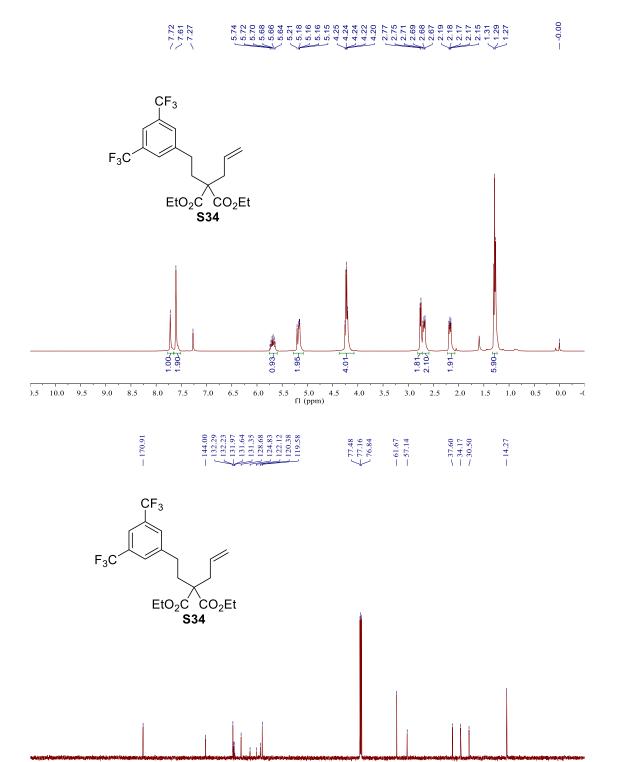


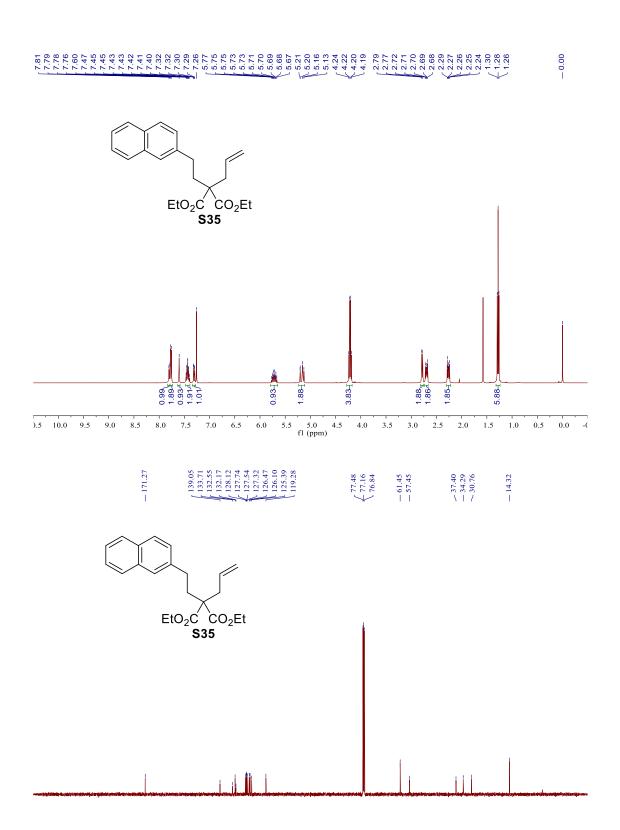




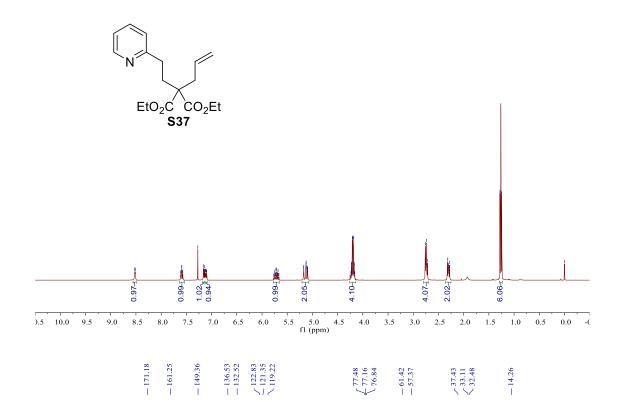


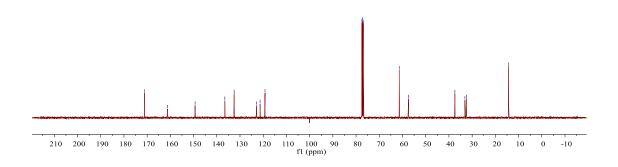


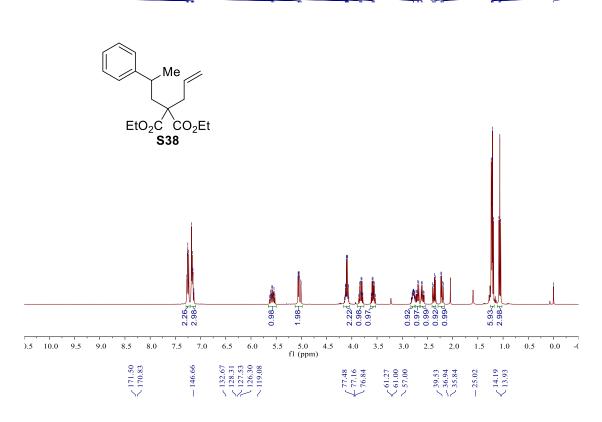


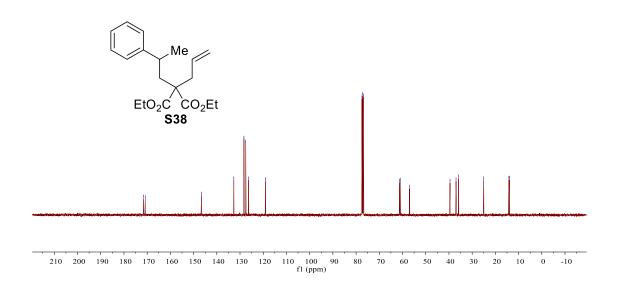


EtO₂C CO₂Et **S33**).5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 f1 (ppm) CI-EtO₂C CO₂Et **S33** 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 fl (ppm)

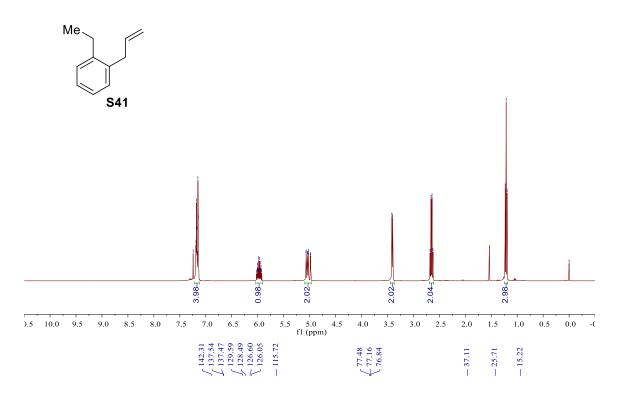


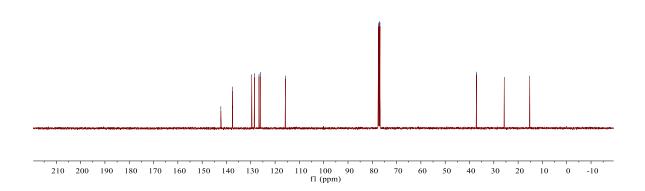

10

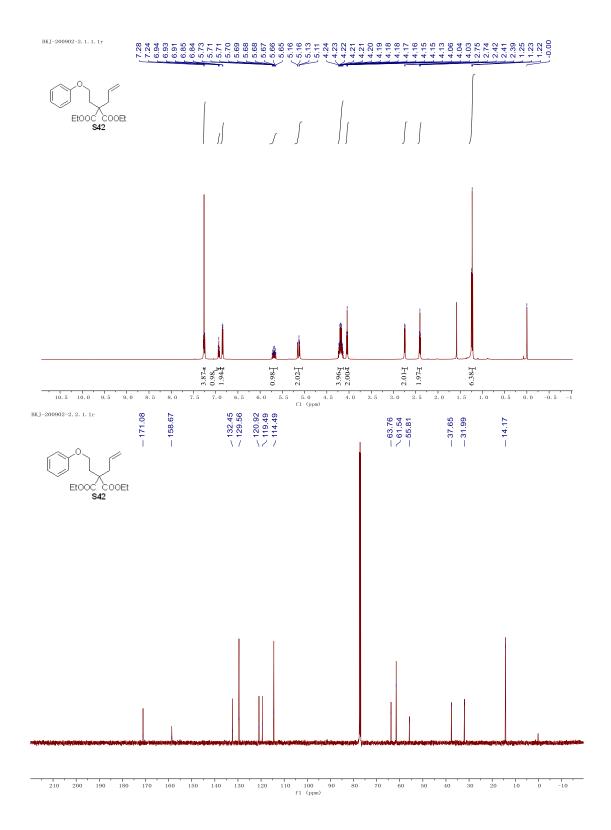

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 fl (ppm)

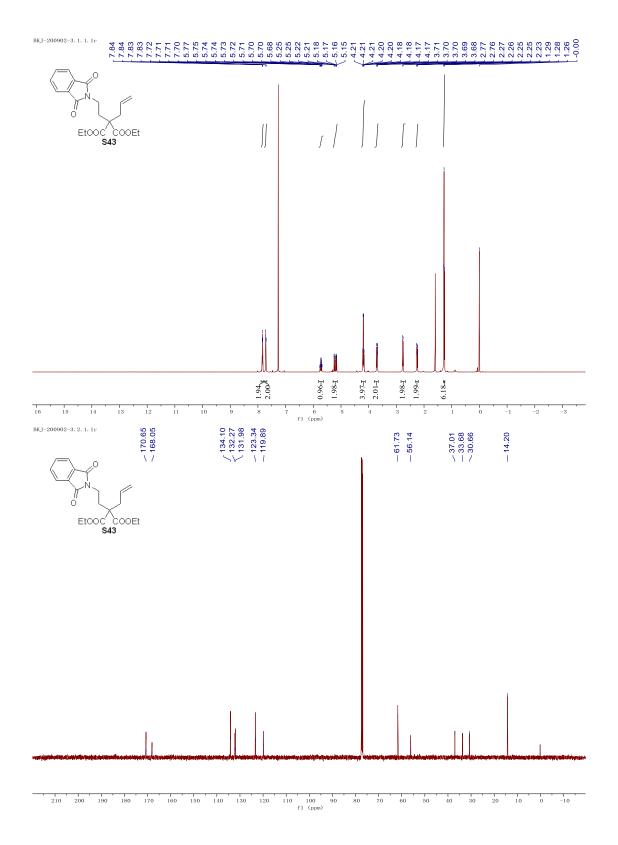


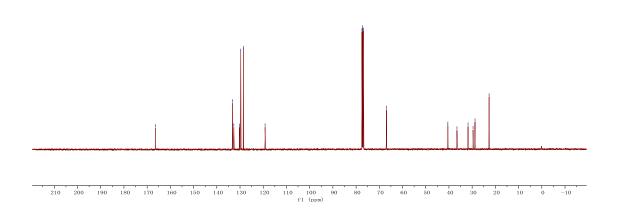
210 200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm)

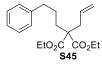


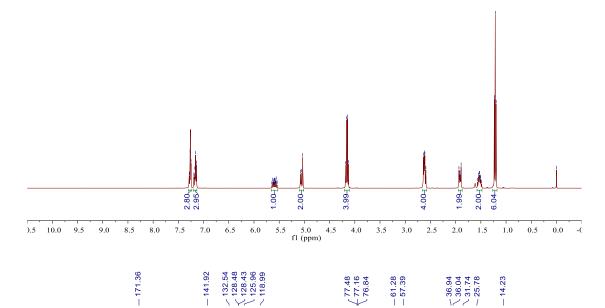


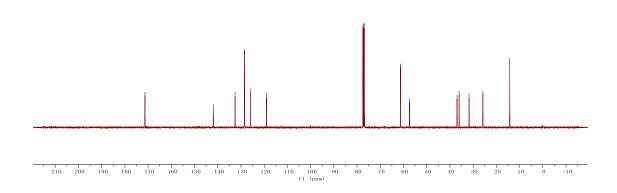


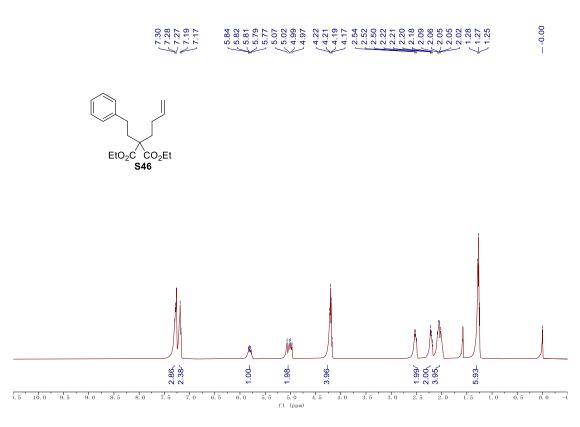


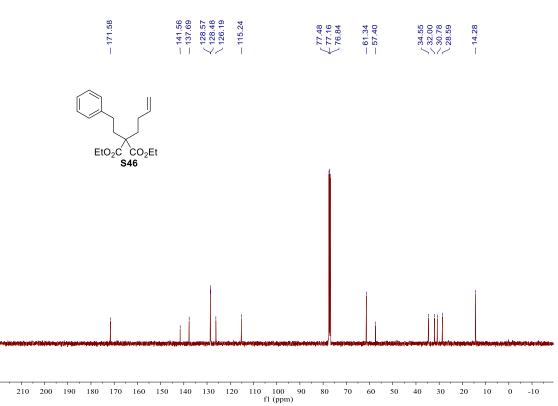


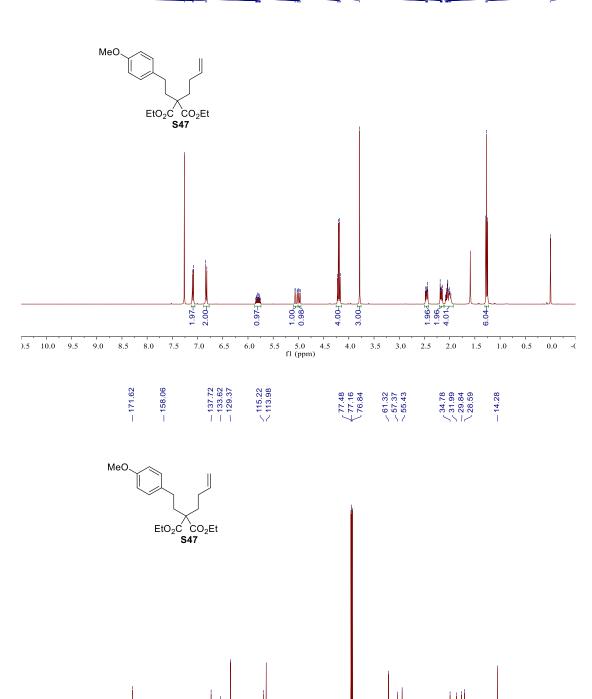


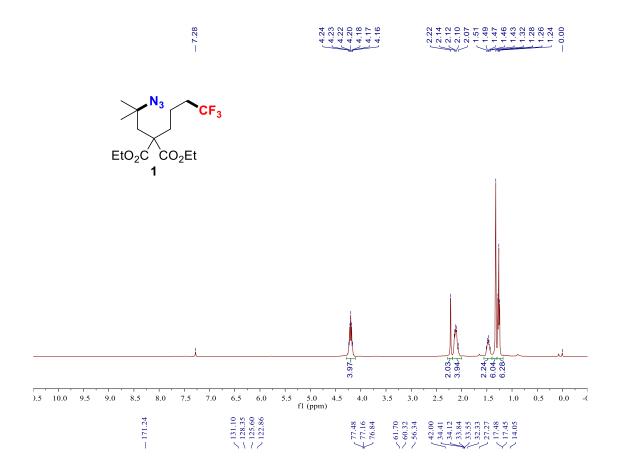


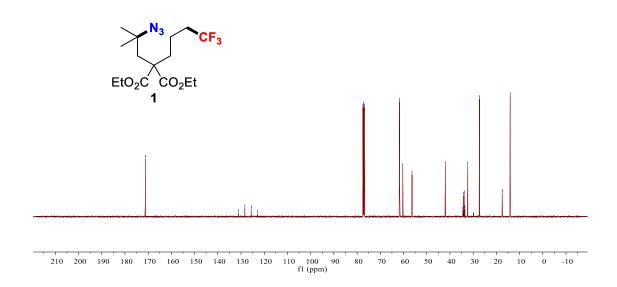


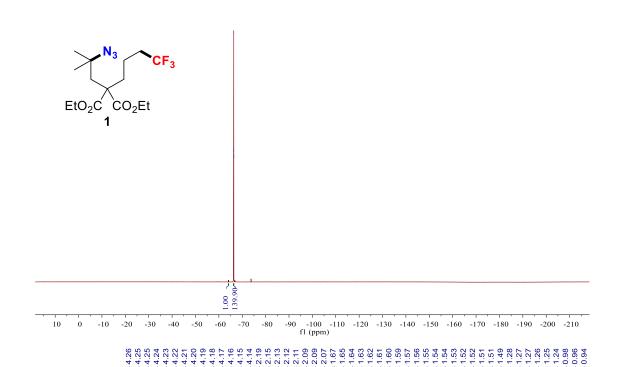


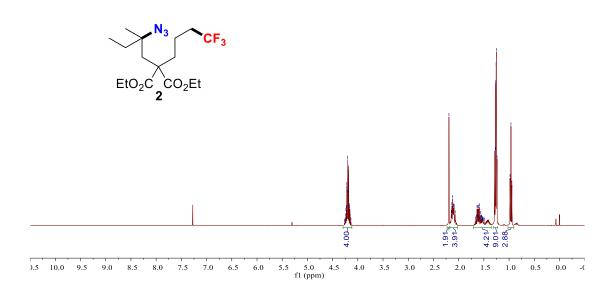


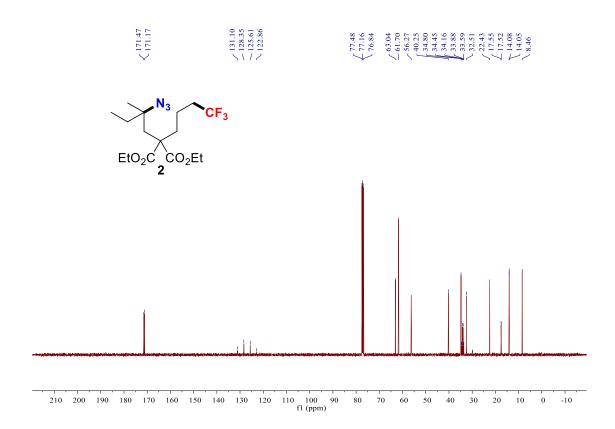


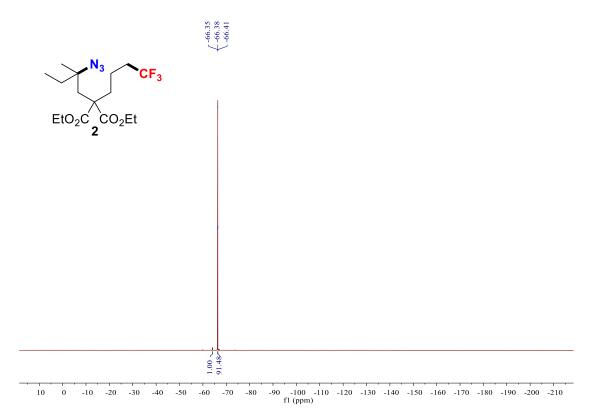


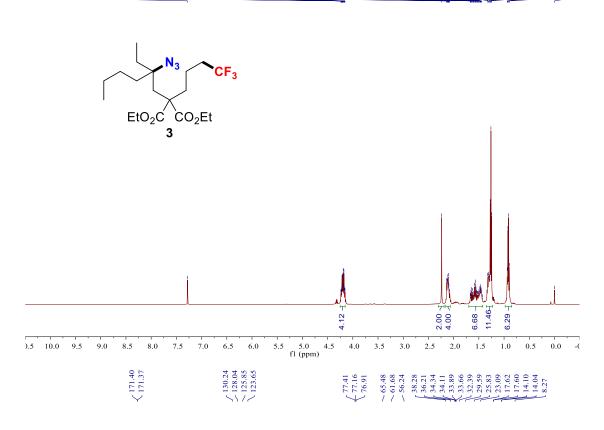


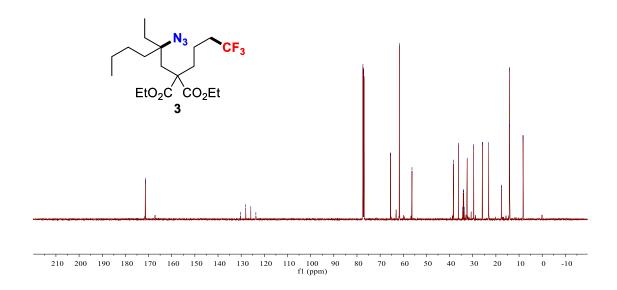

7.26 6.84

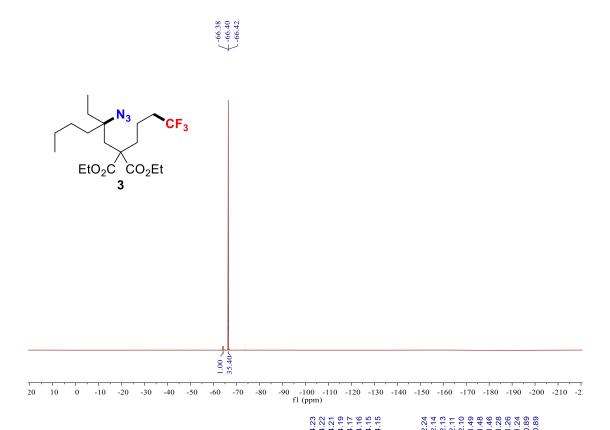


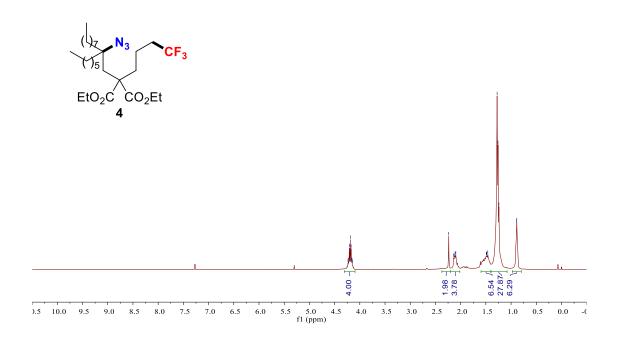


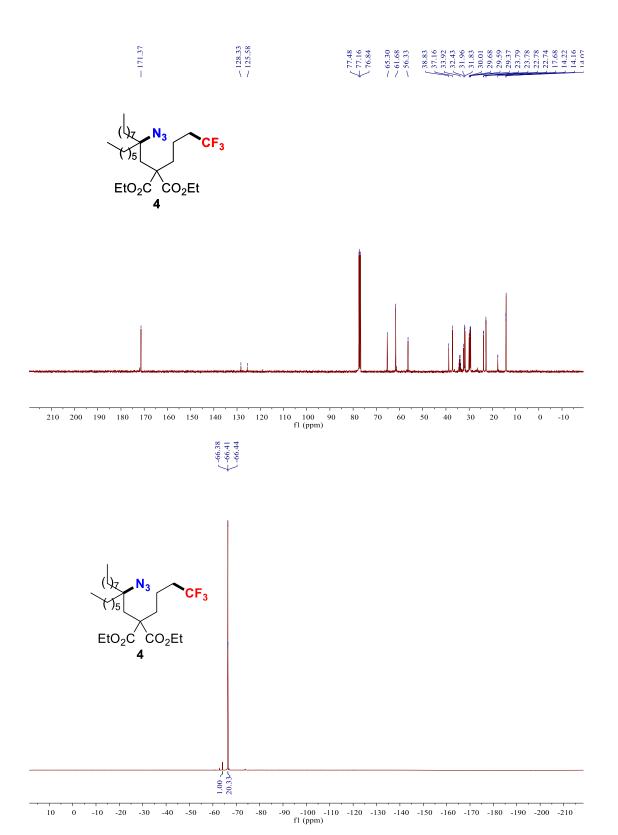


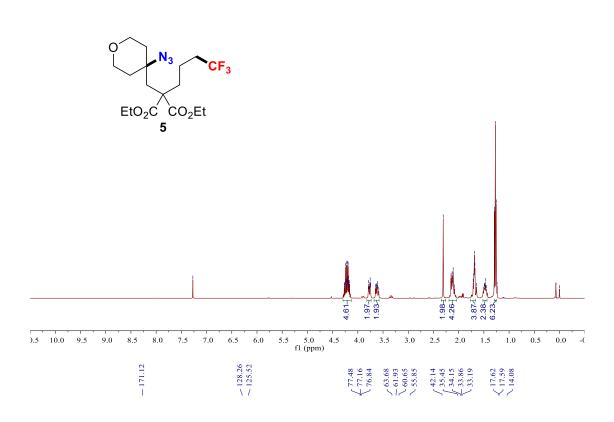


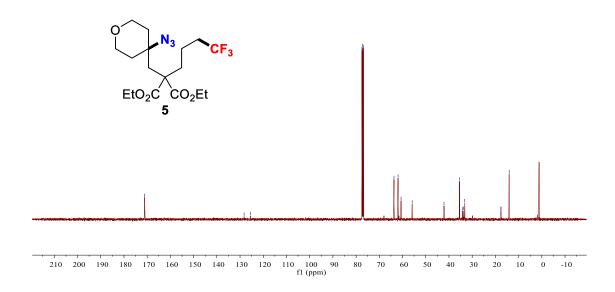


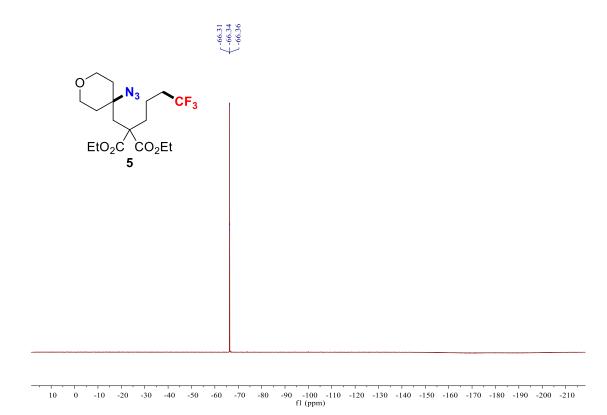


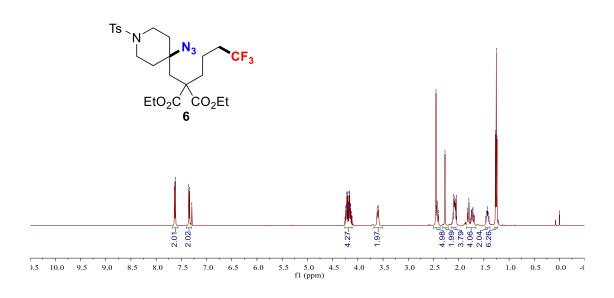


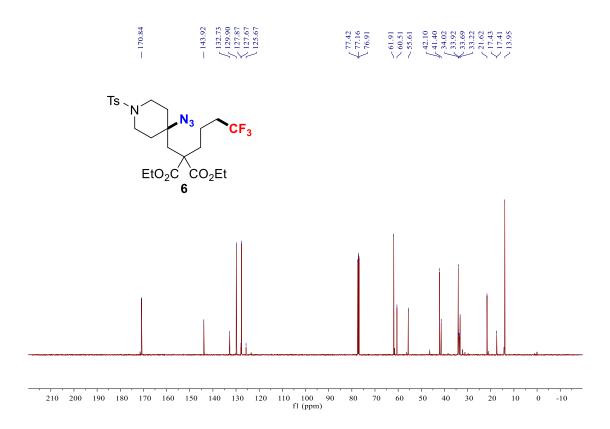


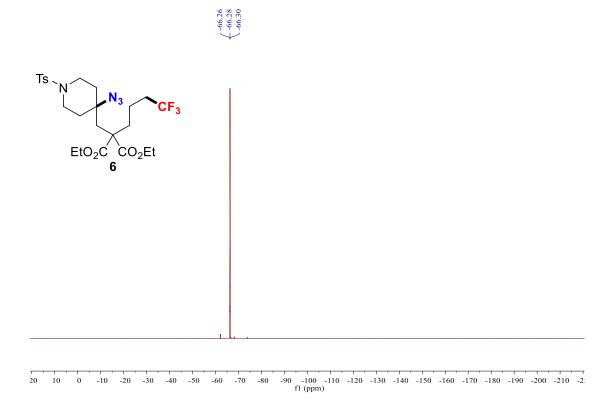


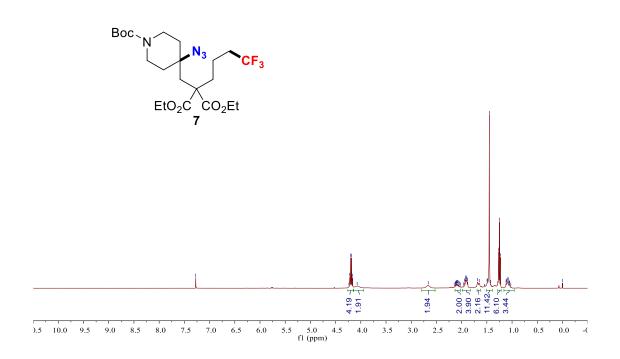


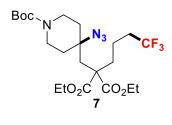


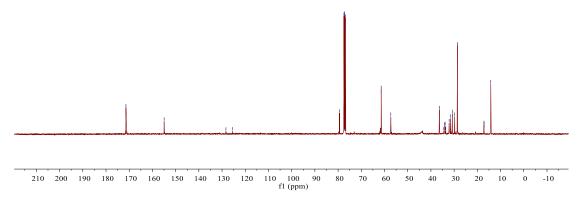


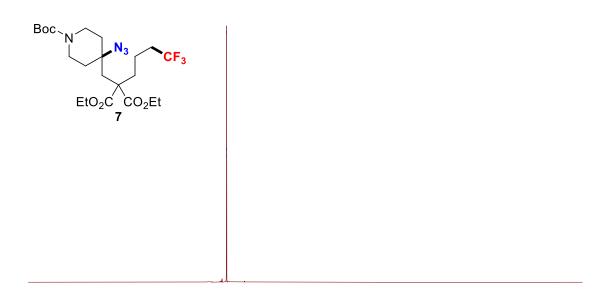




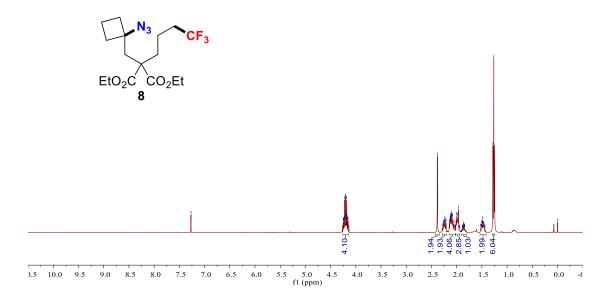


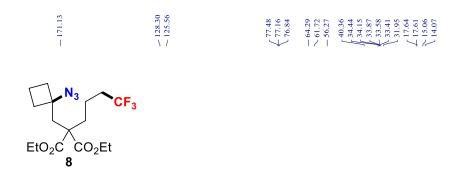


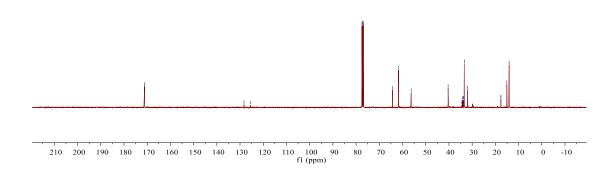


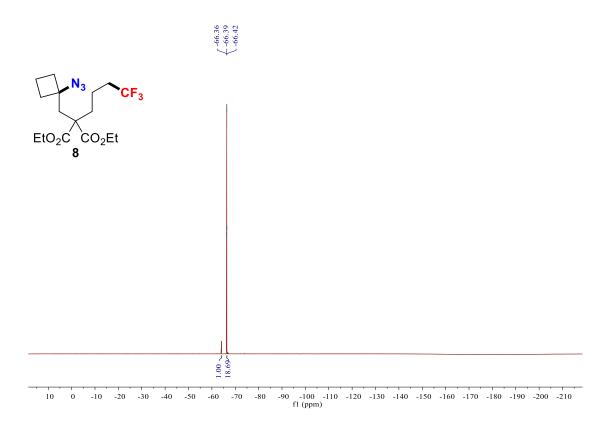


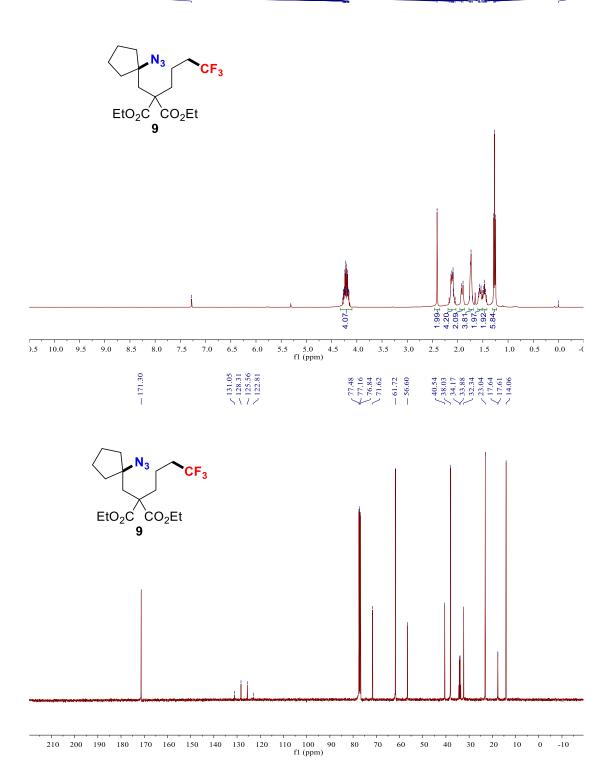
| 17141| | 17496| | 174833| | 1748| | 1748| | 1748| | 1749| |

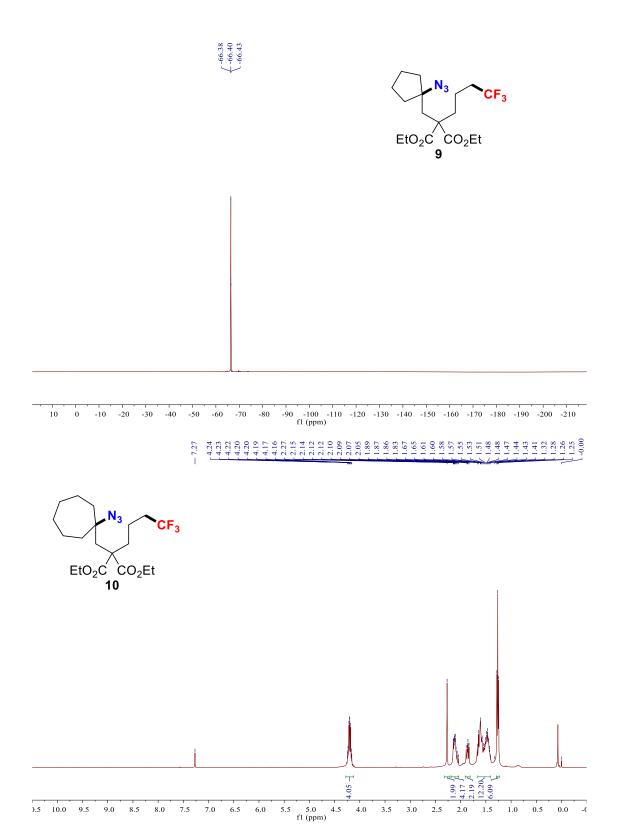


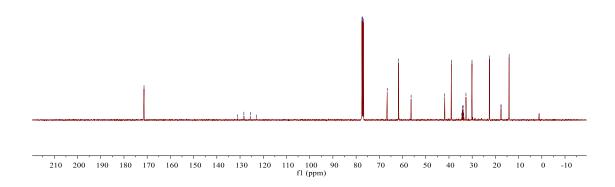


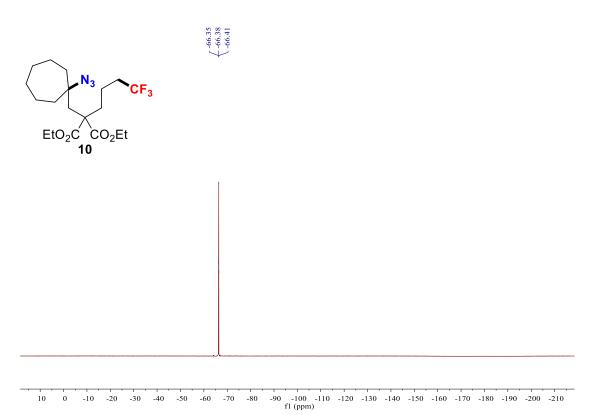


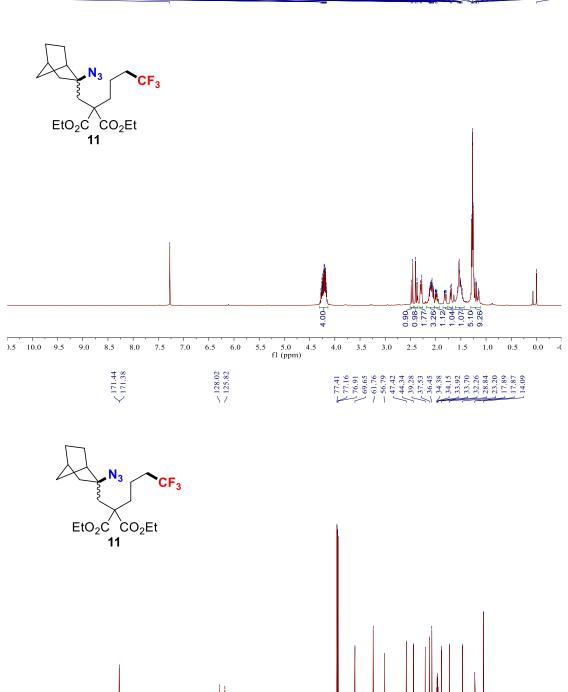


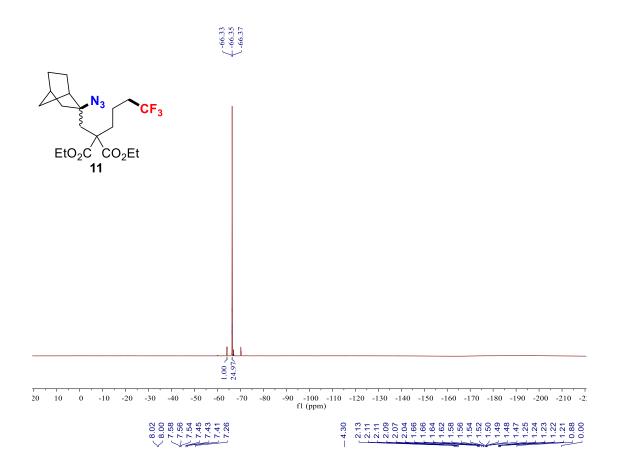

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

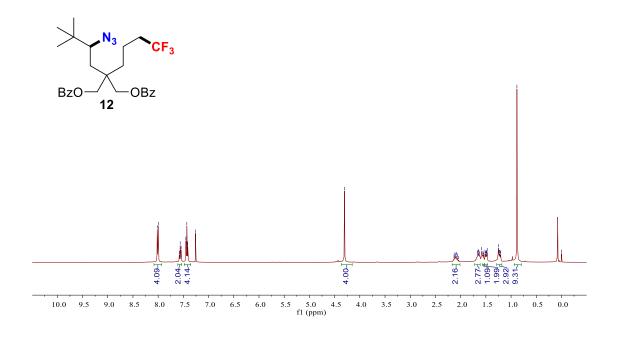


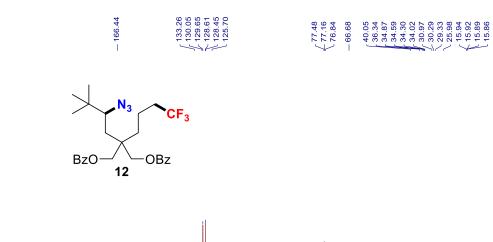


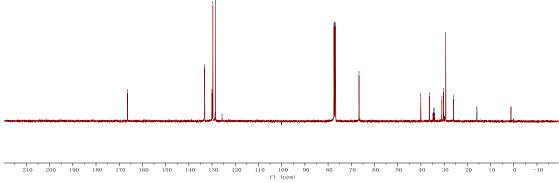


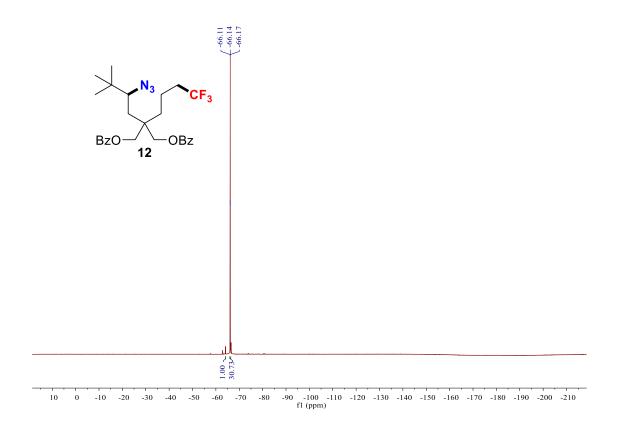


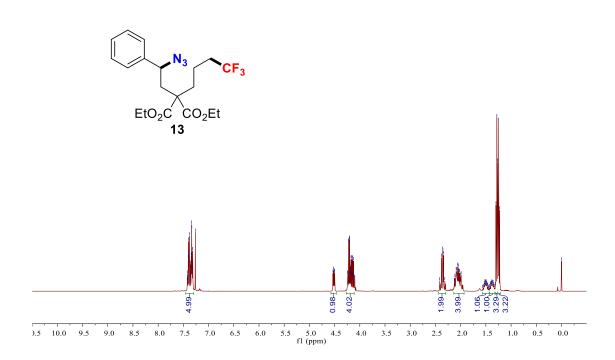


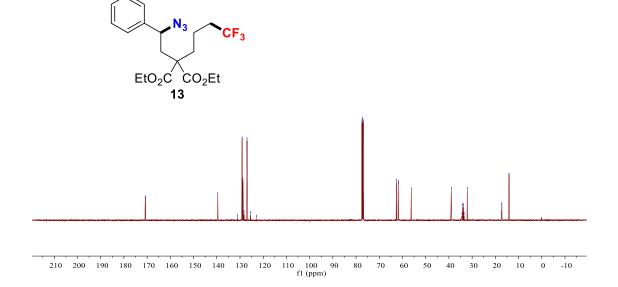


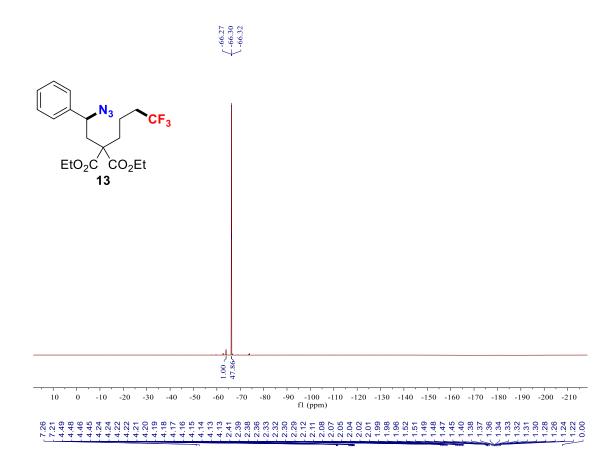


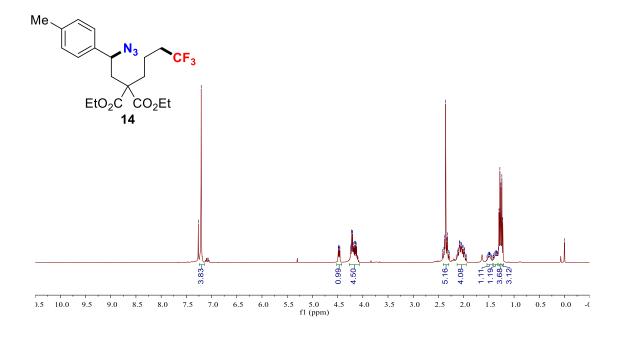


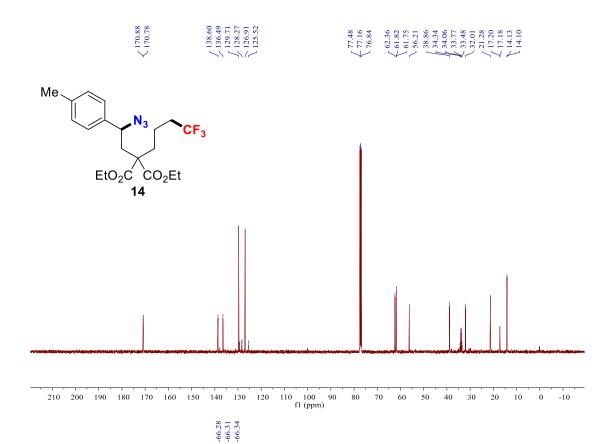

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

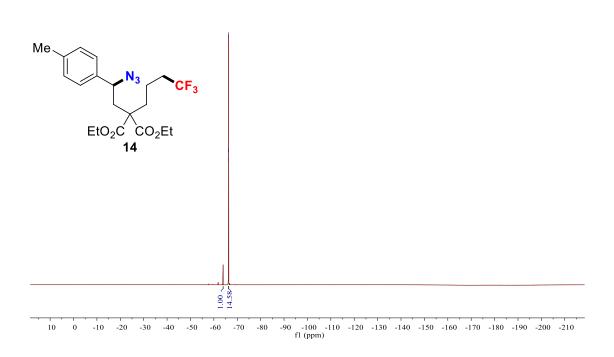


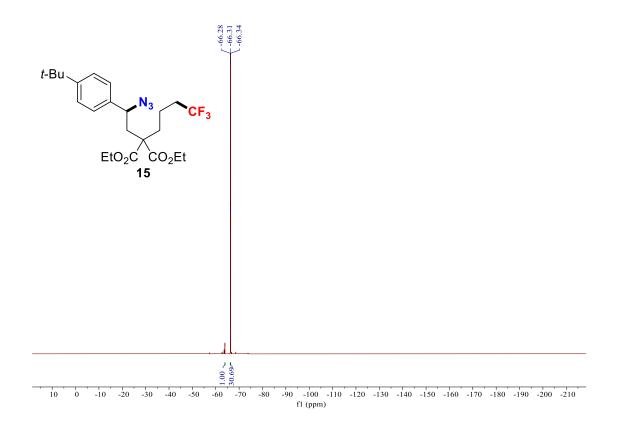




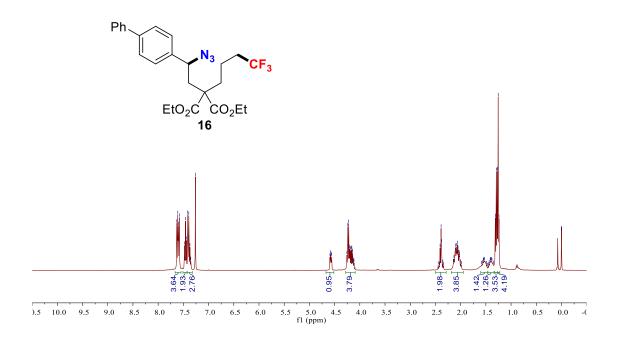


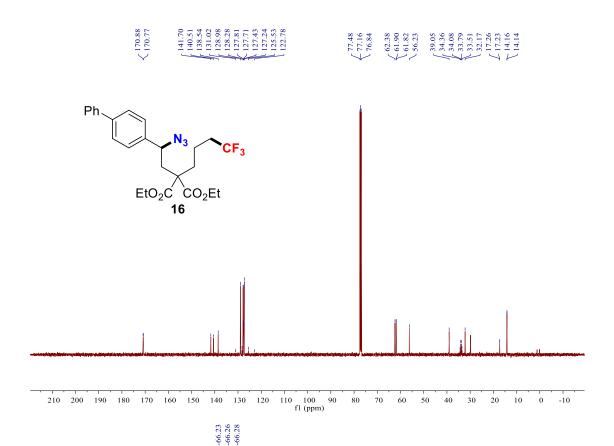


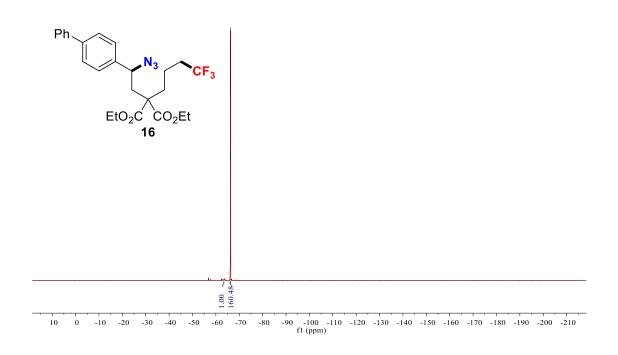


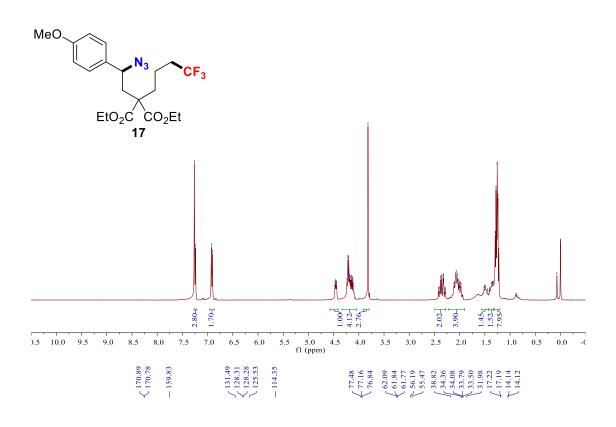


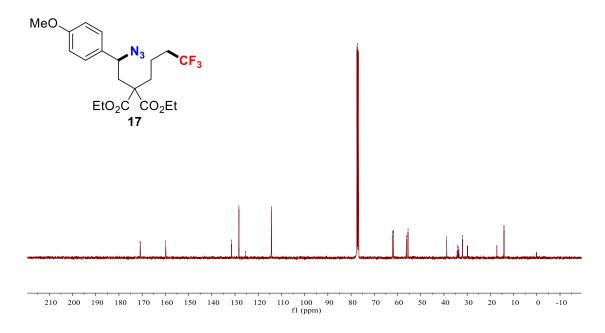
60 50

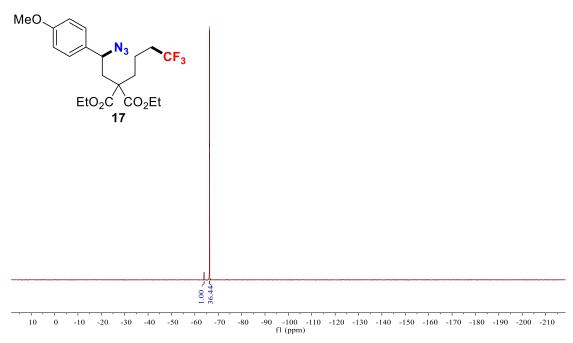

40 30 20

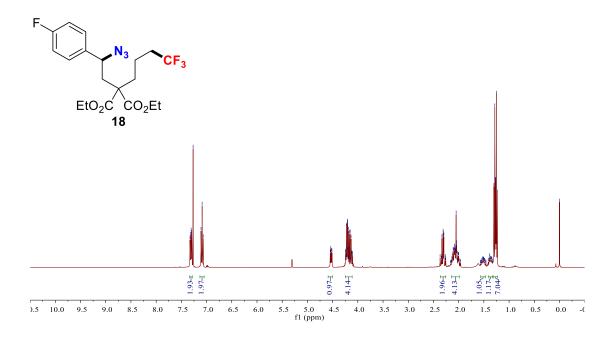

10

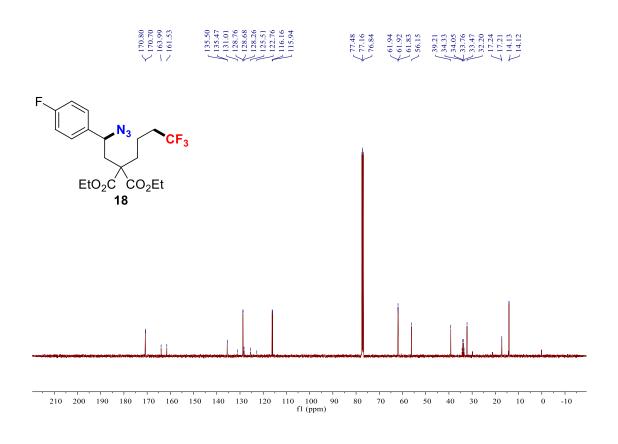

10 200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm)

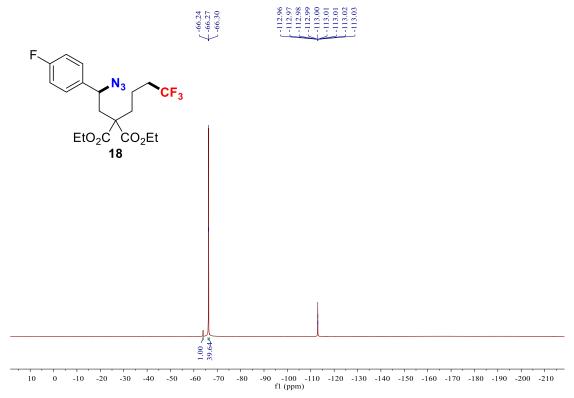


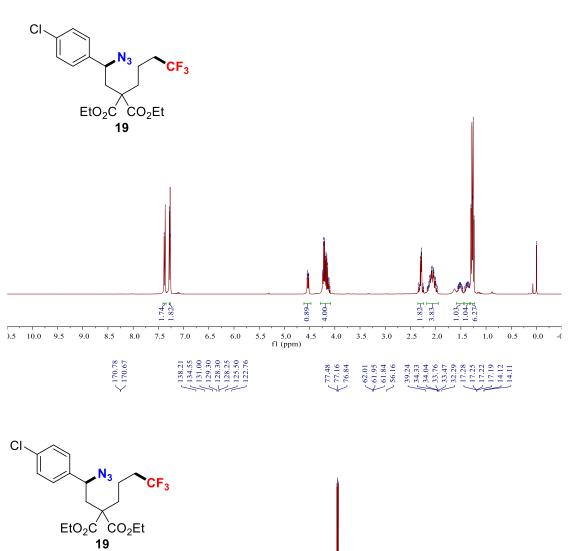


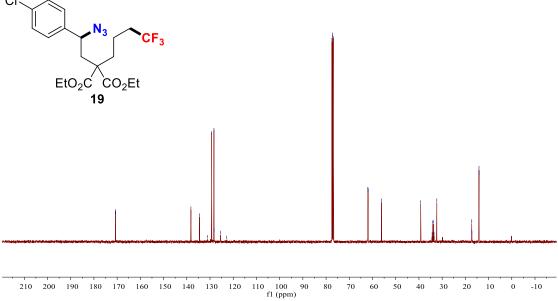


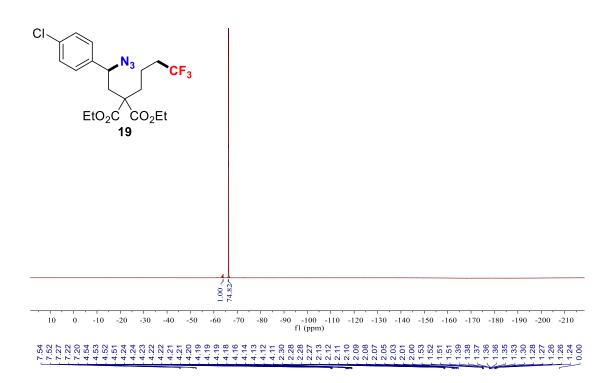


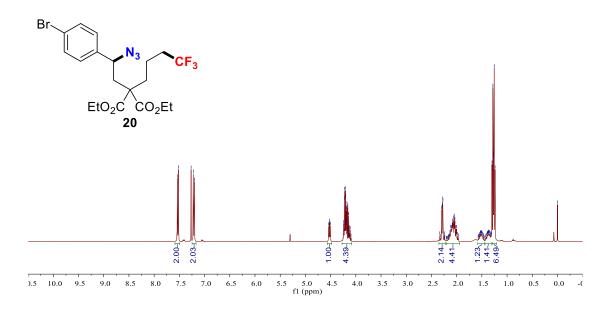


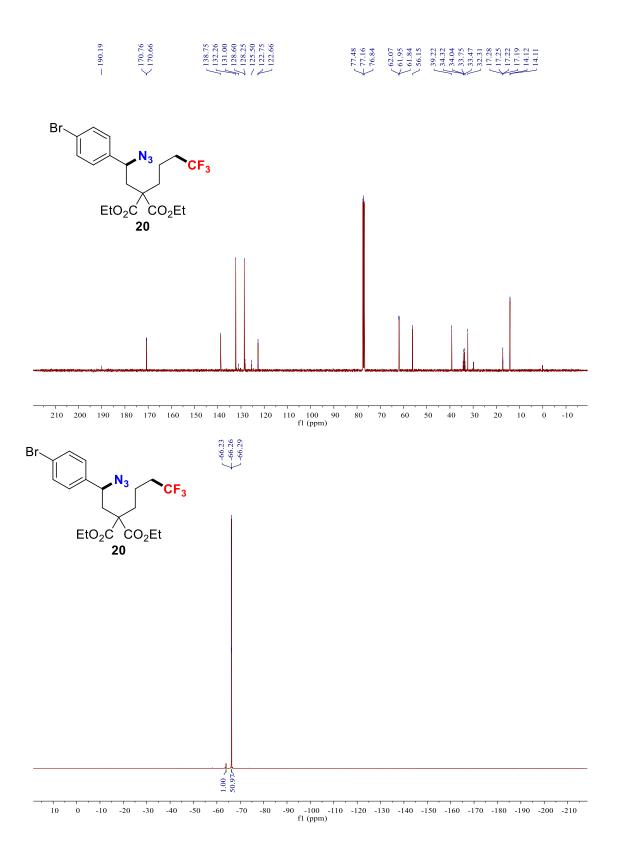


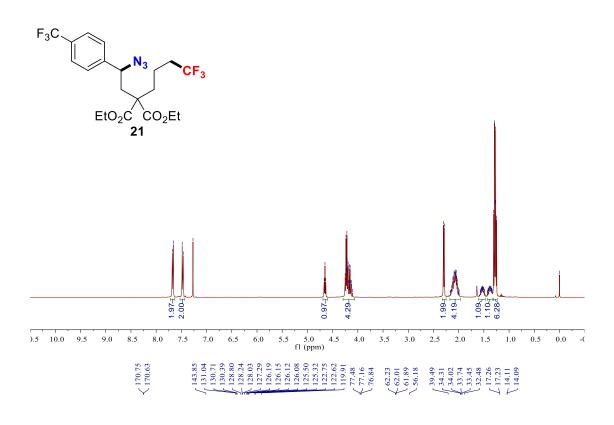


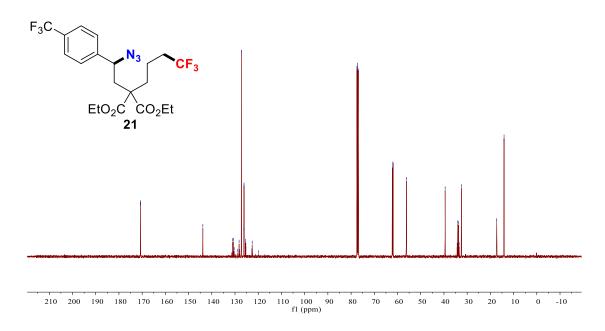


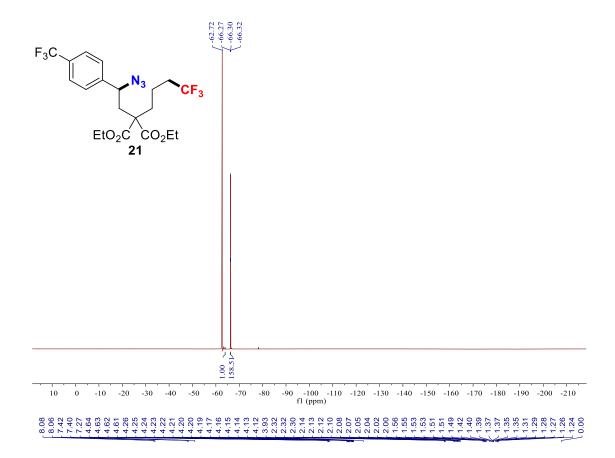


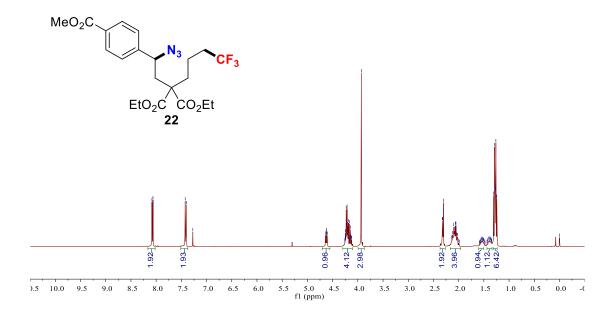

7.739 7.726

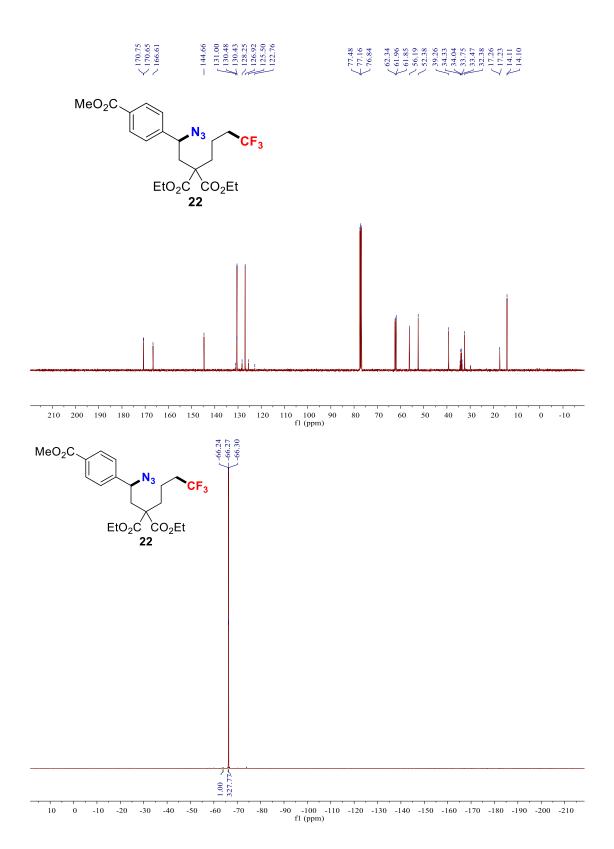


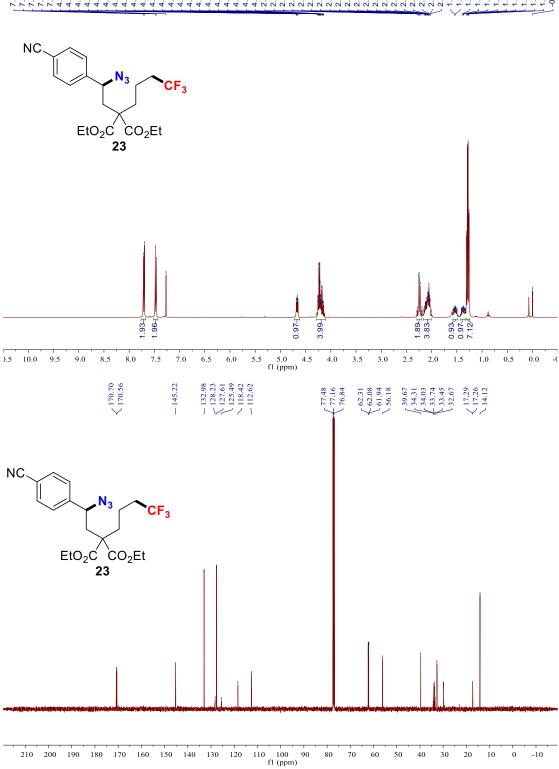


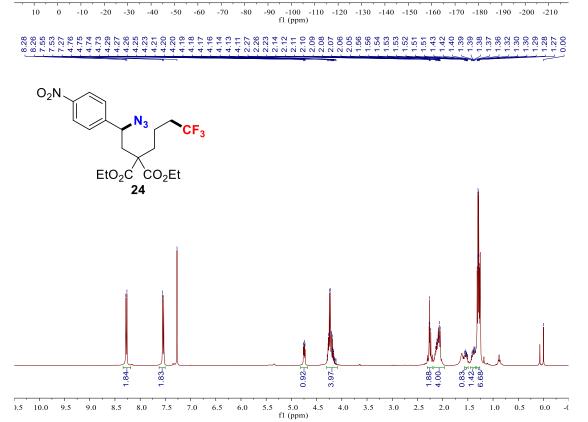


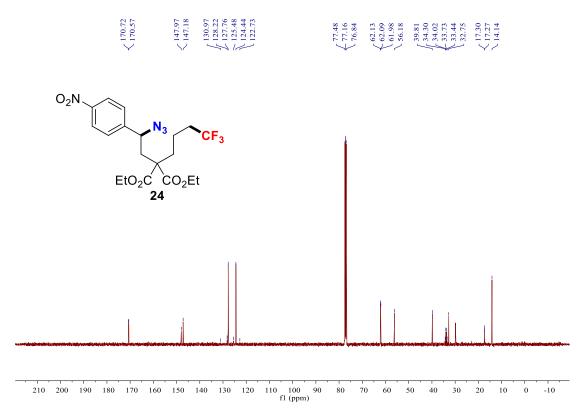




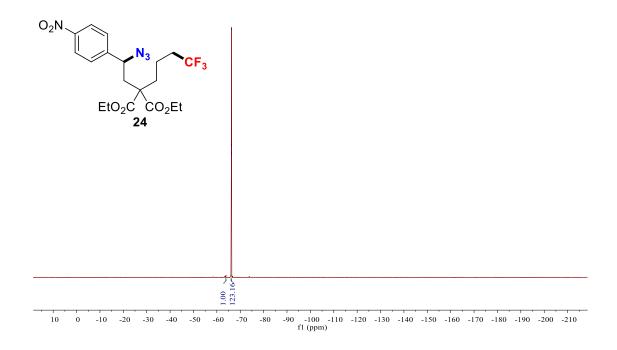


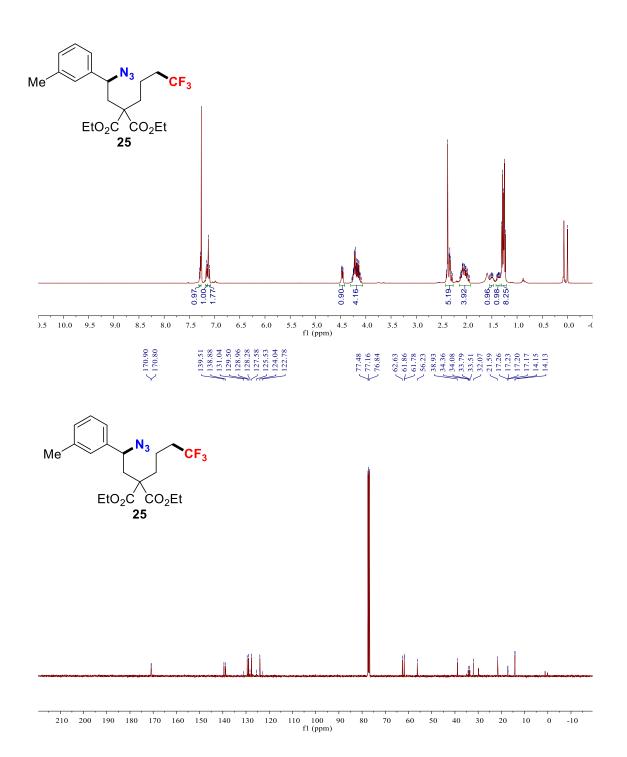


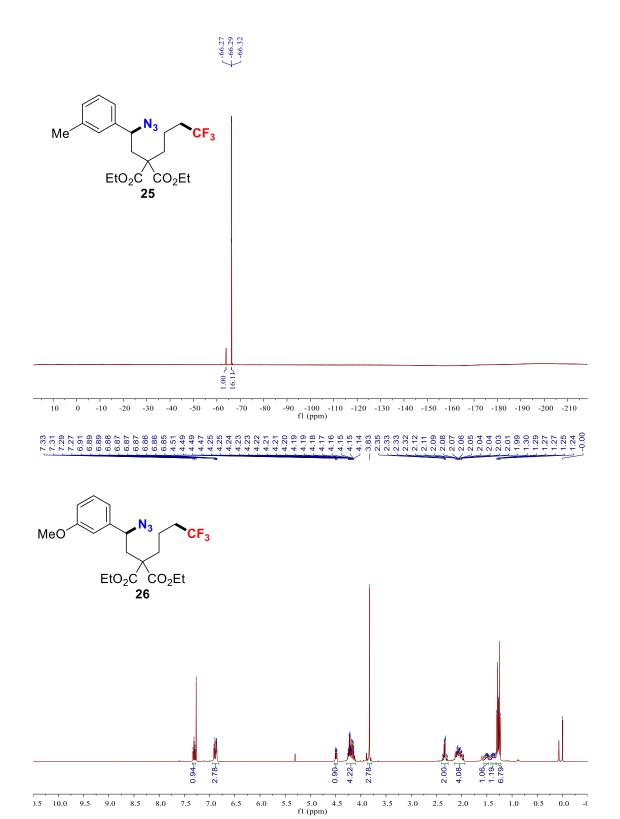


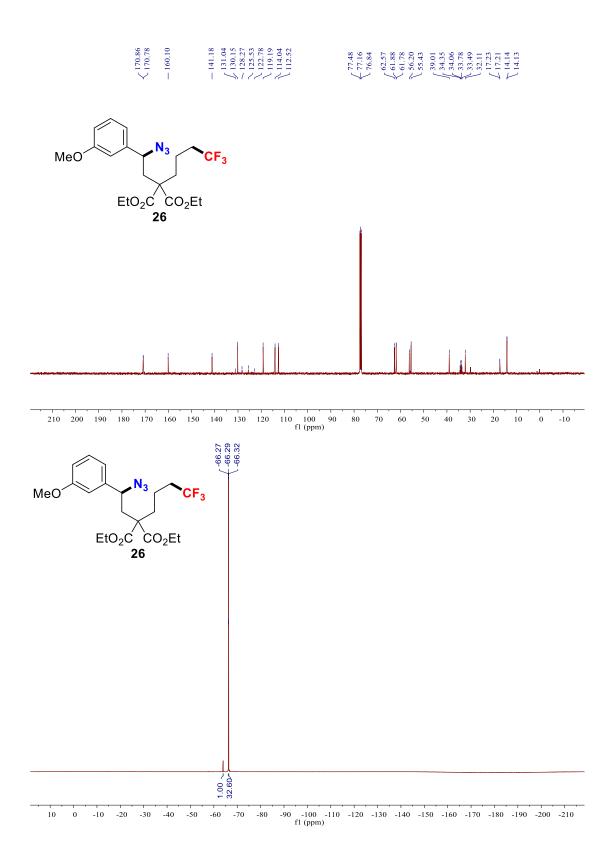


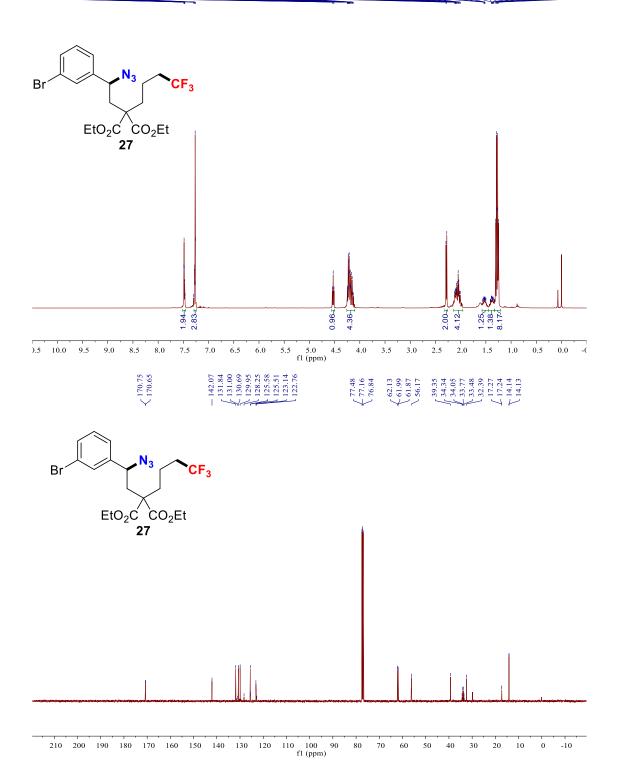
$\begin{array}{c} 7.777778 \\ 7.77778 \\ 7.7778 \\ 7.7778 \\ 7.778 \\$

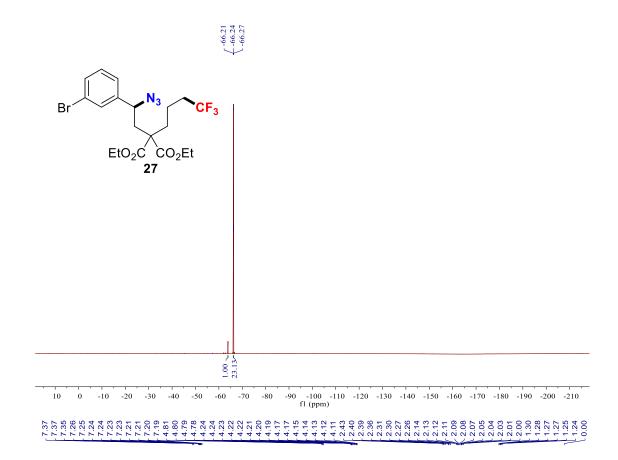


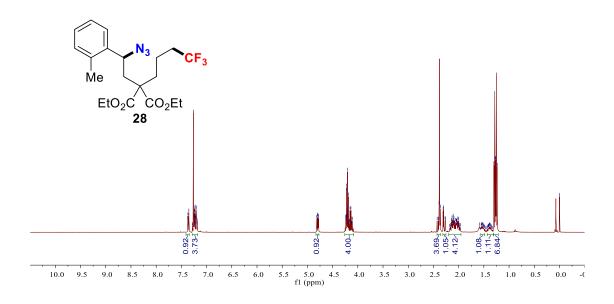




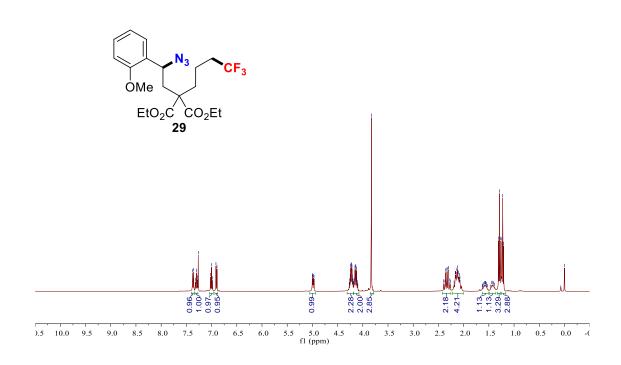


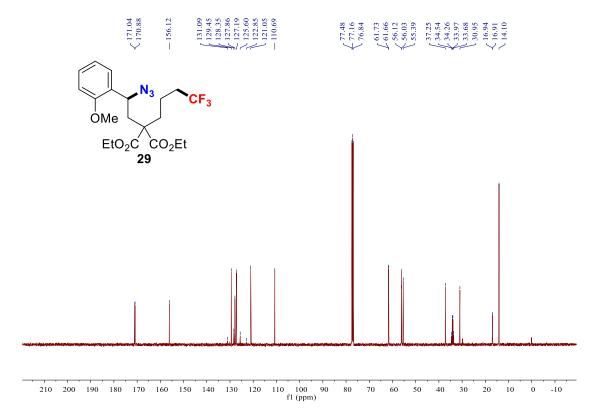


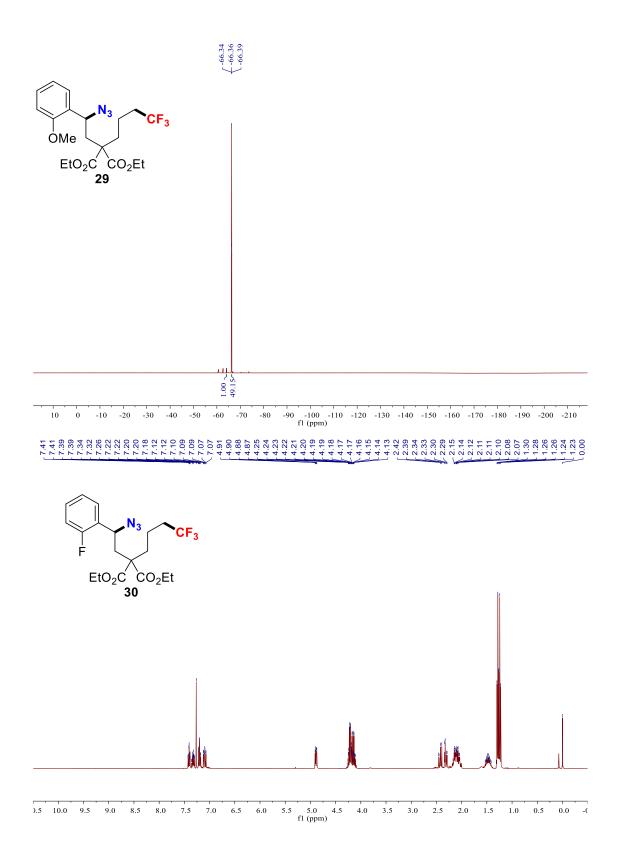


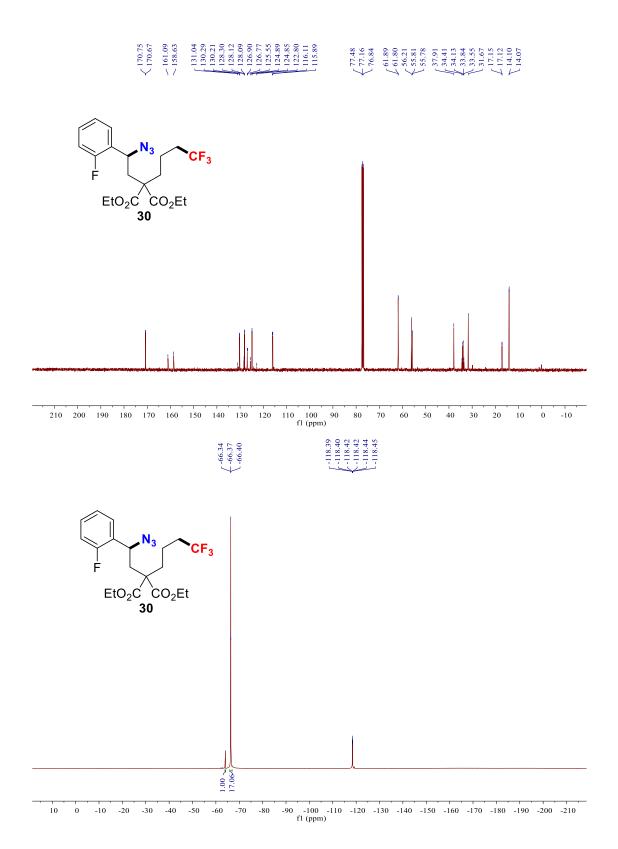


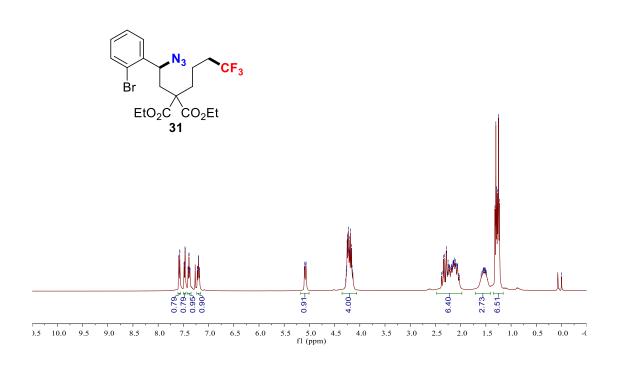


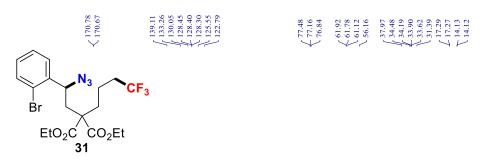


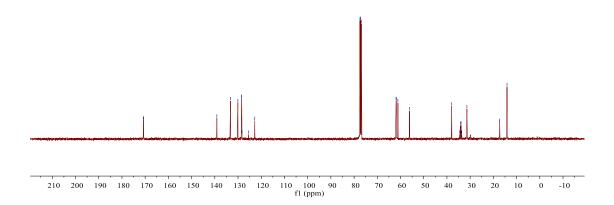


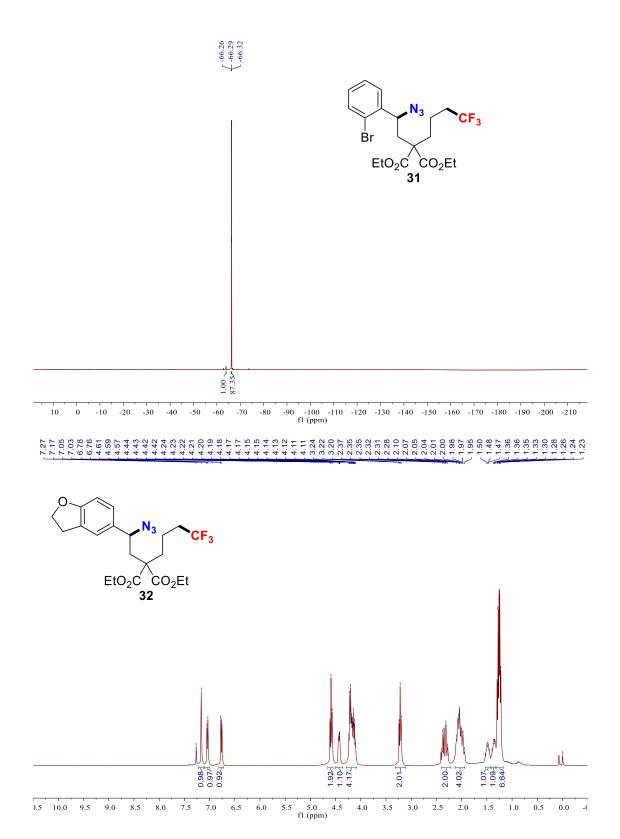


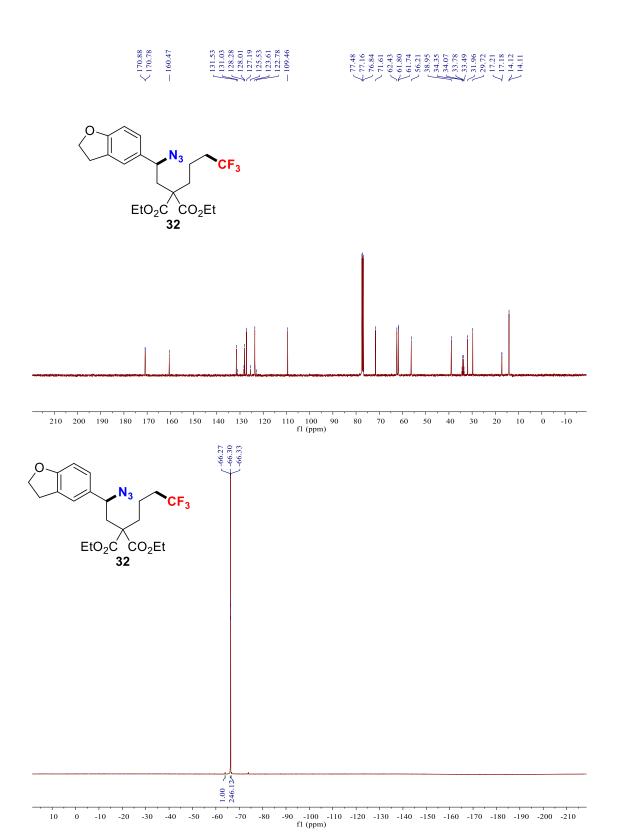


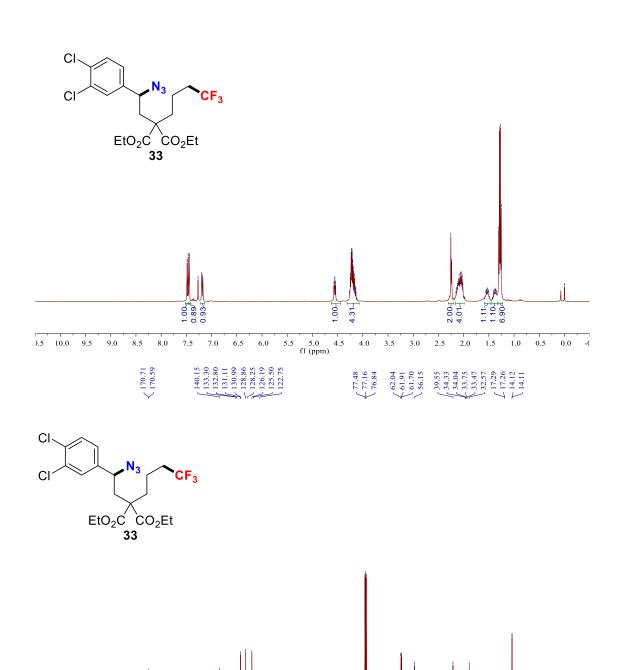


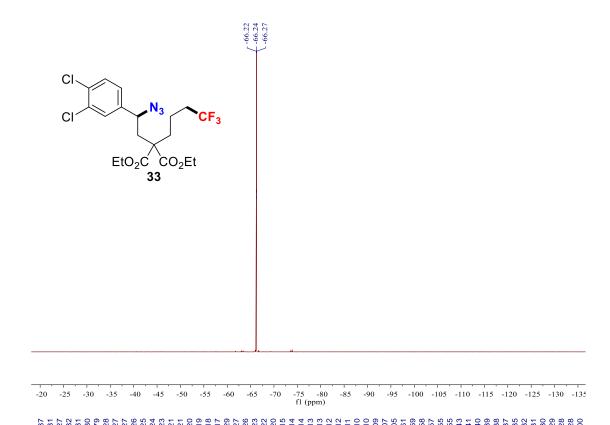


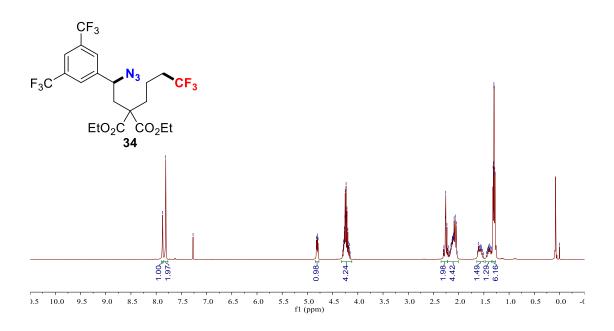


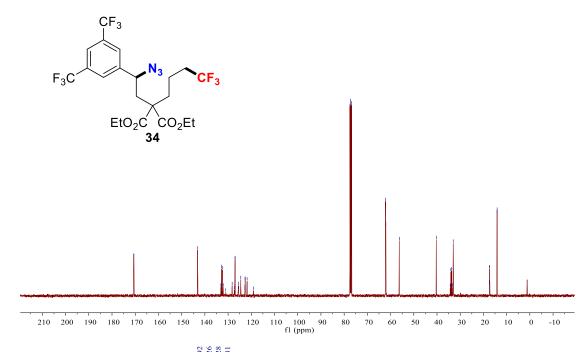


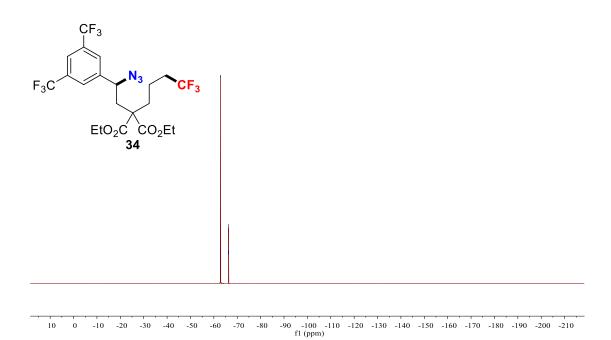


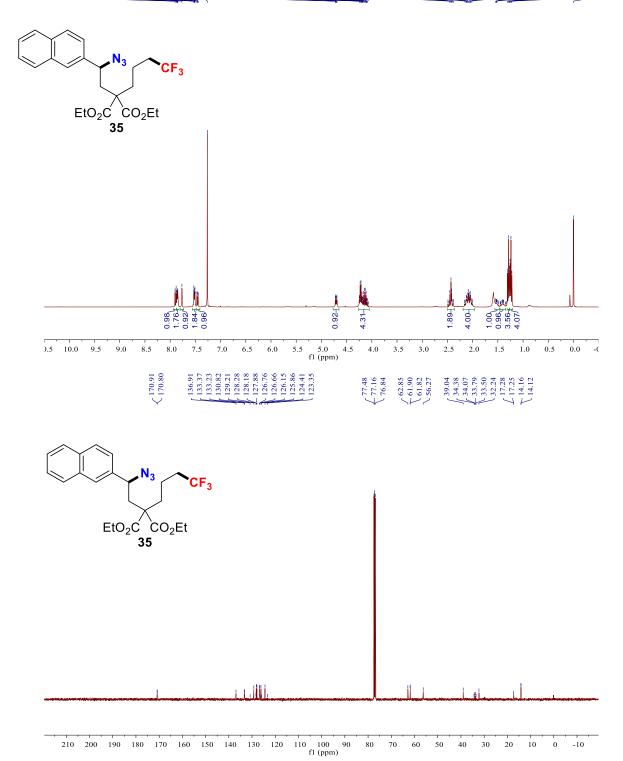


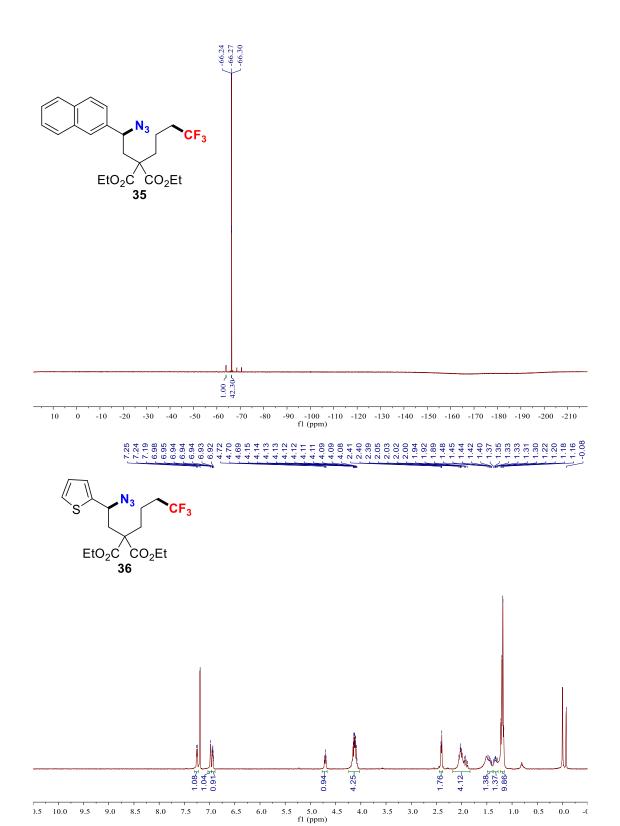


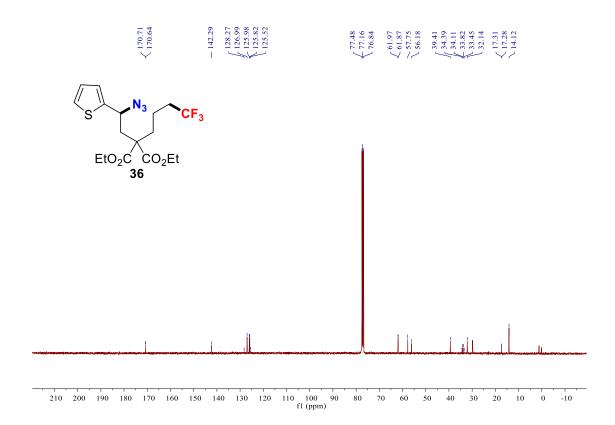


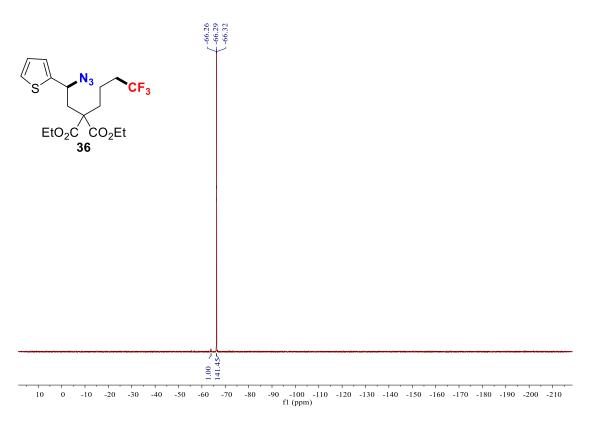


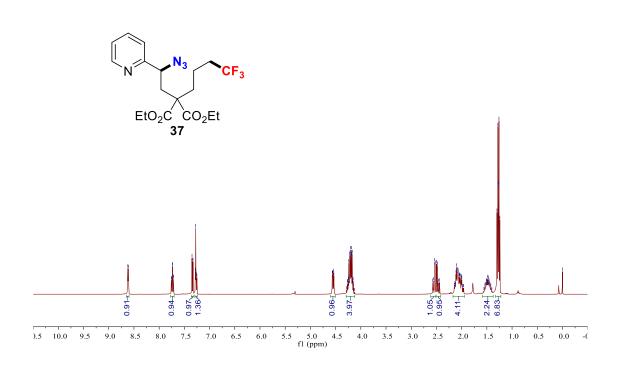

210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)

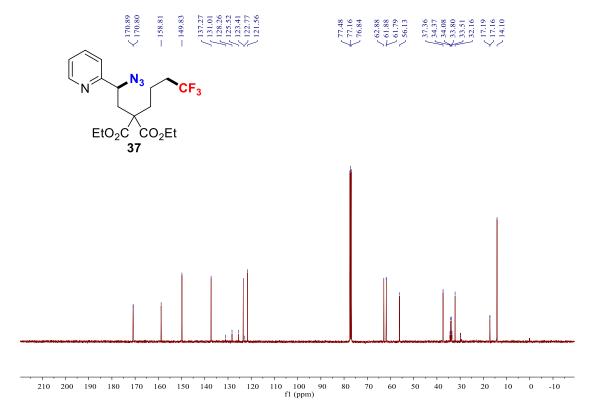


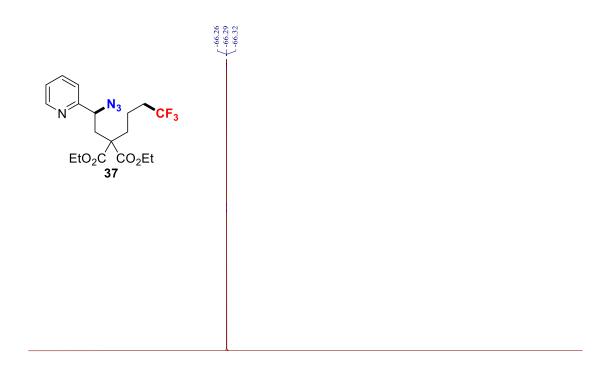


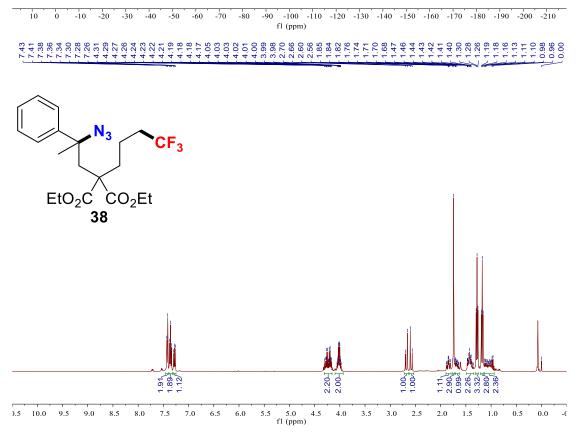


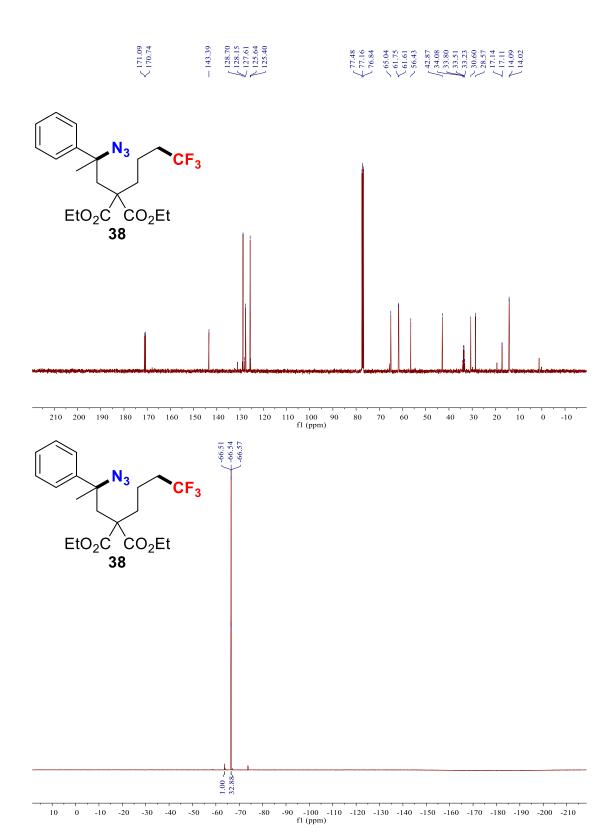


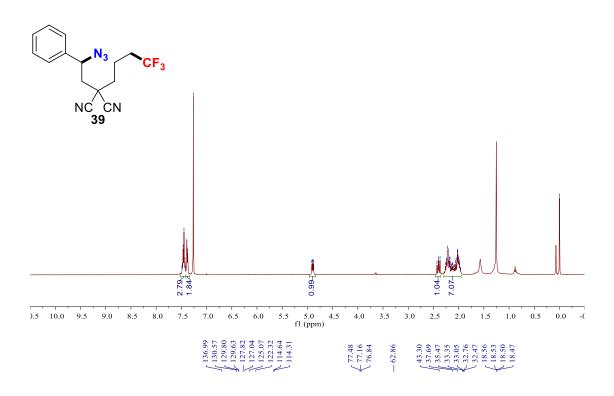


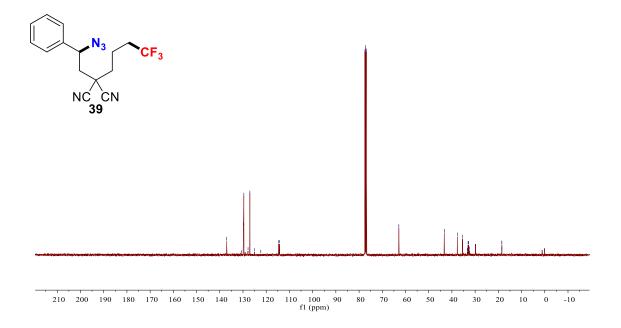


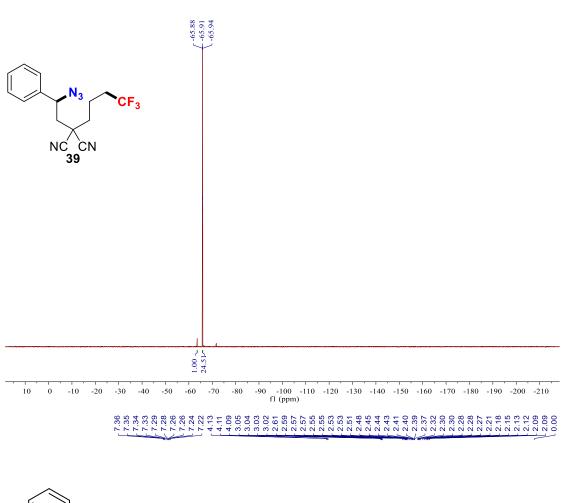


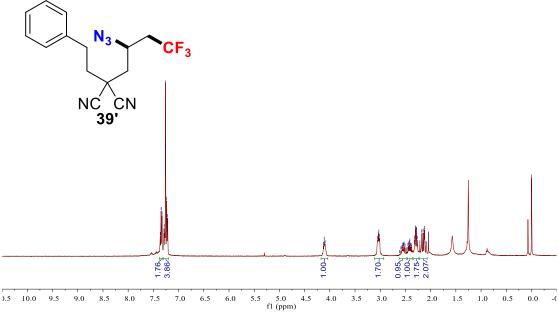


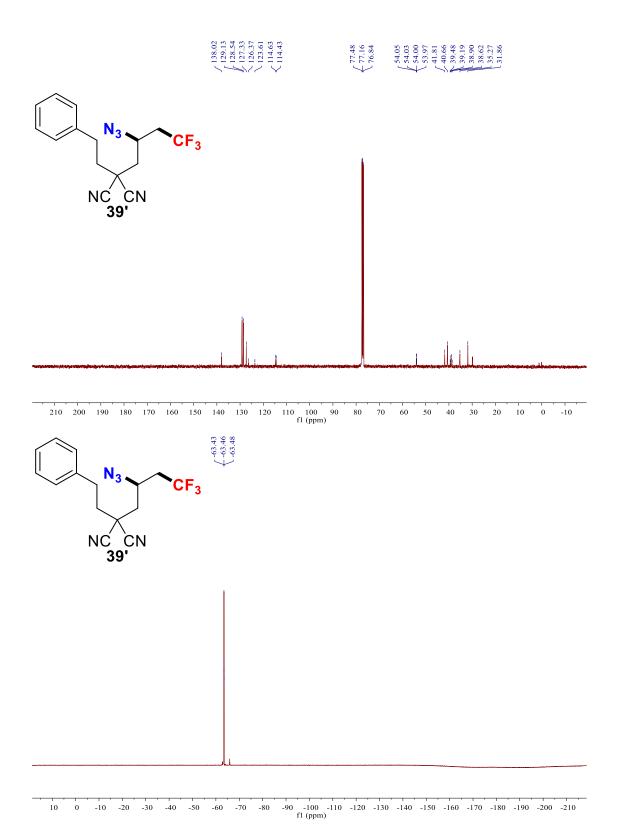


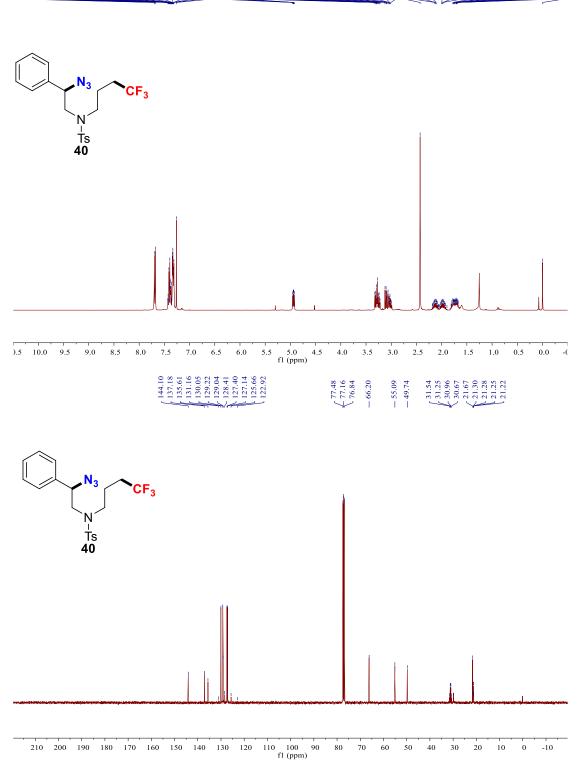


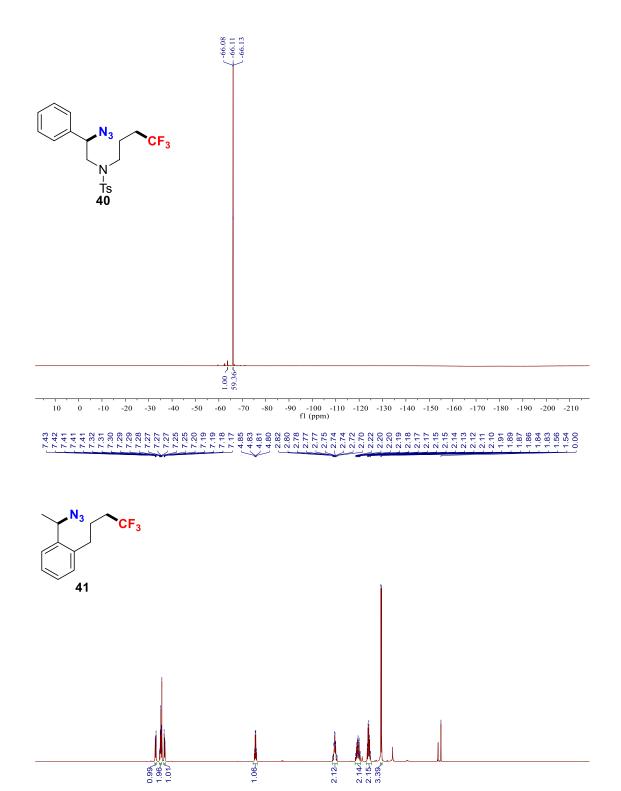


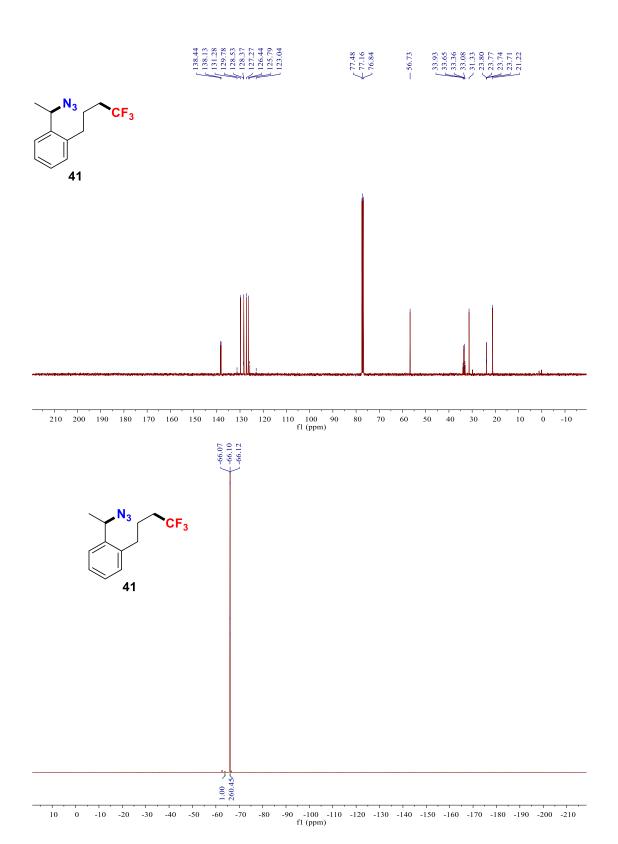


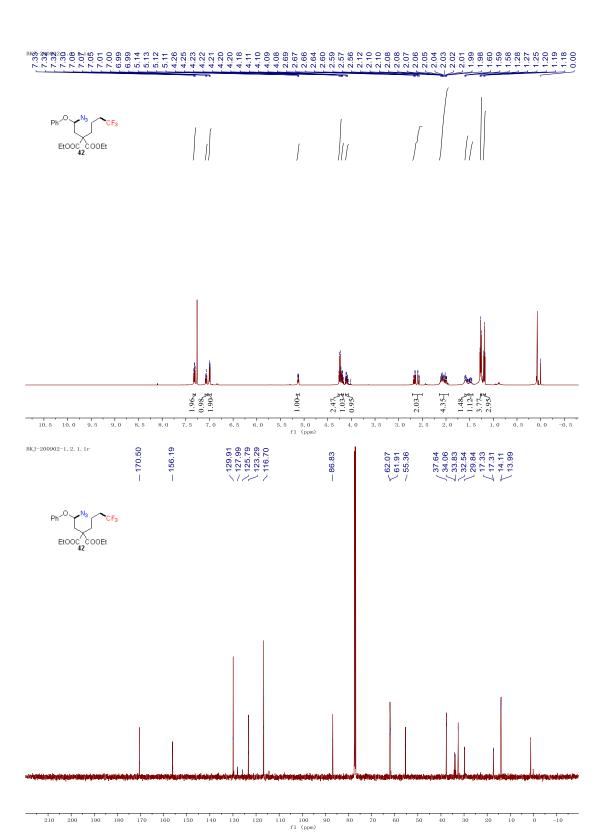


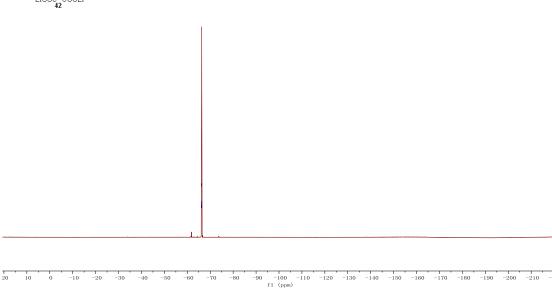


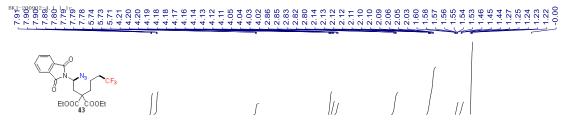


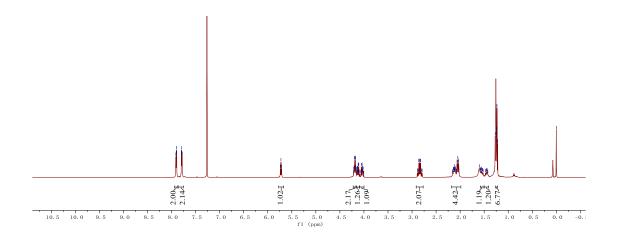


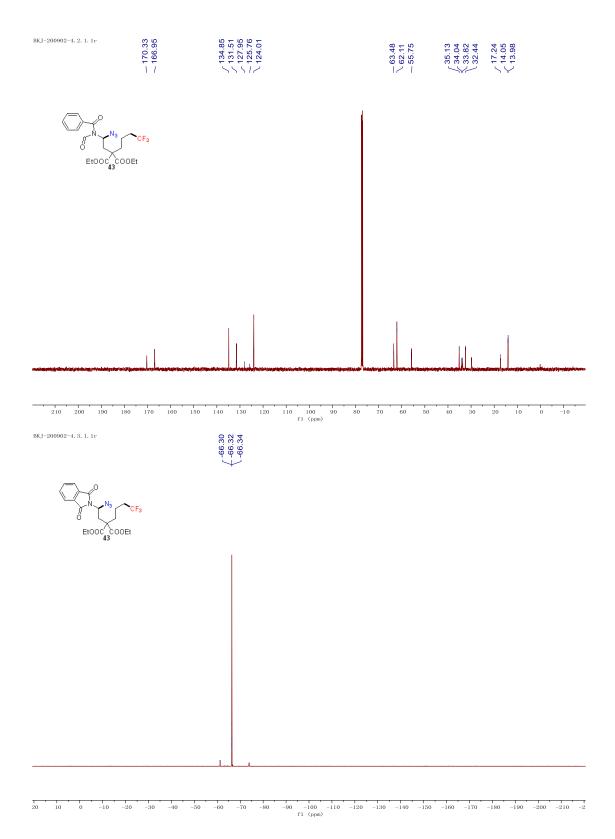


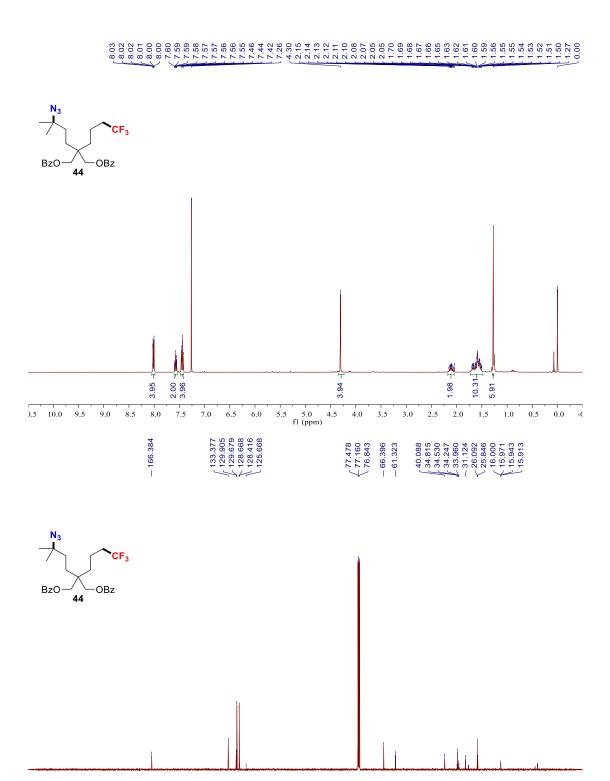



0.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 fl (ppm)

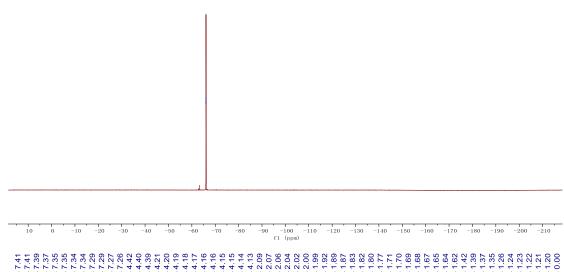


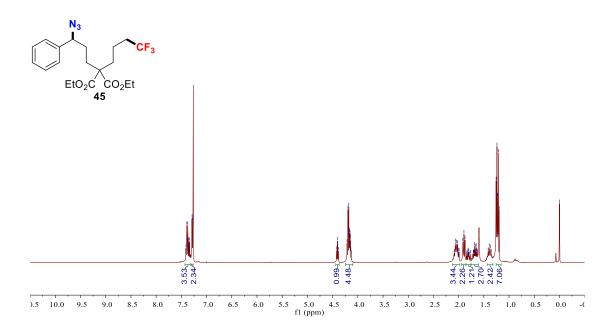


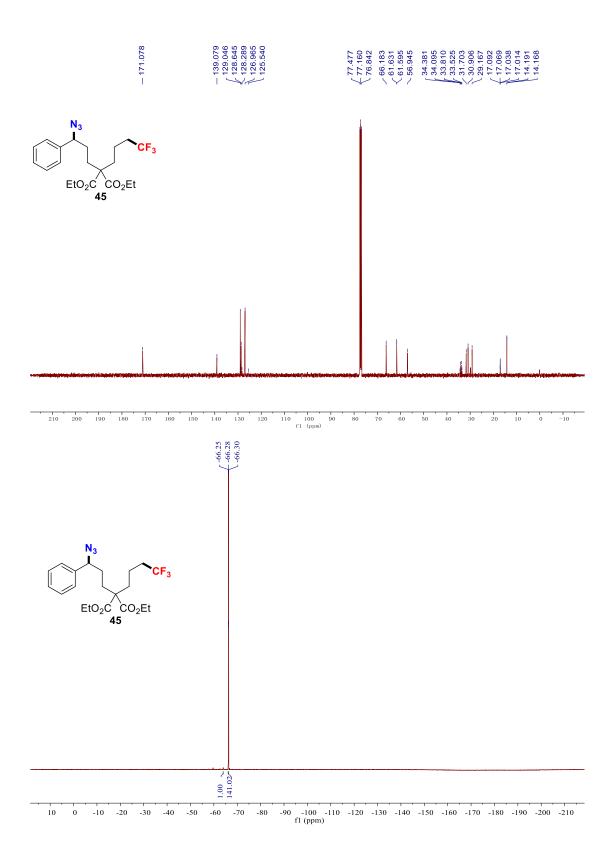


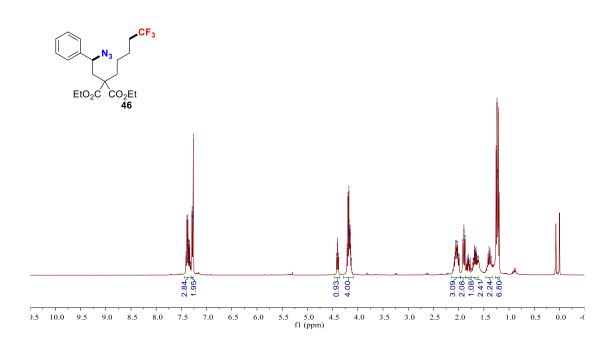


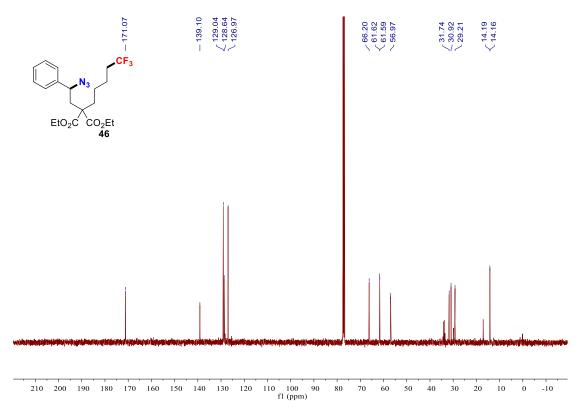
170 160 150 140 130 120

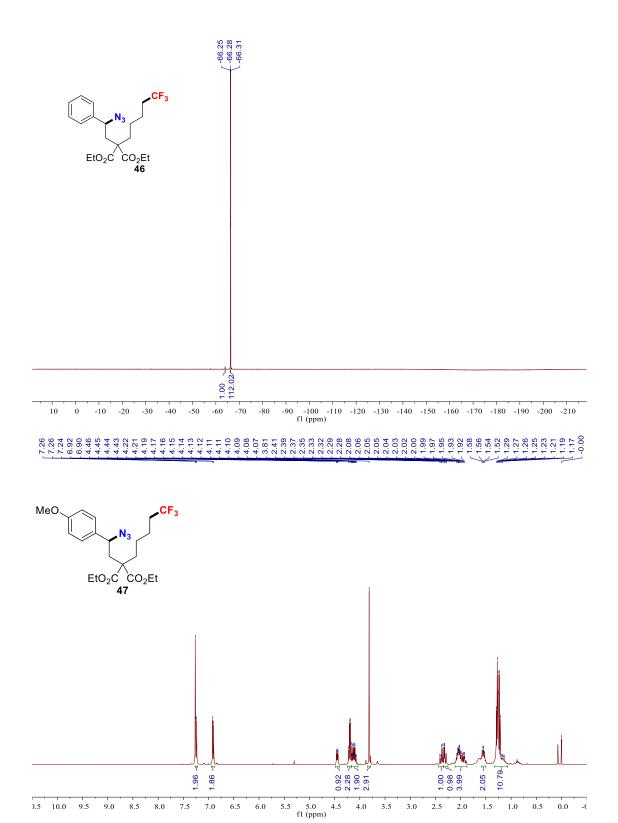

180

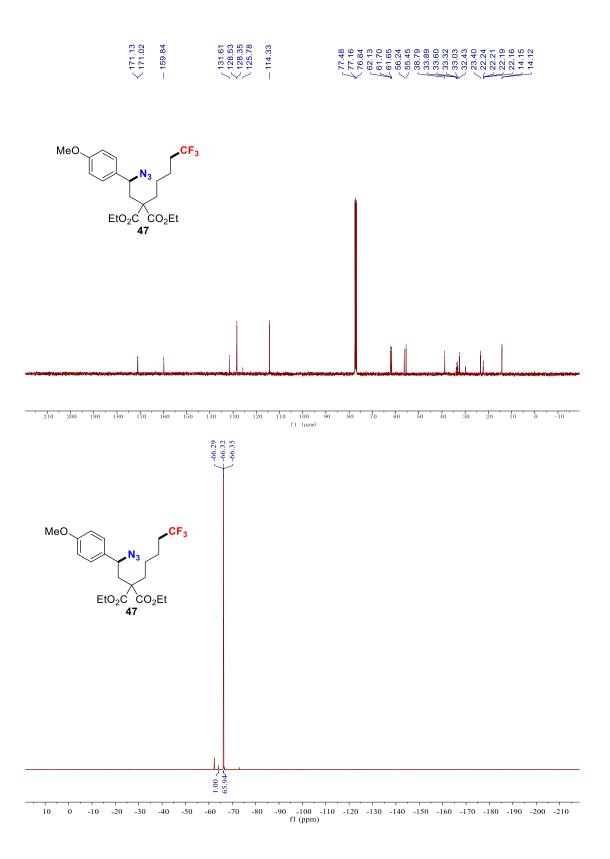

110 100 90 80 70 60 f1 (ppm) 50

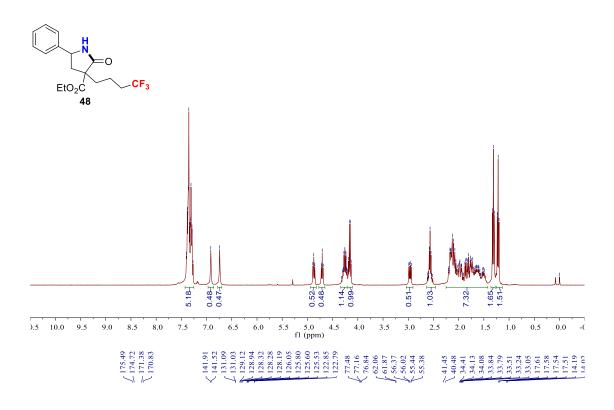

20

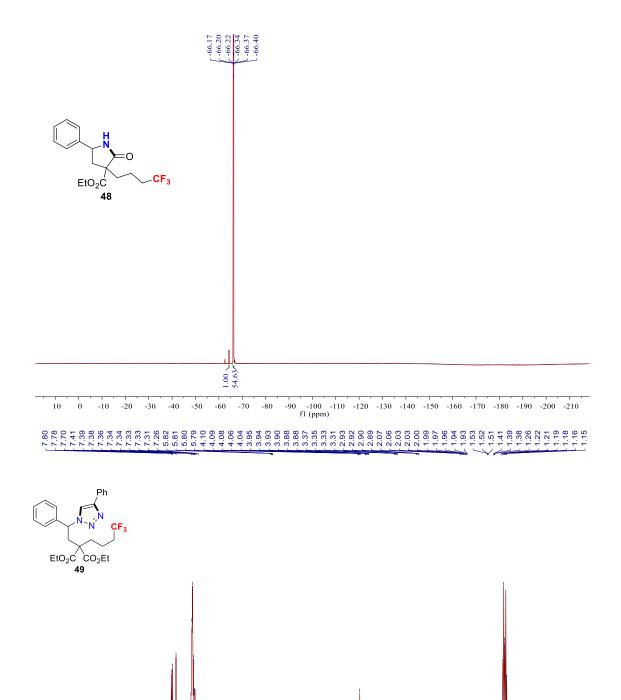


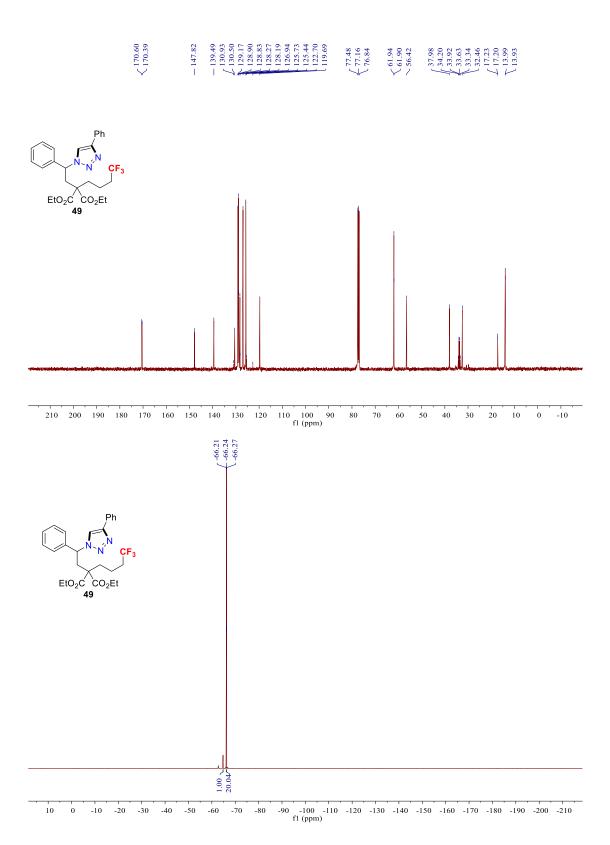


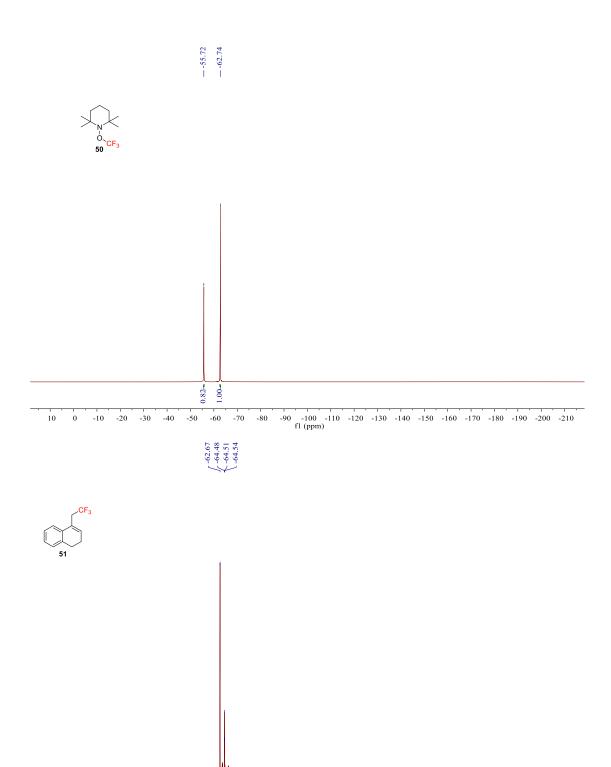






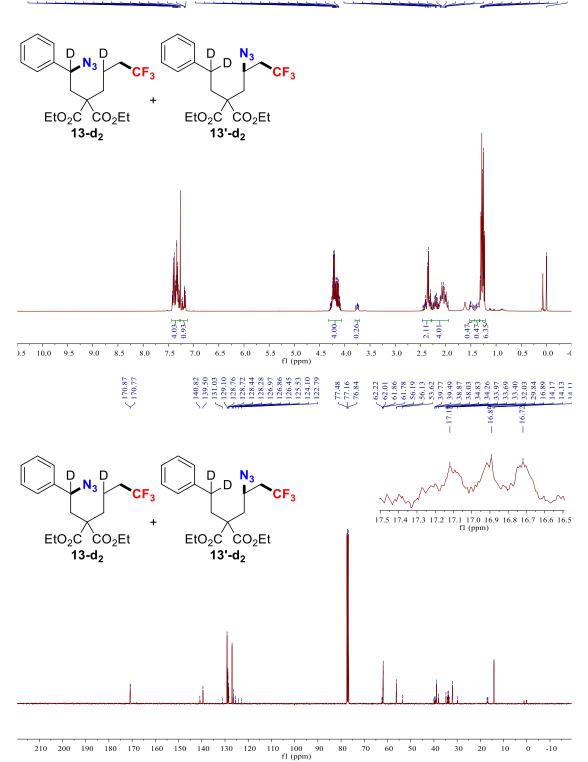


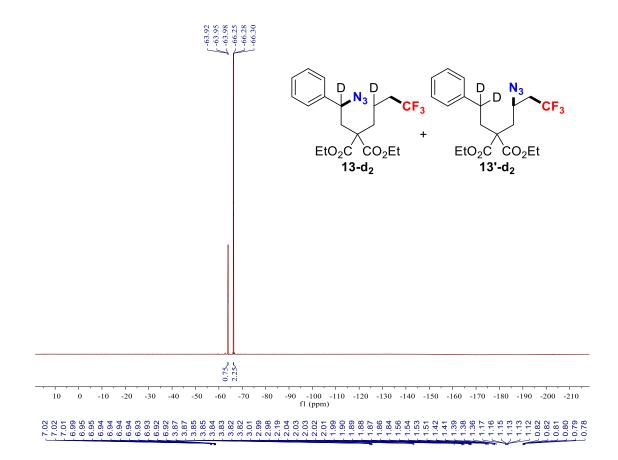

6.5 6.0 5.5 5.0 4.5 4.0 fl (ppm)

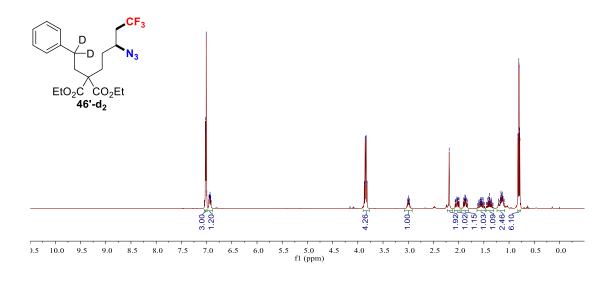

7.0

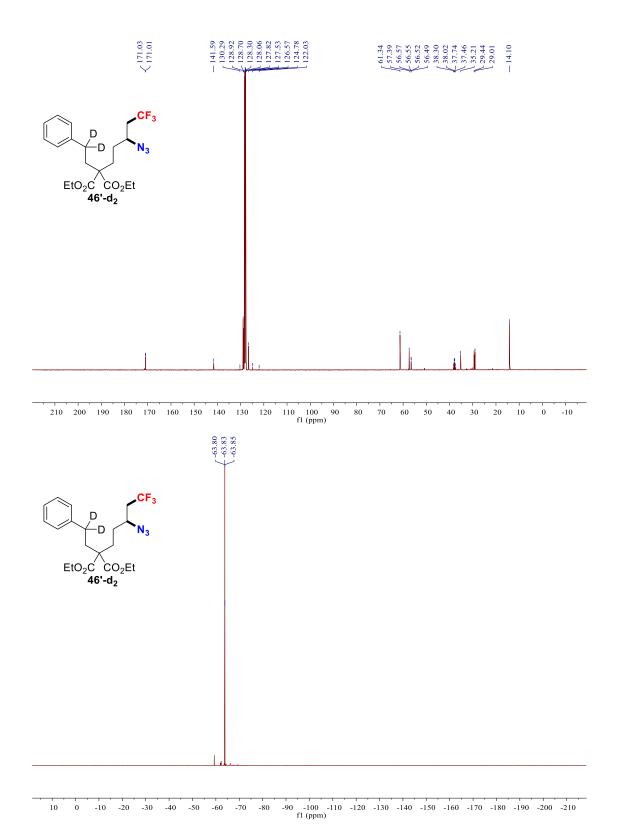
3.0

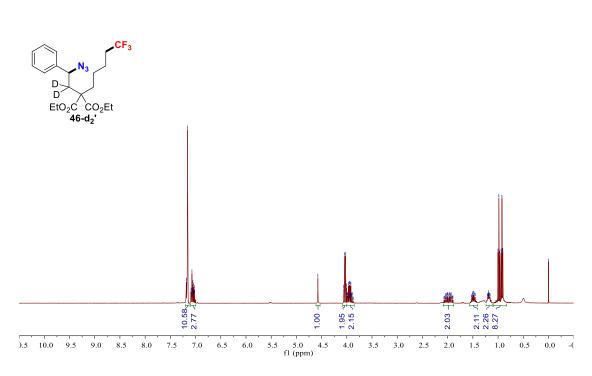
3.5

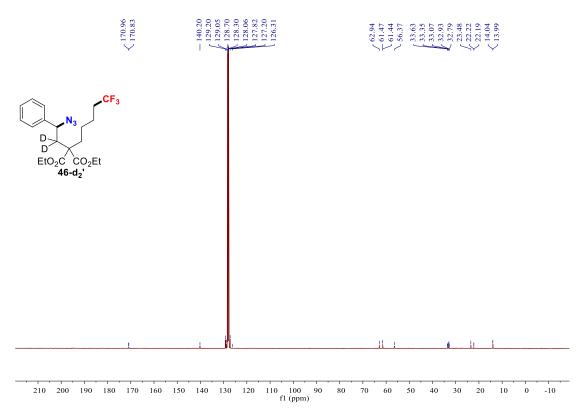

).5 10.0 9.5

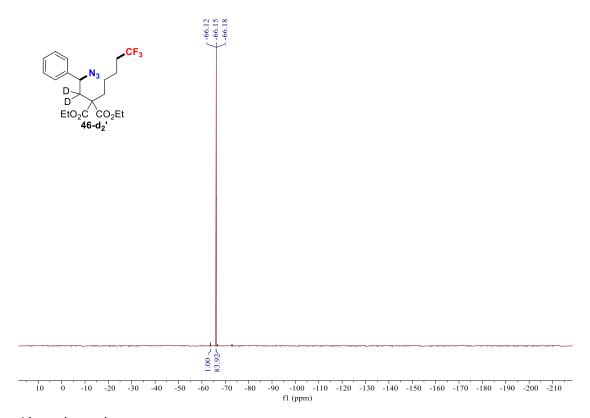


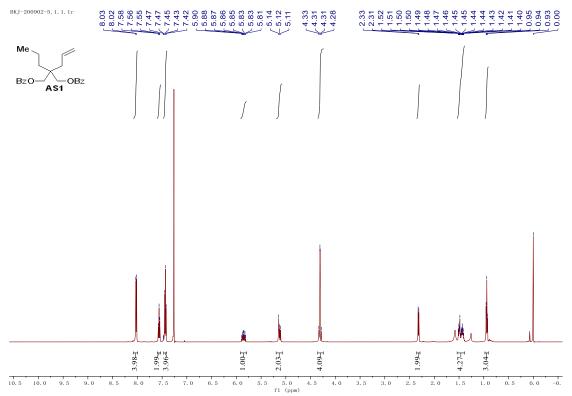


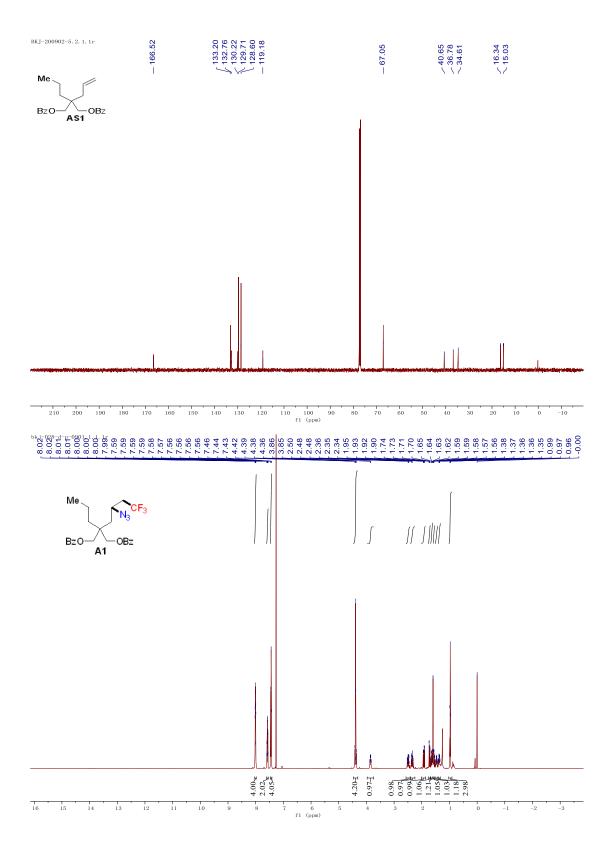

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fl (ppm)

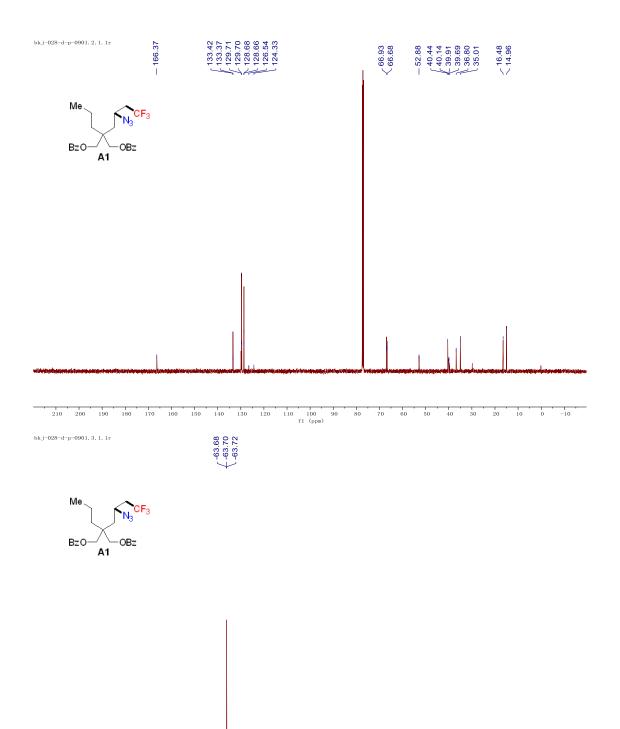




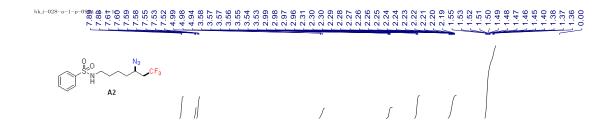


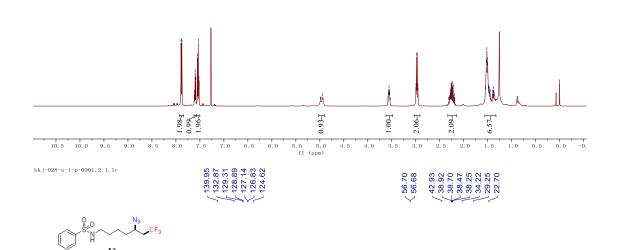


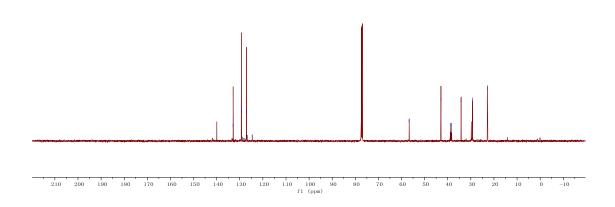


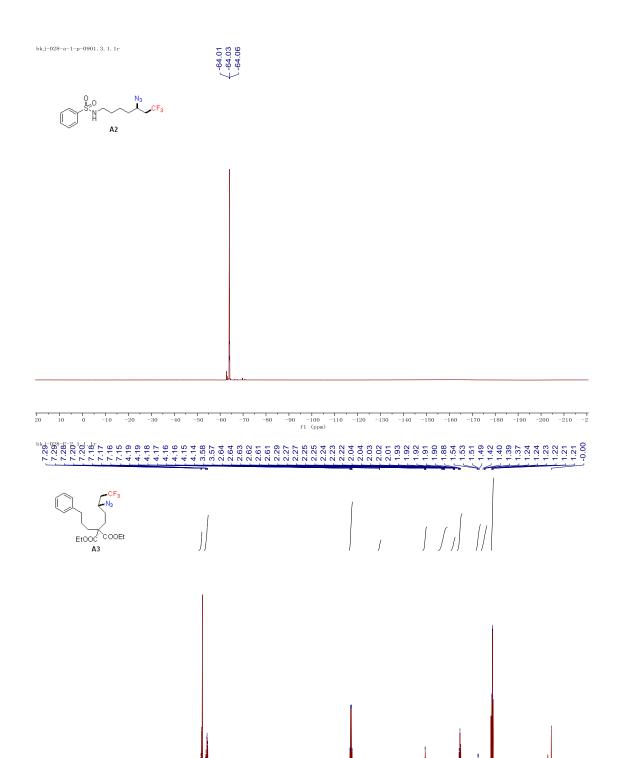


Alternative testing:

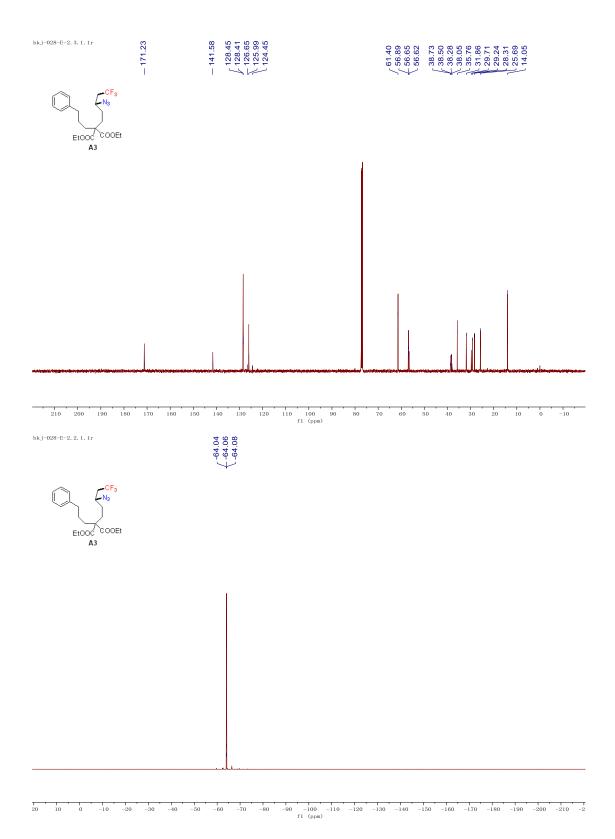







20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -2

fl (ppm)



10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 f1 (ppm)

