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Glossary of technical terms 

 

Labelled dataset: The known co-crystal combinations that were extracted from Cambridge Structural Database 

(CSD) 

Unlabelled Dataset: The dataset of possible molecular combinations that was designed from ZINC15 Database 

Two dimensional descriptors: Descriptors calculated from the two-dimensional representation of a molecule 

(molecular graph) 

Bidirectional Dataset: A dataset constructed by concatenating the descriptor vectors in both directions (a,b) and 

(b,a) 

ECFP4: Extended Connectivity Fingerprint 
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1.   Generating the datasets 

1.1 Cocrystal extraction from Cambridge Structural Database (CSD) 

Starting from eight representative polyaromatic hydrocarbons (PAHs) we extracted all the co-crystals that include 

as a co-former either these or their structurally similar molecules. The structural similarity was measured with 

Tanimoto similarity (> 0.35). The multi-component crystal structures that contain solvent molecules were 

removed, keeping only the benzene like solvents, as they might hold information about π-π interactions. The 

solvents list implemented was the default CCDC most common solvent list. 

Table S1. Initial Polyaromatic Hydrocarbons (PAHs) for co-crystals extraction. 

CCDC 

Search 

Identifier 

Zinc Search 

Identifier 

Actual Name Molecular structure 

 

 

CORONE 

 

 

 

ZINC0000001580987 

 

 

CORONENE 

 

 

ZZZOYC04 

 

ZINC000001598876 

 

PICENE 

 

 

PENCEN 

 

ZINC000001581013 

 

PENTACENE 

 

 

TRIPHE 

 

ZINC000001688068 

 

TRIPHENYLENE 

 

 

 

 

 

 

 

PHENAN 

 

ZINC000000967819 

 

PHENANTHRENE 

 

 

FLUANT 

 

ZINC000008585874 

 

FLUORANTHENE 

 

 

 

 

CORANN01 

 

ZINC0000079045456 

 

CORANNULENE 

 

 

DNAPAN 

 

ZINC0000167079286 

 

DINAPHTHO,(1,2 

a:1',2'-h) 

ANTHRACENE 

 

 

Searching the Cambridge Structural Database: 
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For the extraction of the PAH co-crystals, the Python API functionality of CCDC was employed. The two main 

search functions used are the similarity and substructure search.1 The similarity search is based on the comparison 

of molecular fingerprints and works as following: given a query molecule, in our case the molecules were given as 

SMILES strings, a 2D structure-based search is performed to determine molecular components that are similar to 

the input. For each separate molecule in a crystal structure a molecular fingerprint of 2040 bits is generated, using 

all atom and bond paths up to ten atoms in a molecule.1 That search reveals not only single molecules but also 

combinations of molecules, potentially because of the large fingerprint space used.  

The similarity search function of the CSD Python API was applied to the starting PAHs, using the standard CSD 

fingerprint similarity search with a Tanimoto similarity threshold of > 0.35. The extracted structures were then 

filtered by removing duplicate structures (polymorphs), as there are several polymorphs for some co-crystals but 

as our machine learning workflow is based on the two-dimensional descriptors we only considered the two 

different types of molecules that exist in a structure and not the packing. The INCHI number of each molecule was 

implemented for the filtering as INCHI numbers are more unique whilst two different SMILES might represent the 

same molecule. After removing the duplicates, the extracted molecules were split into categories based on the 

number of times the molecules in the pair appear. In that way we can measure the molecular stoichiometry. For 

the category including only single components the substructure search was further applied to detect any potential 

combinations that were not found from the similarity search. The same filters were applied as for the similarity 

search. 

A substructure search was implemented to search for structures containing a required component, which was in 

our case the co-crystals containing at least one of the starting PAHs or any molecule similar to them as found from 

the similarity search. 

After obtaining the final co-crystals dataset the structures that include common solvents are removed, except 

from those containing benzene-like solvents that might hold important information about π-π interactions. 

The percentage of the extracted PAH co-crystals connected with π-π stacking out of the whole co-crystals dataset 

was measured after calculating the number of existing co-crystals in the CSD database. The whole CSD was 

searched for structures containing two different molecules using the same search settings as for the extraction of 

PAHs co-crystals: 

settings.only_organic = True 

settings.not_polymeric = True 

settings.has_3d_coordinates = True 

settings.no_disorder = True 

settings.no_errors = True 

settings.no_ions = True 

settings.no_metals = True 

We identified 13,817 co-crystals including co-crystals containing benzene-like solvents (solvates), meaning that 

the 1,722 PAH co-crystals connected with π-π stacking compose the 12% of the total. 
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Figure S1. Flow diagram for PAH co-crystals extraction. The search starts with 8 representative PAHs and Python 

API CCDC is employed for extracting all the co-crystals that are formed from these 8 molecules or molecules that 

are similar to them on the basis of molecular fingerprints (ECFP4 > 0.35 Tanimoto Similarity). The extracted 

dataset was further filtered for removing co-crystals containing molecules with acidic parts.  
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1.2 Designing the unlabelled (ZINC15) Dataset 

A search of the ZINC15 database for molecules similar to the eight initial molecules of Table 1 on the basis of 

molecular fingerprints with a Tanimoto similarity threshold of > 0.35, which are purchasable and do not contain 

incompatible functional groups, afforded a library of 210 candidate molecules. All the possible order invariant 

pairwise combinations of these candidates compose the unlabelled dataset. Similarity search in ZINC15 is based 

on 512 bit ECFP4 fingerprints2, meaning that the atomic environment between two under comparison molecules 

is four bonds length with size of fingerprint is 512 bits. It is well discussed that different libraries present significant 

structural variations and thus the ECFP features can have quite different values3. The small overlap between Zinc 

and CSD databases can be explained in that way, especially if we consider how CSD database performs the 

similarity search.  

1.2.1 Filtering with Pipeline Pilot 

The filtering for incompatible functional groups in both the labelled and unlabelled dataset was performed using 

Pipeline Pilot4 with the following workflow. 

 

Figure S2. Pipeline Pilot workflow. 

 

 

 

 

 

 

 

Figure S3. Substructure SMARTS5 filter for detecting the molecular combinations with at least one molecule with 

acidic hydrogens. 

 

Substructure Smarts Filter 
 

[$([OH]-*=[!#6])] 

[NX3;H2,H1] 

[OX2H] 

[CX3H1](=O)[#6] 

[SX2H] 

[nH] 

[CX4][F,Cl,Br,I] 

[#6]1[O][#6]1 
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2.   One class classification Review 

Distribution based. Methods in this category are basically inspired from statistical modelling. They deploy 
some standard distribution model (e.g., normal distribution) and flag as outliers the instances that deviate 
from the model, whereas inliers are those that follow the same distribution.6 Typical examples are the 
Autoencoders and the Gaussian Mixture models. 

Density based. These methods assume that normal data points occur around a dense neighbourhood. 
The local outlier factor (LOF) approach is one of the well-known algorithms in this category, where normal 
points get low LOF values as they belong to a local dense neighbourhood. The density of a neighbourhood 
is estimated using the distance to the k nearest neighbours, with k being the minimum number of 
neighbours used for defining the local neighborhood.7 

Distance based. Among other distance based methodologies, k-nearest neighbour algorithm ranks each 
point on the basis of its distance to its kth nearest neighbor.2,7 The lower the distance the closer to the 
normal data is the point. 

Clustering based. Clustering Based Local Outlier Factor (CBLOF) is an algorithm developed for considering 
both the size of clusters and the distance between points and the closest cluster. Each datapoint is then 
assigned a score/outlier factor based on these considerations.9 

Support Vector Machine. One class support vector machine algorithm (OCSVM) is an extension on the 
well-known support vector machine technique. The planar approach of OCSVM is about finding a linear 
boundary to maximally separate all the data points from the origin, whereas the spherical approach 
designs a spherical boundary in feature space around the data (the hypersphere) and the algorithm tries 
to minimize the volume of the hypersphere.10  

Histogram-based. For each single feature, a univariate histogram is constructed where the height of the 
bins gives an estimation of the density. Then, the score of each point is calculated by combining all the 
histograms using the corresponding height of the bins where the point is located.11 

Forest-based. Whilst most of the aforementioned models are essentially used to profile the normal 
labelled data, this model is focused on isolating anomalous instances. The isolation forest algorithm is 
recursively randomly partitioning a randomly selected feature between its minimum and maximum 
values. The number of recursive partitions, represented as a tree structure, required to isolate an instance 
is equivalent to the path length from the root node to the terminating node. The instances with short 
path lengths are regarded as anomalies with the anomaly score being computed by the mean anomaly 
score of the trees in the forest.12 

Ensemble-based. The ensemble technique involves a number of base detectors being fitted to different 
sets of features of the dataset and the outliers are identified based on the probability of each point being 
an anomaly. Representative model of this category is the feature bagging algorithm.13 

Deep One Class. In contrast to traditional approaches which make use of heuristics or statistical methods, 
deep learning approaches stack multiple processing layers one above another with each layer providing 
higher order interactions among the features. Deep learning approaches specifically designed for one 
class classification are not yet very widespread. The majority of the existing models involve neural 
networks being trained to perform tasks other than one class classification which are then adapted for 
use in the one class problems. Deep networks designed for one class (anomaly detection) involve the 
objective function of a traditional one class approach. However, they are trained deeper i.e., using more 
layers and in higher dimensions for fitting the appropriate function to the normal data. Deep learning 
models could easily handle more complex molecular representations as inputs, e.g., SMILES strings or 3D 
molecular configurations.14 

All the aforementioned algorithms were tested for solving the co-crystal prediction problem. It should 
be highlighted that there is no single 'best’ method for dealing with one class classification tasks. The 
appropriateness of each algorithm is highly associated with the problem to be solved and the available 
dataset. 
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2.1 Standard One Class Classification Algorithms 

2.1.1 Feature Engineering 

Feature engineering based on correlations between the Dragon descriptors of the conformers of the known 

dataset. The most important descriptors were found to be the following: 

 

Table S2. Pairwise correlations of the most important Dragon descriptors. 

Dragon Descriptor Description Pearson 
Correlation 

Spearman 
Correlation 

p-value 

nBT molecular weight 0.403 0.620  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

< 10-5 

nHet number of heteroatoms  
0.515 

 
0.685 

ZM1V first Zagreb index by valence vertex degrees 0.528 0.729 

DBI Dragon branching index 0.548 0.654 

ICR radial centric information index 0.546 0.422 

MAXDN maximal electrotopological negative variation 0.440 0.600 

MAXDP maximal electrotopological positive variation 0.426 0.626 

DELS molecular electrotopological variation 0.414 0.629 

CIC0 Complementary Information Content index 
(neighborhood symmetry of 0-order) 

0.298 0.515 

J_D/Dt Balaban-like index from distance/detour matrix 0.323 0.424 

SM1_Dz(Z)         spectral moment of order 1 from Barysz matrix 
weighted by atomic number 

0.551 0.627 

SM1_Dz(v)         spectral moment of order 1 from Barysz matrix 
weighted by van der Waals volume 

0.404 0.479 

SM1_Dz(e)         spectral moment of order 1 from Barysz matrix 
weighted by Sanderson electronegativity 

0.480 0.558 

HyWi_B(s)         hyper-Wiener-like index (log function) from 
Burden matrix weighted by I-State 

0.744 0.682 

SpMax4_Bh(m)      largest eigenvalue n. 4 of Burden matrix 
weighted by mass 

0.541 0.571 

SpMax3_Bh(s)      largest eigenvalue n. 3 of Burden matrix 
weighted by I-state 

0.422 0.482 

SpMax7_Bh(s)      largest eigenvalue n. 7 of Burden matrix 
weighted by I-state 

0.439 0.542 

P_VSA_v_2         P_VSA-like on van der Waals volume, bin 2 0.501 0.684 

P_VSA_s_6         P_VSA-like on I-state, bin 6 0.522 0.704 

Eta_F_A           eta average functionality index 0.434 0.438 

Eig02_AEA(dm)     eigenvalue n. 2 from augmented edge 
adjacency mat. weighted by dipole moment 

0.530 0.539 

Eig03_AEA(dm)     eigenvalue n. 3 from augmented edge 
adjacency mat. weighted by dipole moment 

0.609 0.572 

nHAcc         number of acceptor atoms for H-bonds (N,O,F)  0.449 0.620 

Uc                unsaturation count 0.520 0.551 
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Figure S4. A demonstration of the effect the implemented one class classification/anomaly detection algorithms 

have on the initial dataset when projected in two-dimensions. Principal Component Analysis (PCA) was employed 

are the dimensionality reduction techinique. The expained variance is 67.61% for the first Principal Component 

and 4.95% for the second. All the dimensions are implemented (3700). The outliers found each time either belong 

to to labeled dataset as noise or to the unlebeled dataset as the outling part.  
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Figure S5. Pairwise correlations of the scores of the known (yellow) and unknown (green) data using standard 

one-class classification algorithms.  Each algorithm uses a different scoring function to assign scores to the 

molecular combinations, giving in all the cases higher scores to the known (training set) whereas only a certain 

part of the unknown combinations (test set) is getting high scores and can be regarded as inliers. 
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Figure S6: Heat-maps with the scoring of each algorithm on the unlabelled dataset.  
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Figure S7. Illustration of ensemble learning technique used for combining the scores of each of the standard 

models. 

 

 

 

Figure S8. Labelled/Unlabelled scores distribution and test scoring matrix using the ensemble of one-class 

classification algorithms. 

HBOS kNN GMM 

Known Dataset  

OCSVM CBLOF Isolation 

Forest 
Feature 

Bagging 

LOF 

Scores1 Scores2 Scores3 Scores4 Scores5 Scores6 Scores7 Scores8 

Final Score 

Average 
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2.2 Deep One Class (SetTransformer-DeepSVDD) 

The neural network architecture is adapted from Ruff et al,15 namely DeepSVDD. The convolutional autoencoder 

used on DeepSVDD network was replaced with an attention based autoencoder which is permutation invariant, 

namely SetTransformer. The architecture of SetTransformer was adapted from Lee et al16 and was used for 

learning the representation of the molecular pair such that they will be perceived as order invariant vectors. 

SetTransformer includes two stacked SABs (Set Attention Block) and one PMA (Pooling by Multihead Attention) 

layers in the encoder followed by two linear decoder layers. The first part of the encoder independently acts on 

each element of the vector (SAB) and then on the second part the encoded features are aggregated to produce 

the desired output. The decoder part is only used for the initialization of the weights and then is not further 

employed in the training. The loss function of DeepSVDD is referred to the minimization of the volume of a 

hypersphere that includes the normal data. In our case as normal data we regarded all the known co-crystals 

extracted from CCDC. The hyperparameters of the network (number of epochs and learning rate) were selected 

based on k-fold cross validation such that after minimizing the volume of the hypersphere significantly, the 

majority of the datapoints of the hold-out test are found in the hypersphere 

 

Figure S9. Neural Network Architecture. 
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Figure S10. a) Labelled/Unlabelled scores distribution and test scoring matrix using the ensemble of one-class 

classification algorithms. b) training loss after 60 epochs implementing DeepSVDD network. 

The reproducibility of the model was checked after performing the pretraining and training steps for 30 times 

with a varying number of seeds keeping 10% as a validation set each time. The mean Pearson correlation of the 

predicted scores was 0.96 with mean standard deviation 0.0017 That is an indication that there is high 

reproducibility of the results and thus for being able acquire the same results each time the seed was set to 0.  
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2.3 Evaluation and Comparison of the models 

Table S3. Short description and hyperparameter settings of the models used for one-class classification. 

Bayesian optimization was implemented to determine the best performance of a single model. 

Model Model Description Tuned hyperparameters Explanation 

 
 

CBLOF 

Cluster-based algorithm. 
Calculates the distance 
between points and the 
closest cluster. 

 
alpha=0.9 

Ratio of the number of samples in 
large clusters to the number of 
samples in small clusters. 
 

beta=4 
 

Coefficient for cluster size 
 

n_clusters=10 Number of clusters 

 
kNN 

Measures the distance of each 
observation to its k-nearest 
neighbour 

n_neighbors=17 
 

Number of neighbours 

method=’mean’ The average of all k neighbours is 
used as the outlier score 

 
 

HBOS 

Calculates the density of an 
area based on the height of 
the constructed histogams 

n_bins=15 
 

Number of bins 

alpha=0.7 Regularizer for preventing overflow 

 
Feature  
Bagging 

(LOF is set 
by default 

as the basis 
algorithm) 

Selects a subset of features 
which induce diversity to a 
base detector 

n_neighbors=8 Number of neighbours 

 
Iforest 

Builds an ensemble of random 
trees for a given dataset and 
calculates the average path 
length 

n_estimators=400 Number of estimators 

 
 

OCSVM 

Estimates the support vector 
of the known distribution 

 
kernel=’rbf’ 
 

Kernel type to be used  

nu=0.08 Regularization parameter 

 
LOF 

Measures the local deviation 
of density of a given sample 
with respect to its neighbours 

n_neighbors=10 Number of neighbours 

 
 

GMM 

Attempts to find a mixture of 
multi-dimensional Gaussian 
probability distributions that 
best model the input dataset. 

n_components=6 Number of components 

covariance_type='spherical’ each component has its own general 
covariance matrix 

 
 

DeepSVDD 

 
Considers that all known 
points belong to a 
hypersphere, the volume of 
which should be minimized 

Batch_size=200 
 

Batch size of input 
 

Num_epochs=60 
 

Number of epochs: a single pass 
through all the training data 

lr=10-5 Learning rate 
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Figure S11. Illustration of the input on the algorithms. 
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As there are no negative data (known outliers) for performing the typical evaluation steps, which would be based 

on measuring the AUC or APR, we measure the performance both of the neural network and the traditional 

classifiers based on the True Positive Rate (TPR%), i.e., the percentage of correctly classified positive data. In more 

detail, the labelled dataset was split in five-fold using k-fold cross validation, with four-folds being used for the 

training and one-fold (hold-out data) for the validation. As we assume that 95% of the labelled data are normal 

with a 5% of noise, a threshold is set as the score above which 95% of the labelled data is scored. Both the k-fold 

cross validation and the response of the models in the increasing amount of data are investigated for deciding 

the best model.  

 

Figure S12. Box plots showing the accuracy of the models after k-fold cross-validation using five folds. 

 

 

Table S4. Evaluation metrics for the implemented models. 

 

 

 

 

 

 

 

 

 

 
Model 

Accuracy 
(TPR%) 

Deviation 
(%) 

GMM 93.05 2.03 
kNN 93.00 1.87 

HBOS 92.27 4.90 
Feat_Bagging 93.43 0.85 

Iforest 92.21 2.31 
OCSVM 90.88 1.69 

LOF 93.46 1.07 
CBLOF 91.52 2.99 

Ensemble 94.01 1.53 
DeepSVDD 94.36 0.74 
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Figure S13. Learning curves (TRP %) and standard deviation (%) of all the implemented models. 
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3. Visualizing the predicted pairs 

The analysis of the outcomes of the two workflows, i.e., the standard approaches and the deep one class, is 

performed as following: 

i) The top scored pairs are shown and compared with the closest scores-wise structure of the labelled dataset 

(training set). 

ii) The most popular co-formers are identified by counting how many times each co-former is found in high score 

pairs (upper quartile) 

iii) The predicted pairs are separated into lists based on the following criteria: 

a) No constrains 

b) Pairs after removing solvents 

c) Pairs including one of the initial PAHs 

c) Pairs without solvents and heteroatoms 

e) Pairs including heteroatoms 

f) Pairs including 1,6 dicyanoanthracene, the most similar (Tanimoto Similarity) molecule to TCNQ (well 

known for the electronic properties) 

g) Pyrene-cocrystals 

 

Figure S14. Examples of top scored combinations and most similar score-wise CSD entry for both workflows 

followed. On the first row we can observe the existing CSD molecular pairs, whereas on the second row is the 

closest in score predicted pair among those in ZINC15. Some of these trends could be seen in one of the high score 

pairs shown in Figure 6. It is easily observed that in this pair, the one co-former has both high molecular weight 

and distinctive branching index, whereas the pairing molecule lacks both a high molecular weigh and branching. 

This is in good accordance with the trends seen in the molecular weight and branching index between pairs. 

Obsiously the high score is not only based on these two descriptors as a wide range of different descriptors is 

taken into consideration of the deep learning model. 
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3.1. Ensemble Predictions 

 

 

Figure S15. Bar chart of the top ten co-formers forming high scoring pairs according to the ensemble, that belong 

to the top quartile of the unlabelled dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure S16.  Predicted high score pairs with pyrene as a co-former, after removing the solvents, as predicted by 

the ensemble method. 
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3.2. Deep One Class predictions 

 

 

Figure S17. Bar chart of the top ten co-formers forming high scoring pairs that belong the top quartile of the 

unlabelled dataset. Pyrene appears as the most popular co-former among the top quantile. 
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Figure S18. Molecular pairs formed by the most popular co-formers as predicted using the deep learning 

approach. Pyrene was identified as the most popular co-former as the majority of the possible pyrene co-crystals 

were assigned with high scores. The arrows indicate the direction of higher score (vertical arrow) and higher 

popularity (horizontal arrow). 
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 Table S5. Top scoring pairs with no constrains.  

 

 

 

Table S6. Top scoring pairs after removing the benzene-like solvents. 

 

 

 

 

 

0.943 

 

0.942 

 

0.941 

 

0.949 

 

0.954 

 

0.963 

 

0.950 

 

0.951 

 

0.977 

 

0.866 

 

0.865 

 

0.865 

 

0.861 

 

0.861 

 

0.859 

 

0.858 
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Table S7. Top-scored predictions that include heteroatoms. 

 

 

 

Table S8. Top scored pairs with at least one of the initial molecules. 

 

 

 

 

 

0.866 

 

0.853 

 

0.852 

 

0.852 

 

0.843 

 

0.839 

 

0.838 

 

0.836 

 

0.834 

 

0.868 

 

0.849 

 

0.848 

 

0.847 

 

0.844 

 

0.839 

 

0.837 

 

0.829 

 

0.827 
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Table S9: Predictions which include 9,10-dicyanoathracene molecule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S10: Predictions which include 6H-benzo[c]chromen-6-one molecule. 

 

 

 

 

 

0.729 

 

0.723 

 

0.722 

 

0.713 

 

0.705 

 

0.704 

 

0.702 

 

0.703 

 

0.813 

 

0.812 

 

0.803 

 

0.798 

 

0.797 

 

0.787 

 

0.782 

 

0.781 

 

0.780 

 

0.701 
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Table S11: Predictions which include pyrene. 
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4. Predicting Molecular Stoichiometry 

For the prediction of molecular stoichiometry on the labelled dataset the XGBoost classifier was implemented. 

The hyperparameters were optimized using the hyperopt library. 

 

 

Figure S19. Evaluation metrics on the ratios prediction. a) Training/test accuracy with XGBoost Classifier on the 

prediction of ratios using the initial bidirectional dataset (left) and after using the latent representation (right). 

The highest accuracy achieved on the test set was 77% whilst overfitting on the training data. When the latent 

dimension of the deep network was used as the input the training was more effective, achieving more than 90% 

accuracy and no-overfitting.  It can be postulated that using an Attention-based encoder for capturing the relation 

between the molecular pairs, a better representation can be achieved. b) Classification reports on the validation 

set using the bidirectional dataset (left) and the latent representation (right). 
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Table S12: Predicted ratios for the high-scored pyrene co-crystals. 

Molecular Pair Ratio 

  

1:1 

  

1:1 

  

1:1 

  

1:1 

  

1:1 

  

>1:1 

  

>1:1 
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5. Interpretability  

SHAP (Shapley Additive exPlanations) was implemented as a model interpretation framework for providing 

chemical insights into predictions. Rationalizing model decisions would assign priority to meaningful experimental 

attempts and help the chemists to choose the next molecular pair worth testing. SHAP is a model independent 

method, meaning that it is not takes into consideration the feature weights but measures the influence each 

feature change has on the final decision of the model. In other words, by calculating Shapley values, the 

contribution of each feature of each combination to the final score is estimated. 

The overall SHAP formula is shown in equation (1), where 𝑔 is the explanation model, M is the number of 

simplified input features, 𝜑𝑖  𝜖 ℝ is the feature attribution for a feature 𝑖, 𝑧ʹ 𝜖 {0,1} 𝑀  , and 𝜑0 represents the 
model output with all the simplified inputs missing. 

𝑔(𝑧′) = 𝜑0 + ∑ 𝜑𝑖𝑧′𝑖
𝛭
𝜄=1  (1) 

To obtain the contribution of a feature i, all operations by which a feature might have been added to the set (N!) 

and a summation over all possible sets (S) is considered. For any feature sequence, the marginal contribution 

through addition of feature i is given by [f(S∪{i}) − f(S)], where f(S) corresponds to the output of the ML model. 

The resulting quantity is weighted by the different possibilities the set could have been formed prior to feature 

i’s addition (|S|!) and the remaining features could have been added ((|N| − |S| − 1)!). Hence, the importance of 

a given feature is defined by equation (2):  

𝜑𝑖 =
1

𝑁!
∑ |𝑆|! (|𝑁| − |𝑆| − 1)! [𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]𝑆⊆𝐍\{𝐢}   (2) 

It follows that Shapley values represent a unique way to divide a model’s output among feature contributions 

satisfying three axioms: local accuracy (or additivity), consistency (or symmetry), and nonexistence (or null effect). 

Using the SHAP approach, the identification and prioritization of features that determine the pairs ranking is 

enabled. In that way we can extract the connection between the molecular properties and co-crystallisation. In 

addition to model accuracy, the interpretability of the predictions is adding value to any machine learning model.  

High negative Shapley values are driving the model towards outliers, whereas as high positive values are 

supporting the decision for inlierness. Initially, we tried to get the whole picture of the model and have an 

indication for the important features that dominate the training set. GradientExplainer method was used on the 

whole bidirectional dataset such that the position of the molecule will not matter. The summary plot with the 

features’ contribution in descending order of importance is shown in Figure S20. The red and blue values indicate 

high and low values respectively, with high positive red enhancing the decision of inlierness and high negative red 

driving towards the decision of anomaly. The feature value reflects the contribution the feature makes to the final 

score of the molecular pair.  

Model interpretation inherently depends on the interpretability of the implemented descriptors or features. 

Herein, we used all the available Dragon descriptors as we wanted to compare with previous statistical analysis 

on the CSD based on similar descriptors and also to gain a physical meaning for the PAHs co-crystals to enable an 

experimental chemist to understand dominating patterns and prioritize the experimental work.  
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5.1 Interpreting the labelled dataset. 

A density scatter plot of SHAP values was employed for illustrating the feature importance. Herein, it can be seen 

the impact each feature has on the model scoring for each individual pair in the labelled dataset. Features are 

sorted by the sum of the SHAP value magnitudes across all samples. In the plot the density of the datapoints can 

also be observed on the lumpier areas, as on the y axis the distribution of the datapoints is shown. 

 

 

Figure S20. Summary plot of Shapley values for global interpretation of the bidirectional dataset. The Shapley 

value of each feature represents its contribution towards the model’s output. Red positive values are driving to 

higher scores and boosting inlierness, whereas red negative values tend to descrease the final score and hence 

outlierness. Blue values are idicative of low feature value. As for many of the features calculated by Dragon 

software a physical meaning is hard to be extracted, the correlations among the most significant descriptors with 

those that are more general is calculated.  
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5.2 Interpreting the pyrene co-crystals subset. 

 

The advantage of using the Shapley analysis is that we can zoom in to a subset of interest and gain some knowledge 

about the important features in some molecular pairs of interest. In the work, as pyrene was identified as a popular 

co-former and was used for the experimental screening, the pyrene co-crystals family of materials was further 

investigated to extract the feature importance and understanding which properties dominate in the existing 

pyrene pairs. As the pyrene is a set molecule, it took the first place on the molecular vector and the pairing 

molecules were always second. As we are interested in the contribution of the pairing molecule only the features 

related to them are shown in the summary plot below. For those molecules where shape matters, it has more 

impact than the existence of heteroatoms. It can be postulated that in cases where we have a pairing molecule 

with no heteroatoms, then the shape will play an importanct role in the pyrene co-crystal formation. 

 

 

Figure S21.  Shapley values showing the important descriptors for molecules pairing with Pyrene in the labelled 

dataset. Only the contributions of the second co-formers are shown here.  The presence of heteroatoms in several 

topological distances in the molecule are those that seem to contribute more, as indicated by the B04[C-O], B03[C-

O], B01[C-N], B04[C-N], X%, B02[C-F] descriptors. The notable elements are N and O. So we could expect that 

molecules with these groups in the certain topological distances and high scores (as the score is the outcome of 

the consideration of all the known features) are good candidated for forming co-crystals with Pyrene.  
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5.3 Important correlations between descriptors 

Table S13. Descriptors correlated to the descriptors identified as important for the decisions of the deep learning 

model.  The correlation between the descriptors follows a previously reported method.17  

Descriptor Correlated 
Descriptors 

Correlation Description Related Physical Meaning 

B06[C-C] 
 
 

B07[C-C]           
          
 

0.857434 Presence/absence of C - C at 
topological distance 7 

atom pairs descriptors that 
describe pairs of atoms and bond 
types connecting them in 2D space 

B05[C-C]           0.812225 Presence/absence of C - C at 
topological distance 5 

atom pairs descriptors that 
describe pairs of atoms and bond 
types connecting them in 2D space 

ATS6i ATS6e 0.998216 Broto-Moreau 
autocorrelation of lag 6 (log 
function) weighted by 
Sanderson electronegativity 

electronegativity 

ATS5e 0.983335 Broto-Moreau 
autocorrelation of lag 5 (log 
function) weighted by 
Sanderson electronegativity 

electronegativity 

ATS5i 0.981890 Broto-Moreau 
autocorrelation of lag 5 (log 
function) weighted by 
ionization potential 

ionization potential 

SpMax8_B
h(i) 

0.928269 largest eigenvalue n. 8 of 
Burden matrix weighted by 
ionization potential 

Ionization potential 

SpMax8_B
h(p) 

0.923641 largest eigenvalue n. 8 of 
Burden matrix weighted by 
polarizability 

polarizability 

ATS8e 0.927747 Broto-Moreau 
autocorrelation of lag 8 (log 
function) weighted by 
Sanderson electronegativity 

electronegativity 

Vx          
0.913402 

McGowan volume shape 

Si         0.945914  sum of first ionization 
potentials (scaled on Carbon 
atom) 

Ionization potential 

Se         0.940544  sum of atomic Sanderson 
electronegativities (scaled on 
Carbon atom) 

electronegativity 

nBT 0.934793 number of bonds general 

Sp         0.923744 sum of atomic polarizabilities 
(scaled on Carbon atom) 

polarizability 

Sv 0.913610 sum of atomic van der Waals 
volumes (scaled on Carbon 
atom) 

shape 

IAC              0.900917 total information index on 
atomic composition 

composition 
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S1K  0.887118 1-path Kier alpha-modified 
shape index 

Shape 

Eta_epsi  0.875800 eta electronegativity 
measure 

electronegativity 

SAtot  0.871258 total surface area from 
P_VSA-like descriptors 

polarity 

Pol  0.863927 polarity number polarity 

nSK  0.853433 number of non-H atoms general 

MW                 0.828710 Molecular weight general 

Eig06_AEA(

dm):  

Eig05_AEA(
dm) 

0.956601 eigenvalue n. 5 from 
augmented edge adjacency 
mat. weighted by dipole 
moment 

 
 
dipole moment 

Eig7_AEA(d
m) 

0.938136 eigenvalue n. 7 from 
augmented edge adjacency 
mat. weighted by dipole 
moment 

 
dipole moment 

Eig08_AEA(
dm) 

0.918267 eigenvalue n. 8 from 
augmented edge adjacency 
mat. weighted by dipole 
moment 

 
dipole moment 

Ram               0.792930 Ramification branching 

Eta_B 0.778573 eta branching index Shape 

ChiA_Dz(p) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SpMaxA_B(
p) 

0.910006 normalized leading 
eigenvalue from Burden 
matrix weighted by 
polarizability 

polarizability 

WiA_B(p) 0.908640 average Wiener-like index 
from Burden matrix 
weighted by polarizability 

polarizability 

ChiA_Dz(e) 0.901665 average Randic-like index 
from Barysz matrix weighted 
by Sanderson 
electronegativity 

electronegativity 

UNIP  0.933653 unipolarity Polarity 

Sv                
 

0.822757 sum of atomic van der Waals 
volumes (scaled on Carbon 
atom) 

shape 

MW                0.822103 Molecular weight molecular weight 

VvdwMG  0.819518 van der Waals volume from 
McGowan volume 

Shape 

Vx  0.819518 McGowan volume shape 

Si                0.815686 sum of first ionization 
potentials (scaled on Carbon 
atom) 

Ionization potential 

Pol               0.805521 polarity number polarity 

Sp                0.795808 sum of atomic polarizabilities 
(scaled on Carbon atom) 

polarizability 
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SpMin5_Bh

(s) 

ATS3i 0.921903 Broto-Moreau 
autocorrelation of lag 3 (log 
function) weighted by 
ionization potential 

ionization potential 

ATS3e   0.917570 Broto-Moreau 
autocorrelation of lag 3 (log 
function) weighted by 
Sanderson electronegativity 

electronegativity 

SpMin5_Bh
(e) 

0.915201 smallest eigenvalue n. 5 of 
Burden matrix weighted by 
Sanderson electronegativity 

electronegativity 

Sv               0.898829 sum of atomic van der Waals 
volumes (scaled on Carbon 
atom) 

shape 

Sp               0.895652 sum of atomic polarizabilities 
(scaled on Carbon atom) 

polarizability 

Si               
              

0.882950 sum of first ionization 
potentials (scaled on Carbon 
atom) 

Ionization potential 

Se 0.881810 sum of atomic Sanderson 
electronegativities (scaled on 
Carbon atom) 

electronegativity 

Vx               
 

0.878079 McGowan volume shape 

VvdwMG           0.878079 van der Waals volume from 
McGowan volume 

shape 

MW                 0.803832 Molecular weight molecular weight 

Ram               0.800056 Ramification shape 

Eig06_EA(b
o) 
 

Pol         0.888838 
 

Polarity number polarity 

CSI       
 

0.887028 eccentric connectivity index shape 

UNIP 0.871951 unipolarity polarity 

Sv        
 

0.859414 sum of atomic van der Waals 
volumes (scaled on Carbon 
atom) 

shape 

MW 
 

0.834828 Molecular weight general 

Ram 
 

0.831023 Ramification branching 

Vx 
 

0.818124 van der Waals volume from 
McGowan volume 

shape 

VvdwMG            0.818124 van der Waals volume from 
McGowan volume 

Shape 

Sp 0.811851 sum of atomic polarizabilities 
(scaled on Carbon atom) 

polarizability 
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5.4 Descriptor distributions 

As the main principle of machine learning is to encounter some underlying structure in the data, we visualize the 

distribution of the labelled dataset, used as the training set and the extracted distribution of the unlabelled 

dataset to compare the general patterns. The investigated properties are separated into the following categories: 

i) General descriptors, ii) Shape descriptors, iii) Polarity descriptors, iv) Size descriptors and v) Electronic 

descriptors. 

 

General Descriptors 
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Figure S22. Extracted Patterns from the Deep learning model for some important general descriptors. 
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Shape Descriptors 

 

 

 

Figure S23. Extracted Patterns from the Deep learning model for shape descriptors. 
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Polarity Descriptors 
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Figure S24. Polarity descriptors distribution. 
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Size Descriptors 

 

 

 
 

Figure S25. Size descriptors. 
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Electronic Descriptors 

 

 
 

Figure S26. Electronic descriptors. 
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6. Experimental Realization (Pareto Optimization) 

As our target is to design functional materials, for the selection of the co-formers to be experimentally tested 

some further important parameters are taken into consideration. These parameters refer to common factors that 

a synthetic chemist will use as a guideline for the experimental design: quick availability, novelty and possible 

electronic properties. The decision making was driven by a commonly used criterion for determining solutions to 

multi-objective optimization problems, the Pareto optimality.18 The co-formers to be tested are the Pareto 

Optimal points regarding the high score and the similarity to TCNQ molecule, which is well-known for the 

interesting electronic properties as a co-crystal co-former.18 A point is regarded as Pareto optimal in cases where 

there is no other point such that the desired objectives are improved simultaneously, i.e. both score and structural 

similarity to TCNQ are maximized. 

Table S14. Pareto ranking when optimizing 5 parameters as acquired from Pipeline Pilot. (optimized parameters: 

Price -> maximized, number of_cocrystal -> minimized, Tamimoto similarity to known co-formers with pyrene -> 

minimized, tanimoto similarity to TCNQ -> maximized ). The calculation was performed only for the co-formers 

with prices less than £200/1g and we are focucing on those with zero number of reported co-crystals. It can be 

observed that the five molecules we attempted to use in synthetic work are in ParetoFront 1 and 2. The molecules 

that were screened experimentally (1-6) are highlighted with bold. 

smiles price(/

1g) 

number

_of_cocr

ystals 

scores tanimoto to 

known pyrene 

coformers 

distance to 

TCNQ 

Pareto

Front 

Crowding

Distance 

c1ccc(cc1)c2c3cc

ccc3cc4ccccc24 

(4) 

21 0 0.79273593 0.393939394 0.106382979 1 1E+99 

c1ccc(cc1)P(c2cc

ccc2)c3ccc4ccccc

4c3c5c(ccc6ccccc

56)P(c7ccccc7)c8

ccccc8 

17 0 0.7981133 0.301204819 0.058139535 1 1E+99 

N#Cc1c2ccccc2c(

C#N)c3ccccc13 

(2) 

35 0 0.72066504 0.265306122 0.2 1 1E+99 

S=C=Nc1cccc2ccc

cc12 

30.9 0 0.3786586 0.195876289 0.154929577 1 1E+99 

o1ccc2ccccc12 4.18 0 0.7044418 0.175675676 0.14516129 1 1E+99 

C1Cc2ccccc12 129 0 0.7443961 0.15 0.133333333 1 1E+99 

CN(Cc1ccc(cc1)C(

C)(C)C)Cc2cccc3c

cccc23 

83 0 0.7984278 0.247863248 0.098039216 1 2.823559 

O=C1c2ccccc2C=

Cc3ccccc13 

0.99 0 0.7741672 0.302083333 0.12345679 1 1.477933 

C=Cc1ccc2ccccc2

c1 

85.2 0 0.83732426 0.189473684 0.144927536 1 1.296141 

Cc1cccc2cccc(C)c

12 

72.9 0 0.78758216 0.236842105 0.147058824 1 1.153976 
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COc1ccc2ccccc2c

1 

0.2 0 0.77328277 0.189473684 0.144927536 1 0.272085 

[C-

]#[N+]c1ccc2cccc

c2c1 

65.4 0 0.6639398 0.189473684 0.144927536 2 1E+99 

Cc1c2ccccc2c(C)c

3c1ccc4ccccc34 

82 0 0.7849483 0.307692308 0.108695652 2 3.953052 

O=C1Oc2ccccc2c

3ccccc13 (1) 

120 0 0.8051945 0.257731959 0.128205128 2 1.710217 

O=C1CCCc2ccc3c

cccc3c12 (3) 

120 0 0.78516996 0.238095238 0.128205128 2 1.053558 

[O-

][N+](=O)c1ccc2c

cccc2c1 

56 0 0.64138496 0.276315789 0.14084507 2 0.80574 

Cc1cc2ccccc2cc1

C 

48.7 0 0.7717488 0.196428571 0.114285714 2 0.622167 

C=Cc1cccc2ccccc

12 (5) 

67.1 0 0.75620985 0.202531646 0.144927536 2 0.574148 

CCOC(=O)Cc1ccc

c2ccccc12 

3 0 0.73698723 0.191011236 0.139240506 2 0.535242 

Cc1nccc2ccccc12 24.8 0 0.72139645 0.194444444 0.134328358 3 1E+99 

CS(=O)(=O)c1ccc

cc1 

5.68 0 0.60952055 0.227272727 0.109375 3 1E+99 

O=C1C(=O)c2c3c

cccc3cc4cccc1c2

4 

59.2 0 0.7254807 0.365853659 0.11627907 3 3.64843 

O(c1ccccc1)c2ccc

c(Oc3ccccc3)c2 

7.1 0 0.7290225 0.339805825 0.106382979 3 0.860812 

C1CC1c2cccc3ccc

cc23 

40 0 0.6346386 0.195876289 0.138888889 3 0.795675 

O=C1C=C(Oc2c1c

cc3ccccc23)c4ccc

cc4 

12 0 0.62570065 0.320754717 0.104166667 3 0.766259 

[O-

][N+](=O)c1c2ccc

cc2cc3ccccc13 

14.9 0 0.67084086 0.26744186 0.120481928 3 0.761211 

CC(=O)c1ccc2cc3

ccccc3cc2c1 

80.8 0 0.686586 0.20952381 0.134146341 4 1E+99 

O=C1CCc2c(O1)c

cc3ccccc23 

196 0 0.7204851 0.223880597 0.128205128 4 1E+99 

C[n+]1c2ccccc2c(

c3c4ccccc4[n+](C

)c5ccccc35)c6ccc

cc16 

67 0 0.561863 0.431034483 0.081967213 4 1E+99 
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[O-

][N+](=O)c1cc(c2

ccccc2c1)[N+](=O

)[O-] 

50.2 0 0.5639656 0.440677966 0.1 4 1E+99 

Cc1ccccc1 0.05 1 0.8746085 0.193548387 0.122807018 1 1E+99 

o1ncc2ccccc12 10.94 1 0.46706015 0.144736842 0.126984127 1 1E+99 

Clc1ccccc1 0.03 1 0.71085477 0.157894737 0.122807018 1 1E+99 

Clc1ccccc1Cl 0.03 1 0.6358253 0.212765957 0.137931034 1 2.925607 

CC(=O)c1ccc2ccc

cc2c1 

3.2 1 0.8166031 0.197530864 0.157142857 1 2.469127 

COc1ccccc1 0.05 1 0.5714836 0.147727273 0.116666667 1 1.327223 

c1ccc2cc3ccccc3c

c2c1 

13 1 0.85548186 0.276595745 0.131578947 1 1.029108 

Fc1ccccc1F 1.77 1 0.55542886 0.157894737 0.137931034 1 0.910736 

Clc1cccc2ccccc12 0.19 1 0.67669845 0.211267606 0.151515152 1 0.828215 

Brc1ccccc1 65.5 1 0.70618486 0.152941176 0.122807018 1 0.809937 

c1ccc(cc1)c2cccc

c2 

0.56 1 0.8196181 0.295454545 0.142857143 1 0.780638 

Ic1ccccc1 0.48 1 0.6327518 0.152941176 0.122807018 1 0.758601 

Cc1ccc2ccccc2c1 0.15 1 0.755266 0.246376812 0.151515152 1 0.482223 

Cc1ccccc1C 24.4 1 0.7887064 0.157894737 0.137931034 1 0.41945 

Brc1cccc(Br)c1 22.18 1 0.80622596 0.195652174 0.137931034 1 0.207208 

c1ccc(cc1)C#Cc2c

3ccccc3c(C#Cc4c

cccc4)c5ccccc25 

25 1 0.8624107 0.4 0.116666667 2 1E+99 

c1cc2cccc3c4cccc

5cccc(c(c1)c23)c

45 

44 1 0.8162625 0.301886792 0.106382979 2 1E+99 

c1ccc2cc3cc4cccc

c4cc3cc2c1 

192 1 0.83921814 0.294117647 0.113636364 2 1E+99 

O=S(=O)(c1ccccc

1)c2ccccc2 

0.16 1 0.5948882 0.273684211 0.12987013 2 1E+99 

c1ccc2ccccc2c1 25.4 1 0.74946034 0.255813953 0.15625 2 1E+99 

Fc1ccccc1 2.32 1 0.534221 0.152941176 0.122807018 2 1E+99 

[O-

][N+](=O)c1cccc2

ccccc12 

0.29 1 0.67537975 0.347222222 0.14084507 2 3.03596 

Fc1cccc2ccccc12 4 1 0.57493293 0.210526316 0.151515152 2 1.19521 

C1CCC(CC1)c2ccc

c3ccccc23 

37.63 1 0.70464814 0.177570093 0.12195122 2 0.962084 

c1ccc2cnncc2c1 10 1 0.59604543 0.153846154 0.121212121 2 0.917912 

Cc1ccc(C)c2ccccc

12 

15.28 1 0.7854327 0.222222222 0.147058824 2 0.776378 
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c1ccc2c(c1)ccc3c

cc4ccccc4c23 

61.69 1 0.81538904 0.346938776 0.113636364 2 0.737554 

c1ccc2c(c1)ccc3c

cccc23 

30 1 0.8118669 0.304347826 0.131578947 2 0.711468 

c1ccc2cccc2cc1 73.7 1 0.6458365 0.227272727 0.15625 2 0.654148 

C1=Cc2cccc3cccc

1c23 

10 1 0.80281925 0.230769231 0.142857143 2 0.554704 

o1c2ccccc2c3ccc

cc13 

0.72 1 0.6466993 0.258064516 0.136986301 2 0.510453 

O(c1ccccc1)c2ccc

cc2 

0.495 1 0.69433314 0.285714286 0.136986301 2 0.45795 

Brc1cnc2ccccc2c

1 

2 1 0.65355504 0.181818182 0.117647059 2 0.457255 

Brc1ccccc1Br 1 1 0.65333426 0.222222222 0.137931034 2 0.320085 

O=C1c2ccccc2Oc

3ccccc13 

0.8 1 0.7725264 0.257731959 0.128205128 2 0.190267 

O=C1C(=C2C(=C1

c3ccccc3)c4ccccc

4c5ccccc25)c6ccc

cc6 

29.1 1 0.84744203 0.452173913 0.081300813 3 1E+99 

c1ccc(cc1)c2c3cc

ccc3c(c4ccccc4)c

5ccccc25 

47.5 1 0.8568815 0.444444444 0.089285714 3 1E+99 

c1ccc2c(c1)c3ccc

c4cccc2c34 

1.08 1 0.6798372 0.431818182 0.12195122 3 1E+99 

c1ccc2cc3cc4cc5

ccccc5cc4cc3cc2c

1 

189 1 0.8038188 0.309090909 0.1 3 1E+99 

c1ccc2c(c1)sc3cc

ccc23 

1.52 1 0.4949149 0.258064516 0.136986301 3 1E+99 

Cc1cccc2c(C)cccc

12 

106.4 1 0.78139895 0.236842105 0.147058824 3 1E+99 

c1cc2ccc3ccc4ccc

5cccc6c(c1)c2c3c

4c56 

112 1 0.7856543 0.285714286 0.1 3 2.200523 

c1cc2ccc3ccc4ccc

5ccc6ccc1c7c6c5

c4c3c27 

181 1 0.79979837 0.261538462 0.094339623 3 1.898673 

c1ccc(cc1)c2ccc(c

c2)c3ccccc3 

6.4 1 0.7370869 0.375 0.113636364 3 1.067325 

Cc1ccc2ccccc2c1

C 

50.8 1 0.73880076 0.222222222 0.147058824 3 1.059426 

O=C1c2ccccc2C(=

O)c3cc4ccccc4cc

13 

28.36 1 0.7645904 0.36 0.108695652 3 0.788438 
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Cc1cc(C)c2ccccc2

c1 

11 1 0.7110152 0.205479452 0.114285714 3 0.763774 

c1ccc(cc1)c2ccc(c

c2)c3ccc(cc3)c4c

cccc4 

15 1 0.786963 0.363636364 0.094339623 3 0.622031 

c1ccc2c(c1)cnc3c

cccc23 

39 1 0.7358611 0.263157895 0.131578947 3 0.600971 

Brc1c2ccccc2c(Br

)c3ccccc13 

14 1 0.72304547 0.265306122 0.125 3 0.593683 

c1ccc2cc3c(ccc4c

cccc34)cc2c1 

42 1 0.80535185 0.32 0.113636364 3 0.591964 

S1c2ccccc2Sc3cc

ccc13 

1.55 1 0.6450059 0.25 0.131578947 3 0.589532 

c1ccc2nc3ccccc3

cc2c1 

5.12 1 0.6871157 0.263157895 0.131578947 3 0.265507 

c1ccc2nc3ccccc3

nc2c1 

6.5 1 0.68423283 0.25 0.131578947 3 0.159964 

c1ccc2c(c1)cc3cc

c4cccc5ccc2c3c4

5 

175 1 0.75803137 0.314285714 0.106382979 4 1E+99 

c1ccc2c3ccccc3c

4ccccc4c2c1 (6) 

35 1 0 0.375 0.113636364 4 1E+99 

O(B(c1ccccc1)c2c

cccc2)B(c3ccccc3

)c4ccccc4 

134 1 0 0.382608696 0.086956522 5 1E+99 

c1ccc(cc1)[S+](c2

ccccc2)c3ccccc3 

170 1 0 0.391752577 0.10989011 5 1E+99 
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7. Experimental Section  

Table S15. Crystallographic data for co-crystal 1 and 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 1 2 

Formula C16H10 · 2(C13H8O2)  C16H10 · C16H8N2  

MW 594.63 430.48 

Crystal System Monoclinic Triclinic 

Space group P21/c P1̅ 

a/Å 8.2950 (5) 7.3505 (4) 

b/Å 16.3146(11) 9.1897 (6) 

c/Å 21.1379 (18) 17.0347 (11) 

α/o 90 94.567 (6) 

β/o 91.514 (7) 91.046 (5) 

γ/o 90 113.509 (6) 

V/Å3 2859.6 (4) 1050.24 (12) 

Z 4 2 

Z’ 1 1 

T/K 100 100 

λ/Å 0.71073 0.71073 

Dc/g cm-3 1.381 1.361 

μ(Mo-Kα)/ mm-1 0.09 0.08 

Meas. refl. 6525 3952 

Obs. refl. [I>2σ(I)] 4739 2482 

θ range for data 

collection/ o 

2.3-27.5 2.4-25.7 

wR(F2) 0.331 0.236 

R[F2 > 2s(F2)] 0.114 0.090 

S 1.08 1.05 

Δρmax,min/ eÅ-3 1.53, -0.56 0.45,-0.29 

CCDC Deposit. Number 2014577 2014576 
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Figure S27. The crystal packing of 1 looking down the a axis. Hydrogen atoms are omitted for clarity. 

O, red; C, grey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S28. The crystal packing of 1 looking down the b axis. Hydrogen atoms are omitted for clarity. 

O, red; C, grey. 
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Figure S29. Molecular structure of co-crystal 2 highlighting the π-π and C-H…N interactions. Hydrogen 

atoms are omitted for clarity. N, dark blue; C, grey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S30. The crystal packing of 2 looking down the a axis. Hydrogen atoms are omitted for clarity. 

N, dark blue; C, grey. 
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Figure S31. The crystal packing of 2 looking down the b axis. Hydrogen atoms are omitted for clarity. 

N, dark blue; C, grey. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S32. The crystal packing of 2 looking down the c axis. Hydrogen atoms are omitted for clarity. 

N, dark blue; C, grey. 
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8. Comparison with known CSD co-crystals 

8.1 Pyrene-based co-crystals 

Cambridge Structural Database (CSD, 2019 release) was investigated in the search for the known 

pyrene-based co-crystals. The graph of PYRENE entry, including hydrogen atoms, was used as starting 

query in the ConQuest software. The filters: 3D coordinates determined, not polymeric, no ions and 

only organics, applied to the results leads to the list reported in Table S16. 

Figure S33. (a) Pie chart of the symmetry system of Pyrene co-crystal reported to literature [CCDC 

2019 release, two independent chemical units]. (b) Histogram showing the range of packing coefficient 

(CK) of pyrene cocrystal [CCDC 2019 release, two independent chemical units], the orange and green 

stars refer to 1 and 2 respectively. (c) Pie chart of the different packing types of pyrene co-crystals. 

Colour code: herringbone, violet; sandwich herringbone, light blue; γ-type herringbone, blue; sheet-

like/β-type, yellow. 

 

herringbone sandwich herringbone

g-type 

herringbone
Sheet-like / b-type

triclinic monoclinic
orthorhombic tetragonal

(a) (b)

(c)
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Table S16. List of the structural parameter of pyrene co-crystal reported in CCDC database (2019 release). 

CCDC 

ref. code 

T 

[K] 
Space Group CK 

a 

[Å] 

b 

[Å] 

c 

[Å] 

α 

[°] 

β 

[°] 

γ 

[°] 

vol 

[Å3] 
Ref 

CUSZUM 180 P1 0.68 9.8401 11.3738 11.4241 115.037 91.454 91.791 1156.817 19 

BITBUD 100 P1̅ 0.72 7.004 10.09 11.783 107.42 106.46 93.44 752.352 20 

ELUGOJ 110 P1̅ 0.72 13.8522 15.6089 15.8464 65.532 83.496 89.872 3094.711 21 

GUQQEQ 110 P1̅ 0.72 9.155 13.793 13.924 91.993 105.843 90.323 1690.229 22 

XETTEW 113 P1̅ 0.72 8.393 9.7237 12.9654 94.018 91.57 110.732 985.624 23 

PINJUU03 115 P1̅ 0.73 7.1106 17.278 17.748 62.924 82.368 82.571 1918.431 24 

ECUVIH 120 P1̅ 0.72 6.725 8.864 9.488 107.51 105.23 106.82 476.902 25 

GUQRAN 150 P1̅ 0.72 7.046 8.334 8.623 116.29 90.15 102.722 439.92 22 

WOQQAX 150 P1̅ 0.67 13.5717 15.3754 17.5775 65.787 68.112 82.586 3102.85 26 

MUGBAS 173 P1̅ 0.75 8.1578 8.203 10.141 89.462 76.889 80.215 651.014 27 

EHETEQ 174 P1̅ 0.74 7.3295 8.55 19.185 88.15 79.18 87.08 1179.047 28 

PINJUU02 220 P1̅ 0.72 7.1779 17.415 17.827 62.427 81.939 82.145 1949.264 24 

ISISAG 240 P1̅ 0.71 7.367 8.555 15.803 94.02 102.77 89.86 968.867 29 

GUMNUY 273 P1̅ 0.70 7.9341 9.1661 10.3306 89.439 88.443 72.669 716.916 30 

UZEGOX 273 P1̅ 0.68 8.7758 12.0214 13.3155 66.461 74.489 74.462 1220.151 31 

BEFGIC 295 P1̅ 0.65 10.085 10.646 11.037 98.73 92.61 107.36 1112.713 32 

FETYAE 295 P1̅ 0.70 8.046 15.067 16.433 82.03 89.1 87.52 1970.972 33 

GAFJAY 295 P1̅ 0.69 10.172 13.798 9.302 92.56 117.24 108.8 1069.821 34 

PYRTNB 295 P1̅ 0.71 6.77 16.35 8.55 93 101.3 95.6 921.141 35 

PYTQIM 295 P1̅ 0.70 7.393 8.037 20.873 99.6 92.95 95.13 1215.171 36 
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TEXPOB 295 P1̅ 0.73 7.092 8.378 8.664 112.922 92.86 92.078 472.678 37 

TEXPOB10 295 P1̅ 0.73 7.092 8.378 8.664 112.922 92.86 92.078 472.678 38 

XAGMAT 295 P1̅ 0.66 9.727 10.854 11.62 106.3 104.11 104.43 1073.432 39 

TUYVUF 298 P1̅ 0.72 8.4846 11.1538 15.236 69.813 82.882 83.346 1338.721 40 

QOLPUF 298 P1̅ 0.70 7.457 7.942 11.259 71.93 74.01 89.57 607.163 41 

QOLQOA 298 P1̅ 0.69 7.317 7.754 11.041 104.81 101.31 91.4 592.011 41 

QOLRER 298 P1̅ 0.70 7.506 7.856 10.872 69.79 76.82 89.71 583.864 41 

MUFZIX 173 P21 0.72 14.799 8.197 25.036 90 90.744 90 3036.796 27 

REQVOZ 123 Pc 0.73 8.3157 38.967 14.2436 90 91.718 90 4613.391 42 

AYEGAM 173 Pc 0.70 7.851 7.657 16.296 90 111.09 90 914.016 43 

PYRPMA04 19 P21/n 0.74 13.664 9.281 14.42 90 91.8 90 1827.778 44 

AGORAS01 100 P21/c 0.74 14.058 10.1 15.429 90 92.03 90 2189.324 45 

AGOREW01 100 P21/c 0.73 15.694 10.7983 20.1481 90 90.421 90 3414.377 45 

MIDDIP 100 P21/n 0.71 8.973 26.857 17.476 90 100.268 90 4144.056 46 

PYRTCQ02 100 P21/n 0.72 6.9917 10.069 14.671 90 103.52 90 1004.209 20 

CENTOH 103 P21/c 0.80 7.2231 8.419 19.036 90 95.086 90 1153.046 47 

PYRCYE02 105 P21/a 0.72 14.136 7.169 7.866 90 91.73 90 796.785 48 

PYRCYE03 105 P21/a 0.46 14.136 7.169 7.866 90 91.73 90 796.785 48 

GUQQAM 110 P21/c 0.72 9.1973 13.6331 14.3279 90 112.02 90 1665.49 22 

GUQQIU 110 P21/c 0.71 12.267 15.636 9.2024 90 97.593 90 1749.606 22 

GUQQOA 110 P21/c 0.72 11.9762 15.3782 9.7871 90 99.867 90 1775.851 22 

GUQQUG 110 P21/c 0.72 14.458 8.874 17.339 90 126.716 90 1783.258 22 
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PYRPMA10 110 P21/n 0.71 13.667 9.13 14.404 90 91.5 90 1796.711 49 

ZZZGKE02 110 P21/c 0.72 6.8822 13.238 9.2058 90 106.261 90 805.157 22 

DIZZOD 120 P21/n 0.74 7.2226 16.1783 21.334 90 92.461 90 2490.566 50 

MOBWEI 120 P21/n 0.72 10.7122 18.7549 12.3835 90 91.632 90 2486.913 51 

REDCIM01 150 P21/n 0.72 10.8636 14.0746 12.4274 90 109.674 90 1789.235 52 

WOQPOK 150 P21/n 0.69 21.8778 9.0276 25.1726 90 92.949 90 4965.106 26 

BORPII 173 P21/n 0.72 8.747 6.94 15.327 90 104.356 90 901.36 53 

EHESIT 173 P21/n 0.70 6.8334 15.809 17.147 90 90.58 90 1852.282 28 

EHESUF 173 P21/n 0.72 13.516 9.669 14.451 90 99 90 1865.295 28 

PYRCBZ02 173 P21/c 0.71 7.154 8.4 15.53 90 93.833 90 931.166 54 

EHESEP 174 P21/n 0.73 6.7858 15.487 17.092 90 91.26 90 1795.793 28 

EHESOZ 174 P21/n 0.73 6.8295 16.236 17.096 90 96.37 90 1883.965 28 

EHETAM 174 P21/c 0.72 14.955 17.564 14.329 90 95.93 90 3743.652 28 

WAWPAM 174 P21/n 0.73 7.0679 15.983 8.907 90 104.78 90 972.898 55 

PYRCBZ01 178 P1121/b 0.68 7.27 15.36 8.38 90 90 94 933.492 56 

PYRFLR01 200 P21/n 0.74 7.797 6.973 14.723 90 94.84 90 797.613 57 

PYRPMA11 200 P21/c 0.72 7.268 9.35 13.757 90 92.71 90 933.822 58 

REDCIM 200 P21/n 0.71 10.893 14.114 12.49 90 109.53 90 1809.781 59 

REDFIP 200 P21/c 0.74 7.469 9.007 13.853 90 96.17 90 926.538 57 

ZZZGKE01 200 P21/c 0.71 6.9467 13.331 9.301 90 106.67 90 825.133 60 

PINJUU01 230 P21/n 0.75 7.1751 9.1122 15.1404 90 99.0425 90 977.591 24 

AGOREW 100 C2/c 0.73 24.36 10.9124 15.583 90 124.426 90 3416.861 45 
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PAYYOG 200 C2/c 0.72 12.019 20.022 8.703 90 99.99 90 2062.574 58 

PYRPCT02 293 Pc 0.74 17.303 6.6434 16.85 90 110.791 90 1810.791 61 

MURPYR 295 Pc 0.64 9.71 8 15.04 90 117 90 1040.969 62 

PYRCBZ 290 P1121/b 0.66 7.27 15.57 8.44 90 90 93.6 953.471 56 

FARNIX 293 P21/c 0.69 10.277 15.593 9.715 90 114.844 90 1412.746 63 

QEVXOH 293 P21/c 0.67 7.8395 14.7083 17.2969 90 102.132 90 1949.888 64 

BAZCUA 295 P21/c 0.71 10.057 7.86 15.168 90 106.35 90 1150.513 65 

BAZDAH 295 P21/c 0.72 9.9 7.833 14.929 90 106.72 90 1108.75 65 

CEKBUP 295 P21/a 0.73 10.536 12.877 7.314 90 114.1 90 905.81 66 

CILRAQ 295 P21/n 0.71 10.633 16.336 11.683 90 94.62 90 2022.751 67 

PYRBPC 295 P21/c 0.70 8.189 21.07 14.607 90 91.7 90 2519.215 68 

PYRCLN 295 P1121/b 0.74 7.52 13.68 8.93 90 90 96.5 912.756 69 

PYRCYE10 295 P21/a 0.71 14.333 7.242 7.978 90 92.36 90 827.411 70 

PYRFLR 295 P21/a 0.73 17.308 7.066 7.825 90 121.82 90 813.158 71 

PYRPMA02 295 P21/a 0.71 13.885 9.303 7.307 90 93.5 90 942.1 72 

PYRPMA03 295 P21/a 0.66 13.885 9.303 7.307 90 93.5 90 30942.1 72 

PYRTCQ 295 P1121/b 0.71 7.14 14.73 10.01 90 90 102.5 1027.819 73 

FARNOD 296 P21/c 0.67 8.3885 18.3017 13.1838 90 105.268 90 1952.588 63 

MIDDEL 296 P21/n 0.74 6.5612 18.654 8.5145 90 99.983 90 1026.334 74 

OPUQUN 296 P21/c 0.51 7.609 25.637 11.675 90 101.03 90 2235.394 75 

PYRTCQ03 296 P21/n 0.71 6.9996 10.0807 14.6724 90 103.567 90 1006.409 76 

QOLQEQ 298 P21/n 0.72 7.564 7.574 22.841 90 96.9 90 1299.077 41 
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PINJUU 300 P21/n 0.78 7.2509 9.1166 15.2982 90 99.659 90 996.929 24 

PYRPMA01 300 P21/a 0.68 13.89 9.33 7.34 90 93.5 90 949.444 77 

AGOREW02 338 P21/c 0.69 15.653 11.046 20.774 90 91.3 90 3590.963 45 

CUNWUD 295 C2/c 0.68 17.846 15.449 16.27 90 95.59 90 4464.353 78 

HAYYOW 296 C2/c 0.71 12.032 15.808 10.673 90 103.66 90 1972.604 79 

CUTBEZ 180 P212121 0.67 7.509 17.9935 19.0703 90 90 90 2576.649 19 

AGORAS 100 Pca21 0.73 20.145 7.169 15.362 90 90 90 2218.572 45 

QEVWEW 285 Pbcn 0.68 5.1221 17.608 22.7903 90 90 90 2055.456 64 

PYRBZQ01 100 P43 0.75 7.5953 7.5953 25.2629 90 90 90 1457.381 80 

CORPIJ 130 P43 0.75 7.5714 7.5714 26.8898 90 90 90 1541.487 80 

PYRBZQ 295 P41 0.73 7.698 7.698 25.57 90 90 90 1515.258 81 
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8.2 UMAP projection of the co-crystals space 

UMAP (Uniform Manifold Approximation and Projection for Dimension Reduction)82 was 

implemented for a low-dimensional space encoding of the labelled dataset. Each point on the UMAP 

visualization is coloured according to the difference of the molecular descriptors. All the descriptors 

are normalized to [0,1] to be comparable. The implemented UMAP settings were selected based on 

the best distance preservation between the high dimensions and the two-dimensional embeddings. 

The distance preservation was measured by calculating the Pearson correlation coefficient of the 

distance matrix using the whole dimensionality and the distance matrix after the dimensionality 

reduction. The most effective settings were as follows (n_neighbours = 80, min_dist = 0.1, euclidean 

distance metric) resulting in Pearson correlation coefficient of 0.748. 

 

 

Figure S34. UMAP 2D projection showing the distribution of selected molecular descriptors across the 

co-crystal space. It can be observed that not all the descriptors show similar trends across the 

molecular pairs map.  
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Figure S35. UMAP 2D visualization of the overall co-crystal dataset (inset) and zoomed view of the 

hightlighted cluster. 1 and 2 are represented with red square and triangle respectively. The closest 

neighbours to 1, as calculated by the Euclidean distance of the descriptors, are visualized with smaller 

squares, whereas the closest neighbours to 2 with smaller triangles. The light green and grey color 

codes stand for molecular pairs containing pyrene and those without pyrene respectively. Intrestingly 

the majority of the pyrene co-crystals belong to the same cluster formed by molecules with similar 

characteristics. It was observed that even though 1 and 2 are quite similar feature-wise to known 

pyrene co-crystals, the crystal packing both of them adopt, (i.e., the γ motif) was rare and more 

complex.  
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8.3 Comparison with known structures 

The synthesized co-crystals 1 and 2 were compared to the known co-crystals consisting the labelled 

dataset. The comparison was performed using all the available molecular descriptors acquired from 

Dragon software.83 As before, each molecular pair is represented by the concatenation of the 

molecular descriptors of each molecule in the pair. The distance between 1 and 2 and the known CSD 

structures is calculated by measuring the Euclidean distance of the vectors of the two new structures 

to the vectors of the labelled dataset.  

The Euclidean Distance between two points p.q in n dimensional space is defined as:84  

𝑑(𝑝, 𝑞) =  √(𝑝1 − 𝑞1)2 + (𝑝2 − 𝑞2)2 + ⋯ + (𝑝3 − 𝑞3)2 + ⋯ + (𝑝𝑛 − 𝑞𝑛)2 = √∑ (𝑝𝑖 − 𝑞𝑖)2𝑛
𝑖=1    (3) 

 

Figure S36. Euclidean distance of 1 and 2 to the closest known co-crystals (blue bars) of the labelled 

dataset. The red bar represents a more distant co-crystal for comparison purposes.  
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Table S17. List of the significant structural motifs and of the crystal packing coefficients (Ck) of 1 and 

of the most similar co-crystals in CSD database in terms of Euclidean distances. 

 
Co-formers 

ratio 

π-π 

[Å] 

C-H…π  

[Å] 

C-H…O 

[Å] 
Ck Ref 

Co-crystal 1 1:2 3.34-3.35 2.72-2.87 2.51-2.56 0.72 This work 

PYRPMA11 1:1 3.34-3.39 - 2.473-2.667 0.72 58 

CEKBUP 1:1 3.20-3.38 - 2.565-2.595 0.73 66  

VIPYUR 1:1 3.31-3.38 - 2.551-2.667 0.74 85  

VIPYOL 1:1 3.31-3.37 - 2.540-2.713 0.71 85  

WABWEB 1:1 3.50-3.60 - 2.514-2.638 0.73 86  

FILHIR 1:1 3.34-3.37 2.856 2.609 0.70 87  

PENPYM 1:1 3.36-3.37 - 2.591-2.712 0.69 88  

FILHOX 1:1 3.36-3.38 - 2.470 0.73 87  

 

 

Table S18. List of the significant structural motifs and of the crystal packing coefficients (Ck) of 2 and 

of the most similar co-crystals in CSD database in terms of Euclidean distances. 

 Co-formers 

ratio 

π-π  

[Å] 

C-H…π 

[Å] 

C-H…N/O*  

[Å] 

Ck 

 

Ref 

 

Co-crystal 2 1:1 3.67 - 2.57-2.65 0.73 This work 

PYRTCQ03 1:1 3.50 - 2.571-2.693 0.71 76 

PYRCBZ02 1:1 3.36 - 2.584 0.71 54 

UZEGOX 1:1 - 2.834 2.604 0.68 31  

MIDDIP 1:1 3.34-3.39 - 2.691-2.737 0.71 46 

CHRTCQ01 1:1 3.34-3.39 - 2.664-2.729 0.75 20  

HIGPUJ07 1:1 3.67 - 2.714 0.70 89 

TCQANT03 1:1 3.506 - 2.672-2.715 0.73 90 

AGOREW 1:1 3.397 - 2.401-2.602(*) 0.73 45 
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