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Glossary of technical terms

Labelled dataset: The known co-crystal combinations that were extracted from Cambridge Structural Database
(CSD)

Unlabelled Dataset: The dataset of possible molecular combinations that was designed from ZINC15 Database

Two dimensional descriptors: Descriptors calculated from the two-dimensional representation of a molecule
(molecular graph)

Bidirectional Dataset: A dataset constructed by concatenating the descriptor vectors in both directions (a,b) and
(b,a)

ECFP4: Extended Connectivity Fingerprint
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1. Generating the datasets
1.1 Cocrystal extraction from Cambridge Structural Database (CSD)

Starting from eight representative polyaromatic hydrocarbons (PAHs) we extracted all the co-crystals that include
as a co-former either these or their structurally similar molecules. The structural similarity was measured with
Tanimoto similarity (> 0.35). The multi-component crystal structures that contain solvent molecules were
removed, keeping only the benzene like solvents, as they might hold information about m-it interactions. The
solvents list implemented was the default CCDC most common solvent list.

Table S1. Initial Polyaromatic Hydrocarbons (PAHSs) for co-crystals extraction.
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For the extraction of the PAH co-crystals, the Python API functionality of CCDC was employed. The two main
search functions used are the similarity and substructure search.! The similarity search is based on the comparison
of molecular fingerprints and works as following: given a query molecule, in our case the molecules were given as
SMILES strings, a 2D structure-based search is performed to determine molecular components that are similar to
the input. For each separate molecule in a crystal structure a molecular fingerprint of 2040 bits is generated, using
all atom and bond paths up to ten atoms in a molecule.! That search reveals not only single molecules but also
combinations of molecules, potentially because of the large fingerprint space used.

The similarity search function of the CSD Python APl was applied to the starting PAHSs, using the standard CSD
fingerprint similarity search with a Tanimoto similarity threshold of > 0.35. The extracted structures were then
filtered by removing duplicate structures (polymorphs), as there are several polymorphs for some co-crystals but
as our machine learning workflow is based on the two-dimensional descriptors we only considered the two
different types of molecules that exist in a structure and not the packing. The INCHI number of each molecule was
implemented for the filtering as INCHI numbers are more unique whilst two different SMILES might represent the
same molecule. After removing the duplicates, the extracted molecules were split into categories based on the
number of times the molecules in the pair appear. In that way we can measure the molecular stoichiometry. For
the category including only single components the substructure search was further applied to detect any potential
combinations that were not found from the similarity search. The same filters were applied as for the similarity
search.

A substructure search was implemented to search for structures containing a required component, which was in
our case the co-crystals containing at least one of the starting PAHs or any molecule similar to them as found from
the similarity search.

After obtaining the final co-crystals dataset the structures that include common solvents are removed, except
from those containing benzene-like solvents that might hold important information about n-it interactions.

The percentage of the extracted PAH co-crystals connected with ni-it stacking out of the whole co-crystals dataset
was measured after calculating the number of existing co-crystals in the CSD database. The whole CSD was
searched for structures containing two different molecules using the same search settings as for the extraction of
PAHs co-crystals:

settings.only_organic = True
settings.not_polymeric = True
settings.has_3d_coordinates = True
settings.no_disorder = True
settings.no_errors = True
settings.no_ions =True
settings.no_metals = True

We identified 13,817 co-crystals including co-crystals containing benzene-like solvents (solvates), meaning that
the 1,722 PAH co-crystals connected with -t stacking compose the 12% of the total.
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Figure S1. Flow diagram for PAH co-crystals extraction. The search starts with 8 representative PAHs and Python
API CCDC is employed for extracting all the co-crystals that are formed from these 8 molecules or molecules that
are similar to them on the basis of molecular fingerprints (ECFP4 > 0.35 Tanimoto Similarity). The extracted
dataset was further filtered for removing co-crystals containing molecules with acidic parts.
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1.2 Designing the unlabelled (ZINC15) Dataset

A search of the ZINC15 database for molecules similar to the eight initial molecules of Table 1 on the basis of
molecular fingerprints with a Tanimoto similarity threshold of > 0.35, which are purchasable and do not contain
incompatible functional groups, afforded a library of 210 candidate molecules. All the possible order invariant
pairwise combinations of these candidates compose the unlabelled dataset. Similarity search in ZINC15 is based
on 512 bit ECFP4 fingerprints?, meaning that the atomic environment between two under comparison molecules
is four bonds length with size of fingerprint is 512 bits. It is well discussed that different libraries present significant
structural variations and thus the ECFP features can have quite different values®. The small overlap between Zinc
and CSD databases can be explained in that way, especially if we consider how CSD database performs the
similarity search.

1.2.1 Filtering with Pipeline Pilot

The filtering for incompatible functional groups in both the labelled and unlabelled dataset was performed using

_,_,D

Pipeline Pilot* with the following workflow.

RO

SMILES Reader Canonical Remove Substructure HTHL Molecular
Smiles Duplicate: Filter Table Viewer
Molecules
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Figure S2. Pipeline Pilot workflow.
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Figure S3. Substructure SMARTS?® filter for detecting the molecular combinations with at least one molecule with
acidic hydrogens.

S7



2. One class classification Review

Distribution based. Methods in this category are basically inspired from statistical modelling. They deploy
some standard distribution model (e.g., normal distribution) and flag as outliers the instances that deviate
from the model, whereas inliers are those that follow the same distribution.® Typical examples are the
Autoencoders and the Gaussian Mixture models.

Density based. These methods assume that normal data points occur around a dense neighbourhood.
The local outlier factor (LOF) approach is one of the well-known algorithms in this category, where normal
points get low LOF values as they belong to a local dense neighbourhood. The density of a neighbourhood
is estimated using the distance to the k nearest neighbours, with k being the minimum number of
neighbours used for defining the local neighborhood.’

Distance based. Among other distance based methodologies, k-nearest neighbour algorithm ranks each
point on the basis of its distance to its k™ nearest neighbor.?” The lower the distance the closer to the
normal data is the point.

Clustering based. Clustering Based Local Outlier Factor (CBLOF) is an algorithm developed for considering
both the size of clusters and the distance between points and the closest cluster. Each datapoint is then
assigned a score/outlier factor based on these considerations.®

Support Vector Machine. One class support vector machine algorithm (OCSVM) is an extension on the
well-known support vector machine technique. The planar approach of OCSVM is about finding a linear
boundary to maximally separate all the data points from the origin, whereas the spherical approach
designs a spherical boundary in feature space around the data (the hypersphere) and the algorithm tries
to minimize the volume of the hypersphere.°

Histogram-based. For each single feature, a univariate histogram is constructed where the height of the
bins gives an estimation of the density. Then, the score of each point is calculated by combining all the
histograms using the corresponding height of the bins where the point is located.!

Forest-based. Whilst most of the aforementioned models are essentially used to profile the normal
labelled data, this model is focused on isolating anomalous instances. The isolation forest algorithm is
recursively randomly partitioning a randomly selected feature between its minimum and maximum
values. The number of recursive partitions, represented as a tree structure, required to isolate an instance
is equivalent to the path length from the root node to the terminating node. The instances with short
path lengths are regarded as anomalies with the anomaly score being computed by the mean anomaly
score of the trees in the forest.'?

Ensemble-based. The ensemble technique involves a number of base detectors being fitted to different
sets of features of the dataset and the outliers are identified based on the probability of each point being
an anomaly. Representative model of this category is the feature bagging algorithm.*3

Deep One Class. In contrast to traditional approaches which make use of heuristics or statistical methods,
deep learning approaches stack multiple processing layers one above another with each layer providing
higher order interactions among the features. Deep learning approaches specifically designed for one
class classification are not yet very widespread. The majority of the existing models involve neural
networks being trained to perform tasks other than one class classification which are then adapted for
use in the one class problems. Deep networks designed for one class (anomaly detection) involve the
objective function of a traditional one class approach. However, they are trained deeper i.e., using more
layers and in higher dimensions for fitting the appropriate function to the normal data. Deep learning
models could easily handle more complex molecular representations as inputs, e.g., SMILES strings or 3D
molecular configurations.'*

All the aforementioned algorithms were tested for solving the co-crystal prediction problem. It should
be highlighted that there is no single 'best’ method for dealing with one class classification tasks. The
appropriateness of each algorithm is highly associated with the problem to be solved and the available
dataset.
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2.1 Standard One Class Classification Algorithms

2.1.1 Feature Engineering

Feature engineering based on correlations between the Dragon descriptors of the conformers of the known
dataset. The most important descriptors were found to be the following:

Table S2. Pairwise correlations of the most important Dragon descriptors.

Dragon Descriptor | Description Pearson Spearman p-value
Correlation | Correlation
nBT molecular weight 0.403 0.620
nHet number of heteroatoms
0.515 0.685

ZM1V first Zagreb index by valence vertex degrees 0.528 0.729

DBI Dragon branching index 0.548 0.654

ICR radial centric information index 0.546 0.422

MAXDN maximal electrotopological negative variation 0.440 0.600

MAXDP maximal electrotopological positive variation 0.426 0.626

DELS molecular electrotopological variation 0.414 0.629

Clco Complementary Information Content index 0.298 0.515
(neighborhood symmetry of 0-order)

J_D/Dt Balaban-like index from distance/detour matrix | 0.323 0.424

SM1_Dz(2) spectral moment of order 1 from Barysz matrix | 0.551 0.627
weighted by atomic number

SM1_Dz(v) spectral moment of order 1 from Barysz matrix | 0.404 0.479
weighted by van der Waals volume

SM1_Dz(e) spectral moment of order 1 from Barysz matrix | 0.480 0.558 5
weighted by Sanderson electronegativity <10

HyWi_B(s) hyper-Wiener-like index (log function) from 0.744 0.682
Burden matrix weighted by I-State

SpMax4_Bh(m) largest eigenvalue n. 4 of Burden matrix 0.541 0.571
weighted by mass

SpMax3_Bh(s) largest eigenvalue n. 3 of Burden matrix 0.422 0.482
weighted by I-state

SpMax7_Bh(s) largest eigenvalue n. 7 of Burden matrix 0.439 0.542
weighted by I-state

P _VSA v 2 P_VSA-like on van der Waals volume, bin 2 0.501 0.684

P_VSA s 6 P_VSA-like on I-state, bin 6 0.522 0.704

Eta_F_A eta average functionality index 0.434 0.438

Eig02_AEA(dm) eigenvalue n. 2 from augmented edge 0.530 0.539
adjacency mat. weighted by dipole moment

Eig03_AEA(dm) eigenvalue n. 3 from augmented edge 0.609 0.572
adjacency mat. weighted by dipole moment

nHAcc number of acceptor atoms for H-bonds (N,O,F) 0.449 0.620

Uc unsaturation count 0.520 0.551
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Figure S4. A demonstration of the effect the implemented one class classification/anomaly detection algorithms

have on the initial dataset when projected in two-dimensions. Principal Component Analysis (PCA) was employed

are the dimensionality reduction techinique. The expained variance is 67.61% for the first Principal Component
and 4.95% for the second. All the dimensions are implemented (3700). The outliers found each time either belong
to to labeled dataset as noise or to the unlebeled dataset as the outling part.
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Figure S5. Pairwise correlations of the scores of the known (yellow) and unknown (green) data using standard
one-class classification algorithms. Each algorithm uses a different scoring function to assign scores to the
molecular combinations, giving in all the cases higher scores to the known (training set) whereas only a certain
part of the unknown combinations (test set) is getting high scores and can be regarded as inliers.
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2.2 Deep One Class (SetTransformer-DeepSVDD)

The neural network architecture is adapted from Ruff et al,> namely DeepSVDD. The convolutional autoencoder
used on DeepSVDD network was replaced with an attention based autoencoder which is permutation invariant,
namely SetTransformer. The architecture of SetTransformer was adapted from Lee et a/*® and was used for
learning the representation of the molecular pair such that they will be perceived as order invariant vectors.
SetTransformer includes two stacked SABs (Set Attention Block) and one PMA (Pooling by Multihead Attention)
layers in the encoder followed by two linear decoder layers. The first part of the encoder independently acts on
each element of the vector (SAB) and then on the second part the encoded features are aggregated to produce
the desired output. The decoder part is only used for the initialization of the weights and then is not further
employed in the training. The loss function of DeepSVDD is referred to the minimization of the volume of a
hypersphere that includes the normal data. In our case as normal data we regarded all the known co-crystals
extracted from CCDC. The hyperparameters of the network (number of epochs and learning rate) were selected
based on k-fold cross validation such that after minimizing the volume of the hypersphere significantly, the
majority of the datapoints of the hold-out test are found in the hypersphere

Attention-based Linear Decoder
permutation Invariant
Encoder

i

SAB

S »m»m»

o0 000
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: 100x1 .

I:;dden Hidden Hidden Hidden
yer: Layer: Layer: Layer:
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Figure S9. Neural Network Architecture.
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Figure S10. a) Labelled/Unlabelled scores distribution and test scoring matrix using the ensemble of one-class
classification algorithms. b) training loss after 60 epochs implementing DeepSVDD network.

The reproducibility of the model was checked after performing the pretraining and training steps for 30 times
with a varying number of seeds keeping 10% as a validation set each time. The mean Pearson correlation of the
predicted scores was 0.96 with mean standard deviation 0.0017 That is an indication that there is high
reproducibility of the results and thus for being able acquire the same results each time the seed was set to 0.
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2.3 Evaluation and Comparison of the models

Table S3. Short description and hyperparameter settings of the models used for one-class classification.
Bayesian optimization was implemented to determine the best performance of a single model.

Model Model Description Tuned hyperparameters Explanation
Cluster-based algorithm. Ratio of the number of samples in
Calculates the distance alpha=0.9 large clusters to the number of
CBLOF between points and the samples in small clusters.
closest cluster.
beta=4 Coefficient for cluster size
n_clusters=10 Number of clusters
Measures the distance of each | n_neighbors=17 Number of neighbours
kNN observation to its k-nearest
neighbour method="mean’ The average of all k neighbours is
used as the outlier score
Calculates the density of an n_bins=15 Number of bins
area based on the height of
HBOS the constructed histogams alpha=0.7 Regularizer for preventing overflow
Selects a subset of features n_neighbors=8 Number of neighbours
Feature which induce diversity to a
Bagging base detector
(LOF is set
by default
as the basis
algorithm)
Builds an ensemble of random | n_estimators=400 Number of estimators
Iforest trees for a given dataset and
calculates the average path
length
Estimates the support vector Kernel type to be used
of the known distribution kernel="rbf’
OCSVM
nu=0.08 Regularization parameter
Measures the local deviation n_neighbors=10 Number of neighbours
LOF of density of a given sample
with respect to its neighbours
Attempts to find a mixture of n_components=6 Number of components
multi-dimensional Gaussian covariance_type='spherical’ | each component has its own general
GMM probability distributions that covariance matrix
best model the input dataset.
Batch_size=200 Batch size of input
Considers that all known
DeepSVDD | points belongto a Num_epochs=60 Number of epochs: a single pass
hypersphere, the volume of through all the training data
which should be minimized Ir=10"° Learning rate
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Standard One Class Models
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Figure S11. Illustration of the input on the algorithms.
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As there are no negative data (known outliers) for performing the typical evaluation steps, which would be based
on measuring the AUC or APR, we measure the performance both of the neural network and the traditional
classifiers based on the True Positive Rate (TPR%), i.e., the percentage of correctly classified positive data. In more
detail, the labelled dataset was split in five-fold using k-fold cross validation, with four-folds being used for the
training and one-fold (hold-out data) for the validation. As we assume that 95% of the labelled data are normal
with a 5% of noise, a threshold is set as the score above which 95% of the labelled data is scored. Both the k-fold
cross validation and the response of the models in the increasing amount of data are investigated for deciding
the best model.
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Figure S12. Box plots showing the accuracy of the models after k-fold cross-validation using five folds.

Table S4. Evaluation metrics for the implemented models.

Accuracy Deviation
Model (TPR%) (%)
GMM 93.05 2.03
kNN 93.00 1.87
HBOS 92.27 4.90
Feat_Bagging 93.43 0.85
Iforest 92.21 2.31
OCSVYM 90.88 1.69
LOF 93.46 1.07
CBLOF 91.52 2.99
Ensemble 94.01 1.53
DeepSVDD 94.36 0.74
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3. Visualizing the predicted pairs

The analysis of the outcomes of the two workflows, i.e., the standard approaches and the deep one class, is

performed as following:

i) The top scored pairs are shown and compared with the closest scores-wise structure of the labelled dataset

(training set).

ii) The most popular co-formers are identified by counting how many times each co-former is found in high score

pairs (upper quartile)
iii) The predicted pairs are separated into lists based on the following criteria:

a) No constrains

b) Pairs after removing solvents

c) Pairs including one of the initial PAHs

c) Pairs without solvents and heteroatoms

e) Pairs including heteroatoms

f) Pairs including 1,6 dicyanoanthracene, the most similar (Tanimoto Similarity) molecule to TCNQ (well
known for the electronic properties)

g) Pyrene-cocrystals

Score:0.97 Score:0.93

CSD Pair
J

GEVFIZ 7 SUKYAZ

Score:0.96

‘@r Score:0.928
X

HQWHQ

100 5%-

ZINC8034701 ZINC967534 ZINC59029793 ZINC967534

ZINC15 Pair

Figure S14. Examples of top scored combinations and most similar score-wise CSD entry for both workflows
followed. On the first row we can observe the existing CSD molecular pairs, whereas on the second row is the
closest in score predicted pair among those in ZINC15. Some of these trends could be seen in one of the high score
pairs shown in Figure 6. It is easily observed that in this pair, the one co-former has both high molecular weight
and distinctive branching index, whereas the pairing molecule lacks both a high molecular weigh and branching.
This is in good accordance with the trends seen in the molecular weight and branching index between pairs.
Obsiously the high score is not only based on these two descriptors as a wide range of different descriptors is

taken into consideration of the deep learning model.
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3.1. Ensemble Predictions

—pyrene

—napthalene
—fluoranthene
—1,8-dimethylnaphthalene
—pleiadene
—1,2,3,4-tertaoxotetralin
—1-methyl-phenanthrene

Popular Coformers

—benzo[c]phenanthrene
—9-vinylphenanthrene

—benzo(c)fluorene

1 I |
0 20 40 60 80 100

Counts

Figure S15. Bar chart of the top ten co-formers forming high scoring pairs according to the ensemble, that belong
to the top quartile of the unlabelled dataset.
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Figure S16. Predicted high score pairs with pyrene as a co-former, after removing the solvents, as predicted by
the ensemble method.
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3.2. Deep One Class predictions

Popular Coformers

—{pyrene
—benzophenanthrene
—acenaphthylene

— perylene
—phenanthracene
—1,8-dimethylnaphthalene
—anthracene
—benzo[e]pyrene
—napthalene

— 1-methyl-phenanthrene

0 25 50 75 100
Counts

125

150

Figure S17. Bar chart of the top ten co-formers forming high scoring pairs that belong the top quartile of the
unlabelled dataset. Pyrene appears as the most popular co-former among the top quantile.
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ZINCOOOOOO967534 ZINCOOOOO3876016 ZINCOOOOO1615335 ZINCOOOO70666008
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anthracene
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ZINCOOO100074278 ZINCOOOOOO967819 ZINCOOOOO1674476 ZINCOOOOO3876018
helicene phenanthracene

Figure S18. Molecular pairs formed by the most popular co-formers as predicted using the deep learning

approach. Pyrene was identified as the most popular co-former as the majority of the possible pyrene co-crystals

were assigned with high scores. The arrows indicate the direction of higher score (vertical arrow) and higher

popularity (horizontal arrow).
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Table S5. Top scoring pairs with no constrains.

ZINCOOOO08034701 ZINCOOOOOO967534

O

ZINCOO0O064624955

ZINCOOOOOO967534

ZINCO0O0100074226 ZINCOOOOOO967534

O

O

O

ZINCO00100074278 ZINCOOOOOO967534 | ZINCOOOOOO967534 ZINCOOOOO1615335 |ZINCOOO100074293 ZINCOOOOOO967534
ZINCO00100074301 ZINCOOOOOO967534 | ZINCOOOO64858311 ZINCOOOOOO967534 |ZINCOOOOOO967534 ZINCOOOOO1656970

Table S6. Top scoring pairs after removing the benzene-like solvents.

g

ZINCOOOO01758808 ZINCOOOO57677596

o gEe

ZINCOOOOO0967819 ZINCOOOOO8O34701

o ol

ZINCOOO001586329 ZINCOOOOO1674476

20S SIS =0x

ZINCO00100074278 ZINCOOOOO1849773

o agae

ZINCOOO001586329 ZINCOOOO57677596

oo QIS

ZINCOO0002242728 ZINCOOOOO1725142

G o-fro

ZINCOO0001758808 ZINCOOOOO2167088

8888 £r

ZINCOOO064624955 ZINCOOOOO1849773

® offo

ZINCOOO001758808 ZINCOOOOO1615335
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Table S7. Top-scored predictions that include heteroatoms.

o0
Saa®

ZINCOOO001674476

ZINCOO0001586329

Sad),
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ZINCOOOOO1758808 ZINCOOOOO1674476

o
\\' O'
&

ZINCOO0001725142 ZINCOOOOO1656970

()
D%
QQ

ZINCOO0O001586329 ZINCOOOOO1656970

ZINCOOO001666852 ZINCOOOOO4769055

ZINCO00001725142 ZINCOOOOO1654295

(P
o

ZINCOOOOO0967522 ZINCOOOOO1656970

Sady
® o
OO

ZINCOOO001000251 ZINCOOOOO1674476

ZINCOOOOO4769055

ZINCO00001725142

Table S8. Top scored pairs with at least one of the initial molecules.

o BES

ZINCOOO000967819 ZINCOOOOO8034701

o oo

ZINCOOO000967819 ZINCOOOOO2167088

o oo

ZINCOOO000967819 ZINCOOOOO1615335

@ et

ZINCOOOOO1758808 ZINCOOOOO1580750

o Qe

ZINCOOOOO1586329 ZINCOOOOO1580750

3358 o

ZINCOOOO64624955 ZINCOOOOOO967819

2ea B =

ZINCO00100074278 ZINCOOOOOO967819

R oo

ZINCOOO000967819 ZINCOOOO01674476

o WY

ZINCOOOOO0967819 ZINCOOOOO1580750
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Table S9: Predictions which include 9,10-dicyanoathracene molecule.

N
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N

Il
N
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ZINCOOOOO1580747 ZINCOOOOO2584246| ZINCOOEEO1598876 ZINCOOPOO2584246| ZINCOEOEE1758808 ZINCOOOOO2584246
N N N
WI {iii Wl i
Il 4"’ 1l Il
N N N
ZINCOOOOO1581013 ZINCOOOOO2584246| ZINCOOEOO1581017 ZINCOOLOO2584246( ZINCOOOEO1570231 ZINCOOOOO2584246

X

ZINCOOD000968282

N
]

O

Ml
N
ZINCOOOPO2584246

ZINCOODOO1590020 ZINCOOOOD2584246

ZINCOOODO2558787

N
i

Il
N
ZINCOOROO2584246

49
)

Table S10: Predictions which include 6H-benzo[c]chromen-6-one molecule.

56666

pes

o

pe

[}

ZINCOO0001581013 ZINCOOO0O00401218| ZINCOOO064622647 ZINCOOOOOO401218| ZINCOOOOO1758808 ZINCOOOOO0401218
o o o

ZINCOOOOO2558787 ZINCOOOOOO0401218| ZINCOOOOO1590020 ZINCOOOOOO401218| ZINCOOOOO1580747 ZINCOOOO00401218
j j

ZINCOO0001570231 ZINCOOOOO0401218| ZINCOOOOO8034701 ZINCOOOOOO401218| ZINCOOOOOO0401218 ZINCOOOOO1615335
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Table S11: Predictions which include pyrene.

® gE

ZINCOO0001758808 ZINCOOOOS57677596

o

&

ZINCOO0001758808 ZINCOOOOOO967534

® o-fo

ZINCOO0001758808 ZINCOOOOO2167088

@ offo

ZINCOO0001758808 ZINCOOOOO1615335

® &8

ZINCOO0001758808 ZINCOOO100074278

G oFo

ZINCOO0001758808 ZINCOOOOO1674476

o o

ZINCO00001758808 ZINCOOOOO1586329

D CoCooo

ZINCOO0001758808 ZINCOOOO64622647

& B

ZINCOO0001758808 ZINCOOOO70667148
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4. Predicting Molecular Stoichiometry

For the prediction of molecular stoichiometry on the labelled dataset the XGBoost classifier was implemented.
The hyperparameters were optimized using the hyperopt library.

a) XGBoost (Bidirectional Representation) XGBoost (Latent Representation)
I T I T I T T T T
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> =) = -
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Figure S19. Evaluation metrics on the ratios prediction. a) Training/test accuracy with XGBoost Classifier on the
prediction of ratios using the initial bidirectional dataset (left) and after using the latent representation (right).
The highest accuracy achieved on the test set was 77% whilst overfitting on the training data. When the latent
dimension of the deep network was used as the input the training was more effective, achieving more than 90%
accuracy and no-overfitting. It can be postulated that using an Attention-based encoder for capturing the relation
between the molecular pairs, a better representation can be achieved. b) Classification reports on the validation
set using the bidirectional dataset (left) and the latent representation (right).
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Table S12: Predicted ratios for the high-scored pyrene co-crystals.

Molecular Pair Ratio

Res o0

{:83 1:1

1:1

1:1

>1:1

S50
e

>1:1
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5. Interpretability

SHAP (Shapley Additive exPlanations) was implemented as a model interpretation framework for providing
chemical insights into predictions. Rationalizing model decisions would assign priority to meaningful experimental
attempts and help the chemists to choose the next molecular pair worth testing. SHAP is a model independent
method, meaning that it is not takes into consideration the feature weights but measures the influence each
feature change has on the final decision of the model. In other words, by calculating Shapley values, the
contribution of each feature of each combination to the final score is estimated.

The overall SHAP formula is shown in equation (1), where g is the explanation model, M is the number of
simplified input features, ¢; € R is the feature attribution for a feature i, z’ € {0,1} ¥ , and ¢, represents the
model output with all the simplified inputs missing.

9(z") = o+ XM 0:7'; (1)

To obtain the contribution of a feature i, all operations by which a feature might have been added to the set (N!)
and a summation over all possible sets (S) is considered. For any feature sequence, the marginal contribution
through addition of feature i is given by [f(SU{i}) - f(S)], where f(S) corresponds to the output of the ML model.
The resulting quantity is weighted by the different possibilities the set could have been formed prior to feature
i’s addition (|S|!) and the remaining features could have been added ((|N| - |S| - 1)!). Hence, the importance of
a given feature is defined by equation (2):

9 = 3 ZsemISILAN] = IS = DIF(S U () — £(S)] 2)

It follows that Shapley values represent a unique way to divide a model’s output among feature contributions
satisfying three axioms: local accuracy (or additivity), consistency (or symmetry), and nonexistence (or null effect).

Using the SHAP approach, the identification and prioritization of features that determine the pairs ranking is
enabled. In that way we can extract the connection between the molecular properties and co-crystallisation. In
addition to model accuracy, the interpretability of the predictions is adding value to any machine learning model.

High negative Shapley values are driving the model towards outliers, whereas as high positive values are
supporting the decision for inlierness. Initially, we tried to get the whole picture of the model and have an
indication for the important features that dominate the training set. GradientExplainer method was used on the
whole bidirectional dataset such that the position of the molecule will not matter. The summary plot with the
features’ contribution in descending order of importance is shown in Figure S20. The red and blue values indicate
high and low values respectively, with high positive red enhancing the decision of inlierness and high negative red
driving towards the decision of anomaly. The feature value reflects the contribution the feature makes to the final
score of the molecular pair.

Model interpretation inherently depends on the interpretability of the implemented descriptors or features.
Herein, we used all the available Dragon descriptors as we wanted to compare with previous statistical analysis
on the CSD based on similar descriptors and also to gain a physical meaning for the PAHs co-crystals to enable an
experimental chemist to understand dominating patterns and prioritize the experimental work.
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5.1 Interpreting the labelled dataset.

A density scatter plot of SHAP values was employed for illustrating the feature importance. Herein, it can be seen
the impact each feature has on the model scoring for each individual pair in the labelled dataset. Features are
sorted by the sum of the SHAP value magnitudes across all samples. In the plot the density of the datapoints can
also be observed on the lumpier areas, as on the y axis the distribution of the datapoints is shown.

BO6[C-C]
WiA_B(p)

ATS6i
ChiA Dz(v)

SMO7_EA(ri)
SpMin5_Bh(s)
BO8[C- C] . -
VE2 - .
SM02 EA% b - L w.e ¢
Eig06_EA(bo :
SpMing_ Bhé g .
ChiA_Dz
SpMaxA_EA(bo) ctdodn i
IDDE . <
SpMin6_ Bh(m) *o v -

Eig06_. AEA(dm) A

BO7[C-C] ‘o m- -
SM15_AEA(ri) "o e e -
Eig13_AEA(bo) "
SpMin5_Bh(v) .
SpMin5_Bh(i)

Hywi_D/Dt

VE2_B(v)

Eig06_EA(ri)
Eig06_AEA(bo)

. _ATS4v
SpMin7_Bh(e)
SM11_EA(bo)

SM6_Dz(e)

VE2_Dz(p)

Eig05 AEAW;

WIA_B(e

EE_B(e

EE X

EE_B(V)
VE1_B(v) .

Eig10_AEA(bo)

SM_B(e)

SMO3_EA(ri)

High

Feature Value

-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 LOW

SHAP value

Figure $20. Summary plot of Shapley values for global interpretation of the bidirectional dataset. The Shapley
value of each feature represents its contribution towards the model’s output. Red positive values are driving to
higher scores and boosting inlierness, whereas red negative values tend to descrease the final score and hence
outlierness. Blue values are idicative of low feature value. As for many of the features calculated by Dragon
software a physical meaning is hard to be extracted, the correlations among the most significant descriptors with
those that are more general is calculated.
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5.2 Interpreting the pyrene co-crystals subset.

The advantage of using the Shapley analysis is that we can zoom in to a subset of interest and gain some knowledge
about the important features in some molecular pairs of interest. In the work, as pyrene was identified as a popular
co-former and was used for the experimental screening, the pyrene co-crystals family of materials was further
investigated to extract the feature importance and understanding which properties dominate in the existing
pyrene pairs. As the pyrene is a set molecule, it took the first place on the molecular vector and the pairing
molecules were always second. As we are interested in the contribution of the pairing molecule only the features
related to them are shown in the summary plot below. For those molecules where shape matters, it has more
impact than the existence of heteroatoms. It can be postulated that in cases where we have a pairing molecule
with no heteroatoms, then the shape will play an importanct role in the pyrene co-crystal formation.
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Figure S21. Shapley values showing the important descriptors for molecules pairing with Pyrene in the labelled
dataset. Only the contributions of the second co-formers are shown here. The presence of heteroatoms in several
topological distances in the molecule are those that seem to contribute more, as indicated by the B04[C-O], BO3[C-
0], BO1[C-N], BO4[C-N], X%, BO2[C-F] descriptors. The notable elements are N and O. So we could expect that
molecules with these groups in the certain topological distances and high scores (as the score is the outcome of
the consideration of all the known features) are good candidated for forming co-crystals with Pyrene.
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5.3 Important correlations between descriptors

Table S13. Descriptors correlated to the descriptors identified as important for the decisions of the deep learning
model. The correlation between the descriptors follows a previously reported method.*”

atomic composition

Descriptor | Correlated | Correlation | Description Related Physical Meaning
Descriptors
B06[C-C] BO7[C-C] 0.857434 Presence/absence of C- Cat | atom pairs descriptors that
topological distance 7 describe pairs of atoms and bond
types connecting them in 2D space
BO5[C-C] 0.812225 Presence/absence of C- Cat | atom pairs descriptors that
topological distance 5 describe pairs of atoms and bond
types connecting them in 2D space
ATS6I ATS6e 0.998216 Broto-Moreau electronegativity
autocorrelation of lag 6 (log
function) weighted by
Sanderson electronegativity
ATS5e 0.983335 Broto-Moreau electronegativity
autocorrelation of lag 5 (log
function) weighted by
Sanderson electronegativity
ATS5i 0.981890 Broto-Moreau ionization potential
autocorrelation of lag 5 (log
function) weighted by
ionization potential
SpMax8 B | 0.928269 largest eigenvalue n. 8 of lonization potential
h(i) Burden matrix weighted by
ionization potential
SpMax8 B | 0.923641 largest eigenvalue n. 8 of polarizability
h(p) Burden matrix weighted by
polarizability
ATS8e 0.927747 Broto-Moreau electronegativity
autocorrelation of lag 8 (log
function) weighted by
Sanderson electronegativity
Vx McGowan volume shape
0.913402
Si 0.945914 sum of first ionization lonization potential
potentials (scaled on Carbon
atom)
Se 0.940544 sum of atomic Sanderson electronegativity
electronegativities (scaled on
Carbon atom)
nBT 0.934793 number of bonds general
Sp 0.923744 sum of atomic polarizabilities | polarizability
(scaled on Carbon atom)
Sv 0.913610 sum of atomic van der Waals | shape
volumes (scaled on Carbon
atom)
IAC 0.900917 total information index on composition
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S1K 0.887118 1-path Kier alpha-modified Shape
shape index
Eta_epsi 0.875800 eta electronegativity electronegativity
measure
SAtot 0.871258 total surface area from polarity
P_VSA-like descriptors
Pol 0.863927 polarity number polarity
nSK 0.853433 number of non-H atoms general
MW 0.828710 Molecular weight general
Eig06_AEA( | Eig0O5_AEA( | 0.956601 eigenvalue n. 5 from
dm): dm) augmented edge adjacency
mat. weighted by dipole dipole moment
moment
Eig7_AEA(d | 0.938136 eigenvalue n. 7 from
m) augmented edge adjacency dipole moment
mat. weighted by dipole
moment
Eig08 AEA( | 0.918267 eigenvalue n. 8 from
dm) augmented edge adjacency dipole moment
mat. weighted by dipole
moment
Ram 0.792930 Ramification branching
Eta B 0.778573 eta branching index Shape
ChiA_Dz(p) | SpMaxA_B( | 0.910006 normalized leading polarizability
p) eigenvalue from Burden
matrix weighted by
polarizability
WiA_B(p) 0.908640 average Wiener-like index polarizability
from Burden matrix
weighted by polarizability
ChiA_Dz(e) | 0.901665 average Randic-like index electronegativity
from Barysz matrix weighted
by Sanderson
electronegativity
UNIP 0.933653 unipolarity Polarity
Sv 0.822757 sum of atomic van der Waals | shape
volumes (scaled on Carbon
atom)
MW 0.822103 Molecular weight molecular weight
VwvdwMG 0.819518 van der Waals volume from Shape
McGowan volume
Vx 0.819518 McGowan volume shape
Si 0.815686 sum of first ionization lonization potential
potentials (scaled on Carbon
atom)
Pol 0.805521 polarity number polarity
Sp 0.795808 sum of atomic polarizabilities | polarizability

(scaled on Carbon atom)
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SpMin5_Bh | ATS3i 0.921903 Broto-Moreau ionization potential
(s) autocorrelation of lag 3 (log
function) weighted by
ionization potential
ATS3e 0.917570 Broto-Moreau electronegativity
autocorrelation of lag 3 (log
function) weighted by
Sanderson electronegativity
SpMin5_Bh | 0.915201 smallest eigenvalue n. 5 of electronegativity
(e) Burden matrix weighted by
Sanderson electronegativity
Sv 0.898829 sum of atomic van der Waals | shape
volumes (scaled on Carbon
atom)
Sp 0.895652 sum of atomic polarizabilities | polarizability
(scaled on Carbon atom)
Si 0.882950 sum of first ionization lonization potential
potentials (scaled on Carbon
atom)
Se 0.881810 sum of atomic Sanderson electronegativity
electronegativities (scaled on
Carbon atom)
Vx 0.878079 McGowan volume shape
VvdwMG 0.878079 van der Waals volume from shape
McGowan volume
MW 0.803832 Molecular weight molecular weight
Ram 0.800056 Ramification shape
Eig06_EA(b | Pol 0.888838 Polarity number polarity
o)
Csl 0.887028 eccentric connectivity index | shape
UNIP 0.871951 unipolarity polarity
Sv 0.859414 sum of atomic van der Waals | shape
volumes (scaled on Carbon
atom)
MW 0.834828 Molecular weight general
Ram 0.831023 Ramification branching
Vx 0.818124 van der Waals volume from shape
McGowan volume
VvdwMG 0.818124 van der Waals volume from Shape
McGowan volume
Sp 0.811851 sum of atomic polarizabilities | polarizability

(scaled on Carbon atom)
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5.4 Descriptor distributions

As the main principle of machine learning is to encounter some underlying structure in the data, we visualize the
distribution of the labelled dataset, used as the training set and the extracted distribution of the unlabelled
dataset to compare the general patterns. The investigated properties are separated into the following categories:
i) General descriptors, ii) Shape descriptors, iii) Polarity descriptors, iv) Size descriptors and v) Electronic
descriptors.
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Figure S22. Extracted Patterns from the Deep learning model for some important general descriptors.
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Shape Descriptors
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Figure S23. Extracted Patterns from the Deep learning model for shape descriptors.

S38



Polarity Descriptors
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6. Experimental Realization (Pareto Optimization)

As our target is to design functional materials, for the selection of the co-formers to be experimentally tested
some further important parameters are taken into consideration. These parameters refer to common factors that
a synthetic chemist will use as a guideline for the experimental design: quick availability, novelty and possible
electronic properties. The decision making was driven by a commonly used criterion for determining solutions to
multi-objective optimization problems, the Pareto optimality.’® The co-formers to be tested are the Pareto
Optimal points regarding the high score and the similarity to TCNQ molecule, which is well-known for the
interesting electronic properties as a co-crystal co-former.® A point is regarded as Pareto optimal in cases where
there is no other point such that the desired objectives are improved simultaneously, i.e. both score and structural
similarity to TCNQ are maximized.

Table S14. Pareto ranking when optimizing 5 parameters as acquired from Pipeline Pilot. (optimized parameters:
Price -> maximized, number of _cocrystal -> minimized, Tamimoto similarity to known co-formers with pyrene ->
minimized, tanimoto similarity to TCNQ -> maximized ). The calculation was performed only for the co-formers
with prices less than £200/1g and we are focucing on those with zero number of reported co-crystals. It can be
observed that the five molecules we attempted to use in synthetic work are in ParetoFront 1 and 2. The molecules
that were screened experimentally (1-6) are highlighted with bold.

smiles price(/ | number | scores tanimoto to | distance to | Pareto | Crowding

1g) _of _cocr known pyrene | TCNQ Front Distance
ystals coformers

clccc(ccl)c2c3cc | 21 0 0.79273593 | 0.393939394 0.106382979 1 1E+99

ccc3ccdcecccc24

(4)

clcec(ccl)P(c2cc | 17 0 0.7981133 0.301204819 0.058139535 1 1E+99

ccc2)c3cecdecccc

4c3c5c¢(ccecbeccce

56)P(c7ccccc7)c8

cccec8

N#Cclc2cccec2e( | 35 0 0.72066504 | 0.265306122 0.2 1 1E+99

C#N)c3cccccl3

(2)

S=C=Nclcccc2cee | 30.9 0 0.3786586 0.195876289 0.154929577 1 1E+99

ccl2

olccc2cecccl? 4.18 0 0.7044418 0.175675676 0.14516129 1 1E+99

C1Cc2cccecl2 129 0 0.7443961 0.15 0.133333333 1 1E+99

CN(Cclcce(ccl)C( | 83 0 0.7984278 0.247863248 0.098039216 1 2.823559

C)(C)C)Cc2cccc3c

cccc23

0O=Clc2cccec2C= | 0.99 0 0.7741672 0.302083333 0.12345679 1 1.477933

Cc3ccccecl3

C=Cclccc2ccecc? | 85.2 0 0.83732426 | 0.189473684 0.144927536 1 1.296141

cl

Cclccec2ecec(C)e | 72.9 0 0.78758216 | 0.236842105 0.147058824 1 1.153976

12
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COclccc2ccccc2ce
1

0.2

0.77328277

0.189473684

0.144927536

0.272085

[C-
J#[N+]clccc2ceccc
c2cl

65.4

0.6639398

0.189473684

0.144927536

1E+99

Cclc2cccec2c(C)c
3clcccdceccec34

82

0.7849483

0.307692308

0.108695652

3.953052

0=C10c2ccccc2c
3cccecl3 (1)

120

0.8051945

0.257731959

0.128205128

1.710217

0=C1CCCc2ccc3c
cccc3cl2 (3)

120

0.78516996

0.238095238

0.128205128

1.053558

[O-
JIN+](=0)clccc2c
ccec2cl

56

0.64138496

0.276315789

0.14084507

0.80574

Cclcc2cccec2cecl
C

48.7

0.7717488

0.196428571

0.114285714

0.622167

C=Cclcccc2ccccc
12 (5)

67.1

0.75620985

0.202531646

0.144927536

0.574148

CCOC(=0)Cclccc
c2cccccl?

0.73698723

0.191011236

0.139240506

0.535242

Cclnccc2cccecl2

24.8

0.72139645

0.194444444

0.134328358

1E+99

CS(=0)(=0)clccc
ccl

5.68

0.60952055

0.227272727

0.109375

1E+99

0=C1C(=0)c2c3c
cccc3ccdceccclc?
4

59.2

0.7254807

0.365853659

0.11627907

3.64843

O(clcceecl)c2cecc
¢(Oc3cceec3)e2

7.1

0.7290225

0.339805825

0.106382979

0.860812

C1CCl1c2ccec3ccc
cc23

40

0.6346386

0.195876289

0.138888889

0.795675

0=C1C=C(0c2clc
cc3cceec23)cdecc
cch

12

0.62570065

0.320754717

0.104166667

0.766259

[O-
J[N+](=0)clc2ccc
cc2cc3cccecl3

14.9

0.67084086

0.26744186

0.120481928

0.761211

CC(=0)clccc2cc3
cccec3cec2cl

80.8

0.686586

0.20952381

0.134146341

1E+99

0=C1CCc2c(01)c
cc3cccec23

196

0.7204851

0.223880597

0.128205128

1E+99

C[n+]1c2ccecec2c(
c3cdcccecd[n+](C
)c5cccee35)cbecc
cclé

67

0.561863

0.431034483

0.081967213

1E+99
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[O- 50.2 0 0.5639656 0.440677966 0.1 4 1E+99
][N+](=0)clcc(c2

ccccc2cl)[N+](=0

)[O-]

Cclcccecl 0.05 1 0.8746085 0.193548387 0.122807018 1 1E+99
olncc2cceccl?2 10.94 1 0.46706015 | 0.144736842 0.126984127 1 1E+99
Clclcceccl 0.03 1 0.71085477 | 0.157894737 0.122807018 1 1E+99
Clclccecclcl 0.03 1 0.6358253 0.212765957 0.137931034 1 2.925607
CC(=0)clccc2ccc | 3.2 1 0.8166031 0.197530864 0.157142857 1 2.469127
cc2cl

COclcccecl 0.05 1 0.5714836 0.147727273 0.116666667 1 1.327223
clccc2cec3cccec3ce | 13 1 0.85548186 | 0.276595745 0.131578947 1 1.029108
c2cl

FclccceclF 1.77 1 0.55542886 | 0.157894737 0.137931034 1 0.910736
Clclccec2cccecl2 | 0.19 1 0.67669845 | 0.211267606 0.151515152 1 0.828215
Brclcceecl 65.5 1 0.70618486 | 0.152941176 0.122807018 1 0.809937
clcec(ccl)c2cecee | 0.56 1 0.8196181 0.295454545 0.142857143 1 0.780638
c2

Iclccececl 0.48 1 0.6327518 0.152941176 0.122807018 1 0.758601
Cclccc2cccec2cl | 0.15 1 0.755266 0.246376812 0.151515152 1 0.482223
CclcceeclC 24.4 1 0.7887064 0.157894737 0.137931034 1 0.41945
Brclccec(Br)cl 22.18 1 0.80622596 | 0.195652174 0.137931034 1 0.207208
clcec(ccl)CHCc2c | 25 1 0.8624107 0.4 0.116666667 2 1E+99
3cceec3c(CHCcac

cceccd)c5eeeec25

clcc2ccec3cdceccc | 44 1 0.8162625 0.301886792 0.106382979 2 1E+99
5ccec(c(cl)c23)c

45

clccc2cc3ccdecce | 192 1 0.83921814 | 0.294117647 0.113636364 2 1E+99
cdcc3cc2cl

0=5(=0)(clccccc | 0.16 1 0.5948882 0.273684211 0.12987013 2 1E+99
1)c2cceec2

clccc2cecec2cl 25.4 0.74946034 | 0.255813953 0.15625 1E+99
Fclcceecl 2.32 0.534221 0.152941176 0.122807018 1E+99
[O- 0.29 0.67537975 | 0.347222222 0.14084507 3.03596
J[N+](=0)clccec2

cceecl2

Fclcccc2cccecl? | 4 1 0.57493293 | 0.210526316 0.151515152 1.19521
C1CCC(CC1)c2ccc | 37.63 1 0.70464814 | 0.177570093 0.12195122 0.962084
c3cceec23

clccc2ennec2cl 10 0.59604543 0.153846154 0.121212121 2 0.917912
Cclccc(C)c2ccecc | 15.28 0.7854327 0.222222222 0.147058824 2 0.776378
12
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clcecc2c(cl)cec3c
ccdcececcdc23

61.69

0.81538904

0.346938776

0.113636364

0.737554

clccc2c(cl)cec3c
cccc23

30

0.8118669

0.304347826

0.131578947

0.711468

clccc2cecec2cecl

73.7

0.6458365

0.227272727

0.15625

0.654148

C1=Cc2cccc3cccc
1c23

10

0.80281925

0.230769231

0.142857143

0.554704

olc2cccec2c3ccc
ccl3

0.72

0.6466993

0.258064516

0.136986301

0.510453

O(clcceecl)c2cecc
cc2

0.495

0.69433314

0.285714286

0.136986301

0.45795

Brclcnc2cccec2c
1

0.65355504

0.181818182

0.117647059

0.457255

BrclccccclBr

0.65333426

0.222222222

0.137931034

0.320085

0=C1c2ccccc20c
3cceecl3

0.7725264

0.257731959

0.128205128

0.190267

0=C1C(=C2C(=C1
c3cccec3)cdeccce
4c5cceec25)cbecc
ccb

29.1

0.84744203

0.452173913

0.081300813

1E+99

clcec(ccl)c2c3cc
ccc3c(cdceccecd)c
5cceec25

47.5

0.8568815

0.444444444

0.089285714

1E+99

clccc2c(cl)c3ccc
cdccec2c34

1.08

0.6798372

0.431818182

0.12195122

1E+99

clccc2cec3cecdcech
cccec5cecdcec3cec2ce
1

189

0.8038188

0.309090909

0.1

1E+99

clccc2c(cl)sc3cc
ccc23

1.52

0.4949149

0.258064516

0.136986301

1E+99

Cclccec2c(C)cccc
12

106.4

0.78139895

0.236842105

0.147058824

1E+99

clcc2ccec3ccecdcecce
5cceebe(cl)c2c3c
4c56

112

0.7856543

0.285714286

0.1

2.200523

clcc2ccec3ccecdcecc
5cccbeeclc7cbes
c4c3c27

181

0.79979837

0.261538462

0.094339623

1.898673

clcec(ccl)c2ceec(c
c2)c3cceec3

6.4

0.7370869

0.375

0.113636364

1.067325

Cclccc2ccccec2cl
C

50.8

0.73880076

0.222222222

0.147058824

1.059426

0O=Clc2cccec2C(=
O)c3ccdceccccdec
13

28.36

0.7645904

0.36

0.108695652

0.788438
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Cclcc(C)c2ceccc2
cl

11

0.7110152

0.205479452

0.114285714

0.763774

clcec(ccl)c2cecec(c
c2)c3ccc(ce3)clc
ccechd

15

0.786963

0.363636364

0.094339623

0.622031

clccc2c(cl)enc3c
cccc23

39

0.7358611

0.263157895

0.131578947

0.600971

Brclc2ccccc2c(Br
)c3cceecl3

14

0.72304547

0.265306122

0.125

0.593683

clccc2cec3c(ceclce
cccc34)cc2cl

42

0.80535185

0.32

0.113636364

0.591964

S1c2ccecec2Sc3ce
cccl3

1.55

0.6450059

0.25

0.131578947

0.589532

clccec2nc3cccec3
cc2cl

5.12

0.6871157

0.263157895

0.131578947

0.265507

clccc2nc3cccec3
nc2cl

6.5

0.68423283

0.25

0.131578947

0.159964

clccc2c(cl)cc3cec
c4ccec5eec2c3cd
5

175

0.75803137

0.314285714

0.106382979

1E+99

clccc2c3cccec3c
4ccccclc2cl (6)

35

0.375

0.113636364

1E+99

O(B(clcceecl)c2c
cccc2)B(c3cccec3
)cdcccecd

134

0.382608696

0.086956522

1E+99

clccc(ccl)[S+](c2
cccec2)c3ceecc3

170

0.391752577

0.10989011

1E+99
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7. Experimental Section

Table S15. Crystallographic data for co-crystal 1 and 2.

1

2

Formula

Mw

Crystal System
Space group
a/A

b/A

c/A
af°
8/°
v/°
v/A3

Z

7

T/K

A/A

D./g cm?3
U(Mo-Kq)/ mm™?

Meas. refl.

Obs. refl. [I>20(/)]

8 range for data
collection/°

wR(F?)

RIF? > 25(FY)]
S

DPrmaxmin/ €A

CCDC Deposit. Number

CisH1o - 2(C13Hs0>)

594.63
Monoclinic
P2./c
8.2950 (5)
16.3146(11)
21.1379 (18)
90
91.514 (7)
90
2859.6 (4)
4
1
100
0.71073
1.381
0.09

6525

4739

2.3-27.5

0.331

0.114

1.08
1.53,-0.56

2014577

Ci6H10* CigHsN>
430.48
Triclinic
P1
7.3505 (4)
9.1897 (6)
17.0347 (11)
94.567 (6)
91.046 (5)
113.509 (6)
1050.24 (12)
2
1
100
0.71073
1.361

0.08

3952

2482

2.4-25.7

0.236
0.090
1.05
0.45,-0.29

2014576
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Figure S27. The crystal packing of 1 looking down the a axis. Hydrogen atoms are omitted for clarity.
O, red; C, grey.

Figure S28. The crystal packing of 1 looking down the b axis. Hydrogen atoms are omitted for clarity.
O, red; C, grey.
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Figure $29. Molecular structure of co-crystal 2 highlighting the -t and C-H~N interactions. Hydrogen
atoms are omitted for clarity. N, dark blue; C, grey.

Figure S30. The crystal packing of 2 looking down the a axis. Hydrogen atoms are omitted for clarity.
N, dark blue; C, grey.
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Figure S31. The crystal packing of 2 looking down the b axis. Hydrogen atoms are omitted for clarity.

N, dark blue; C, grey.
L.
a
-
/ ¢%./

h

Figure S32. The crystal packing of 2 looking down the ¢ axis. Hydrogen atoms are omitted for clarity.
N, dark blue; C, grey.
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8. Comparison with known CSD co-crystals

8.1 Pyrene-based co-crystals

Cambridge Structural Database (CSD, 2019 release) was investigated in the search for the known
pyrene-based co-crystals. The graph of PYRENE entry, including hydrogen atoms, was used as starting
query in the ConQuest software. The filters: 3D coordinates determined, not polymeric, no ions and
only organics, applied to the results leads to the list reported in Table S16.

50
(a) (b) 22
40
o 30
3
© 20t ¥
101
= triclinic = monoclinic
= orthorhombic tetragonal 0 . 1 | i | i I ]
0.6 0.65 0.7 0.75 0.8
CK
(c) V.
INON ST
NON WIN
herringbone sandwich herringbone
232
P ANE A
ZIZX
y-type Sheet-like / B-type

herringbone

Figure S33. (a) Pie chart of the symmetry system of Pyrene co-crystal reported to literature [CCDC
2019 release, two independent chemical units]. (b) Histogram showing the range of packing coefficient
(Ck) of pyrene cocrystal [CCDC 2019 release, two independent chemical units], the orange and green
stars refer to 1 and 2 respectively. (c) Pie chart of the different packing types of pyrene co-crystals.
Colour code: herringbone, violet; sandwich herringbone, light blue; y-type herringbone, blue; sheet-
like/B-type, yellow.
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Table S16. List of the structural parameter of pyrene co-crystal reported in CCDC database (2019 release).

e, code fq  SPeeGrow  Go fi’\] A F’] F"] ’ ‘[,l'(’::] Ref
CUSzum 180 P1 0.68 9.8401 11.3738 11.4241 115.037 91.454 91.791 1156.817 e
BITBUD 100 P1 0.72 7.004 10.09 11.783 107.42 106.46 93.44 752.352 20
ELUGOJ 110 P1 0.72 13.8522 15.6089 15.8464 65.532 83.496 89.872 3094.711 2L
GUQQEQ 110 P1 0.72 9.155 13.793 13.924 91.993 105.843 90.323 1690.229 2
XETTEW 113 P1 0.72 8.393 9.7237 12.9654 94.018 91.57 110.732 985.624 &
PINJUUO3 115 P1 0.73 7.1106 17.278 17.748 62.924 82.368 82.571 1918.431 24
ECUVIH 120 P1 0.72 6.725 8.864 9.488 107.51 105.23 106.82 476.902 &
GUQRAN 150 P1 0.72 7.046 8.334 8.623 116.29 90.15 102.722 439.92 2
WOQQAX 150 P1 0.67 13.5717 15.3754 17.5775 65.787 68.112 82.586 3102.85 28
MUGBAS 173 P1 0.75 8.1578 8.203 10.141 89.462 76.889 80.215 651.014 27
EHETEQ 174 P1 0.74 7.3295 8.55 19.185 88.15 79.18 87.08 1179.047 &
PINJUUO2 220 P1 0.72 7.1779 17.415 17.827 62.427 81.939 82.145 1949.264 24
ISISAG 240 P1 0.71 7.367 8.555 15.803 94.02 102.77 89.86 968.867 &
GUMNUY 273 P1 0.70 7.9341 9.1661 10.3306 89.439 88.443 72.669 716.916 30
UZEGOX 273 P1 0.68 8.7758 12.0214 13.3155 66.461 74.489 74.462 1220.151 =i
BEFGIC 295 P1 0.65 10.085 10.646 11.037 98.73 92.61 107.36 1112.713 32
FETYAE 295 P1 0.70 8.046 15.067 16.433 82.03 89.1 87.52 1970.972 =
GAFJAY 295 P1 0.69 10.172 13.798 9.302 92.56 117.24 108.8 1069.821 34
PYRTNB 295 P1 0.71 6.77 16.35 8.55 93 101.3 95.6 921.141 ES
PYTQIM 295 P1 0.70 7.393 8.037 20.873 99.6 92.95 95.13 1215.171 36
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TEXPOB
TEXPOB10
XAGMAT
TUYVUF
QOLPUF
QOLQOA
QOLRER
MUFZIX
REQVOZ
AYEGAM
PYRPMAO4
AGORASO01
AGOREWO01
MIDDIP
PYRTCQO2
CENTOH
PYRCYEO2
PYRCYEO3
GUQQAM
GuaQaQlu
GUQQOA
GUuQQUG

295
295
295
298
298
298
298
173
123
173
19

100
100
100
100
103
105
105
110
110
110
110

P2,
Pc

Pc
P21/n
P2,/c
P2./c
P21/n
P2:/n
P2./c
P2:/a
P2:/a
P2,/c
P2/c
P2./c
P2,/c

0.73
0.73
0.66
0.72
0.70
0.69
0.70
0.72
0.73
0.70
0.74
0.74
0.73
0.71
0.72
0.80
0.72
0.46
0.72
0.71
0.72
0.72

7.092
7.092
9.727
8.4846
7.457
7.317
7.506
14.799
8.3157
7.851
13.664
14.058
15.694
8.973
6.9917
7.2231
14.136
14.136
9.1973
12.267
11.9762
14.458

8.378
8.378
10.854
11.1538
7.942
7.754
7.856
8.197
38.967
7.657
9.281
10.1
10.7983
26.857
10.069
8.419
7.169
7.169
13.6331
15.636
15.3782
8.874

8.664
8.664
11.62
15.236
11.259
11.041
10.872
25.036
14.2436
16.296
14.42
15.429
20.1481
17.476
14.671
19.036
7.866
7.866
14.3279
9.2024
9.7871
17.339
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112.922
112.922
106.3
69.813
71.93
104.81
69.79
90

90

90

90

90

90

90

90

90

90

90

90

90

90

90

92.86
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8.2 UMAP projection of the co-crystals space

UMAP (Uniform Manifold Approximation and Projection for Dimension Reduction)®? was
implemented for a low-dimensional space encoding of the labelled dataset. Each point on the UMAP
visualization is coloured according to the difference of the molecular descriptors. All the descriptors
are normalized to [0,1] to be comparable. The implemented UMAP settings were selected based on
the best distance preservation between the high dimensions and the two-dimensional embeddings.
The distance preservation was measured by calculating the Pearson correlation coefficient of the
distance matrix using the whole dimensionality and the distance matrix after the dimensionality
reduction. The most effective settings were as follows (n_neighbours = 80, min_dist = 0.1, euclidean
distance metric) resulting in Pearson correlation coefficient of 0.748.

Molecular Weight (MW) Aromatic Ratio (ARR)

"

UMAP_2

Molecular Electrotopological 0.4
Variation (DELS)

( -0.2

-0.0

Figure S34. UMAP 2D projection showing the distribution of selected molecular descriptors across the
co-crystal space. It can be observed that not all the descriptors show similar trends across the
molecular pairs map.
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UMAP projection of
the co-crystal space
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Figure S35. UMAP 2D visualization of the overall co-crystal dataset (inset) and zoomed view of the
hightlighted cluster. 1 and 2 are represented with red square and triangle respectively. The closest
neighbours to 1, as calculated by the Euclidean distance of the descriptors, are visualized with smaller
squares, whereas the closest neighbours to 2 with smaller triangles. The light green and grey color
codes stand for molecular pairs containing pyrene and those without pyrene respectively. Intrestingly
the majority of the pyrene co-crystals belong to the same cluster formed by molecules with similar
characteristics. It was observed that even though 1 and 2 are quite similar feature-wise to known
pyrene co-crystals, the crystal packing both of them adopt, (i.e., the y motif) was rare and more

complex.
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8.3 Comparison with known structures

The synthesized co-crystals 1 and 2 were compared to the known co-crystals consisting the labelled
dataset. The comparison was performed using all the available molecular descriptors acquired from
Dragon software.®® As before, each molecular pair is represented by the concatenation of the
molecular descriptors of each molecule in the pair. The distance between 1 and 2 and the known CSD
structures is calculated by measuring the Euclidean distance of the vectors of the two new structures
to the vectors of the labelled dataset.

The Euclidean Distance between two points p.q in n dimensional space is defined as:

dp, @) = J1— )%+ 02— @2)* + -+ (3 —43)> + -+ (Pn — qn)? = V21 (0i — 4)?  (3)

compound 2 N
P A =7/ \;}
\\;/
T T T T T
O) 8 e 5
j— e\ ) § A\ /— \ —_
PYRPMA11 O N\ - PYRTCQO3
= ¢ Nt Y
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O
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=
o

4

Euclidean Distance

Figure S36. Euclidean distance of 1 and 2 to the closest known co-crystals (blue bars) of the labelled
dataset. The red bar represents a more distant co-crystal for comparison purposes.
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Table S17. List of the significant structural motifs and of the crystal packing coefficients (Ci) of 1 and
of the most similar co-crystals in CSD database in terms of Euclidean distances.

Co-formers T-TU C-H'n C-HO

ratio [A] [A] [A] G Ref
Co-crystal 1 1:2 3.34-3.35 2.72-2.87 2.51-2.56 0.72 This work
PYRPMA11 1:1 3.34-3.39 - 2.473-2.667 0.72 >8
CEKBUP 1:1 3.20-3.38 - 2.565-2.595 0.73 66
VIPYUR 1:1 3.31-3.38 - 2.551-2.667 0.74 8
VIPYOL 1:1 3.31-3.37 - 2.540-2.713 0.71 8
WABWEB 1:1 3.50-3.60 - 2.514-2.638 0.73 86
FILHIR 1:1 3.34-3.37 2.856 2.609 0.70 87
PENPYM 1:1 3.36-3.37 - 2.591-2.712 0.69 88
FILHOX 1:1 3.36-3.38 - 2.470 0.73 87

Table S18. List of the significant structural motifs and of the crystal packing coefficients (C) of 2 and
of the most similar co-crystals in CSD database in terms of Euclidean distances.

Co-formers n-n C-H'n C-H-N/O* Ck Ref

ratio [A] [A] [A]
Co-crystal 2 1:1 3.67 - 2.57-2.65 0.73 This work
PYRTCQO3 1:1 3.50 - 2.571-2.693 0.71 76
PYRCBZ02 1:1 3.36 - 2.584 0.71 >4
UZEGOX 1:1 - 2.834 2.604 0.68 31
MIDDIP 1:1 3.34-3.39 - 2.691-2.737 0.71 a6
CHRTCQO1 1:1 3.34-3.39 - 2.664-2.729 0.75 20
HIGPUJO7 1:1 3.67 - 2.714 0.70 8
TCQANTO03 1:1 3.506 - 2.672-2.715 0.73 0
AGOREW 1:1 3.397 - 2.401-2.602(*) 0.73 s
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