Supporting Information for:

Molecular Approach to Rationally Constructing Specific Fluorogenic Substrate for Detection of Acetylcholinesterase Activity in Live Cells, Mice Brains and Tissues

Xiaofeng Wu,^{a,g} Jong Min An,^{b,g} Jizhen Shang,^{c,g} Eugene Huh,^{d,g} Sujie Qi,^a Eunhye Lee,^a Haidong Li,^a Gyoungmi Kim,^a Huimin Ma,^c Myung Sook Oh,^{e*} Dokyoung Kim^{b,f*} and Juyoung Yoon^{a*}

^aDepartment of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.

^bDepartment of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.

^cBeijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

^dDepartment of Medical Science of Meridian, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.

^eDepartment of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea.

^fDepartment of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.

^gThese authors contributed equally to this work.

Table of contents

1.	Experimental
2.	Fig. S1
3.	Fig. S2
4.	Fig. S3
5.	Fig. S4
6.	Fig. S5
7.	Table S1
8.	Table S2 S22
9.	Fig. S6
10.	Fig. S7
11.	Fig. S8
12.	Fig. S9
13.	Fig. S10
14.	Fig. S11
15.	Fig. S12
16.	Fig. S13
17.	Fig. S14S25
18.	Fig. S15S26
19.	Fig. S16S26
20.	Fig. S17S27
21.	Fig. S18S27
22.	Fig. S19S28
23.	Fig. S20
24.	Fig. S21
25.	¹ H-NMR, ¹³ C-NMR and ¹⁹ F-NMR spectraS30
26.	References

Experimental

Apparatus and reagents

¹H-NMR, ¹³C-NMR and ¹⁹F-NMR spectra were recorded on a Bruker AM 300 spectrometer. Electrospray ionization mass spectra (ESI-MS) were recorded on a Shimadzu LC-MS 2010A instrument (Kyoto, Japan). High-resolution electrospray ionization mass spectra (HR-ESI-MS) were measured on an APEX IV FTMS instrument (Bruker, Daltonics). A Jeol JMS 700 high-resolution mass spectrometer was used to acquire fast atom bombardment (FAB) mass spectra at the Korea Basic Science Institute (Daegu). UV absorption spectra were obtained with Thermo Scientific Evolution 201 UV/VIS Spectrometer. Fluorescence spectra were obtained using JASCO FP8500. High-performed liquid chromatography with LC-20 AT solvent delivery unit, SPD-20 A UV-vis detector (Shimadzu, Japan). Fluorescence images were visualized by a confocal laser scanning microscope (CLSM, LSM-800, Carl Zeiss, Germany). Tissue images were visualized using fluorescence tissue imaging systems (FTIS, VISQUE® InVivo Elite, Vieworks Co. Ltd, Rep. of Korea) and two-photon microscopy (TPM, TCS SP5, Leica microsystem, Germany).

Vanillin, isobutyl chloroformate, 4-hydroxy-3-nitrobenzaldehyde, dimethylcarbamyl chloride, 3-bromo-4-hydroxybenzaldehyde, sodium azide, 4-hydroxy-3-nitrobenzaldehyde, triphenylphosphine, 3-chloro-4-hydroxybenzaldehyde, 4-hydroxybenzaldehyde, 3-fluoro-4hydroxybenzaldehyde, and 2-(diphenylphosphino)benzoic acid were purchased from Tokyo Chemical Industry Co., Ltd. Resorufin sodium salt, formaldehyde solution, paraoxon ethyl, palladium on carbon (wt%, 10%), hydrazine monohydrate, 4-hydroxybenzyl alcohol, sodium borohydride, sodium nitrite, acetyl chloride, iodomethane, hydrogen peroxide, tert-butyl hydroperoxide (TBHP), CORM-3 (CO donor), sodium hypochlorite, dimethylamine, potassium superoxide, dichloromethane-d₂ (CD₂Cl₂-d₂), KCl, MgCl₂, ZnCl₂, NaNO₂, CaCl₂, glucose, vitamin C, tyrosine, glutamic acid, cysteine, glycine, arginine, alanine, lysine, glutathione, urea, bovine serum albumin (BSA), human serum albumin (HSA), alkaline phosphatase (ALP), β-glucosidase, carboxyl esterase (CE), acetylcholinesterase (AChE), butyrylcholinesterase (BChE), xanthine oxidase, apyrase, monoamine oxidase A (MAO-A), monoamine oxidase B (MAO-B), Sodium Nitroferricyanide (III) Dihydrate, tyrosinase from mushroom, dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF, anhydrous) were purchased from Sigma-Aldrich. Aluminium oxide (neutral) for column chromatography was obtained from EMD Millipore Corporation. Dulbecco's modified Eagle's media (DMEM) and fetal bovine serum (FBS) for cell culture were purchased from Hyclone (Utah, US). U87MG and HEK293 cells lines were purchased from Korean Cell Line Bank and N2A cell line was obtained from American Type Culture Collection. Penicillin-streptomycin for cell lines was purchased from Gibco Industries Inc (Auckland, NZ). Tribromoethanol and phosphate buffered saline were purchased from Sigma-Aldrich. The stock solutions (1.0 mM) of **CP** and **P1-P10** were prepared by dissolving requisite amounts of them in DMSO.

Syntheses of control probe (CP) and probes 1-10

Syntheses of CP

CP-1: A mixture of 4-hydroxybenzalcohol (0.49 g, 4.0 mmol), Et₃N (4.80 mmol, 0.65 mL) was added acetyl chloride (4.4 mmol, 0.31 mL) in 20 mL EtOAc, and then warmed to room temperature and stirred for 6 h. Then, the mixture was diluted with dichloromethane (20 mL), and washed three times with water (20 mL). The organic layer was separated and dried over anhydrous Na₂SO₄. The solvent was removed by evaporation under reduced pressure, and the residue was subjected to silica gel chromatography with CH₂Cl₂:CH₃OH (v/v, 0 to 10:1) as eluent, obtaining **CP-1** as a clear oil (0.47 g, yield 71%). The ¹H-NMR and ¹³C-NMR spectra of **CP-1** are shown below in Figures S22 and S23, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 7.38-7.36 (m, 1H), 7.35-7.33 (m, 1H), 7.09-7.07 (m, 1H), 7.06-7.04 (m, 1H), 4.63 (s, 2H), 2.30 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 169-7, 150.0, 138.6, 128.1, 121.6, 64.5, 21.1. HR-ESI-MS: *m/z* calcd for **CP-1** (C₉H₁₀NaO₃, [M]⁺), 189.0522; found, 189.0523.

CP-2: Compound **CP-1** (0.4 g, 2.41 mmol) was dissolved in 20 mL CH₂Cl₂ at 0 °C, and tribromophosphine (0.46 mL, 4.82 mmol) was subsequently added dropwise. After 30 mins, the resulting mixture was warmed to room temperature and stirred for 4 h. Then, the mixture was diluted with dichloromethane (20 mL), and washed three times with water (20 mL). The organic layer was separated and dried over anhydrous Na₂SO₄. The solvent was evaporated under reduced pressure, and the residue was purified using silica gel chromatography with CH₂Cl₂ as eluent, obtaining **CP-2** as a clear oil (0.45 g, yield 82%). The ¹H-NMR and ¹³C-NMR spectra of **CP-2** are shown below in Figures S24 and S25, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 7.44-7.43 (m, 1H), 7.41-7.40 (m, 1H), 7.11 (t, J = 2.64 Hz, 1H), 7.08 (t, J = 2.13 Hz, 1H), 4.50 (s, 2H), 2.31 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 169.3, 150.6, 135.4, 130.3, 122.0, 32.8, 32.1, 21.2. HR-EI-MS: *m/z* calcd for **CP-2** (C₉H₉BrO₂, [M]⁺), 227.9586; found, 227.9585.

CP: To a solution of resorufin sodium salt (0.24 g, 1.0 mmol) in anhydrous DMF (10 mL), K_2CO_3 (0.28 g, 2.0 mmol) was added, followed by stirring at 100 °C for 10 min. Then, a solution of **CP-2** (0.23 g, 1.0 mmol) in DMF (2 mL) was added dropwise. After stirring at 100 °C for 12 h, the solution was cooled and diluted with CH₂Cl₂ (20 mL). The resulting solution was then washed with brine water (15 mL × 3). The organic layer was separated and dried over anhydrous Na₂SO₄. The solvent was removed by evaporation, and the residue was subjected to silica gel chromatography eluted with CH₂Cl₂, affording **CP** as an orange solid (0.25 g, yield 70%). The ¹H-NMR and ¹³C-NMR spectra of **CP** are shown below in Figures

S26 and S27, respectively. ¹H-NMR (300 MHz, 298 K, CD₂Cl₂-d₂): δ 7.76 (d, J = 8.9 Hz, 1H), 7.54-7.49 (m, 2H), 7.45 (d, J = 9.8 Hz, 1H), 7.20-7.15 (m, 2H), 7.07-7.04 (m, 1H), 6.94 (d, J = 2.6 Hz, 1H), 6.82-6.78 (m, 1H), 6.29 (d, J = 2.0 Hz, 1H), 5.20 (s, 2H), 2.32 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CD₂Cl₂-d₂): δ 185.9, 169.4, 162.5, 150.8, 149.8, 145.9, 145.6, 134.7,134.1, 133.3, 131.5, 128.8, 128.6, 122.0, 113.9, 106.5, 101.2, 70.2, 20.9. HR-ESI-MS: *m/z* calcd for **CP** (C₂₁H₁₆NO₅, [M+H]⁺), 362.1023; found, 362.1023.

Syntheses of probes 1-6

1a: To a solution of p-Hydroxybenzaldehyde (0.61 g, 5.0 mmol) and K₂CO₃ (1.38 g, 10 mmol) in DMF (20 mL) was added Me₂NCOCl (0.92 mL, 10 mmol) at room temperature. The reaction mixture was stirred for 8 h at room temperature. After dilution with water (30 mL), the mixture was extracted with CH₂Cl₂ (30 mL×2), and the combined organic layer was washed with saturated Na₂CO₃ solution, evaporated and the residue was subjected to silica gel chromatography with CH₂Cl₂:CH₃OH (v/v, 0 to 100:1) as eluent, obtaining **1a** as a clear oil (0.87 g, yield 90%). The ¹H-NMR and ¹³C-NMR spectra of **1a** are shown below in Figures S28 and S29, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 9.56 (s, 1H), 7.90 (t, J = 2.41 Hz, 1H), 7.87 (t, J = 2.08, 1H), 7.31-7.29 (m, 1H), 7.28-7.26 (m, 1H), 3.10 (s, 3H), 3.01 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 191.1, 156.4, 153.8, 133.3, 131.1, 122.3, 36.7, 36.5. HR-ESI-MS: *m/z* calcd for **1a** (C₁₀H₁₁NO₃, [M+H]⁺), 194.0811; found, 194.0812.

1b: **1b**, prepared similarly as **1a** using 3-fluoro-4-hydroxybenzaldehyde (0.56 g, 4.0 mmol), K₂CO₃ (1.1 g, 8.0 mmol), and Me₂NCOCl (0.73 mL, 8.0 mmol), was obtained as a clear oil (0.59 g, yield 70%). The ¹H-NMR and ¹³C-NMR spectra of **1b** are shown below in Figures S30, S31 and S32, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 9.90 (d, J = 2.1 Hz, 1H), 7.66-7.74 (m, 1H), 7.63-7.60 (m, 1H), 7.39-7.34 (m, 1H), 3.10 (s, 3H), 2.99 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 190.0, 190.0, 156.5, 153.2, 152.9, 144.3, 144.1, 134.7, 134.6, 126.7, 126.6, 124.8, 116.6, 116.3, 36.9, 36.6. ¹⁹F-NMR (300 MHz, 298 K, CDCl₃): δ -

127.18, -127.19, -127.20, -127.22, -127.23, -127.30. HR-ESI-MS: m/z calcd for **1b** (C₁₀H₁₁FNO₃, [M+H]⁺), 212.0717; found, 212.0718.

1c: **1c**, prepared similarly as **1a** using 3-chloro-4-hydroxybenzaldehyde (0.94 g, 6.0 mmol), K₂CO₃ (1.66 g, 12 mmol), and Me₂NCOCl (1.1 mL, 12 mmol), was obtained as a clear oil (1.14 g, yield 83%). The ¹H-NMR and ¹³C-NMR spectra of **1c** are shown below in Figures S33 and S34, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 9.96 (d, J = 0.39 Hz, 1H), 7.98-7.97 (m, 1H), 7.83-7.80 (m, 1H), 7.47-7.45 (m, 1H), 3.19 (s, 3H), 3.06 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 189.9, 152.9, 152.4, 134.4, 131.1, 129.2, 128.4, 124.7, 36.9, 36.6. HR-EI-MS: *m/z* calcd for **1c** (C₁₀H₁₀ClNO₃, [M]⁺), 237.0349; found, 227.0346.

1d: 1d, prepared similarly as 1a using 3-bromo-4-hydroxybenzaldehyde (1.0 g, 5.0 mmol), K₂CO₃ (1.38 g, 10 mmol), and Me₂NCOCl (0.92 mL, 10 mmol), was obtained as a clear oil (0.85 g, yield 63%). The ¹H-NMR and ¹³C-NMR spectra of 1d are shown below in Figures S35 and S36, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 9.92 (s, 1H), 8.11 (d, J = 1.92 Hz, 1H), 7.85-7.81 (m, 1H), 7.44 (d, J = 8.32 Hz, 1H), 3.18 (s, 3H), 3.04 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 189.8, 153.5, 152.8, 134.6, 134.3, 129.8, 124.6, 117.4, 36.9, 36.7. HR-EI-MS: *m/z* calcd for 1d (C₁₀H₁₀BrNO₃, [M]⁺), 270.9844; found, 270.9842.

1e: **1e**, prepared similarly as **1a** using 3-nitro-4-hydroxybenzaldehyde (0.84 g, 5.0 mmol), K₂CO₃ (1.38 g, 10 mmol), and Me₂NCOCl (0.92 mL, 10 mmol), was obtained as a clear oil (0.78 g, yield 65%). The ¹H-NMR and ¹³C-NMR spectra of **1e** are shown below in Figures S37 and S38, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 10.03 (s, 1H), 8.53 (d, J = 2.01 Hz, 1H), 8.16-8.12 (m, 1H), 7.52 (d, J = 8.38 Hz, 1H), 3.15 (s, 3H), 3.06 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 188.8, 152.4, 149.3, 142.5, 134.2, 133.6, 127.1, 126.4. HR-EI-MS: *m*/*z* calcd for **1e** (C₁₀H₁₀N₂O₅, [M]⁺), 238.0590; found, 235.0589.

1f: **1f**, prepared similarly as **1a** using vanillin (0.76 g, 5.0 mmol), K₂CO₃ (1.38 g, 10 mmol), and Me₂NCOCl (0.92 mL, 10 mmol), was obtained as a clear oil (0.48 g, yield 59%). The ¹H-NMR and ¹³C-NMR spectra of **1f** are shown below in Figures S39 and S40, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 9.94 (s, 1H), 7.49-7.45 (m, 2H), 7.29-7.26 (m, 1H), 3.91 (s, 3H), 3.14 (s, 3H), 3.03 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 191.2, 153.8, 152.5, 145.9, 134.7, 124.8, 123.7, 110.7, 56.1, 36.8, 36.6. HR-EI-MS: *m/z* calcd for **1f** (C₁₁H₁₃NO₄, [M]⁺), 223.0845; found, 223.0842.

2a: To a suspension of **1a** (0.6 g, 2.5 mmol) in CH₃OH (30 mL) at 0 °C, NaBH₄ (0.17 g, 5.0 mmol) was added slowly. After 30 min, the resulting suspension was stirred for 4 h at rt. Then,

the mixture was diluted with dichloromethane (20 mL), and washed three times with water (20 mL). The organic layer was separated and dried over anhydrous Na₂SO₄. The solvent was removed by evaporation under reduced pressure, and the residue was subjected to silica gel chromatography with CH₂Cl₂:CH₃OH (v/v, 100:1 to 50:1) as eluent, obtaining **2a** as a white solid (0.53 g, yield 88%). The ¹H-NMR and ¹³C-NMR spectra of **2a** are shown below in Figures S41 and S42, respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 7.41-7.36 (m, 2H), 7.14-7.10 (m, 2H), 5.39 (s, 1H), 3.34 (s, 2H), 3.04 (s, 3H), 3.01 (s, 3H). ¹³C-NMR (75 MHz, 298 K, DMSO-d₆): δ 151.7, 135.5, 127.9, 122.0, 102.7, 53.0, 36.7, 36.5. HR-EI-MS: *m/z* calcd for **2a** (C₁₀H₁₃NO₃, [M]⁺), 195.0895; found, 195.0893.

2b: **2b**, prepared similarly as **2a** using **1b** (0.42 g, 2.0 mmol) and NaBH₄ (0.15 g, 4.0 mmol), was obtained as a white solid (0.31 g, yield 73%). The ¹H-NMR, ¹³C-NMR and ¹⁹F-NMR spectra of **2b** are shown below in Figures S43, S44 and S45, respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 7.25-7.18 (m, 2H), 7.14-7.11 (m, 1H), 5.36 (t, J = 5.7 Hz, 1H), 4.50 (d, J = 5.5 Hz, 2H), 3.06 (s, 3H), 2.92 (s, 3H). ¹³C-NMR (75 MHz, 298K, DMSO-d₆): δ 155.9, 153.6, 152.7, 142.5, 137.5, 137.3, 124.5, 122.7, 122.7, 114.6, 114.4, 62.3, 36.9, 36.6. ¹⁹F-NMR (300 MHz, 298 K, DMSO-d₆): δ -135.5, -135.5, -130.5, -130.6. HR-ESI-MS: *m/z* calcd for **2b** (C₁₀H₁₃FNO₃, [M+H]⁺), 214.0874; found, 214.0875.

2c: **2c**, prepared similarly as **2a** using **1c** (0.91 g, 4.0 mmol) and NaBH₄ (0.30 g, 8.0 mmol), was obtained as a white solid (0.71 g, yield 71%). The ¹H-NMR and ¹³C-NMR spectra of **2c** are shown below in Figures S46 and S47, respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 7.46 (d, J = 1.5 Hz, 1H), 7.31-7.27 (m, 1H), 7.25 (d, J = 8.1 Hz, 1H), 5.37 (t, J = 5.8 Hz, 1H), 4.51 (t, J = 5.8 Hz, 2H), 3.08 (s, 3H), 2.93 (s, 3H). ¹³C-NMR (75 MHz, 298 K, DMSO-d₆): δ 153.6, 146.2, 142.2, 127.9, 126.4, 126.3, 124.6, 62.2, 36.9, 36.6. HR-EI-MS: *m/z* calcd for **2c** (C₁₀H₁₂CINO₃, [M]⁺), 229.0506; found, 229.0505.

2d: 2d, prepared similarly as 2a using 1d (0.81 g, 3.0 mmol) and NaBH₄ (0.22 g, 6.0 mmol), was obtained as a white solid (0.56 g, yield 69%). The ¹H-NMR and ¹³C-NMR spectra of 2d are shown below in Figures S48 and S49, respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 7.60 (d, J = 1.8 Hz, 1H), 7.34-7.30 (m, 1H), 7.23 (d, J = 8.4 Hz, 1H), 5.37 (t, J = 5.7 Hz, 1H), 4.50 (d, J = 5.7 Hz, 2H), 3.09 (s, 3H), 2.93 (s, 3H). ¹³C-NMR (75 MHz, 298 K, DMSO-d₆): δ 153.5, 147.5, 142.4, 130.9, 127.0, 124.6, 116.1, 62.1, 36.9, 36.6. HR-EI-MS: *m/z* calcd for 2d (C₁₀H₁₂BrNO₃, [M]⁺), 273.0002; found, 272.0001.

2e: **2e**, prepared similarly as **2a** using **1f** (0.71 g, 3.0 mmol) and NaBH₄ (0.22 g, 6.0 mmol), was obtained as a yellow oil (0.64 g, yield 90%). The ¹H-NMR and ¹³C-NMR spectra of **2e** are shown below in Figures S50 and S51, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 7.90 (d, J = 2.1 Hz, 1H), 7.47-7.44 (m, 1H), 7.17 (d, J = 8.4 Hz, 1H), 4.51 (s, 2H), 3.53 (s, 1H), 3.09 (s, 3H), 2.96 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 153.5, 147.5, 142.4, 130.9, 127.0, 124.6, 116.1, 62.1, 36.9, 36.6. HR-EI-MS: *m/z* calcd for **2e** (C₁₀H₁₂N₂O₅, [M]⁺), 240.0746; found, 240.0749.

2f: **2f**, prepared similarly as **2a** using **1f** (0.46 g, 2.0 mmol) and NaBH₄ (0.15 g, 4.0 mmol), was obtained as a white solid (0.32 g, yield 71%). The ¹H-NMR and ¹³C-NMR spectra of **2f** are shown below in Figures S52 and S53, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 7.05 (d, J = 8.0, 1H), 6.99 (d, J = 1.88, 1H), 6.90-6.86 (m, 1H), 4.65 (d, J = 6.1, 2H), 3.83 (s, 3H), 3.14 (s, 3H), 3.02 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 155.0, 151.5, 139.9, 139.4, 122.9, 118.6, 110.9, 64.4, 55.8, 36.8, 36.5. HR-EI-MS: *m*/*z* calcd for **2f** (C₁₁H₁₅NO₄, [M]⁺), 225.1001; found, 225.0998.

3a: To a solution of **2a** (0.49 g, 2.5 mmol) in dichloromethane (30 mL) at 0 °C, tribromophosphine (0.48 mL, 5.0 mmol) was added dropwise. The resulting reaction mixture was warmed up to room temperature and stirred for 4 h. Then, the mixture was diluted with dichloromethane (20 mL), and washed three times with water (20 mL). The organic layer was separated and dried over anhydrous Na₂SO₄. The solvent was removed by evaporation under reduced pressure, and the residue was subjected to silica gel chromatography with CH₂Cl₂:CH₃OH (v/v, 0 to 50:1) as eluent, obtaining **3a** as a clear oil (0.5 g, yield 78%). The ¹H-NMR and ¹³C-NMR spectra of **3a** are shown below in Figures S54 and S55, respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 7.47 (d, J = 8.4 Hz, 1H), 7.12 (d, J = 8.7 Hz, 1H), 4.73 (s, 2H), 3.04 (s, 3H), 2.91 (s, 3H). ¹³C-NMR (75 MHz, 298 K, DMSO-d₆): δ 154.3, 151.6, 135.3, 130.8, 122.6, 36.8, 36.6, 34.5. HR-ESI-MS: *m/z* calcd for **3a** (C₁₀H₁₃BrNO₂, [M+H]⁺), 258.0124; found, 258.0125.

3b: **3b**, prepared similarly as **3a** using **2b** (0.28 g, 1.3 mmol) and tribromophosphine (0.25 mL, 2.6 mmol), was obtained as a clear oil (0.27 g, 74%). The ¹H-NMR, ¹³C-NMR and ¹⁹F-NMR spectra of **3b** are shown below in Figures S56, S57 and S58, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 7.23-7.19 (m, 1H), 7.17-7.13 (m, 2H), 4.45 (s, 2H), 3.13 (s, 3H), 3.04 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 155.9, 153.6, 152.6, 139.1, 138.9, 136.4, 136.3, 124.9, 124.9, 124.4, 124.4, 117.4, 117.2, 36.9, 36.6, 32.0, 32.0. ¹⁹F-NMR (300 MHz, 298 K, CDCl₃): δ -128.5. HR-EI-MS: *m*/*z* calcd for **3b** (C₁₀H₁₁BrFNO₂, [M]⁺), 274.9957; found, 274.9956.

3c: **3c**, prepared similarly as **3a** using **2c** (0.65 g, 2.84 mmol) and tribromophosphine (0.55 mL, 5.68 mmol), was obtained as a clear oil (0.68 g, 83%). The ¹H-NMR and ¹³C-NMR spectra of **3c** are shown below in Figures S59 and S60, respectively. ¹H-NMR (300 MHz, 298

K, CDCl₃): δ 7.48 (d, J = 2.13 Hz, 1H), 7.32-7.29 (m, 1H), 7.23 (d, J = 8.34 Hz, 1H), 4.45 (s, 2H), 3.17 (s, 3H), 3.05 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 153.6, 147.6, 136.2, 130.7, 128.3, 127.2, 124.4, 36.9, 36.6, 31.7. HR-EI-MS: *m*/*z* calcd for **3b** (C₁₀H₁₁BrClNO₂, [M]⁺), 290.9662; found, 290.9661.

3d: **3d**, prepared similarly as **3a** using **2d** (0.5 g, 1.83 mmol) and tribromophosphine (3.52 mL, 3.66 mmol), was obtained as a clear oil (0.48 g, 79%). The ¹H-NMR and ¹³C-NMR spectra of **3d** are shown below in Figures S61 and S62, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 7.64 (d, J = 2.19 Hz, 1H), 7.37-7.33 (m, 1H), 7.23 (d, J = 8.31 Hz, 1H), 4.47 (s, 2H), 3.17 (s, 3H), 3.05 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 153.5, 148.8, 136.4, 133.6, 129.0, 124.3, 116.4, 36.9, 36.6, 31.6. HR-EI-MS: *m*/*z* calcd for **3b** (C₁₀H₁₁Br₂NO₂, [M]⁺), 334.9157; found, 334.7157.

3e: **3e**, prepared similarly as **3a** using **2e** (0.6 g, 2.5 mmol) and tribromophosphine (0.48 mL, 5.0 mmol), was obtained as a clear oil (0.63 g, 84%). The ¹H-NMR and ¹³C-NMR spectra of **3e** are shown below in Figures S63 and S64, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 8.10 (d, J = 1.84 Hz, 1H), 7.68-7.65 (m, 1H), 7.32 (d, J = 8.4 Hz, 1H), 4.51 (s, 2H), 3.15 (s, 3H), 3.04 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 153.1, 144.8, 141.6, 136.0, 134.9, 126.0, 126.0, 37.0, 36.7, 30.7. HR-EI-MS: *m/z* calcd for **3e** (C₁₀H₁₁BrN₂O₄, [M]⁺), 301.9902; found, 301.9901.

3f: **3f**, prepared similarly as **3a** using **2f** (0.28 g, 1.24 mmol) and tribromophosphine (0.24 mL, 2.49 mmol), was obtained as a clear oil (0.28 g, 78%). The ¹H-NMR and ¹³C-NMR spectra of **3f** are shown below in Figures S65 and S66, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 7.05 (d, J = 7.96 Hz, 1H), 6.99 (d, J = 1.89 Hz, 1H), 6.98-6.94 (m, 1H), 4.49 (s, 2H), 3.85 (s, 3H), 3.07 (s, 6H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 154.5, 151.8, 140.6, 135.9, 123.4, 121.3, 113.1, 56.0, 36.7, 33.5. HR-EI-MS: *m*/*z* calcd for **3f** (C₁₁H₁₄BrNO₃, [M]⁺), 287.0157; found, 287.0156.

P1: To a solution of resorufin sodium salt (0.29 g, 1.2 mmol) in anhydrous DMF (10 mL), K_2CO_3 (0.33 g, 2.4 mmol) was added, followed by stirring at 100 °C for 10 min. Then, a solution of **P1** (0.31 g, 1.2 mmol) in DMF (2 mL) was added dropwise. After stirring at 100 °C for 12 h, the solution was cooled and diluted with CH_2Cl_2 (20 mL). The resulting solution was then washed with brine water (15 mL × 3). The organic layer was separated and dried over anhydrous Na₂SO₄. The solvent was removed by evaporation, and the residue was

subjected to silica gel chromatography eluted with CH₂Cl₂:CH₃OH (v/v, 200:1 to 100:1), affording **P1** as an orange solid (0.24 g, yield 51%). The ¹H-NMR and ¹³C-NMR spectra of **P1** are shown below in Figures S67 and S68, respectively. ¹H-NMR (300 MHz, 298 K, CD₂Cl₂-d₂): δ 7.76 (d, J = 8.9 Hz, 1H), 7.51-7.46 (m, 2H), 7.46 (d, J = 9.8 Hz, 1H), 7.21-7.16 (m, 2H), 7.07 (m, 1H), 6.94 (d, J = 2.6 Hz, 1H), 6.82-6.78 (m, 1H), 6.29 (d, J = 2.0 Hz, 1H), 5.20 (s, 2H), 3.12 (s, 3H), 3.01 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CD₂Cl₂-d₂): δ 185.9, 162.5, 154.5, 151.8, 149.8, 145.9, 145.6, 134.7, 134.1, 132.4, 131.5, 128.6, 128.5, 122.2, 114.0, 106.4, 101.0, 70.4, 36.5, 36.3. HR-ESI-MS: *m/z* calcd for **P1** (C₂₂H₁₉N₂O₅, [M+H]⁺), 391.1288; found, 391.1289.

P2: **P2**, prepared similarly as **P1** using **3b** (0.20 g, 0.73 mmol), K₂CO₃ (0.2 g, 1.46 mmol), and resorufin sodium salt (0.18 g, 0.73 mmol), was obtained as an orange solid (0.18 g, yield 60%). The ¹H-NMR, ¹³C-NMR and ¹⁹F-NMR spectra of **P2** are shown below in Figures S69, S70 and S71, respectively. ¹H-NMR (300 MHz, 298 K, CD₂Cl₂-d₂): δ 7.77 (d, J = 8.88 Hz, 1H), 7.45 (d, J = 9.81 Hz, 1H), 7.33-7.29 (m, 1H), 7.27-7.25 (m, 2H), 7.07 (dd, J = 6.21, 2.7 Hz, 1H), 6.93 (d, J = 2.67 Hz, 1H), 6.82 (dd, J = 7.77, 2.07 Hz, 1H), 6.29 (d, J = 2.04 Hz, 1H), 5.20 (s, 2H), 3.14 (s, 3H), 3.01 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CD₂Cl₂-d₂): δ 185.9, 162.2, 156.3, 153.5, 153.0, 149.8, 146.1, 145.6, 139.1, 139.0, 134.7, 134.6, 134.5, 134.1, 131.6, 128.6, 124.6, 123.2, 123.2, 115.7, 115.4, 113.9, 106.5, 101.1, 69.7, 36.7 36.4. ¹⁹F-NMR (300 MHz, 298 K, CD₂Cl₂-d₂): δ -129.2, -129.2, -129.2, -129.3, -129.3, -129.3. HR-ESI-MS: *m/z* calcd for **P2** (C₂₂H₁₈FN₂O₅, [M+H]⁺), 409.1194; found, 409.1193.

P3: **P3**, prepared similarly as **P1** using **3c** (0.29 g, 1.0 mmol), K₂CO₃ (0.28 g, 2.0 mmol), and resorufin sodium salt (0.24 g, 1.0 mmol), was obtained as orange solid (0.2 g, yield 48%). The ¹H-NMR and ¹³C-NMR spectra of **P3** are shown below in Figures S72 and S73, respectively. ¹H-NMR (300 MHz, 298 K, CD₂Cl₂-d₂): δ 7.77 (d, J = 8.88 Hz, 1H), 7.59 (d, J = 1.98 Hz, 1H), 7.46 (d, J = 9.84 Hz, 1H), 7.41-7.39 (m, 1H), 7.31 (d, J = 8.31 Hz, 1H), 7.07 (dd, J = 6.24, 2.67 Hz, 1H), 6.93 (d, J = 2.67 Hz, 1H), 6.82 (dd, J = 7.77, 2.04 Hz, 1H), 6.29 (d, J = 2.04 Hz, 1H), 5.18 (s, 2H), 3.17 (s, 3H), 3.03 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CD₂Cl₂-d₂): δ 185.9, 162.2, 153.5, 149.8, 147.8, 146.1, 145.6, 134.7, 134.3, 134.1, 131.6, 129.0, 128.6, 127.5, 126.7, 124.5, 113.9, 106.5, 101.1, 69.6, 36.6, 36.4. HR-ESI-MS: *m/z* calcd for **P3** (C₂₂H₁₈ClN₂O₅, [M+H]⁺), 425.0899; found, 425.0898.

P4: **P4**, prepared similarly as **P1** using **3d** (0.34 g, 1.0 mmol), K₂CO₃ (0.28 g, 2.0 mmol), and resorufin sodium salt (0.24 g, 1.0 mmol), was obtained as an orange solid (0.24 g, yield 52%). The ¹H-NMR and ¹³C-NMR spectra of **P4** are shown below in Figures S74 and S75, respectively. ¹H-NMR (300 MHz, 298 K, CD₂Cl₂-d₂): δ 7.77 (d, J = 6.57 Hz, 1H), 7.74 (s, 1H), 7.47-7.43 (m, 2H), 7.30 (d, J = 8.31 Hz, 1H), 7.07 (dd, J = 6.24, 2.67 Hz, 1H), 6.93 (d, J = 2.64 Hz, 1H), 6.82 (dd, J = 7.77, 2.04 Hz, 1H), 6.29 (d, J = 2.04 Hz, 1H), 5.18 (s, 2H), 3.18 (s, 2H), 3.03 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CD₂Cl₂-d₂): δ 185.9, 162.2, 153.4, 149.8, 149.0, 146.1, 145.6, 134.7, 134.5, 134.1, 132.0, 131.6, 128.6, 127.4, 124.4, 116.7, 113.9,

106.5, 101.1, 67.5, 36.6, 36.4. HR-ESI-MS: m/z calcd for **P4** (C₂₂H₁₈BrN₂O₅, [M+H]⁺), 469.0934; found, 469.0932.

P5: **P5**, prepared similarly as **P1** using **3e** (0.48 g, 1.6 mmol), K₂CO₃ (0.44 g, 3.2 mmol), and resorufin sodium salt (0.39 g, 1.6 mmol), was obtained as an orange solid (0.32 g, yield 46%). The ¹H-NMR and ¹³C-NMR spectra of **P5** are shown below in Figures S76 and S77, respectively. ¹H-NMR (300 MHz, 298 K, CD₂Cl₂-d₂): δ 8.16-8.15 (m, 1H), 7.77-7.73 (m, 2H), 7.44 (d, J = 9.8 Hz, 1H), 7.39 (d, J = 8.3 Hz, 1H), 7.07-7.03 (m, 1H), 6.93 (d, J = 2.6 Hz, 1H), 6.81-6.77 (m, 1H), 6.28 (d, J = 2.0 Hz, 1H), 5.24 (s, 2H), 3.14 (s, 3H), 3.01 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CD₂Cl₂-d₂): δ 185.9, 161.8, 153.0, 149.8, 146.3, 145.6, 144.8, 134.7, 134.2, 134.1, 133.1, 131.7, 128.8, 125.8, 124.3, 113.7, 106.6, 101.2, 69.0, 36.7, 36.4. HR-ESI-MS: *m/z* calcd for **P5** (C₂₂H₁₈N₃O₇, [M+H]⁺), 436.1139; found, 436.1139.

P6: **P6**, prepared similarly as **P1** using **3f** (0.22 g, 0.77 mmol), K₂CO₃ (0.21 g, 1.54 mmol), and resorufin sodium salt (0.19 g, 0.77 mmol), was obtained as an orange solid (0.19 g, yield 58%). The ¹H-NMR and ¹³C-NMR spectra of **P6** are shown below in Figures S78 and S79, respectively. ¹H-NMR (300 MHz, 298 K, CD₂Cl₂-d₂): δ 7.73 (d, J = 8.9 Hz, 1H), 7.42 (d, J = 9.8 Hz, 1H), 7.10-7.7.06 (m, 2H), 7.05-7.01 (m, 2H), 6.91 (d, J = 2.6 Hz, 1H), 6.78-6.74 (m, 1H), 6.25 (d, J = 2.0 Hz, 1H), 5.15 (s, 2H), 3.84 (s, 3H), 3.09 (s, 3H), 2.97 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CD₂Cl₂-d₂): δ 185.9, 162.5, 154.4, 152.1, 149.8, 145.9, 145.6, 140.8, 134.7, 134.1, 133.9, 131.5, 128.5, 123.5, 119.7, 114.0, 111.8, 106.4, 101.0, 70.6, 36.5, 36.4. HR-ESI-MS: *m/z* calcd for **P6** (C₂₃H₂₁N₂O₆, [M+H]⁺), 421.1394; found, 412.1392.

Syntheses of Probes 7-9

P7-1: To a suspension of 4-Hydroxy-3-nitrobenzaldehyde (8.35 g, 50.0 mmol) in CH₃OH (30 mL) at 0 °C, NaBH₄ (0.34 g, 10.0 mmol) was added slowly. After 30 min, the resulting suspension was stirred for 4 h at rt. Then, the mixture was diluted with dichloromethane (20 mL), and washed three times with water (20 mL). The organic layer was separated and dried over anhydrous Na₂SO₄. The solvent was removed by evaporation under reduced pressure,

and the residue was subjected to silica gel chromatography with CH₂Cl₂:CH₃OH (v/v, 150:1 to 50:1) as eluent, obtaining **P7-1** as a yellow solid (4.73 g, yield 56%). The ¹H-NMR and ¹³C-NMR spectra of **P7-1** are shown below in Figures S80 and S81, respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 10.80 (s, 1H), 7.83 (t, J = 1.2 Hz, 1H), 7.50 (m, 1H), 7.11 (d, J = 8.49 Hz, 1H), 5.31 (d, J = 2.7 Hz, 1H), 4.45 (s, 2H). ¹³C-NMR (75 MHz, 298 K, DMSO-d₆): δ 151.5, 136.6, 134.4, 134.2, 123.1, 119.4, 62.0. HR-EI-MS: *m/z* calcd for **P7-1** (C₇H₇NO₄, [M]⁺), 169.0375; found, 169.0376.

P7-2: To a solution of **P7-1** (4.2 g, 25.0 mmol) and 10% Pd/C (422 mg) in 30 mL ethanol was added hydrazine monohydrate (10 mL), the resulting mixture was then heated to reflux for 2h. The reaction solution was filtered to remove the Pd/C, and the collected solution was evaporated and subjected to silica gel chromatography using eluent (DCM: CH₃OH, v/v, 100:1 to 20:1) to afford **P7-2** as a brown solid (2.76 g, yield 80%). The ¹H-NMR and ¹³C-NMR spectra of **P7-2** are shown below in Figures S82 and S83, respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 8.81 (s, 1H), 6.58 (m, 1H), 6.35 (m, 1H), 4.82 (t, J = 5.7 Hz, 1H), 4.45 (s, 2H), 4.27 (d, J = 5.4 Hz, 2H). ¹³C-NMR (75 MHz, 298 K, DMSO-d₆): δ 143.3, 136.6, 133.9, 115.4, 114.3, 113.8, 63.7. HR-EI-MS: *m/z* calcd for **P7-2** (C₇H₉NO₂, [M]⁺), 139.0633; found, 139.0631.

P7-3: To a stirred suspension of **P7-2** (2.5 g, 17.99 mmol) in AcOH (20 mL) at room temperature, NaNO₂ (1.37 g, 17.79 mmol) was gradually added. After 1 h, NaN₃ (1.75 g, 26.99 mmol) was added by portions, and the stirring was continued for 1.5 h. Then the reaction mixture was diluted with water (50 mL) and extracted using EtOAc (3×30 mL). The combined organic layers were washed with water (100 mL), dried with anhydrous Na₂SO₄, and the collected solution was evaporated under reduced pressure. The residue was purified by silica gel chromatography with CH₂Cl₂:CH₃OH (v/v, 100:1 to 50:1) as eluent, affording pale yellow oil (1.93 g, 65%). The ¹H-NMR and ¹³C-NMR spectra of **P7-3** are shown below in Figures S84 and S85, respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 9.91 (s, 1H), 6.95 (m, 1H), 6.90 (d, J = 1.8 Hz, 1H), 6.83 (d, J = 8.13 Hz, 1H), 5.09 (t, J = 5.73 Hz, 1H), 4.37 (d, J = 5.55 Hz, 2H). ¹³C-NMR (75 MHz, 298 K, DMSO-d₆): δ 149.4, 134.7, 125.6, 124.8, 119.5, 116.5, 62.7. HR-EI-MS: *m*/*z* calcd for **P7-3** (C₇H₇N₃O₂, [M]⁺), 165.0538; found, 165.0536.

P7-4: To a solution of **P7-3** (1.65 g, 10.0 mmol) and K₂CO₃ (2.07 g, 15 mmol) in DMF (20 mL) was added Me₂NCOCl (1.01 mL, 11 mmol) at room temperature. The reaction mixture was stirred for 8 h at room temperature. After dilution with water (30 mL), the mixture was extracted with CH₂Cl₂ (30 mL×2), and the combined organic layer was washed with saturated Na₂CO₃ solution, evaporated and the residue was subjected to silica gel chromatography with CH₂Cl₂:CH₃OH (v/v, 0 to 100:1) as eluent, obtaining **P7-4** as gray solid (1.94 g, yield 82%). The ¹H-NMR and ¹³C-NMR spectra of **P7-4** are shown below in Figures S86 and S87,

respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 7.20 (s, 1H), 7.12 (d, J = 1.2 Hz, 2H), 5.34 (t, J = 5.4 Hz, 1H), 4.51 (d, J = 5.1 Hz, 2H), 3.05 (s, 3H), 2.91 (s, 3H). ¹³C-NMR (75 MHz, 298 K, DMSO-d₆): δ 154.0, 142.0, 141.6, 132.0, 124.5, 123.9, 118.3, 62.4. HR-EI-MS: *m/z* calcd for **P7-4** (C₁₀H₁₂N₄O₃, [M]⁺), 236.0909; found, 236.0906.

P7-5: To a solution of **P7-4** (1.42 g, 6.0 mmol) in dichloromethane (30 mL) at 0 °C, tribromophosphine (1.15 mL, 12.0 mmol) was added dropwise. The resulting reaction mixture was warmed up to room temperature and stirred for 4 h. Then, the mixture was diluted with dichloromethane (20 mL), and washed three times with water (20 mL). The organic layer was separated and dried over anhydrous Na₂SO₄. The solvent was removed by evaporation under reduced pressure to obtain **P7-5**, which was used directly for next step without further purification.

P7: To a solution of resorufin sodium salt (0.47 g, 2.0 mmol) in anhydrous DMF (10 mL), K₂CO₃ (0.55 g, 4.0 mmol) was added, followed by stirring at 100 °C for 10 min. Then, a solution of **P7-5** (0.60 g, 2.0 mmol) in DMF (2 mL) was added dropwise. After stirring at 100 ^oC for 12 h, the solution was cooled and diluted with CH₂Cl₂ (20 mL). The resulting solution was then washed with brine water (15 mL \times 3). The organic layer was separated and dried over anhydrous Na₂SO₄. The solvent was removed by evaporation, and the residue was subjected to silica gel chromatography eluted with $CH_2Cl_2:CH_3OH$ (v/v, 200:1 to 100:1), affording **P7** as an orange solid (0.39 g, yield 45%). The ¹H-NMR and ¹³C-NMR spectra of P7 are shown below in Figures S88 and S89, respectively. ¹H-NMR (300 MHz, 298 K, $CD_2Cl_2-d_2$): δ 7.77 (d, J = 8.88 Hz, 1H), 7.46 (d, J = 9.84 Hz, 1H), 7.27 (m, 2H), 7.20 (m, 1H), 7.08(dd, J = 6.21, 2.67 Hz, 1H), 6.94 (d, J = 2.64, 1H), 6.82 (dd, J = 7.77, 2.04 Hz, 1H), 6.29(d, J = 2.04 Hz, 1H), 5.19 (s, 2H), 3.14 (s, 3H), 3.02 (s, 3H). 7.28-7.26 (m, 1H), 3.10 (s, 3H), 3.01 (s, 3H). ¹³C-NMR (75 MHz, 298 K, CD₂Cl₂-d₂): δ 185.9, 162.2, 153.8, 149.8, 146.0, 145.6, 143.1, 134.7, 134.3, 134.1, 133.1, 131.6, 128.6, 124.5, 124.4, 119.3, 113.9, 106.5, 101.1, 69.8, 36.7, 36.3. HR-EI-MS: m/z calcd for **P7** (C₂₂H₁₇N₅O₅, [M]⁺), 431.1230; found, 431.1230.

P8: To a solution of **P7** (0.3 g, 0.7 mmol) in the mixture of THF-H₂O (10 mL, 9:1, v/v), the compound 2-(Diphenylphosphino)benzamide 2 (0.32 g, 1.05 mmol) was added. A mixture was stirred at room temperature for 0.5 h and evaporated in vacuo. The residue was purified by silica gel chromatography using the eluent (CH₂Cl₂:CH₃OH, v/v, 100:1 to 20:1), affording **P8** as an orange solid (0.20 g, yield 71%). The ¹H-NMR and ¹³C-NMR spectra of **P8** are shown below in Figures S90 and S91, respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 7.80 (d, J = 8.85 Hz, 1H), 7.55 (d, J = 9.81 Hz, 1H), 7.17 (d, J = 2.52 Hz, 1H), 7.13 (dd, J = 6.24, 2.58 Hz, 1H), 6.87 (d, J = 8.1 Hz, 1H), 6.82-6.80 (m, 1H), 6.63 (dd, J = 6.06, 2.07 Hz, 1H), 6.28 (d, J = 2.07 Hz, 1H), 5.14 (s, 2H), 5.02 (s, 2H), 3.05 (s, 3H), 2.90 (s, 3H). ¹³C-NMR

(75 MHz, 298 K, DMSO-d₆): δ 185.8, 162.9, 154.4, 150.2, 145.7, 145.6, 141.4, 137.9, 135.4, 133.7, 31.8, 128.4, 123.3, 115.7, 115.3, 114.9, 106.1, 101.6, 70.9, 37.0, 36.7. HR-EI-MS: *m/z* calcd for **P8** (C₂₂H₁₉N₃O₅, [M]⁺), 405.1325; found, 405.1325.

P9: Compound **P8** (0.081 g, 0.2 mmol) was dissolved in 10 mL DMF, and CH₃I (0.25 mL, 4 mmol) was added slowly. Then, the resulting mixture was stirred at 100 °C. After 10 h, the solvent was removed under reduced pressure and the residue was subjected to neutral aluminium oxide with eluent (CH₂Cl₂:CH₃OH, v/v, 100:1 to 10:1), affording **P9** as an orange solid (0.011g, yield 9.6%). The ¹H-NMR and ¹³C-NMR spectra of **P9** are shown below in Figures S92 and S93, respectively. ¹H-NMR (300 MHz, 298 K, MeOD-d₄): δ 8.08 (d, J = 1.8 Hz, 1H), 7.85-7.79 (m, 2H), 7.58 (d, J = 9.81 Hz, 1H), 7.51 (d, J = 8.4 Hz, 1H), 7.21 (m, 2H), 6.88 (dd, J = 7.7, 2.1 Hz, 1H), 6.34 (d, J = 2.1 Hz, 1H), 5.37 (s, 2H), 3.79 (s, 9H), 3.27 (s, 3H), 3.11 (s, 3H). ¹³C-NMR (75 MHz, 298 K, MeOD-d₄): δ 187.0, 162.8, 153.0, 150.5, 145.7, 145.3, 143.9, 137.3, 135.3, 135.2, 133.3, 131.6, 130.8, 128.8, 127.1, 120.4, 114.3, 105.5, 100.9, 69.1, 36.1, 36.8. HR-ESI-MS: m/z calcd for **P9** (C₂₅H₂₆N₃O₅⁺, [M]⁺), 448.1867; found, 448.1866.

Syntheses of Probe 10

P10-1: A mixture of 4-hydroxybenzaldehyde (6.25 g, 50 mmol), 33% aqueous dimethylamine (6.88 g, 50 mmol) and 35% formaldehyde solution (5.1 g, 60 mmol) in 50 mL methanol was stirred overnight at 50 °C. Then, the solvent was removed under reduced pressure, and the residue was extracted with CH₂Cl₂ (15 mL×3). The collected organic phase was dried by anhydrous sodium sulfate and concentrated under reduced pressure. The residue was purified by column chromatography using CH₂Cl₂:CH₃OH (v/v, 100:1 to 10:1) as eluent to give **P10-1** as a yellow solid (3.85 g, 42%). The ¹H-NMR and ¹³C-NMR spectra of **P10-1** are shown below in Figures S94 and S95, respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 9.76 (s, 1H), 7.70-7.65 (m, 2H), 6.90 (d, J = 8.1 Hz, 1H), 6.15 (s, 1H), 3.68 (s, 2H), 2.28 (s, 6H). ¹³C-NMR (75 MHz, 298 K, DMSO-d₆): δ 191.3, 164.6, 131.5, 131.3, 128.1, 123.8,

116.5, 60.0, 44.5. HR-EI-MS: m/z calcd for **P10-1** (C₁₀H₁₃NO₂, [M]⁺), 179.0946; found, 179.0944.

P10-2: To a solution of **P10-1** (1.79 g, 10.0 mmol) and K₂CO₃ (2.76 g, 20 mmol) in DMF (20 mL) was added Me₂NCOCl (1.84 mL, 20 mmol) at room temperature. The reaction mixture was stirred for 12 h at room temperature. After dilution with water (30 mL), the mixture was extracted with CH₂Cl₂ (30 mL×2), and the combined organic layer was washed with saturated Na₂CO₃ solution, evaporated and the residue was subjected to silica gel chromatography with CH₂Cl₂:CH₃OH (v/v, 0 to 100:1) as eluent, obtaining **P10-2** as a clear oil (2.17 g, yield 87%). The ¹H-NMR and ¹³C-NMR spectra of **P10-2** are shown below in Figures S96 and S97, respectively. ¹H-NMR (300 MHz, 298 K, CDCl₃): δ 9.91 (s, 1H), 7.91-7.90 (m, 1H), 7.75 (dd, J = 6.21, 2.13 Hz, 1H), 7.24 (d, J = 8.67 Hz, 1H), 3.38 (s, 12H), 3.08 (s, 3H), 2.96 (s, 3H), 2.19 (s, 6H). ¹³C-NMR (75 MHz, 298 K, CDCl₃): δ 191.4, 154.8, 133.6, 132.7, 132.2, 129.0, 123.5, 57.8, 45.6, 36.8, 36.5. HR-EI-MS: *m/z* calcd for **P10-2** (C₁₃H₁₈N₂O₃, [M]⁺), 250.1317; found, 250.1314.

P10-3: To a suspension of **P10-2** (1.75 g, 7.0 mmol) in CH₃OH (30 mL) at 0 °C, NaBH₄ (0.48 g, 14.0 mmol) was added slowly. After 30 min, the resulting suspension was stirred for 4 h at room temperature. Then, the mixture was diluted with dichloromethane (20 mL), and washed three times with water (20 mL). The organic layer was separated and dried over anhydrous Na₂SO₄. The solvent was removed by evaporation under reduced pressure, and the residue was subjected to silica gel chromatography with CH₂Cl₂:CH₃OH (v/v, 100:1 to 50:1) as eluent, obtaining **P10-3** as a yellow oil (1.53 g, yield 87%). The ¹H-NMR and ¹³C-NMR spectra of **P10-3** are shown below in Figures S98 and S99, respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 7.34 (d, J = 1.98 Hz, 1H), 7.21 (dd, J = 6.03, 2.19 Hz, 1H), 7.02 (d, J = 8.22 Hz, 1H), 5.21 (t, J = 5.76 Hz, 1H), 4.49 (d, J = 5.34 Hz, 2H), 3.28 (s, 2H), 3.07 (s, 3H), 2.91 (s, 3H), 2.13 (s, 6H). ¹³C-NMR (75 MHz, 298 K, DMSO-d₆): δ 154.4, 148.9, 139.8, 131.0, 128.8, 126.2, 122.9, 62.9, 58.0, 45.6, 36.8, 36.5. HR-ESI-MS: *m/z* calcd for **P10-3** (C₁₃H₂₁N₂O₃, [M+H]⁺), 253.1547; found, 253.1547.

P10-4: To a solution of **P10-3** (1.0 g, 4.0 mmol) in CH₃OH (30 mL), CH₃I (2 mL, 32 mmol) was added dropwise. The resulting reaction mixture was refluxed for 12 h. Then, the solvent was removed, and the residue was subjected to silica gel chromatography with CH₂Cl₂:CH₃OH (v/v, 100:1 to 10:1) as eluent, obtaining **P10-4** as a white solid (1.17 g, yield 75%). The ¹H-NMR and ¹³C-NMR spectra of **P10-4** are shown below in Figures S100 and S101, respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 7.56 (d, J = 2.01 Hz, 1H), 7.50 (dd, J = 6.21, 2.16 Hz, 1H), 7.21 (d, J = 8.34 Hz, 1H), 5.33 (t, J = 5.64 Hz, 1H), 4.55 (s, 2H), 4.53 (s, 2H), 3.09 (s, 3H), 3.08 (s, 9H), 2.94 (s, 3H). ¹³C-NMR (75 MHz, 298 K, DMSO-d₆): δ 154.1, 150.5, 140.4, 132.7, 130.3, 124.0, 120.7, 62.4, 52.6, 49.1, 37.2, 36.9. HR-FAB-MS: m/z calcd for **P10-4** (C₁₄H₂₃N₂O₃⁺, [M]⁺), 267.1703; found, 267.1708.

P10-5: To a suspension of **P10-4** (0.99 g, 2.5 mmol) in CH₃CN (30 mL) at 0 °C, tribromophosphine (0.48 mL, 5.0 mmol) was added dropwise. The resulting reaction mixture was warmed up to room temperature and stirred for overnight. Then, the solvent was removed by evaporation under reduced pressure, and the residue was subjected to silica gel chromatography with CH₂Cl₂:CH₃OH (v/v, 100:1 to 10:1) as eluent, obtaining **P10-5** as a white solid (0.46 g, yield 40%). The ¹H-NMR and ¹³C-NMR spectra of **P10-5** are shown below in Figures S102 and S103, respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 7.72 (d, J = 2.19 Hz, 1H), 7.65 (dd, J = 6.15, 2.28 Hz, 1H), 7.27 (d, J = 8.43 Hz, 1H), 4.77 (s, 2H), 4.55 (s, 2H), 3.09 (s, 3H), 3.08 (s, 9H), 2.94 (s, 3H). ¹³C-NMR (75 MHz, 298 K, DMSO-d₆): δ 153.9, 151.7, 136.0, 135.9, 133.1, 124.6, 121.5, 62.5, 52.6, 37.2, 36.9, 33.7. HR-ESI-MS: *m/z* calcd for **P10-5** (C₁₄H₂₂BrN₂O₂⁺, [M]⁺), 329.0859; found, 329.0857.

P10: To a solution of resorufin sodium salt (0.21 g, 0.9 mmol) in anhydrous DMF (15 mL), K₂CO₃ (0.25 g, 1.8 mmol) was added, followed by stirring at 100 °C for 10 min. Then, a solution of P10-5 (0.41 g, 0.9 mmol) in DMF (2 mL) was added dropwise. After stirring at 100 °C for 12 h, the solution was cooled and diluted with CH₂Cl₂ (20 mL). The resulting solution was then washed with brine water (15 mL \times 3). The organic layer was separated and dried over anhydrous Na₂SO₄. The solvent was removed by evaporation, and the residue was subjected to neutral aluminium oxide eluted with $CH_2Cl_2:CH_3OH$ (v/v,100:1 to 10:1), affording **P10** as an orange solid (0.28 g, yield 52%). The ¹H-NMR and ¹³C-NMR spectra of **P10** are shown below in Figures S104 and S105, respectively. ¹H-NMR (300 MHz, 298 K, DMSO-d₆): δ 7.82 (d, J = 8.88 Hz, 1H), 7.74 (d, J = 2.04 Hz, 1H), 7.70 (dd, J = 6.30, 2.07 Hz, 1H), 7.56 (d, J = 9.81 Hz, 1H), 7.34 (d, J = 8.37 Hz, 1H), 7.24 (d, J = 2.64 Hz, 1H), 7.17 (m, 1H), 6.82 (dd, J = 7.74, 2.07 Hz, 1H), 6.29 (d, J = 2.07 Hz, 1H), 5.35 (s, 2H), 4.55 (s, 2H), 3.09 (s, 3H), 3.06 (s, 9H), 2.95 (s, 3H). ¹³C-NMR (75 MHz, 298 K, DMSO-d₆): δ 185.8, 162.5, 153.9, 151.7, 150.2, 145.9, 145.7, 135.4, 134.6, 134.3, 133.9, 131.9, 131.8, 128.5, 124.6, 121.3, 114.8, 106.2, 101.8, 69.8, 62.7, 52.6, 37.2, 36.8. HR-ESI-MS: m/z calcd for P10 $(C_{26}H_{28}N_3O_5^+, [M]^+)$, 462.2023; found, 462.2023.

Photophysical data

Fluorescence quantum yield (Φ) was measured using resorufin^[1] as a standard according to the following equation:

$$\Phi_{\rm X} = (\Phi_{\rm S} \times A_{\rm S} \times I_{\rm X} \times \eta_{\rm X}^2) / (A_{\rm X} \times I_{\rm S} \times \eta_{\rm S}^2)$$

where A is the absorbance at the excitation wavelength (A is kept between 0.01 and 0.05), I is the integrated area of emission spectra, and η is the refractive index of the solvent. The subscripts S and X refer to the standard and unknown, respectively.

General procedure for spectroscopic analysis

Unless otherwise stated, all the fluorescence measurements were made according to the following procedure. In a 5-mL test tube, 10 μ L of the stock solution of **P1-P10** and **CP**, and

appropriate volume of PBS (pH 7.4) were mixed, followed by addition of an appropriate volume of AChE and/or other substance solution. The mixed solution was adjusted to 2 mL with PBS. After incubation at 37 °C for 5 h for **P1-P10** and 0.5 h for **CP**, the reaction solution was transferred to a quartz cell of 1-cm optical length to measure fluorescence with $\lambda_{ex/em} = 550/582$ nm (both excitation and emission slit widths were set to 5 nm). For absorbance measurements, 2 mL of the reaction solution was prepared and used. At the same time, a blank solution without AChE and/or other substance was prepared and measured under the same conditions for comparison. Data are expressed as mean ± standard deviation (SD) of three separate measurements.

Kinetic Parameters

Various concentrations of probe solution were mixed with CE (1 U/mL), BChE (5 U/mL) and AChE (5 U/mL), respectively in PBS buffer (pH 7.4) at 37 °C. After incubation, the fluorescence intensity was monitored. Then relative initial reaction velocity was calculated, plotted against the concentration of probes, and fitted to a Michaelis-Menten curve. The kinetic parameters were calculated by use of equations shown below: $V = V_{\text{max}} * [S] / (K_m + [S])$ and $k_{\text{cat}} = V_{\text{max}} / [E_0]$, where V is initial velocity, [S] is substrate concentration and [E₀] is the enzyme concentration.

Preparation of ROS/RNS solution

Various ROS/RNS solutions were freshly prepared before use following the methods.^[2] The concentration of H₂O₂ solution was determined from the absorption at 240 nm (ε = 43.6 M⁻¹ cm⁻¹). The concentration of ClO⁻ solution was determined by the absorption at 292 nm (ε = 350 M⁻¹ cm⁻¹). TBHP was obtained commercially from Sigma-Aldrich. *Tert*-butoxy radical (TBO•) was prepared by Fenton reaction on mixing FeSO₄ with 10 equivalents of TBHP. Hydroxyl radical (•OH) was generated by Fenton reaction on mixing FeSO₄ with 10 equivalents of H₂O₂. Superoxide (O₂^{•-}) is prepared from KO₂. Singlet oxygen (¹O₂) was generated by the addition of ClO⁻ and H₂O₂. The concentration of ONOO⁻ solution was estimated by the absorption at 302 nm (ε = 1670 M⁻¹ cm⁻¹). The source of NO₂⁻ was from NaNO₂. Nitric oxide (NO) was generated from SNP (Sodium Nitroferricyanide (III) Dihydrate). Carbon monoxide (CO) was generated from CORM3.

Preparation of cell lysate and activity assay of AChE in cell lysate

The cell lysates were obtained as following method. Cells were washed with PBS and collected using PBS (pH 7.4) containing 0.2 % (v/v) Triton X-100 and protease inhibitor. To extract cell lysates, cells were sonicated and incubated for 30 min in ice and centrifuged at 13000 rpm for 10 min at 4 °C and the supernatants were collected as cell lysates and stored at -80 °C. Protein concentration of lysates were calculated by Pierce BCA Protein Assay Kit (Thermo Fisher Scientific). The activity of AChE in cell lysates were tested based on the Ellman method.^[3]

Cytotoxicity assay

Cytotoxicity of **P10** was tested on cells (U87MG, N2A, and HEK293) using a Cell Counting Kit-8 (CCK-8, Dojindo Molecular Tech. Inc, Japan) assay according to the manufacturer's instructions. Each cell (5×10^3 cells per well) was seeded in 96-well plate and incubated for 24 h at 37 °C in a humidified 5% CO₂ incubator. The cells were then treated with serial dilution concentrations (2.5, 5.0, 10, 20 and 40 µM) in serum of the **P10**. The cell toxicity was measured after incubation for 6 h. Then, **P10** was removed by washing with PBS (3 times), followed by changing serum-free media. CCK-8 solution (10 µL, 10× working concentration) in serum-free media was added to each well of a 96-well plate, followed by incubation for 2 h. Then, the absorbance was measured at 450 nm using a microplate reader (Multiskan FC, Thermo Fisher, MA, USA). The percentage of cell cytotoxicity was calculated using the formula; Cell viability (%) = (Mean OD of sample × 100) / (Mean OD of the control group) (OD: optical density).

Cell imaging

Cells were grown on the glass-bottom culture dishes (MatTek CO.) in DMEM supplemented with 10% (v/v) fetal bovine serum (FBS) and 1% (v/v) penicillin-streptomycin at 37 °C in a humidified 5% CO₂ incubator. Before use, the adherent cells were washed three times with FBS-free DMEM. For fluorescence imaging, the cells were incubated with 10 μ M of **P10** in FBS-free DMEM at 37 °C for 5 h, and then washed twice with PBS to remove the free probe.

Mice brain and tissue imaging

Animals: 6-week-old male BALB/c nu/nu mice [Taconic, provided by Daehan Biolink Co., Ltd. (Eumseong, Republic of Korea)] were housed at an ambient temperature of 23 ± 1 °C and relative humidity of $60 \pm 10\%$ under a 12 h light/dark cycle and were allowed free access to water and food. All of the experiments performed with mice were carried out in accordance with the National Institute of Health Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80-23) revised in 1996 and protocols approved by the Institutional Animal Care and Use Committee of Kyung Hee University [KHUASP(SE)-19-002].

Stereotaxic surgery: mice were anesthetized with tribromoethanol (312.5 mg/kg, i.p.) and mounted in a stereotaxic apparatus [myNeuroLab (St. Louis, MO, USA)]. Each mouse received a unilateral injection of 100 μ M of **P10** per 5 μ L in PBS, according to the following coordinates: anteroposterior: -2.0 mm from bregma; mediolateral: 1.5 mm from bregma; and dorsoventral: -2.0 mm from the skull [Franklin, K. B. J. (2013). Paxinos and Franklin's The mouse brain in stereotaxic coordinates.]. The control of the flow of the injections was made by using electronic pump at 1 μ L/min for 5 min and followed by 2 min with the needle in the injection site to avoid reflux. After surgery, mice were allowed to recover from anesthesia in a temperature-controlled chamber and then placed in the individual cages.

Fluorescence tissue imaging systems in brain:(1) *ex vivo* mouse brain: we investigated P10 ability in mouse brain tissue by using the fluorescence tissue imaging system, mice were arranged by 3 groups (n=3 per group) as follows. (A) PBS-treated group; (B) **P10**-treated group; (C) Paraoxon ethyl (P.O.) and P10 treated group. After brains were isolated, the intact brain was floating on PBS containing **P10** (100 μ M) for 5 h incubation at 37 °C shaking incubator. In the case of P.O.-treated group, we pre-treated the paraoxon ethyl (200 μ M) to brain for 3 h at 37 °C shaking incubator and the brain then was floating on PBS containing **P10** (100 μ M) for 5 h incubation at 37 °C shaking incubator. Afterward, the brain was wash with PBS three times and then was fixed by 4% PFA for 12 h at 4°C. Then, the prepared samples were imaged by TPM. Detail condition for images (Lens zoom: 1.5 x; Focus: 63; Iris: F16.0; Filter: PE, Exposure time: 0.5 sec; Intensity low - high: 1330.9 - 4344.0). (2) in vivo imaging of brain: After unilateral injection of **P10** and 5-h incubation, the FTIS images were obtained. Detail condition for images (Lens zoom: 1.0 x; Focus: 110; Iris: F2.8; Filter: PE, Exposure time: 3.0 sec; Intensity low - high: 5123.9 - 39040.0).

Supporting Figures

Fig. S1 Plots of fluorescence intensity vs. the reaction time of **CP** (5 μ M) with CE, AChE and BChE (0.1 U/mL), respectively and control (5 μ M **CP** in PBS buffer) without enzymes. The measurements were performed at 37 °C in PBS (pH 7.4) with $\lambda_{ex/em} = 550/582$ nm. (excitation and emission slit widths were set to 5 nm and 2.5 nm, respectively).

Fig. S2 Fluorescence responses of 5 μ M of **CP** toward CE, BChE, and AChE at different concentrations (0-1 U/mL), respectively. The results are expressed as the mean \pm SD (n = 3). The measurements were performed at 37 °C for 0.5 h in PBS (pH 7.4) with $\lambda_{ex/em} = 550/582$ nm (excitation and emission slit widths were set to 5 nm and 2.5 nm, respectively).

Fig. S3 Fluorescence responses of **P1-P10** (5 μ M) toward AChE at different concentrations (0-10 U/mL), respectively. The results are expressed as the mean \pm SD (n = 3). The measurements were performed at 37 °C for 5 h in PBS (pH 7.4) with $\lambda_{ex/em} = 550/582$ nm.

Fig. S4 Fluorescence responses of 5 μ M of P1-P9 toward CE (0-1 U/mL), BChE (0-10 U/mL), and AChE (0-10 U/mL), respectively. The results are expressed as the mean \pm SD (n = 3). The measurements were performed at 37 °C for 5 h in PBS (pH 7.4) with $\lambda_{ex/em} = 550/582$ nm.

Fig. S5 Reaction kinetics of **P9** or **P10** with 5 U/mL of AChE (A), BChE (B), and CE (C). Relative reaction rate (*V*) of **P9** or **P10** in their corresponding concentration ranges. Data are expressed as the mean \pm SD (n = 3). $\lambda_{ex/em} = 550/582$ nm.

Table S1. Kinetic parameters of P9 for AChE, BChE and CE.

		P9	
onzumo	Km	$k_{\rm cat}$	$k_{\rm cat}/K_{ m m}$
enzyme	(µM)	(s ⁻¹)	(s ⁻¹ M ⁻¹)
AChE	6.45±0.5	0.24±0.01	$3.7 imes 10^4$
BChE	4.62±0.97	0.49±0.03	$1.1 imes 10^5$
CE	1.01±0.26	6.0±0.008	$5.9 imes10^6$

Table S2. Kinetic parameters of **P10** for AChE, BChE and CE.

	P10								
onzumo	K _m	k _{cat}	$k_{\rm cat}/K_{ m m}$						
enzyme	(µM)	(s ⁻¹)	$(s^{-1}M^{-1})$						
AChE	4.87±0.35	0.26 ± 0.004	$5.3 imes 10^4$						
BChE	4.37±0.72	0.1±0.003	$2.3 imes 10^4$						
CE	29.57±3.48	0.2±0.008	$6.8 imes 10^3$						
A 0.15 executive of the second	b a b 500 600 7 Wavelength (nm)	B ÷± 4000 ± 3000 2000 00 00 00 00 00 00 00 0	a b 00 650 700 Wavelength (nm)						

Fig. S6 Absorption and fluorescence spectra of P10 (5 μ M) before (a) and after reaction (b) with 20 U/mL of AChE. The inset shows the color change of the reactions. The measurements were performed at 37 °C for 5 h in PBS (pH 7.4) with $\lambda_{ex/em} = 550/582$ nm.

Fig. S7 Effects of (A) pH and (B) temperature on the fluorescence intensity of **P10** (5 μ M) with and without AChE (20 U/mL). The results are expressed as the mean \pm SD (n = 3). The measurements were performed at 37 °C for 5 h in PBS (pH 7.4) with $\lambda_{ex/em} = 550/582$ nm.

Fig. S8 Plots of fluorescence intensity vs. the reaction time of P10 (5 μ M) with varied concentrations of AChE (0-20 U/mL). The measurements were performed at 37 °C in PBS (pH 7.4) with $\lambda_{ex/em} = 550/582$ nm.

Fig. S9 Fluorescence responses of P10 (5 μ M) to various species: (1) blank; (2) KCl (150 mM); (3) MgCl₂ (2.5 mM); (4) CaCl₂ (2.5 mM); (5) ZnCl₂ (100 μ M); (6) glucose (10 mM); (7) vitamin C (1 mM); (8) tyrosine (1 mM); (9) cysteine (1 mM); (10) glycine (1 mM); (11) glutamic acid (1 mM); (12) Argnine (1mM); (13) Alanine (1 mM); (14) lysine (1 mM); (15) glutathione (1 mM); (16) urea (20 mM); (17) AChE (10 U/mL). The results are expressed as the mean ± SD (n = 3). The measurements were performed at 37 °C for 5 h in PBS (pH 7.4) with $\lambda_{ex/em} = 550/582$ nm.

Fig. S10 Fluorescence responses of **P10** (5 μM) to various species: (1) blank; (2) H₂O₂ (10 μM); (3) ClO⁻ (10 μM); (4) TBHP (10 μM); (5) •OH (10 μM); (6) TBO• (10 μM); (7) O2⁻ (10 μM); (8) $^{1}O_{2}$ (10 μM); (9) ONOO⁻ (10 μM); (10) NO₂⁻ (10 μM); (11) CO (10 μM); (12) NO (10 μM); (13) AChE (10 U/mL). The results are expressed as the mean ± SD (n = 3). The measurements were performed at 37 °C for 5 h in PBS (pH 7.4) with $\lambda_{ex/em} = 550/582$ nm.

Fig. S11 ESI mass spectra of the reaction solution of P10 with AChE. The peak at m/z = 212 reflects the generation of resorufin.

Fig. S12 HPLC kinetic profiles of different reaction systems. (a) Blank; (b) AChE solution; (c) the reaction solutions of **P10** (5 μ M) with AChE (50 U/mL); (d) 5 μ M **P10** (t_R = 5.73 min); (e) 5 μ M resorufin (t_R = 10.52 min). Absorbance detection at 550 nm with methanol (flow rate, 0.55 mL/min) and water (flow rate, 0.45 mL/min) as eluents.

Fig. S13 Inhibitory activity of P10 against paraoxon ethyl (10^{-9} - 10^{-3} M). $\lambda_{ex/em} = 550/582$ nm.

Fig. S14 The various cell viability for **P10** (0-40 μ M) toward different cell lines. (A) U87MG cells, (B) HEK293 cells and (C) N2A cells. Each error bar represents mean \pm SD.

Fig. S15 Fluorescence images of HEK293 cells, N2A cells and U87MG cells after being treated with **P10** (10 μ M) for 5 h at 37 °C. (a) The images of the first column and the second column were collected in the range of 571-700 nm for **P10** (ex. at 561 nm) and 415-550 nm for DAPI (ex. at 405 nm), respectively. The third column displays merged images. (b) Fluorescence intensity in each cell. (c) The activity of AChE in three cell lysates tested based on Ellman method. Statistical analysis was performed using one-way ANOVA followed by Tukey's post hoc test. Each error bar represents mean ± SD., vs HEK293, vs N2A, vs U87MG. (***p < 0.001). Intensity plotting was performed on Image J. Scale bar: 50 μ m.

Fig. S16 The representative images of mice brain with naked eyes under different conditions. The number of mice for each group is 3 (n = 3).

E.	6 μm	9 μm	12 μm	15 μm	18 μm	21 μm	24 μm
	30 µm	33 μm	36 µm	39 μm	42 μm	45 μm	48 μm
	54 μm	57 μm	60 µm	63 μm	66 µm	69 µm	72 μm
	78 μm	81 µm	84 μm	87 μm	90 µm	93 μm	96 µm
	102 μm	105 μm	108 µm	111 μm	114 μm	117 μm	120 μm
	126 µm	129 μm					

Fig. S17 Tissue images of lambda tissue derived from normal mouse brain at 3-129 μ m depths by each interval of 3 μ m as a step. Tissue after treatment of **P10** (100 μ M) for 5 h at 37 °C. Scale bar: 200 μ m. Two-photon mode: $\lambda_{ex} = 1000$ nm, $\lambda_{em} = 565-675$ nm.

3 µm	6 µm	9 µm	12 µm	15 μm	18 µm	21 µm	24 μm
St-	- ¥/	-\$1	-\$1	- <u>{/</u>	\$7 <u></u>		
27 µm	30 µm	33 µm	36 µm	39 µm	42 μm	45 μm	48 μm
51 μm	54 μm	57 μm	60 µm	63 μm	66 µm	69 µm	72 μm
75 μm	78 μm	81 µm	84 μm	87 μm	90 µm	93 µm	96 µm
99 µm	102 μm	105 µm	108 µm	111 µm	114 μm	117 μm	120 μm
123 μm	126 µm	129 μm	132 μm	135 μm	138 μm	141 μm	144 μm
147 μm	150 μm	153 μm	156 μm	159 μm	162 μm	165 μm	168 μm
171 μm	174 μm	177 μm	181 µm				

Fig. S18 Tissue images of left cerebral cortex colliculus derived from normal mouse brain at 3-181 µm depths by each interval of 3 µm as a step. Tissue after treatment of **P10** (100 µM) for 5 h at 37 °C. Scale bar: 200 µm. Two-photon mode: $\lambda_{ex} = 1000$ nm, $\lambda_{em} = 565-675$ nm.

3 µm	6 μ m	9 µm	12 μm	15 μm	18 µm	21 µm	24 µm
	_			and the second second	Constant of the	Sime-	State Com
27 µm	30 µm	33 µm	36 µm	39 µm	42 µm	45 μm	48 µm
Street	R.		The second	L.	R. Cal		
51 μm	54 µm	57 μm	60 µm	63 µm	66 µm	69 µm	72 µm
T.							
75 μm	78 μm	81 µm	84 µm	87 µm	90 µm	93 µm	96 µm
99 µm	102 μm	105 μm	108 µm	111 μm	114 μm	117 μm	120 µm
123 μm	126 µm	129 μm					

Fig. S19 Tissue images of right cerebral cortex colliculus derived from normal mouse brain at 3-129 μ m depths by each interval of 3 μ m as a step. Tissue after treatment of **P10** (100 μ M) for 5 h at 37 °C. Scale bar: 200 μ m. Two-photon mode: $\lambda_{ex} = 1000$ nm, $\lambda_{em} = 565-675$ nm.

3 μm	6 µm	9 µm	12 µm	15 μm	18 µm	21 µm	24 µm
				1	-1.5	1.5	175
27 µm	30 µm	33 µm	36 µm	39 µm	42 μm	45 µm	48 µm
1	a de Car	1	1	1	1	A.	and the second
51 µm	54 µm	57 µm	60 µm	63 µm	66 µm	69 µm	72 µm
de la compañía de la	and the second	and the second	and the	w.	w	area.	State of the second
75 µm	78 μm	81 µm	84 μm	87 µm	90 µm	93 µm	96 µm
Contraction of the second	Contraction of the second	Contraction of the second	and the second	Britania	Cartherin	-	
99 µm	102 µm	105 µm	108 µm	111 µm	114 µm	117 μm	120 μm
and and	Contraction of the local division of the loc	Contraction of	Contraction of the local diversion of the loc	and the second	-	The second	Contraction of the second
123 µm	126 µm	129 µm	132 μm	135 μm	138 µm	141 μm	144 μm
Contrast Contrast	Contraction Contraction	Stand Stand Stands	Contraction - series	(noter - not	a la parti de sera de sera de	Contraction Contraction	Sand Same Prov
147 μm	150 μm	153 μm	156 μm	159 μm	162 μm	165 μm	168 μm
- Aller and	- Aller and a second	- alternition	- And a state of the state of t	Surger and the second second	- Andrewskinskinskinskinskinskinskinskinskinskin	- and the second se	Cipherenter,
171 µm	174 μm	177 μm	181 μm	184 μm	187 μm	190 µm	193 µm
	- Andrew Constants	and the second second	and the second second	and the second second	Complete address of	and the second second	and a second second
196 µm	199 µm	202 μm	205 µm	208 µm	211 μm	214 µm	217 μm
220 µm	223 μm	226 µm	229 µm	232 µm	235 μm	238 µm	241 μm
- and the second	- Andrewson - A		and the second sec	and the second s	and the second s	and the second	1. and the second second

Fig. S20 Tissue images of middle cortex derived from normal mouse brain at 3-241 μ m depths by each interval of 3 μ m as a step. Tissue after treatment of **P10** (100 μ M) for 5 h at 37 °C. Scale bar: 200 μ m. Two-photon mode: $\lambda_{ex} = 1000$ nm, $\lambda_{em} = 565-675$ nm.

3 μm	6 μm	9 μm	12 µm	15 µm	18 µm	21 µm	24 µm
27 μm	30 µm	33 μm	36 µm	39 µm	42 µm	45 μm	48 μm
51 µm	54 μm	57 μm	60 μm	63 μm	66 μm	69 µm	72 μm
75 μm	78 μm	81 μm	84 μm	87 μm	90 μm	93 μm	96 µm
99 µm	102 μm	105 μm	108 μm	111 μm	114 μm	117 μm	120 μm
123 μm							

Fig. S21 Tissue images of inhibitor-treated lambda derived from normal mouse brain at 3-123 μ m depths by each interval of 3 μ m as a step. Tissue after treatment of **P10** (100 μ M) for 5 h at 37 °C. Scale bar: 200 μ m. Two-photon mode: $\lambda_{ex} = 1000$ nm, $\lambda_{em} = 565-675$ nm.

Fig. S22 ¹H-NMR spectrum of CP-1 (300 MHz, 298 K, CDCl₃).

Fig. S23 ¹³C-NMR spectrum of CP-1 (75 MHz, 298 K, CDCl₃).

Fig. S24 ¹H-NMR spectrum of **CP-2** (300 MHz, 298 K, CDCl₃).

Fig. S25 ¹³C-NMR spectrum of CP-2 (75 MHz, 298 K, CDCl₃).

Fig. S26 ¹H-NMR spectrum of **CP** (300 MHz, 298 K, CD₂Cl₂-d₂).

Fig. S28 ¹H-NMR spectrum of 1a (300 MHz, 298 K, CDCl₃).

Fig. S30 ¹H-NMR spectrum of 1b (300 MHz, 298 K, CDCl₃).

Fig. S32 ¹⁹F-NMR spectrum of 1b (300 MHz, 298 K, CDCl₃).

Fig. S34 ¹³C-NMR spectrum of **1c** (75 MHz, 298 K, CDCl₃).

Fig. S36. ¹³C-NMR spectrum of 1d (75 MHz, 298 K, CDCl₃).

Fig. S38 ¹³C-NMR spectrum of **1e** (75 MHz, 298 K, CDCl₃).

Fig. S40 ¹³C-NMR spectrum of **1f** (75 MHz, 298 K, CDCl₃).

Fig. S41 ¹H-NMR spectrum of **2a** (300 MHz, 298 K, DMSO-d₆).

Fig. S42 ¹³C-NMR spectrum of 2a (75 MHz, 298 K, DMSO-d₆).

Fig. S44 ¹³C-NMR spectrum of **2b** (75 MHz, 298 K, DMSO-d₆).

Fig. S45 ¹⁹F-NMR spectrum of 2b (300 MHz, 298 K, DMSO-d₆).

Fig. S46 ¹H-NMR spectrum of **2c** (300 MHz, 298 K, DMSO-d₆).

Fig. S47 ¹³C-NMR spectrum of 2c (75 MHz, 298 K, DMSO-d₆).

Fig. S48 ¹H-NMR spectrum of 2d (300 MHz, 298 K, DMSO-d₆).

Fig. S49 ¹³C-NMR spectrum of 2d (75 MHz, 298 K, DMSO-d₆).

S45

Fig. S55 ¹³C-NMR spectrum of 3a (75 MHz, 298 K, DMSO-d₆).

Fig. S56 ¹H-NMR spectrum of 3b (300 MHz, 298 K, CDCl₃).

Fig. S57 ¹³C-NMR spectrum of 3b (75 MHz, 298 K, CDCl₃).

Fig. S59 ¹H-NMR spectrum of 3c (300 MHz, 298 K, CDCl₃).

Fig. S61 ¹H-NMR spectrum of 3d (300 MHz, 298 K, CDCl₃).

Fig. S62 ¹³C-NMR spectrum of 3d (75 MHz, 298 K, CDCl₃).

Fig. S63 ¹H-NMR spectrum of 3e (300 MHz, 298 K, CDCl₃).

Fig. S65 ¹H-NMR spectrum of **3f** (300 MHz, 298 K, CDCl₃).

Fig. S67 ¹H-NMR spectrum of P1 (300 MHz, 298 K, CD₂Cl₂-d₂).

Fig. S69. ¹H-NMR spectrum of **P2** (300 MHz, 298 K, CD₂Cl₂-d₂).

Fig. S71 ¹⁹F-NMR spectrum of P2 (300 MHz, 298 K, CD₂Cl₂-d₂).

Fig. S73 ¹³C-NMR spectrum of P3 (75 MHz, 298 K, CD₂Cl₂-d₂).

Fig. S75 13 C-NMR spectrum of P4 (75 MHz, 298 K, CD₂Cl₂-d₂).

Fig. S77 ¹³C-NMR spectrum of P5 (75 MHz, 298 K, CD₂Cl₂-d₂).

Fig. S78 ¹H-NMR spectrum of P6 (300 MHz, 298 K, CD₂Cl₂-d₂).

Fig. S79 ¹³C-NMR spectrum of P6 (75 MHz, 298 K, CD₂Cl₂-d₂).

Fig. S80 ¹H-NMR spectrum of **P7-1** (300 MHz, 298 K, DMSO-d₆).

Fig. S81 ¹³C-NMR spectrum of **P7-1** (75 MHz, 298 K, DMSO-d₆).

Fig. S82 ¹H-NMR spectrum of P7-2 (300 MHz, 298 K, DMSO-d₆).

Fig. S83 ¹³C-NMR spectrum of P7-2 (75 MHz, 298 K, DMSO-d₆).

Fig. S84 ¹H-NMR spectrum of P7-3 (300 MHz, 298 K, DMSO-d₆).

Fig. S85 ¹³C-NMR spectrum of **P7-3** (75 MHz, 298 K, DMSO-d₆).

Fig. S86 ¹H-NMR spectrum of P7-4 (300 MHz, 298 K, DMSO-d₆).

Fig. S87 ¹³C-NMR spectrum of P7-4 (75 MHz, 298 K, DMSO-d₆).

Fig. S89 ¹³C-NMR spectrum of P7 (75 MHz, 298 K, CD₂Cl-d₂).

Fig. S91 13 C-NMR spectrum of P8 (75 MHz, 298 K, DMSO-d₆).

Fig. S93 ¹³C-NMR spectrum of P9 (75 MHz, 298 K, MeOD-d₄).

Fig. S94 ¹H-NMR spectrum of P10-1 (300 MHz, 298 K, DMSO-d₆).

Fig. S95 ¹³C-NMR spectrum of P10-1 (75 MHz, 298 K, DMSO-d₆).

Fig. S97 ¹³C-NMR spectrum of P10-2 (75 MHz, 298 K, CDCl₃).

Fig. S98 ¹H-NMR spectrum of P10-3 (300 MHz, 298 K, DMSO-d₆).

Fig. S99 ¹³C-NMR spectrum of P10-3 (75MHz, 298 K, DMSO-d₆).

Fig. S101 13 C-NMR spectrum of P10-4 (75 MHz, 298 K, DMSO-d₆).

Fig. S103 ¹³C-NMR spectrum of P10-5 (75 MHz, 298 K, DMSO-d₆).

ppm

Fig. S105 ¹³C-NMR spectrum of P10 (75 MHz, 298 K, DMSO-d₆).
References

- a) Wu, X.; Shi, W.; Li, X.; Ma, H. Angew. Chem. Int. Ed. 2017, 56, 15319-15323; (b) Bueno, C.; Villegas, M. L.; Bertolotti, S. G.; Previtali, C. M.; Neumann, M. G.; Encinas, M. V. Photochem. Photobiol. 2002, 76, 385-390.
- a) Zhou, J.; Li, L. H.; Shi, W.; Gao, X. H.; Li, X. H.; Ma, H. M. Chem. Sci. 2015, 6, 4884-4888; b) Uppu, R. M. Anal. Biochem. 2006, 354, 165-168; c) Liu, S. R.; Wu, S. P. Org. Lett. 2013, 15, 878-881; d) Peng, T.; Wong, N. K.; Chen, X.; Chan, Y. K.; Ho, D. H. H.; Sun, Z.; Hu, J. J.; Shen, J.; El-Nezami, H.; Yang, D. J. Am. Chem. Soc. 2014, 136, 11728-11734.
- Ellman, G. L.; Courtney, K. D.; Andres, V.; Featherstone, R. M. Biochem. Pharmacol. 1961, 7, 88-95.