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S1 Generalised surface hopping method

For an arbitrary set {ψ j} which is used to expand the electronic wave function (eq. 2 in the main text), the
fewest switches probabilities1 are generalised to

Pj→k = max
[

2∆t
ρ j j

(
1
h̄

Im(ρkj)HR
jk +

1
h̄

Re(ρkj)
Γjk

2
−Re(ρkj)σ

NAC
jk

)
,0
]
. (S1)

When the set {ψ j} corresponds to the eigenstates of the real-valued electronic Hamiltonian HR, then the
dynamics takes place in the adiabatic representation. In this case, the adiabatic potential energy surfaces
(PESs) are coupled by the nonadiabatic coupling vectors F jk. Alternatively, one could work in a basis where
the nonadiabatic couplings are minimised, but then the diabatic PESs would interact via the off-diagonal
diabatic couplings H jk. The adiabatic representation tends to be preferred in on-the-fly trajectory methods,
since the nonadiabatic couplings are more strongly peaked when compared to the smoother diabatic cou-
plings2. On top of that, the adiabatic energies and nuclear gradients are directly provided when solving the
electronic problem, dispensing diabatisation techniques. Therefore, in the adiabatic representation, HR

jk = 0
for j 6= k, and eq. S1 reduces to eq. 5 of the main text.

Concerning the decoherence correction, we have employed a modified version of the simplified decay of
mixing3. At each time step, the coefficients c were updated according to

c′k = cke−∆t/τk j ,∀k 6= j, (S2)

c′j = c j

[
p−∑k 6= j |c′k|2

|c j|2

]1/2

, (S3)

τk j =
h̄

|Ek−E j|

(
1+

α

Ekin

)
, (S4)

where j is the current state, Ekin is the nuclear kinetic energy, and α is a parameter that controls the
decoherence time τk j. The difference to the usual simplified decay of mixing3 lies in eq. S3. After damping
the other coefficients (eq. S2), c j is renormalised according to the total population p = ∑k |ck|2, which in
general is different from unity.

S2 Propagation on the model potential energy surfaces

The following set of parameters was adopted for the 2REH model (defined in eqs. 6-11 of the main text):
k0 = 3 eV, k1 = 3 eV, R1 = 0.25 a0, V1(R1) = 1 eV, V2(0) = 2 eV, D = −1 eV, α = 0.8 a−1

0 , Γ1(R1) = 0.1 eV,
Γ2(0) = 0.4 eV, β = 40 a−2

0 , and a reduced mass of µ = 9 amu. Weaker (V12(Rc) = 0.03 eV) and stronger
(V12(Rc) = 0.1 eV) diabatic coupling strengths have been considered.

The adiabatic representation was employed for the propagation with the CS-FSSH method. For each
initial resonant state, 1,000 trajectories were propagated, with a time step of 0.1 fs for the classical part,
and of 0.005 fs for the TDSE. Initial conditions were generated by sampling from the Wigner distribution
of the vibrational ground state of V0. The fifth order Butcher’s integrator4 was employed for integrating
of the TDSE, with a time step of 0.005 fs. The classical integration was performed with the velocity Verlet
algorithm, with a time step of 0.1 fs. For the shorter steps, energies, nuclear velocities, nonadiabatic cou-
plings, and resonance widths were obtained by interpolating the values computed at the longer steps of the
classical propagation. After a successful hopping, the momentum was adjusted in order to conserve total
energy, and for a frustrated hopping, the momentum was maintained. A decoherence correction with α =

0.1 Hartree5 was employed.
The quantum wavepacket was propagated on the diabatic PESs, as described elsewhere6,7. The propa-

gation was performed with the split-operator technique8, with a spacial grid of 214 points, from −2 a0 to 14
a0, and a time grid of 218 points, from 0 to 500 fs.
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S3 Computational details for the application to iodoethene

The description of transient anion states should be performed with either scattering methods9–11 or adapted
bound state methods12–14. Alternatively, usual bound state (quantum chemistry) calculations can also pro-
vide a quantitative description of such states15–20. The latter option must be used with caution, though, as
pseudo-continuum states associated with the free electron could appear as a solution of the electronic Hamil-
tonian. In the present application, we have employed a mixed approach. Conventional bound state methods
have been employed to compute resonance energies, albeit with a correction from scattering calculations.

S3.1 Bound state calculations
During the dynamics propagation, anion and neutral energies were computed with the multireference con-
figuration interaction (MRCI) level of theory, with the latest implementation of the Columbus package21.
The active space comprised 6 orbitals (the bonding σCI, two bonding π, the non-bonding nI, and the anti-
bonding π∗ and σ∗CI orbitals), which shared 8 electrons in the neutral and 9 in the anion. The reference
wavefunction was obtained with a state-average complete active space self-consistent field calculation (SA-
CASSCF) for the three lower-lying neutral singlet states in the state averaging, while considering the same
(8,6) active space. We have employed the cc-pVDZ basis set22 for carbon and hydrogen atoms, and the
jorge-ADZP basis set23 for the iodine atom, as implemented in Columbus21,24. The MRCI wavefunction of
both anion and neutral states were obtained by accounting for single excitations from the doubly occupied
orbitals (excluding the core) into the active space, and from the latter into the all virtual orbitals.

S3.2 Scattering calculations
The fixed-nuclei elastic scattering calculations were performed with the Schwinger multichannel method
(SMC)11. The scattering wavefunction was expanded in a set of configuration state functions (CSFs), which
were represented as an antisymmetrised product of a target function and a scattering orbital. Here, we have
considered CSFs built from the neutral ground state (as described in the restricted Hartree-Fock approxi-
mation), and from singlet and triplet singly excited functions. Modified virtual orbitals25 were employed to
represent the unoccupied orbitals, as obtained in the field of a +8 cationic Fock operator. The CSFs were
selected according to an energy criterion for the relevant orbitals26, with a cutoff energy of 1.5 Hartree.
Pseudopotentials for the iodine and carbon atoms were employed for the core electrons27, while valence
electrons were described with the same Cartesian Gaussian functions as presented elsewhere28. This set
has been supplemented with 3s and 3p functions centred at carbon bonded to the iodine atom, with even-
tempered exponents generated with a ratio of 4.

S3.3 Dynamics simulations
A development version of the Newton-X package29,30 was employed for the dynamics simulations. In total,
1,600 trajectories were propagated, each half starting at one anion state. The initial conditions were gen-
erated by sampling from the Wigner distribution of the quantum harmonic oscillator associated with each
vibrational normal mode2,31, for a temperature of 333 K. Reasonably converged observables were attained
when sampling from the Wigner distribution, differently from a previous dynamics simulation of DEA20,
where modified sampling techniques32 were required. Newton’s equations of motion were integrated with
the velocity Verlet algorithm, with a time step of 0.25 fs. At each step, an additional energy calculation for
the neutral ground state was performed as well, which was required to evaluate the resonance widths, as
detailed in Sec. S3.5. Meanwhile, the electronic TDSE was propagated according to the fifth-order Butcher’s
integrator4, with a step of 0.002 fs. For the shorter steps, energies, nuclear velocities, nonadiabatic cou-
plings, and resonance widths were obtained by interpolating the values computed at the longer steps of the
classical propagation. The time step for the TDSE is one order of magnitude shorter than what is usually
employed for dynamics on real PESs, which was found to be critical for properly describing the effect of
the imaginary component in the present case. When hopping between surfaces took place, nuclear mo-
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menta were adjusted in the direction of the nonadiabatic coupling vector33, and in the few trajectories that
incurred into frustrated hopping, they were kept the same. The standard value of α = 0.1 Hartree5 was
employed in the expression for the decoherence time (eq. S4). The propagation was terminated when the
C−I distance reached 6a0, as long as at least 25 fs had passed.

S3.4 DEA cross section
In our application, we are particularly interested in computing the DEA cross section σk associated to each
precursor anion state k, which can be computed20,34 (in atomic units) according to

σk(E) =
π

E
1
Nt

Nt

∑
i=1

γk(E)Γ0
k,i

γk(E0
i )

gk,i(E)pk,i(t→ ∞). (S5)

In the above expression, E is the electron impact energy, pk,i(t → ∞) is the final population of trajectory i,
and the first term in the summation denotes an energy-dependent resonance width, which is proportional
to the probability of electron capture. It is comprised of the resonance width at t = 0, Γ0

k,i, and an energy-
dependent component γk(E). The latter depends on the collision energy E, in the numerator, and on the
resonance energy at t = 0, E0

k,i, in the denominator. These functions were obtained by fitting the equilibrium-
geometry eigenphase sum (obtained with the scattering calculations), according to35

δk(R0,E) =− tan−1
(

γk(E)/2
E− εk−∆k(E)

)
+ak,0E3/2 +ak,1E3, (S6)

with
γk(E) = AkE3/2 exp(−bkE), (S7)

∆k(E) =
AkE

2

[
− 1√

πbk
+E1/2e−bkE

∣∣∣erf(i
√

bkE)
∣∣∣]− A

4
√

πb3
k

, (S8)

where erf is the error function. The set of obtained parameters for the lower (k = 1) and upper (k = 1) anion
states are shown in Tab. S1. Finally, gk,i(E) was represented by a normalised Gaussian function centred at
the resonance energy E0

k,i, with a line width of 0.05 eV.

k Ak bk εk ak,0 ak,1

1 8.205435 5.408341 5.408341 1.842498 −1.990192
2 1.736950 2.017859 1.069119 −0.838433 0.397469

Table S1 Parameters of the energy-dependent functions γ1(E) and γ2(E) (for E given in eV), which appear in the expression
for the DEA cross sections (eq. S5).

S3.5 Modelling the complex PES of iodoethene
Fig. S1 shows the set of results that were required in order to build the autodetachment model for the
dynamics. First, it shows the elastic cross sections obtained at the neutral equilibrium geometry, as computed
with the SMC scattering calculations. The peaks centred at 0.58 eV and 1.11 eV correspond to the σ∗ and
π∗ shape resonances, respectively, which match quite well with electron transmission spectra results (0.5
eV and 1.05 eV)36. The scattering calculations also provide vertical resonance widths of 0.16 eV for the σ∗

state and of 0.26 eV for the π∗ state, corresponding to autodetachment lifetimes of 4.2 fs and 2.5 fs.
Despite the good agreement between SMC calculations and experiment, the resonance energies com-

puted with the MRCI method are expected to be overestimated, given the well-known10,14 difficulty in ob-
taining an accurate and balanced description of correlation effects for anion and neutral states. Indeed, we
have obtained 2.11 eV and 3.16 eV for the σ∗ and π∗ states at the neutral equilibrium geometry, compared to
the experimentally observed 0.5 eV and 1.05 eV36. Due to inaccuracies on the employed electronic structure
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Figure S1 On the top left panel, symmetry resolved elastic cross sections, computed at the neutral equilibrium geometry.
On the top right, behaviour of the model resonance widths for the lower Γ1 and higher-lying Γ2 anion states, as described
in the text. On the bottom, PESs along the C−I and C=C stretching from the neutral equilibrium values, for the neutral,
σ∗ and π∗ energies (triangles) and resonance widths obtained from the scattering calculations (circles) and from the model
Γ1 and Γ2 (dashed curves).

level of theory, systematic shifts or scaling of the computed PESs are sometimes performed20,37,38, and a
similar procedure was adopted here. The resonance energy E j associated to the anion state j was evaluated
as E j(R) = EMRCI

j (R)+∆E where EMRCI
j (R) =Vj(R)−V0(R) is the MRCI resonance energy for the anion state

j, given by the difference between anion Vj and neutral V0 energies, as computed along the dynamics, and
∆E is a constant energy shift. This correction is such that the vertical (R = 0) resonance energy E j for the
state that triggers the dynamics j matches the value obtained with the ab-initio SMC calculation ESMC

j (0).
Accordingly, when the dynamics started from the lower-lying anion state, the correction was computed as
∆E = ESMC

1 (0)−EMRCI
1 (0), and when the higher-lying state was initially formed, as ∆E = ESMC

2 (0)−EMRCI
2 (0).

We are aware that such an unbalance between neutral and anion states at the MRCI level is excessive,
but as our main goal in this paper is to demonstrate the potential of the CS-FSSH methodology for dynamics
simulations of real molecular systems. Moreover, we recall that this unbalance comprises a well-recognised
and present challenge for electronic structure theory10,14. One has to move to very accurate descriptions
of electronic correlation in order to achieve reasonably converged resonance energies, by accounting for
triple excitations in coupled cluster methods for instance39. In the present case, when we include double
excitations as well as the Davidson correction40 (MRCISD+Q), the average deviation to experiment drops
from 1.9 eV to 0.7 eV. Discrepancies around 0.5 eV have already been observed in calculations of resonant
anions employing the MRCISD+Q20 and the CASPT2 methodology15–17. Unfortunately, the MRCISD+Q
level of theory does not count with analytical nuclear gradients, which is a required ingredient for the
nuclei propagation. Furthermore, as our main goal in this paper is to demonstrate the use of the CS-FSSH
methodology, we are satisfied that the PES shift procedure can provide a fair description of the resonances
of iodoethene.

For the dynamics simulations, the imaginary PESs were modelled based on the following series of argu-
ments. Since resonance energies and resonance widths are usually positively correlated, for both σ∗ 20,41,42

and π∗ 43 states, here we have assumed that the resonance widths of each state depend only on the corre-
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sponding resonance energy, i.e., Γ j(R) ' Γ j[E j(R)]. Now, the resonance widths should be described more
accurately in regions of the PESs where they are larger, because there the population decays more rapidly.
Once the resonant anion state is formed, its energy tends to decrease, hence also the resonance energy and
width. Therefore, it is more advisable to have an accurate model for the resonance widths at the begin-
ning of the dynamics, when they are larger; than at later stages, when they would be smaller and thus of
diminishing relevance to the population decay.

From a small sample of very short trajectories, the σ∗ resonance was found to stabilise by C−I bond
stretching, while the π∗ resonance relaxed by stretching of the C=C bond. That being so, we have performed
a series of scattering calculations along both stretching coordinates (the anion PESs are shown in Fig. S1),
which served to build an approximated model for the widths of the lower Γ1 and upper Γ2 anion states, as
follows. The width of the lower-lying state, Γ1, was obtained from the behaviour of the σ∗ widths along
the C−I coordinate (dashed blue curve in the bottom left panel of Fig. S1). Similarly, the behaviour of the
π∗ width along the C=C coordinate (dashed red curve in the bottom right panel) provided the width of the
higher-lying state, Γ2. More precisely, the instantaneous resonance widths adopted for the dynamics were
modelled with a third-order polynomial interpolation44 to these pre-computed pairs of energies and widths,

Γ j(E j) = c0 + c1E j + c2E2
j + c3E3

j . (S9)

The set of polynomial parameter employed for each energy interval is presented in Tab. S2, and the corre-
sponding Γ1(E1) and Γ2(E2) are shown in the top right panel of Fig. S1.

Energy interval c0 c1 c2 c3

Γ1 [0.000000, 0.206756] 0.0000000 0.1242164 −0.0828406 0.5793206
[0.206756, 0.385027] 0.0272616 0.1642556 0.2526995 0.6258474
[0.385027, 0.584132] 0.0681202 0.3140227 0.5595371 0.5742861
[0.584132, 0.771860] 0.1573580 0.6051342 0.8622322 1.3421733
[0.771860, 0.984703] 0.3102249 1.0707663 3.2533820 0.2774268
[0.98470, ∞) −1.7670580 2.4933895 0.0000000 0.0000000

Γ2 [0.000000, 0.026325] 0.0000000 0.0302233 0.3258510 5.9471457
[0.026325, 0.272457] 0.0011299 0.0597438 0.4495795 −0.4389838
[0.272457, 0.548139] 0.0365251 0.2012735 0.0591988 0.0223599
[0.548139, 0.820156] 0.0969804 0.2390117 0.2513811 −0.3783485
[0.820156, 1.112418] 0.1729807 0.2917859 0.0108890 0.0570166
[1.112418, 1.429337] 0.2606121 0.3127613 0.1157322 0.0108206
[1.429337, 1.786581] 0.3717004 0.3893772 0.2240029 0.0439777
[1.786581, ∞) −0.4702774 0.5662623 0.0000000 0.0000000

Table S2 Parameters of the polynomial interpolation (eq. S9), for energies and widths given in eV.

As additional validation of our assumptions, the profile of each Γ was checked against the coordinate
that was not employed to build it in the first place. In the bottom panels of Fig. S1, dashed curves represent
the model Γ1 and Γ2, obtained as described above, while dots are the data from the scattering calculations.
We have found a good matching between Γ1 and the σ∗ widths along the C=C stretching, and also between
Γ2 and the π∗ widths along the C−I stretching. This result further supports the above assumptions for the
resonance widths and suggests that the conceived autodetachment model should be accurate enough for
our purposes.
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