## **Electronic Supplementary Information (ESI)**

# Conformational editing of intrinsically disordered protein by α-methylation

Valentin Bauer<sup>a†</sup>, Boris Schmidtgall<sup>a†</sup>, Gergő Gógl<sup>b</sup>, Jozica Dolenc<sup>c</sup>, Judit Osz<sup>b</sup>, Yves Nominé<sup>b</sup>, Camille Kostmann<sup>b</sup>, Alexandra Cousido-Siah<sup>b</sup>, André Mitschler<sup>b</sup>, Natacha Rochel<sup>b</sup>, Gilles Travé<sup>b</sup>, Bruno Kieffer<sup>b</sup> and Vladimir Torbeev<sup>a,1</sup>

<sup>a</sup> Institut de Science et d'Ingénierie Supramoléculaires (ISIS), International Center for Frontier Research in Chemistry (icFRC), University of Strasbourg, CNRS (UMR 7006), Strasbourg, France. \*Correspondence should be addressed to V. T. (torbeev@unistra.fr)

<sup>b</sup> Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM (U964), University of Strasbourg, CNRS (UMR 7104), Illkirch, France

<sup>c</sup> Chemistry | Biology | Pharmacy Information Center, ETH Zurich, Zurich, Switzerland

<sup>†</sup> - these authors equally contributed to this work

## Table of contents:

| Supplementary Discussion                                              | 2 |
|-----------------------------------------------------------------------|---|
| Supplementary Materials and Methods                                   | 4 |
| Chemical synthesis of peptides and protein domains                    | 4 |
| Protein expression                                                    | 7 |
| Isothermal titration calorimetry (ITC)                                | 8 |
| Circular dichroism (CD)                                               | 9 |
| NMR measurements                                                      | 9 |
| Crystallization, data collection and structure refinement1            | 1 |
| Molecular dynamics (MD) simulations1                                  | 2 |
| Biomolecular interaction analysis by Surface Plasmon Resonance (SPR)1 | 3 |
| Fluorescence polarization (FP) measurements1                          | 4 |
| Pull down experiments1                                                | 5 |

| Supplementary Tables S1-S17  |    |
|------------------------------|----|
| Supplementary Figures S1-S25 |    |
| Supplementary References     | 86 |

## **Supplementary Discussion**

# Non-optimal helix-helix interfaces observed in [1055meLeu;1076meLeu]ACTR/NCBD complex

The structural information obtained by X-ray crystallography made possible to analyze helix-helix packing and relevant interatomic contacts in the [1055meLeu;1076meLeu]AD1-ACTR/NCBD complex. The structure of the complex represents a noncanonical six-helical bundle (Figure S18). While this is a non-symmetric helix bundle, the helix-helix interactions can be considered in a pairwise manner, allowing their parametrization using the generalized Crick parameters (1). This mathematical framework previously developed for description of any arbitrary helical structure, is helpful for analysis and comparison with the other structures containing helix-helix interaction motifs. The fitted parameters are listed in Table S15.

Interactions between H1-ACTR and H1-NCBD as well as H1-NCBD and H2-NCBD helices follow the geometric parameters of canonical left-handed parallel and antiparallel coiled coils, respectively. The superhelical radius R<sub>0</sub> for H1-ACTR–H1-NCBD is 5.49 Å, a value that is in the upper range of values previously observed for helical dimers, whereas for H1-NCBD–H2-NCBD it is more tight with R<sub>0</sub> equal to 4.98 Å, a value that is close to the most common superhelical radius of 4.85 Å in dimeric coiled coils (1). The other parameters such as superhelical frequency ( $\omega_0$ ) and pitch angle ( $\alpha$ ) for these two helix pairs (Table S15) approach the most common average values ( $\omega_0 - 3.6$  °/residue and  $\alpha - 12$  °/residue) (1). The helical frequencies  $\omega_1$  that characterize the angular rotation of the helices around their local axes with each residue are 101.8 and 101.9 °/residue, respectively, and are also close to the canonical coiled-coil value of 102.8 °/residue. The helical axial shift  $\Delta Z_{off}$  defined as the distance between the most inward-facing points on the helical curves of the two helices is 0.8 Å for parallel H1-NCBD–H1-ACTR interface and -2.47 Å for antiparallel H1-NCBD–H2-NCBD helix pair, which is in agreement with more coaligned interhelix side-chain interactions for parallel and interdigitated contacts for antiparallel coiled coils.

The other helix-helix interactions are however less optimal and diverge significantly from the statistically most common values observed for a large number of crystal structures in PDB. For instance, the interhelical crossings in H2-NCBD–H2-ACTR, H3-NCBD–H3-ACTR and H3-NCBD–H1-ACTR are right-handed, which is rather rare for helix-helix interactions (1). The superhelical radii R<sub>0</sub> are in the 5.45-6.20 Å range, which indicate that the helix interfaces are not tightly packed. The superhelical frequency  $\omega_0$  and pitch angle  $\alpha$  also deviate significantly from canonical values. The helical frequencies  $\omega_1$  for right-handed helix-helix interactions are attenuated as expected in comparison to the canonical left-handed value (2).

To characterize the interactions between the respective helices we applied SOCKET software (3) in order to identify stabilizing knob-into-hole interactions (Figure S18d). The packing between H1-ACTR-H1-NCBD is stabilized by three well-defined knobs-into-holes, while H1-NCBD-H2-NCBD is held together by two complementary knob-into-hole contacts. Less optimal packing was observed between H2-NCBD-H2-ACTR and H3-NCBD-H3-ACTR with only one knob-intohole contact each, however, both deviating from ideal geometry, where a typical knob residue is centered from four side residues of the hole. The two helices H2-ACTR and H3-NCBD do not have knobs-into-holes, instead they interact via the salt-bridge requiring more space at the helix interface and which also explains why the superhelical radius R<sub>0</sub> 6.20 Å is the highest among other helix pairs. The packing between helices H3-NCBD and H1-ACTR is particularly poor with no knobs-into-holes present despite the large and generally hydrophobic interface. Overall, the analysis of crystal structure reveals that the best complementary interactions are between helices H1-ACTR-H1-NCBD and H1-NCBD-H2-NCBD. Despite being physically and chemically reasonable, the other helix-helix contacts are found to be less optimal when compared to ideal geometries. By providing quantitative metrics for helix-helix contacts our analysis corroborates and extends the results of Ala-scanning mutagenesis and thermodynamics study that concluded that the binding interface in the AD1-ACTR/NCBD complex is energetically non-optimal or "frustrated" (4).

## **Supplementary Materials and Methods**

## 1. Chemical synthesis of peptides and protein domains

Reagents: Solvents, chemicals and reagents were purchased from commercial sources. Fmoc-a-L-amino acids and resins for solid-phase peptide synthesis were purchased from Aapptec, Bachem or Iris Biotech, diisopropylethylamine (DIEA) and piperidine from Sigma-Aldrich, trifluoroacetic acid (Biograde) from Halocarbon. Fmoc-protected a-methylated L-amino acids were purchased from OKeanos Tech. (China), Iris Biotech and Bachem. The coupling reagents O-(7azabenzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU), **O-**N,N'-(benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HBTU), diisopropylcarbodiimide (DIC) and ethyl cyano(hydroxyimino)acetate (OxymaPure) were obtained from Iris Biotech. Fmoc-Lys(Biotin), Fmoc-NH-(PEG)3-COOH and Fmoc-NH-(PEG)5-COOH were purchased from Iris Biotech, and 5-(iodoacetamido)fluorescein from Santa Cruz biotechnology.

**Peptide synthesis:** The peptide- $^{\alpha}$ thioesters and cysteinyl-peptides were synthesized according to the previously described methods of SPPS and conjugated via native chemical ligation as reported (5-8). In this work, in addition to two-segment ligation approach, protein domains were synthesized on solid phase in full length (47 residues) using microwave-assisted automated synthesis. The procedures for this approach are detailed below.

Polypeptides corresponding to [1040-1086]-fragment of the ACTR (numbering as in *Nature* **415**, 549-553 (2002), which corresponds to [1045-1091]-fragment of sequence Q9Y6Q9 (NCOA3\_HUMAN) in UniProtKB) and [2066-2112]-fragment of CBP (CREB-binding protein, UniProtKB - P45481 (CBP\_MOUSE)) were assembled using a Liberty Blue microwave-assisted automatic synthesizer (CEM Corporation, USA) on either 0.05, 0.1 or 0.2 mmol scale. Variants of the [1040-1086]-fragment of the ACTR containing  $\alpha$ -methylated amino acids were synthesized analogously. The following protocol describes a synthesis on 0.1 mmol scale using Fmoc-Lys(Boc)-Wang polystyrene resin, 100-200 mesh with 0.47 mmol/g loading. To perform standard microwave-assisted coupling reactions the coupling reagent DIC (1 mL, 0.5 M), the activator OxymaPure (0.5 mL, 1 M) and the amino acid (2.5 mL, 0.2 M) were added to the resin and the suspension was treated at 90 °C for 2 min (170 W for 15 s, 30 W for 110 s). For some of the amino acids special conditions were used to achieve complete coupling. For Arg as well as for  $\beta$ -branched amino acids the coupling under standard microwave conditions was performed twice. The coupling of His was performed twice at 50 °C for 10 min (0 W 120 s, 35 W 480 s). The coupling of  $\alpha$ -

methylated amino acids (0.2 M solution) was performed at 90 °C for 4 min. Fmoc-deprotections were performed by adding 20% (v/v) 4-methylpiperidine (3 mL) to the resin and treating the suspension for 1 min at 90 °C (155 W 15 s, 32 W 50 s).

The peptides with sequences (*H*)-DERALLDQLHTLLSN-(*NH*<sub>2</sub>) and (*H*)-DERALLDQLHTmeLeu-LSN-(*NH*<sub>2</sub>) (meLeu =  $\alpha$ -methyl-*L*-leucine) corresponding to [1045-1059]-fragment of ACTR were also assembled by a microwave-assisted SPPS using Fmoc-Rink-Amide-AM polystyrene resin with 0.71 mmol/g loading. Shorter peptides corresponding to the LXXLL motif of AD1-ACTR with two flanking additional amino acids, (*H*)-QLHTLLS-(*NH*<sub>2</sub>) and (*H*)-QLHTmeLeu-LS-(*NH*<sub>2</sub>) were prepared in the same manner.

Biotinylated peptides needed for surface plasmon resonance (SPR) measurements were synthesized on a 0.05 mmol scale using Rink-Amide ChemMatrix resin (0.49 mmol/g loading). First, Fmoc-Lys(Biotin) was coupled to the resin followed by Fmoc-NH-(PEG)<sub>3</sub>-COOH (Iris Biotech, art. no.: PEG4370, chemical structure depicted below) and subsequently three glycine residues. Then, the actual sequence of the corresponding AD1-ACTR variant was assembled.

Fluoresceine-labeled AD1-ACTR peptides: Cys-(PEG)<sub>5</sub>-[1040-1086] peptides were synthetized using microwave-assisted peptide synthesis as described above. In these constructs the N-terminal cysteine is separated from the peptide sequence using a (PEG)<sub>5</sub> linker. After purification on a Jupiter C4 column (same method as other AD1-ACTR, see below) Cys-(PEG)<sub>5</sub>-(WT)AD1-ACTR and Cys-(PEG)<sub>5</sub>-[1055meLeu;1076meLeu]AD1-ACTR were labeled using the thiol reactive 5- (iodoacetamido)fluorescein. To do so, two solutions were prepared. First, 2 mg of peptide (1 eq, 0.37  $\mu$ mole) were dissolved in 300  $\mu$ L of 100 mM NaHCO<sub>3</sub>, 5 mM TCEP at pH 7.5. Then, protected from light, 1 mg of 5-(iodoacetamido)fluorescein (5 eq) were dissolved in 300  $\mu$ L of anhydrous DMF. The two solutions were mixed and allowed to react for 10 min at room temperature. The reaction mixture was further purified on a Jupiter C4 column (same method as other AD1-ACTR, see below) and pure fractions were combined and lyophilized furnishing a green-yellowish powder (1.3 mg, 59%). The structure of the dye and spacer are shown below:



**Analytical HPLC:** Analytical reversed phase HPLC of all peptides and proteins was performed on a Dionex Ultimate 3000 (Thermo Fisher) equipped with a UV detector, a column heater set to 40 °C and an autosampler. Analyzes were performed on a Kinetex EVO C18 column (Phenomenex, particle size 2.6  $\mu$ m, pore size 100 Å, dimensions 50 × 2.1 mm<sup>2</sup>) or a Kinetex XB C18 column (Phenomenex, particle size 2.6  $\mu$ m, pore size 100 Å, dimensions 50 × 2.1 mm<sup>2</sup>) at a flow rate of 1 mL/min and a gradient of 2-50% of eluent B (0.08% TFA in acetonitrile) in eluent A (0.1% TFA in H<sub>2</sub>O) within 4 min.

**Preparative HPLC:** Preparative reversed phase HPLC was performed on a Shimadzu instrument equipped with a CBM-20A communication module, a SPD-M20A UV detector, a SIL-10AP autosampler and a FRC-10A fraction collector.

Wild type AD1-ACTR and its  $\alpha$ -methylated variants were injected onto a Jupiter C4 column (Phenomenex, particle size 10  $\mu$ m, pore size 300 Å, dimensions 250  $\times$  21 mm<sup>2</sup>) at a flow rate of 10 mL/min and a gradient of 10-46% of eluent B (0.08% TFA in acetonitrile) in eluent A (0.1% TFA in H<sub>2</sub>O) within 70 min. After purification, pure fractions were identified by analytical HPLC and LC/MS, combined and lyophilized.

NCBD protein was purified two times on a Jupiter C4 column (Phenomenex, particle size 10  $\mu$ m, pore size 300 Å, dimensions 250 × 21 mm<sup>2</sup>) at a flow rate of 10 mL/min and a gradient of 10-40% of eluent B (0.08% TFA in acetonitrile) in eluent A (0.1% TFA in H<sub>2</sub>O) within 85 min. After purification, pure fractions were identified by analytical HPLC and LC/MS, combined and lyophilized.

Peptides *(H)*-DERALLDQLHTLLSN-*(NH<sub>2</sub>)* and *(H)*-DERALLDQLHT-meLeu-LSN-*(NH<sub>2</sub>)* (meLeu =  $\alpha$ -methyl-*L*-leucine) and shorter LXXLL motif containing peptides (see above) were purified on a C18 column (Phenomenex, particle size 10 µm, pore size 300 Å, dimensions 250 × 21.00 mm<sup>2</sup>) at a flow rate of 10 mL/min and a gradient of 5-30 % of eluent B (0.08% TFA in acetonitrile) in eluent A (0.1% TFA in H<sub>2</sub>O) within 40 min. After purification, pure fractions were identified by analytical HPLC and LC/MS, combined and lyophilized.

**Mass-spectrometry:** Peptide masses were determined using a LC/MS instrument containing a Thermo Scientific Accela UHPLC (Hypers II GOLD column, 1.9  $\mu$ m, 50 × 2.1 mm<sup>2</sup>) integrated with a Thermo Scientific LCQ Fleet ion trap. Deconvolution of experimental data was performed using the Zscore algorithm with the help of MagTran 1.03 software. Tables S1 and S2 provide the list of sequences of the peptides studied in this work and the corresponding mass-spectrometry data.

### 2. Protein expression

Maltose binding protein (MBP)-NCBD construct was over-expressed in *E. coli* BL21(DE3) overnight at 16 °C. The construct was purified by amylose affinity chromatography in buffer A (50 mM Tris pH 8, 400 mM NaCl, 1 mM DTT). In order to remove soluble oligomers, the purified sample was ultracentrifuged overnight at 40,000 RPM in a swing SW41 rotor (Beckman) at 4 °C. Then the resulting MBP-NCBD sample was concentrated and loaded onto a Superdex 200 pg HiLoad 26/60 gel filtration column (GE Healthcare) equilibrated in buffer A. The sample eluted as a monomer.

The full length CREB-binding protein (CBP) hsCBP (1-2442 aa) cloned into pDEST10 plasmid with N-terminal His-tag and C-terminal Flag and Myc-tag was a kind gift of Dr. P. Tompa (Flanders Institute for Biotechnology, Belgium). The protein was expressed in Sf21 insect cells for 48 h. To avoid the intracellular proteolytic degradation, 1 tablet of Roche cOmplete EDTA free protease inhibitor dissolved in ultrapure sterile water was added to the expression culture after 24 h of culture. The purification of the protein was performed as described in Bekesi et al. (9) with small modifications. The cell pellet of 1 L expression culture was resuspended in 50 mM Tris pH 7.5, 300 mM NaCl, 2 mM MgCl<sub>2</sub>, 5 % glycerol, 1 mM DTT, 5 µg/ml DNase I, 5 µg/ml RNase A. The cell suspension was homogenized in Dounce homogenizer, sonicated (2 min, 40% amplitude, 0.5 cycle, in ice) and homogenized. The lysate was ultracentrifuged for 1 h at 125 000 g and the supernatant was filtered with 0.45 µM pore-size filter. The purification was performed in 3 steps: a Ni-affinity using Ni-cOmplete resin (Roche), a Flag affinity step in batch chromatography followed by a size-exclusion chromatography on Superose 6 Increase column (GE Healthcare Life Sciences) using Akta systems and 50 mM Tris pH 7.5, 300 mM NaCl, 1 mM TCEP buffer. All steps were carried out in presence of the protease inhibitors: Roche cOmplete EDTA free, pepstatin A, bestatin, Pefabloc and E64, 25 µM Pefabloc and 2 µg/ml E64, and performed at 4°C. The SDS PAGE confirmed molecular weight of recombinant CBP:



## 3. Isothermal titration calorimetry (ITC)

Most ITC measurements were performed according to the previously described procedure using an iTC 200 microcalorimeter (GE Healthcare) (5). To analyze and visualize the data NITPIC, SEDPHAT/ITCsy, and GUSSI software were used (10-12). For each AD1-ACTR variant two titrations and two control experiments (i.e., titration of buffer into buffer, and the NCBD into buffer) were performed. The data depicted in Figure S1 (panels 1-36) show only one representative titration with baseline subtracted. The observed positive signal on the right side of the titration curves is due to the slight buffer mismatch and heat of NCBD dilution that were corrected by subtraction of control titrations. For each AD1-ACTR variant the two recorded titration curves were fitted globally. The error estimation for  $K_D$  and  $\Delta H$  values were ±20% and ±5-8%, respectively.

For weak binding AD1-ACTR variants such as [1064mL;1071mL], as well as (H)-DERALLDQLHTLLSN-( $NH_2$ ), (H)-DERALLDQLHT-meLeu-LSN-( $NH_2$ ) (meLeu =  $\alpha$ -methyl-L-leucine), (H)-QLHTLLS-(NH2) and (H)-QLHT-meLeu-LS-(NH2) peptides a PEAK ITC microcalorimeter (Malvern Instruments) was used. To avoid aggregation of NCBD protein at high concentrations, 25-60 µM of NCBD was in a sample cell (titrant) and the corresponding ACTR derived variants were in the syringe (titrators) at 250-600 µM concentrations. The solutions of AD1-ACTR variants were dialyzed for 48 h before measurements against a 10 mM Tris, 50 mM NaCl, 0.05% (w/v) NaN<sub>3</sub> buffer at pH 6.9 and room temperature. The titration parameters were set as following, temperature 31 °C, reference power 10 µcal/s, feedback=high, stirring speed 750 RPM, initial delay 60 s, first injection 0.4 µL in 0.8 s and the remaining 19 injections were 2 µL in 4 s with 120 s of spacing. The initial fitting was performed using the analysis software from Malvern with subtraction of three control experiments (i.e., titration of buffer into buffer, buffer into NCBD solution and the ACTR variants into buffer) and a correction of concentration taking into account precise concentration measurements by analytical HPLC using calibration curve at OD 220 nm. For [1064mL;1071mL]AD1-ACTR analogue previously used fitting protocol was applied to report the thermodynamic parameters listed in Table S3. The inversion of the analytes and method of fitting are not significantly affecting the thermodynamics parameters: the control titrations of the WT AD1-ACTR and [1055mL]AD1-ACTR variants were performed using these settings resulting in similar  $K_D$  values of 0.208  $\mu$ M and 0.072  $\mu$ M compared to values of 0.204  $\mu$ M (5) and 0.075  $\mu$ M (Table S3), obtained by the first method.

## 4. Circular dichroism (CD)

CD spectra were recorded using a J-1500 (Jasco) spectrophotometer. All samples were prepared in a quartz cuvette (thickness of 1 mm and a volume of 300  $\mu$ L). For every measurement protein or protein complexes were dissolved in a buffered solution (20 mM phosphate, pH 7.4) at a concentration of 25  $\mu$ M. For data collection the following parameters were set: scan range 185-280 nm, band width 1.00 nm, scanning speed 100 nm/min, data pitch 0.1 nm. Every CD curve was obtained by averaging of 5 scans and subtracting the background signal. The data are depicted in Figure S3.

The thermal stability of complexes of several AD1-ACTR variants with NCBD (concentration of complex 50  $\mu$ M) was evaluated by monitoring the ellipticity at 222 nm as a function of temperature from 20 to 90 °C. Rate of heating / cooling was 1 °C/min. The thermal denaturation was found to be highly reversible. The thermal denaturation curves are depicted in Figure S5 and the apparent melting temperatures are listed in Table S4.

For free AD1-ACTR protein variants, the ratio of ellipticities ( $\theta_{222}/\theta_{199}$ ) was calculated in order to compare their helical contents (Figure S4a) (13). For their complexes with NCBD, the other ratio ( $\theta_{222}/\theta_{208}$ ) was derived (Figure S4b), which may serve as a readout of helix-helix interactions (14). All obtained values are summarized in Tables S5 and S6, respectively.

## 5. NMR measurements

All NMR spectra were recorded on a 700 MHz Bruker spectrometer equipped with TCI cryo-probe at 304 K in 3 mm NMR tubes. The proton frequencies were referenced using DSS (2,2-dimethyl-2-silapentane-5-sufonate) as external reference and carbon frequencies were referenced using the indirect method (15). Proteins samples were obtained by dissolving the appropriate amount of each protein in 200  $\mu$ L 90 % H<sub>2</sub>O, 10 % D<sub>2</sub>O, 20 mM sodium phosphate, 0.05 % NaN<sub>3</sub> buffer at pH 7.2. The exact concentrations were measured by analytical HPLC using a calibration curve and adjusted to 1.4 mM. For NMR experiments in D<sub>2</sub>O, 200  $\mu$ L of the samples described above were lyophilized for at least 48 h. The resulting powder was then re-dissolved in 200  $\mu$ L of pure D<sub>2</sub>O just before the experiment.

The <sup>1</sup>H-<sup>13</sup>C HSQC spectra were recorded using the gradient-selected coherence transfer pulsesequence of the Bruker standard library. A resolution of 2 and 12 Hz in the <sup>1</sup>H and <sup>13</sup>C dimensions, respectively, were used with relaxation delays set to 1.2 s for a total experimental time of approximately 3.5 h. 60 kHz Chirp pulses of 500  $\mu s$  and a B1-field of 8 kHz were used for  $^{13}C$  resonance inversion.

The measurements of the <sup>13</sup>C R<sub>1</sub> and R<sub>2</sub> relaxation rates were performed using refocused <sup>1</sup>H-<sup>13</sup>C HSQC type experiments incorporating <sup>13</sup>C relaxation time (16). For the R<sub>1</sub> relaxation experiment proton decoupling was applied with 180 degree pulses every 2.5 ms. The following T<sub>1</sub> delays were used: 10, 50, 100, 200, 300, 400, 600, 800 ms. Additional points (50, 500 ms) were recorded for wild type and [1055meLeu]AD1-ACTR variant samples to estimate the experimental uncertainty on peak volumes. For the R<sub>2</sub> relaxation, a CPMG pulse sequence was used during the carbon relaxation time with 300 µs half-echo delay and a B<sub>1</sub>-field of 10 kHz. The T<sub>2</sub> delays were 35, 70, 140, 176, 211, 246, 317, 387 ms. Additional points (105, 211 ms) were recorded for wild-type and [1055mL]AD1-ACTR variant to estimate the experimental uncertainty on peak volumes. The relaxation delay was set to 2.5 s and total acquisition time was approximately 25 hours for each set of relaxation experiments.

The <sup>1</sup>H homonuclear TOCSY and NOESY experiments were recorded using 4096 and 600 points in the direct and indirect dimensions, respectively. The spectral width was set to 7.8 kHz and the relaxation delay to 2 s. The mixing times were 80 ms and 500 ms for the TOCSY and the NOESY, respectively. A B<sub>1</sub>-field of 9 kHz was used for the TOCSY spin-lock. <sup>1</sup>H-<sup>13</sup>C HSQC-TOCSY were recorded with a resolution of 4 and 24 Hz for the <sup>1</sup>H and <sup>13</sup>C dimensions, respectively, a relaxation time of 1.2 s and a TOCSY mixing time of 80 ms (B<sub>1</sub>-field of 9 kHz) for a total experiment time of 14 h. The <sup>1</sup>H-<sup>13</sup>C HMBC experiment was recorded with carrier frequency centered on the carbonyl resonances (174 ppm) to correlate the carbonyl with the adjacent Hα proton frequencies using the gradient-selected coherence transfer pulse-sequence of the Bruker standard library. The delay for long-range magnetization transfer was set to 89.3 ms (<sup>2</sup>*J*<sub>CO-Hα</sub> 5.6 Hz). The resolution were 4 Hz and 7 Hz for the proton and carbon dimensions, respectively. The relaxation time was set to 2 s for a total measurement time of 32 h.

Spin systems were manually identified using <sup>1</sup>H-<sup>1</sup>H TOCSY (80 ms mixing time) and the sequential assignment was based on the inter-residue correlations identified in the <sup>1</sup>H-<sup>1</sup>H NOESY (500 ms mixing time). C $\alpha$  carbon assignments were obtained using high-resolution <sup>1</sup>H-<sup>13</sup>C HSQC experiment. Ambiguities in the <sup>1</sup>H-<sup>13</sup>C HSQC were solved using <sup>1</sup>H-<sup>13</sup>C HSQC-TOCSY (80 ms mixing time) experiment. In two cases (N1058 and N1078) HMBC experiment was used to resolve the ambiguities of the assignment. When the WT AD1-ACTR protein was fully assigned, the chemical shifts being mostly the same, except for some residues, were used to assign the signals of [1055meLeu] and [1055meLeu;1076meLeu] AD1-ACTR analogues.

Data processing was performed using TopSpin software 2.1. All spectral analysis including frequency assignments and relaxation rate measurements were performed using ccpNmr (version 2.4.2) (17). For relaxation measurements, time dependent evolutions of the peak intensities were fitted using a single exponential model and the estimate of the uncertainty of the fitted parameters was obtained using the covariance method implemented in ccpNmr.

Chemical shifts for wild-type AD1-ACTR, [1055meLeu]AD1-ACTR and [1055meLeu;1076meLeu]AD1-ACTR analogues are listed in Tables S7-S9. POTENCI program (18) was used to create a neighbor-corrected list of the random coil chemical shifts of the wild-type AD1-ACTR sequence including the effect of temperature, pH and ionic strength to be subtracted from the experimental chemical shifts. Relaxation rates  $R_1$  and  $R_2$  and experimental uncertainties are tabulated in Tables S10 and S11.

## 6. Crystallization, data collection and structure refinement

The NCBD-ACTR complexes were reconstituted by mixing MBP-NCBD construct and synthetic wild-type AD1-ACTR, [1055meLeu] or [1055meLeu;1076meLeu] in a 1:1 stoichiometric ratio in buffer B (10 mM Tris pH 8, 100 mM NaCl, 1 mM DTT, 5 mM Maltose) and concentrated to 85 mg/mL prior to crystallization. Crystallization conditions were screened using commercially available kits (Qiagen, Hampton Research, Emerald Biosystems) by the sitting-drop vapor-diffusion method in 96-well MRC 2-drop plates (SWISSCI), using a Mosquito robot (TTP Labtech). After 3 weeks a crystal grew for a complex of MBP-NCBD with [1055meLeu;1076meLeu] variant in a drop made from 200 nL of protein solution at 85 mg/mL and 100 nL of reservoir solution containing 20% polyethylene glycol 6000, 100 mM Tris pH 8 and 10 mM ZnCl<sub>2</sub>. The crystals were flash-cooled in a cryoprotectant solution containing 30% ethylene glycol and stored in liquid nitrogen.

X-ray diffraction data were collected up to a resolution of 2.28Å at the Synchrotron Swiss Light Source (SLS) (Switzerland) on the X06DA beamline and processed with the program XDS (19). The crystal structure was solved by molecular replacement with a high resolution crystal structure of MBP (PDB entry 5H7Q) (20) using Phaser (21) and structure refinement was carried out with PHENIX (22). Building of the unnatural meLeu residues were achieved using eLBOW (23). TLS refinement was applied during the refinement (24). The crystallographic parameters and the statistics of data collection and refinement are shown in Table S12.

### 7. Molecular dynamics (MD) simulations

Molecular dynamics simulations were carried out with the GROMOS biomolecular simulation package (25) (www.gromos.net) and the GROMOS force-field parameter set 54A7 (26,27). The initial coordinates for AD1-ACTR/NCBD, [1055meLeu]AD1-ACTR/NCBD and [1055meLeu;1076meLeu]AD1-ACTR/NCBD complexes were derived from the solution NMR structure of the ACTR-NCBD complex (PDB ID 1KBH, model 1) and sequence has been matched to the experimentally studied sequence from this work. In the NCBD sequence methionine 2098 was replaced by norleucine. Each complex was solvated in approximately 8400 simple point charge (SPC) water molecules (28). Rectangular periodic boundary conditions were used and 26 Na<sup>+</sup> and 24 Cl<sup>-</sup> ions were added to each simulation box to neutralize the negative charge and to mimic the ionic strength of 0.15 M. The dimensions of the box were determined by a minimum solute-wall distance of 1.2 nm and a minimum solute-solvent atom-atom distance of 0.23 nm. In order to relax unfavorable contacts between atoms of the solute and the solvent, the systems were relaxed by performing a steepest-descent energy minimization with harmonic positional restraints on all solute atoms (force constant 2.5×10<sup>4</sup> kJ mol<sup>-1</sup> nm<sup>-2</sup>), followed by an equilibration period of 1 ns in which the strength of the positional restraints was gradually released from  $2.5 \times 10^4$  to 0.0 kJ mol<sup>-1</sup> nm<sup>-2</sup>, and the temperature was raised from 60 to 300 K. Initial velocities for the MD simulations were taken from a Maxwell-Boltzmann distribution. Solvent and solute were weakly coupled to separate temperature baths (29) with a relaxation time of 0.1 ps. After equilibration, the systems were also coupled to a pressure bath (29) with a relaxation time of 0.5 ps and an isothermal compressibility of  $0.4575 \times 10^{-3}$  (kJmol<sup>-1</sup>nm<sup>-3</sup>)<sup>-1</sup>. Bond lengths of the solute and the geometry of the solvent molecules were constrained using the SHAKE algorithm (30) with a relative geometric tolerance of  $10^{-4}$ , so the leapfrog integration time step could be set to 2 fs. The non-bonded van der Waals and electrostatic interactions were calculated using a triple-range cutoff scheme. Nonbonded interactions were truncated at a distance of 1.4 nm and recalculated every time step in the range 0.0-0.8 nm and every five time steps in the range 0.8-1.4 nm. The long-range electrostatic interactions beyond the outer cutoff of 1.4 nm were represented by a reaction field (31) with a relative dielectric permittivity of 61 for water (32). The motion of the center of mass was removed every 2 ps. The simulations were carried out for 200 ns at a constant pressure of 1 atm and a constant temperature of 300 K.

The coordinate trajectories were saved at 1 ps intervals and were analyzed using the GROMOS++ set of programs (33). The first 50 ns of every simulation were considered as equilibration time and were omitted from the analysis. Atom-positional root-mean-square deviation (RMSD) and atom-positional root-mean-square fluctuations (RMSF) were calculated for the backbone atoms N, C, O and C $\alpha$  using the energy-minimized initial structure as a reference. Conformational clustering

analysis was performed with the approach of Daura et al. (34) using as a criterion a backbone atompositional RMSD of less than 0.2 nm.

## 8. Biomolecular interaction analysis by Surface Plasmon Resonance (SPR)

The SPR measurements were performed on a Biacore T200 instrument (GE Healthcare - Biacore). Kinetics of NCBD binding to WT AD1-ACTR as well as to [1055meLeu;1076meLeu]AD1-ACTR, [1076meLeu]AD1-ACTR and [1055meLeu]AD1-ACTR variants were measured at five different temperatures (20, 22, 25, 27 and 31 °C). The buffer consisted of 10 mM HEPES, 500 mM NaCl and 0.005% (v/v) 10% P20 surfactant (GE Healthcare) at pH 7.5. The capture of biotinylated peptides on the chip was performed with the Biotin CAPture kit, Series S (GE Healthcare-Biacore). The oligo-streptavidin diluted 5 times in the running buffer was injected on all 4 channels at flow rate 2 µL/min for 300 sec. The first channel was always kept as a reference for subtraction of nonspecific binding of NCBD to the chip surface. On the remaining 3 channels biotinylated AD1-ACTR variants at a concentration of 100 nM were injected at a flow rate of 20 µL/min for 10 sec yielding around 25 to 35 RU. For regeneration between each sensogram, a solution of 6 M guanidine-HCl, 250 mM NaOH was injected into all channels at 5 µL/min for 60 sec. The parameters for the binding measurement were set as follows: temperature varied from 20 to 31 °C, initial delay 60 sec, injection of NCBD 120 sec at 50 µL/min, dissociation 120 sec. NCBD solutions were prepared with a two-fold cascade dilution with a range of concentrations from 1  $\mu$ M to 1.95 nM (10 concentrations).

Data analysis was performed using BiaEvaluation 3.2 software (GE Healthcare). After subtraction of the background signal obtained from the reference channel and the buffer signal, the curves were fitted assuming a simple 1:1 binding isotherm model. More advanced "two state" kinetic model involving a conformational change did not improve the fitting. The apparent dissociation constants ( $K_D$ ), as well as association and dissociation kinetics ( $k_{on}$  and  $k_{off}$ ) obtained upon fitting the data are provided in Table S16.

Since the kinetics reaches the limitations of the SPR method, steady-state analysis was made to obtain dissociation constants and the corresponding experimental uncertainties (Figure S20) (35). The steady-state binding ( $R_{eq}$ ) was derived by averaging the signals at equilibrium during the association phase. Subsequently, steady-state analysis using in-house Python scripts was performed by fitting the average signal  $R_{eq}$  as a function of analyte concentration, assuming a simple 1:1 interaction binding isotherm model, and leading to 3 fitted parameters: the minimal signal ( $R_{min}$ ), the maximum capacity of the surface ( $R_{max}$ ) and the affinity ( $K_D$ ). A Monte Carlo approach was further used in order to estimate the values and uncertainties of the 3 fitted

parameters (Table S17). This method consists of reproducing the fit using 1000 datasets in which noise fluctuations were introduced based on the experimental uncertainty, and then the mean and the standard deviation of the fitted parameters were calculated.

The SPR measurements with full length 270 kDa CBP were also performed using Biotin CAPture kit, Series S (GE Healthcare-Biacore) on a Biacore T200 instrument (GE Healthcare - Biacore). The running buffer was 50 mM Tris, pH 7.5, 300 mM NaCl, 1 mM TCEP, 0.01% P20 supplemented with Roche Complete EDTA free protease inhibitor and the running temperature was set to 10 °C. First, the biotin capture reagent was immobilized on the chip surface followed by the immobilization of the biotinylated ACTR variants (WT, [1055mL;1076mL]AD1-ACTR and [1064mL;1071mL]AD1-ACTR) as ligands. Interactions of the hCBP full length protein with the WT or AD1-ACTR analogues were analyzed in the manner of dose response using twofold dilution series of hCBP ranging from 380 to 0.75 nM. The association and dissociation phases were 100 s each and the analyte flow rate 40 µl/min. For regeneration, a solution of 6 M guanidine-HCl, 250 mM NaOH was injected into all channels at 5 µL/min for 60 sec. After subtracting the reference and buffer signal, the data were fit to a steady state binding model to define the apparent K<sub>D</sub>.

Equilibrium signals were extracted from experimental SPR data for both systems and subsequently fitted with a 1:1 binding model. Since the data recorded for WT ACTR / hCBP interaction are so far from saturation for the highest concentrations, the fitting has been done in two steps: a first one by fitting the equilibrium data for the ACTR doubly methylated variant, leading, among others, to the maximum capacity  $R_{\text{max}}$  value; then a second step in which this previous  $R_{\text{max}}$  value has been used as a forced parameter into the fit of the wild-type AD1-ACTR data, assuming that the saturation level is the same for both the wild type and the doubly methylated analogue (Figure S21).

### 9. Fluorescence polarization (FP) measurements

The fluorescein labeled AD1-ACTR (WT and [1055meLeu;1076meLeu] variant) was diluted at 5 nM in the assay buffer (25 mM Hepes pH 7.5, 150 mM NaCl, 1 mM TCEP, 0.05% Tween-20) and mixed with increasing concentration of hCBP (0.03-470 nM). The triplicates of the mixtures were transferred into 384 well black microplate (PS, F-bottom; Greiner Bio-one) and let incubate for 10 min at 25 °C in the dark. The FP was recorded by PHERAstar Plus (BMG LABTECH) at 25 °C, using excitation and emission filters of 485 and 520 nm, respectively. Graphpad Prism 8 software was used to calculate the dissociation constant ( $K_D$ ) by fitting a curve with the one site binding model (Figure S22).

## 10. Pull down experiments

The MCF7 cells (6.6 x  $10^6$  cell/ sample) were resuspend and lysed in the following buffer: 50 mM Tris pH 8.0, 75 mM NaCl, 75 mM KCl, 10 % glycerol, 0.1 % NP-40, 2 mM TCEP, supplemented with protease inhibitors. The total cell extract was treated with biotin conjugated [1055meLeu;1076meLeu]AD1-ACTR or the corresponding wild type peptide in 5  $\mu$ M final concentration for 1 h at + 4 °C, then the cell extract was centrifuged for 1 h at 20 000 g. The soluble fraction was incubated with Strep-Tactin Sepharose resin (IBA Lifescience) for 2 h. As control, the soluble extract without peptide treatment was incubated with the Strep-Tactin Sepharose resin. After washing the resin with lysis buffer, the elution was performed by SDS-PAGE loading solution. The eluted sample was analyzed by silver stained 8% SDS-PAGE and also by Westernblot using primary antibody against the hCBP (1CB2F3, IGBMC Antibody platform). In addition, label free quantitative MS analysis using Thermo Scientific Orbitrap Elite hybrid mass-spectrometer was performed. The preliminary data showed the increased abundance of CBP for [1055meLeu;1076meLeu]AD1-ACTR variant than for wild type sample with the statistical significance (fold change: 2.24; -logP 3.92, based on 3 technical replicates).

# **Supplementary Tables**

| <b>Table S1.</b> Annuo actu sequences of the variants of AD1-AC1K studied in this w | Table S1. | Amino acid | sequences | of the | variants | of AD1 | -ACTR | studied ir | this v | wor | k |
|-------------------------------------------------------------------------------------|-----------|------------|-----------|--------|----------|--------|-------|------------|--------|-----|---|
|-------------------------------------------------------------------------------------|-----------|------------|-----------|--------|----------|--------|-------|------------|--------|-----|---|

| 1         wid type (WT) AD1-ACTR         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           2         [S103MAD1050E_T10540]*         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           4         [1047mA]**         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           5         [1046mL]         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           6         [1046mL]         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           7         [1050mD]**         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           8         [1052mL]         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           9         [1055mL]         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           10         [1056mL]         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           11         [1061mA]**         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           12         [1077mJ]**         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           13         [1077mJ]**         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           14         [1077mJ]**         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           15         [1076mL]**         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           16         [1077mV]**         EGGSDEFALIDCLHTLISNTDATGLEEIDRALGIPELVNOGQALEPK           1047mA1077mJ         EGGSDEF                                                                                                                                       |          | Protein                                                   | Sequence                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------|-------------------------------------------------------------------------------|
| 2         [S1043MD/1050E_T10540]*         EGONDERALEQUHOLISNTDATGLEEDRALGPELVNOGQALEPK           3         [I047m]*         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           5         [1046m]         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           6         [1046m]         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           7         [1050mD]**         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           8         [1055mL]         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           9         [1056mL]         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           10         [1056mL]         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           11         [106fmd]**         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           11         [107fml]**         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           11         [107fml]**         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           1107fml]**         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           1107fml]**         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           1107fml]**         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           1107fml]**         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           1107fml]**         EGOSDERALLOQUHTLISNTDATGLEEDRALGPELVNOGQALEPK           1108fml]**         EGOSDERALLOQUHTLISNTDATG                                                                                                                                      | 1        | wild type (WT) AD1-ACTR                                   | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| [A10476]*         EGSDERRLLDGLHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1046mL]         EGSDERALLDGLHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1046mL]         EGSDERALLDGLHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1056mL]         EGSDERALLDGLHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1056mL]         EGSDERALLDGLHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1056mL]         EGSDERALLDGLHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1056mL]         EGSDERALLDGLHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1056mL]         EGSDERALLDGLHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1066mL]*         EGSDERALDOLHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1076mL]*         EGSDERALDOLHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1076mL]*         EGSDERALDOLHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1076mL]*         EGSDERALDOLHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1076mL]*         EGSDERALDOLHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1076mL]*         EGSDERALLDOLHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1076mL]**         EGSDERALLOUHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1086mL]         EGSDERALLOUHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1086mL]**         EGSDERALLOUHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1086mL]**         EGSDERALLOUHTLISNTDATGLEEIDRALGPELVNOGGALEPK           [1086mL]***         EGSDERALLOUHTLISNTDATGLEEIDRALGPELVNOGGALEPK </td <td>2</td> <td>[S1043M;D1050E;T1054Q]*</td> <td>EGQMDERALLEQLHQLLSNTDATGLEEIDRALGIPELVNQGQALEPK</td> | 2        | [S1043M;D1050E;T1054Q]*                                   | EGQMDERALLEQLHQLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 4         [1047mA]**         EGGSDERALLDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           5         [1048mL]         EGGSDERALLDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           7         [1050mD]**         EGGSDERALLDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           8         [1055mL]         EGGSDERALLDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           9         [1055mL]         EGGSDERALLDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           9         [1055mL]         EGGSDERALLDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           10         [1056mL]         EGGSDERALLDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           11         [1061mA]**         EGGSDERALLDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           12         [1064mL]         EGGSDERALLDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           13         [1071mL]**         EGGSDERALLDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           14         [1072mA]         EGGSDERALDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           15         [1077mV]         EGGSDERALDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           16         [1077mV]         EGGSDERALDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           17         [1080mA]         EGGSDERALDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           18         [1082mA]         EGGSDERALDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALEPK           19         [1083mL]**         EGGSDERALDQ.HTL.SNTDATGLEEIDRALGPELVNGGOALE                                                                                                                                                | 3        | [A1047G]*                                                 | EGQSDERGLLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 6         [1048mL]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           6         [1050mD]**         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           8         [1055mL]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           9         [1055mL]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           10         [1056mL]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           11         [1067mL]**         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           12         [1064mL]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           13         [1077mL]**         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           14         [1077mA]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           15         [1076mL]**         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           16         [1077mV]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           17         [1080mA]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           18         [1080mA]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           19         [1083mL]**         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           20         [1047mA;1071mL]**         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           21         [1047mA;1072mL]**         EGOSDERALDQLHTLISNTDATGLEEIDRALGP                                                                                                                                                | 4        | [1047mA]**                                                | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 6         [104mL]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           8         [105mL]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           9         [105mL]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           9         [105mL]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           11         [105mL]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           12         [106mL]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           13         [107mL]**         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           14         [107mA]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           15         [107mL]**         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           16         [107mV]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           17         [1080mA]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           18         [1082mA]         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           19         [1083mL]**         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           20         [1047mA:107mL]**         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           21         [1047mA:107mL]**         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOALEPK           22         [1047mA:107mL]**         EGOSDERALDQLHTLISNTDATGLEEIDRALGPELVNGGOA                                                                                                                                                | 5        | [1048mL]                                                  | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 7         [1050mD]**         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           8         [1055mL]         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           10         [1056mL]         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           11         [1061mA]**         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           12         [1064mL]         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           13         [1071mL]**         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           14         [1072mA]         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           15         [1076mL]**         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           16         [1077mV]         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           16         [1077mV]         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           18         [1082mA]         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           19         [1083mL]**         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           20         [1087mA]         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           21         [1047mA,1071mL]**         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           22         [1047mA,1071mL]**         EGGSDERALLDQL+TLLSNTDATGLEEDRALGPELVNGGQALEPK           23         [1047mA,1077mV]         EGGSDERALLDQL+TLLSNTDATG                                                                                                                                                | 6        | [1049mL]                                                  | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 6         [1052mL]         EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK           9         [1056mL]         EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK           11         [1061mA]**         EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK           12         [104mL]**         EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK           13         [1071mL]**         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           14         [1072mA]         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           15         [1077mL]**         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           16         [1077mV]         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           17         [1080mA]         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           18         [1082mA]         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           19         [1083mL]**         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           20         [1085mP]**         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           21         [1047mA:107mL]**         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           22         [1047mA:107mL]**         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           23         [1047mA:107mL]**         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           24         [1047mA:107mL]**         <                                                                                                                                            | 7        | [1050mD]**                                                | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 9         [1055mL]         EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK           10         [1056mL]         EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK           12         [1064mL]         EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK           13         [1071mL]**         EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK           14         [1072mA]         EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK           15         [1076mL]**         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           16         [1077mV]         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           17         [1080mA]         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           18         [1082mA]         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           19         [1083mL]**         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           20         [1047mA:1071mL]**         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           21         [1047mA:1072mA]         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           22         [1047mA:107mM]*         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           23         [1047mA:107mM]*         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           24         [1047mA:107mM]*         EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK           25         [1047mA:107mM]*                                                                                                                                             | 8        | [1052mL]                                                  | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 10       [108mL]       EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK         11       [1064mL]       EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK         12       [107tmL]**       EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK         13       [107tmL]**       EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK         14       [107zmA]       EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK         15       [107fmL]**       EGGSDERALLDOLHTLLSNTDATGLEEIDRALGIPELVNOGGALEPK         16       [107mV]       EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK         17       [1080mA]       EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK         18       [1082mA]       EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK         20       [1085mP]**       EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK         21       [1047mA;107fmL]**       EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK         22       [1047mA;107fmL]**       EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK         23       [1047mA;107fmV]       EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK         24       [1047mA;107fmV]       EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK         25       [1047mA;107fmV]       EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK         26       [1047mA;107fmV]       EGGSDERALLDOLHTLSNTDATGLEEIDRALGIPELVNOGGALEPK                                                                                                                                                                                | 9        | [1055mL]                                                  | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 11         [1061md]"         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           12         [1071mL]"         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           13         [1071mL]"         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           14         [1072mA]         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           15         [1076mL]"         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           16         [1077mV]         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           17         [1080mA]         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           18         [1082mA]         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           19         [1033mL]"         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           20         [1047mA;1077mV]         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           21         [1047mA;1077mV]         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           22         [1047mA;1077mV]         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           23         [1047mA;1077mV]         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           24         [1048mL;1037m]         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           25         [1048mL;1077mV]         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK           26         [1048mL;1077mV]                                                                                                                                              | 10       | [1056mL]                                                  | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 12       [107tmL]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         13       [107tmL]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         14       [107tmL]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         15       [107tm]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         16       [107tm]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         17       [1080mA]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         18       [1082mA]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         20       [1085mP]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         21       [1047mA:107tm]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         22       [1047mA:107tm]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         23       [1047mA:107tm]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         24       [1047mA:107tm]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         25       [1047mA:107tm]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         26       [1047mA:107tm]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         27       [1048mL:1075mL]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         28       [1048mL:1075mL]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK                                                                                                                                                                  | 11       | [1061mA]**                                                | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 13       [1071mL]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         14       [1072mA]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         15       [1077mV]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         16       [1077mV]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         18       [1082mA]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         19       [1083mL]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         20       [1047mA;1071mL]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         21       [1047mA;1071mL]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         22       [1047mA;1072mA]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         23       [1047mA;1072mA]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         24       [1047mA;1077mV]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         25       [1047mA;1076mL]**       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         26       [1046mL;1077mV]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         27       [1046mL;1077mV]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         28       [1046mL;1077mV]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         29       [1050mD;1077mA]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK </td <td>12</td> <td>[1064mL]</td> <td>EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK</td>                                                              | 12       | [1064mL]                                                  | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 14       [1072mA]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         15       [1077mV]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         16       [1077mV]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         17       [1080mA]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         18       [1085mA]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         20       [1047mA:1071mL]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         21       [1047mA:1070mL]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         22       [1047mA:1070mL]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         23       [1047mA:1070mL]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         24       [1047mA:1070mV]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         25       [1047mA:1070mV]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         26       [1048mL:1076mL]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         27       [1048mL:1076mL]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         28       [1048mL:1076mL]       EGQSDERALLDQLHTLSNTDATGLEEIDRALGIPELVNQGQALEPK         29       [1050mD:1077mV]       EGQSDERALLDQLHTLSNTDATGLEEIDRALGIPELVNQGQALEPK         30       [1050mD:1072mA]       EGQSDERALLDQLHTLSNTDATGLEEID                                                                                                                                                        | 13       | [1071mL]**                                                | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 15         [107fmU]**         EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK           16         [1077mV]         EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK           17         [1080mA]         EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK           18         [1082mA]         EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK           19         [1083mL]**         EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK           20         [1047mA;1071mL]**         EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK           21         [1047mA;1070mL]**         EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK           22         [1047mA;1070mL]**         EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK           23         [1047mA;1070mL]**         EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK           24         [1047mA;1070mL]**         EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK           25         [1047mA;1070mL]*         EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK           26         [1048mL;1070mL]*         EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK           27         [1048mL;1070mL]*         EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK           28         [1048mL;1070mL]*         EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK           29         [1050mD;1077mA]         EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK </td <td>14</td> <td>[1072mA]</td> <td>EGQSDERALLDQLHTLLSNTDATGLEEIDRAL<mark>G</mark>IPELVNQGQALEPK</td>                 | 14       | [1072mA]                                                  | EGQSDERALLDQLHTLLSNTDATGLEEIDRAL <mark>G</mark> IPELVNQGQALEPK                |
| 16       [1077mV]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK         17       [1080mA]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK         18       [1083m]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK         19       [1083m]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK         20       [1087m]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK         21       [1047mA;1071mL]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK         22       [1047mA;1070m]*       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK         23       [1047mA;1070m]*       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK         24       [1047mA;1070m]*       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK         25       [1047mA;1070m]*       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK         26       [1046mL;1077mV]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK         27       [1046mL;1077mV]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK         28       [1056mD;1071mL]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK         29       [1056mD;1077m]       EGQSDERALLDQLHTLSNTDATGLEEIDRALGPELVNGGQALEPK         30       [1056mD;1077m]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK         31       [1056mD;1077m]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNGGQALEPK <td>15</td> <td>[1076mL]**</td> <td>EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK</td>                                                                   | 15       | [1076mL]**                                                | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 17[1080mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK18[1085mA]*EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK19[1085m]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK20[1085m]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK21[1047mA;1071mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK22[1047mA;1072mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK23[1047mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK24[1047mA;1076m]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK25[1047mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK26[1047mA;1038mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK27[1048mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK28[1048mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK29[1056mD;1077mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK30[1056mD;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK31[1056mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK33[1056m1;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK34[1056m1;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK35[1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK36[1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK36[1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGPELVNQGQALEPK36[1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRA                                                                                                                                                                                                     | 16       | [1077mV]                                                  | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 18       [1082m4]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGQALEPK         19       [1085mP]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGQALEPK         20       [1047mA;1071mL]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGQALEPK         21       [1047mA;1071mL]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGQALEPK         22       [1047mA;1076mL]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGQALEPK         23       [1047mA;1076mL]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGQALEPK         24       [1047mA;1076mL]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGQALEPK         25       [1047mA;1076mL]**       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGQALEPK         26       [1048mL;1077mV]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGQALEPK         27       [1048mL;1077mV]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGQALEPK         28       [1046mL;1076mL]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGQALEPK         29       [1050mD;1072mA]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         31       [1050mD;1077mA]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         32       [1050m];1077mV]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         33       [1050m];1077mV]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         34       [1056mh;1077mV]       E                                                                                                                                                        | 17       | [1080mA]                                                  | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQ <mark>G</mark> QALEPK                |
| 19       [1083mL]**       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         20       [1047mA;1071mL]**       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         21       [1047mA;1072mA]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         22       [1047mA;1077mA]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         23       [1047mA;1077mV]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         24       [1047mA;1077mV]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         25       [1047mA;1077mV]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         26       [1048mL;1077mV]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         27       [1048mL;1077mV]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         28       [1048mL;1077mV]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         29       [1050mD;1071mL]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         31       [1050mD;1077mA]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         32       [1050mD;1077mV]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         33       [1050mD;1077mV]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         34       [1050mD;1077mV]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         35       [1050mL;1076mL]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIP                                                                                                                                                        | 18       | [1082mA]                                                  | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 20       [1085mP]**       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         21       [1047mA;1077mL]**       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         22       [1047mA;1076mL]**       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         23       [1047mA;1076mL]**       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         24       [1047mA;1076mL]**       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         25       [1047mA;1085mL]**       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         26       [1048mL;1076mL]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         27       [1048mL;1077mV]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         28       [1048mL;1077mV]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         29       [1050mD;1077mL]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         20       [1050mD;1077mA]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         21       [1050mD;1077mV]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         23       [1050mD;1077mV]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         34       [1050mD;1077mV]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         35       [1050mL;1076mL]       EGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNGGALEPK         34       [1050mD;1077mV]       EGSDERALLDQLHTLLSNTDATGLEE                                                                                                                                                        | 19       | [1083mL]**                                                | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 21[1047mA;1071mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK22[1047mA;1072mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK23[1047mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK24[1047mA;1083mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK25[1047mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK26[1048mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK27[1048mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK28[1048mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK29[1050mD;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK29[1050mD;1072mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK31[1050mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK33[1050mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK34[1050mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK35[1061mA;107mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK36[1061mA;107mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK36[1061mA;107mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK36[1061mA;107mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK36[1061mA;107mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK36[1061mA;107mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK36[1061mA;107mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNOGQALEPK36[1064mL;1076mL]                                                                                                                                                                                                 | 20       | [1085mP]**                                                | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 22[1047mA;1072mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK23[1047mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK24[1047mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK25[1047mA;1083mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK26[1048mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK27[1048mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK28[1048mL;1073mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK29[1050mD;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK30[1050mD;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK31[1050mD;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK32[1050mD;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK33[1050mD;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK34[1055mL;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK35[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK35[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK37[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK38[1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK40[1064mL                                                                                                                                                                                            | 21       | [1047mA;1071mL]**                                         | EGQSDER <mark>A</mark> LLDQLHTLLSNTDATGLEEIDRA <mark>L</mark> GIPELVNQGQALEPK |
| 23[1047mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK24[1047mA;107mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK25[1047mA;1033mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK26[1048mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK27[1048mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK28[1048mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK29[1050mD;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK30[1050mD;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK31[1050mD;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK32[1050mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK33[1050mD;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK34[1055mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK35[1061ma;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061ma;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK38[1061ma;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK34[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK34[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK34[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK34[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK44[1064mL;1077mV]<                                                                                                                                                                                            | 22       | [1047mA;1072mA]                                           | EGQSDER <mark>A</mark> LLDQLHTLLSNTDATGLEEIDRAL <mark>G</mark> IPELVNQGQALEPK |
| 24[1047mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK25[1047mA;1083mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK26[1048mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK28[1048mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK28[1050mD;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK29[1050mD;1072mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK30[1050mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK31[1050mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK32[1050mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK33[1050mD;1083mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK34[1055mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK35[1061ma;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061ma;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061ma;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK38[1061ma;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK34[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1                                                                                                                                                                                            | 23       | [1047mA;1076mL]**                                         | EGQSDER <b>A</b> LLDQLHTLLSNTDATGLEEIDRALGIPE <mark>L</mark> VNQGQALEPK       |
| 25[1047mA;1083mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK26[1048mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK27[1048mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK28[1050mD;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK29[1050mD;1077mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK30[1050mD;1077mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK31[1050mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK32[1050mD;1083mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK33[1050mD;1083mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK34[1055mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK35[1061mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK38[1061mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK43[1044mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK44[1054mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK45[1044mL;107                                                                                                                                                                                            | 24       | [1047mA;1077mV]                                           | EGQSDER <mark>A</mark> LLDQLHTLLSNTDATGLEEIDRALGIPEL <mark>V</mark> NQGQALEPK |
| 26[1048mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK27[1048mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK28[1050mD;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK29[1050mD;1077mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK30[1050mD;1077mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK31[1050mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK32[1050mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK33[1050mD;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK34[1055mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK35[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK37[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK38[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK40[1064mL;1077mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1077mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1077mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK43[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK44[1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK <t< td=""><td>25</td><td>[1047mA;1083mL]**</td><td>EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK</td></t<>                                                                | 25       | [1047mA;1083mL]**                                         | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 27[1048mL;1077mV]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK28[1050mD;1071mL]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK29[1050mD;1072mA]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK30[1050mD;1077mV]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK31[1050mD;1077mV]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK33[1050mD;1077mV]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK34[1055mL;1076mL]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK35[1061mA;1077mV]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;1077mV]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;1077mV]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK37[1061mA;1077mV]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK38[1061mA;1077mV]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1071mL]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1076mL]**EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK40[1064mL;1077mV]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1076mL]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1076mL]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK44[1055mL;1061mA]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1055mL;1061mA]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK47                                                                                                                                                                                        | 26       | [1048mL;1076mL]                                           | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 28[1048mL;1083mL]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK29[1050mD;1071mL]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK30[1050mD;1072mA]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK31[1050mD;1077mV]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK32[1050mD;1076mL]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK33[1050mD;1076mL]**EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK34[1050mD;1076mL]**EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK35[1061mA;1076mL]**EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;1076mL]**EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK37[1061mA;1077mV]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK38[1061mA;1077mV]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1076mL]**EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK40[1064mL;1076mL]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1077mV]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1076mL]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK43[1047mA;1053mL]1061mA]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK44[1055mL;1061mA]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPELVNQGQALEPK47[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTILSNTDATGLEEIDRALGIPE                                                                                                                                                                 | 27       | [1048mL;1077mV]                                           | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 29[1050mD;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK30[1050mD;1072mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK31[1050mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK32[1050mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK33[1050mD;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK34[1055mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK35[1061mA;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK37[1061mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK38[1061mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK40[1064mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK43[1064mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK44[1064mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK48[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVN                                                                                                                                                                 | 28       | [1048mL;1083mL]                                           | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 30[1050mD;1072mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK31[1050mD;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK32[1050mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK33[1050mD;1076mL]*EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK34[1055mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK35[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK38[1061mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK40[1064mL;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK43[1064mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK44[1064mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK47[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK48[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLD                                                                                                                                                                 | 29       | [1050mD;1071mL]                                           |                                                                               |
| 31[1050mD; 1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK32[1050mD;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK33[1050mD;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK34[1055mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK35[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK37[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK38[1064mL;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK40[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK43[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK44[1064mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK47[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK48[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK40[1047mA;1055mL;1061mA;1076mL]EGQSDERALLD                                                                                                                                                                 | 30       | [1050mD;1072mA]                                           | EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                               |
| 32[1050mD;107/mV]EGQSDERALLDQLHTILISNTDATGLEEIDRALGIPELVNQGQALEPK33[1050mD;1083mL]**EGQSDERALLDQLHTILISNTDATGLEEIDRALGIPELVNQGQALEPK34[1055mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK35[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK37[1061mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK38[1061mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK40[1064mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK43[1047mA;1055mL]1061mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK44[1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK47[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK48[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK40[1047mA;1055mL;                                                                                                                                                        | 31       | [1050mD; 1076mL]                                          |                                                                               |
| 33[1050mD;1083mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK34[1055mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK35[1061mA;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;1076mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK37[1061mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK38[1064mL;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK40[1064mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK43[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK44[1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK47[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK48[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK                                                                                                                                               | 32       | [1050mD;1077mV]                                           |                                                                               |
| 34[105bmL;107bmL]EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK35[1061mA;107fmL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;107fmL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK37[1061mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK38[1064mL;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;107fmL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK40[1064mL;107fmL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;107fmV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;107fmV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK43[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK44[1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK47[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK48[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQAL                                                                                                                             | 33       | [1050mD;1083mL]**                                         |                                                                               |
| 35[1001mA;1071mL]EGGSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK36[1061mA;1076mL]**EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK37[1061mA;1077mV]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK38[1061mA;1083mL]**EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1071mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK40[1064mL;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1077mV]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK43[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK44[1055mL;1076mL]1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1050mD;1061mA;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK47[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK48[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK51NCBDSALQDLLRIKLSSPSQQQQQVLNILKSNPQU.JAAFIKVAN***                                                                                                                                                                                                                      | 34       | [1055mL;1076mL]                                           |                                                                               |
| 30[1001mA;1070mL]^*EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK37[1061mA;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK38[1061mA;1083mL]**EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1071mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK40[1064mL;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK43[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK44[1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1050mD;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK47[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK48[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK51NCBDSALQDLLRTLKSPSSPQQQQQVLNILKSNPQI_JAAFIKORTAKYVAN***                                                                                                                                                                                                                                                                               | 35       | [1001mA;1071mL]                                           |                                                                               |
| 37[1001IIIA, 1077IIIV]EGGSDERALLDQLHTILLSNIDATGLEEIDRALGIPELVNQGQALEPK38[1061mA;1083mL]**EGQSDERALLDQLHTILLSNIDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1071mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK40[1064mL;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1077mV]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK43[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK44[1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1050mD;1061mA;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK47[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK48[1047mA;1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK51NCBDSALQDLLRTLKSPSSPQQQQQVNNUKSNPQUJAFK**                                                                                                                                                                                                                                                                                 | 30       | [1061mA;1076mL]^^                                         |                                                                               |
| 38[100 mA; 1083mL]^*EGGSDERALLDQLHTILLSNIDATGLEEIDRALGIPELVNQGQALEPK39[1064mL;1071mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK40[1064mL;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1077mV]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK43[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK44[1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1050mD;1061mA;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK47[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK48[1047mA;1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK51NCBDSALQDLLRTLKSPSSPQQQQQVLNILKSNPQU_JAAFJKVAN***                                                                                                                                                                                                                                                                                                                                                                                                                            | 37       | [1001mA;1077mV]                                           |                                                                               |
| 39[1004mL, 1071mL]EGGSDERALLDQLHTILLSNIDATGLEEIDRALGIPELVNQGQALEPK40[1064mL;1076mL]EGQSDERALLDQLHTILLSNIDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1077mV]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK43[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK44[1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1050mD;1061mA;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK47[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK48[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK51NCBDSALQDLLRTLKSPSSPQQQQQVLNILKSNPQU_JAAFIKORTAKYVAN****                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38       | [1061mA;1083mL]^^<br>[1064mL:1071mL]                      |                                                                               |
| 40[1004mL; 1076mL]EGQSDERALLDQLHTILLSNTDATGLEEIDRALGIPELVNQGQALEPK41[1064mL;1077mV]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK43[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK44[1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1050mD;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK47[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK48[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK51NCBDSALQDLLRTLKSPSSPQQQQQVLNILKSNPQU_JAAFJKVAN***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 39       |                                                           |                                                                               |
| 41[1004mL, 1077mV]EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK42[1064mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK43[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK44[1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1050mD;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK47[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK48[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK51NCBDSALQDLLRTLKSPSSPQQQQQVLNILKSNPQU_JAAFJKORTAKYVAN***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40       | [1004mL;1076mL]                                           |                                                                               |
| 42[1004mil, 1003mil]EGGSDERALLDQLHTILISNTDATGLEEIDRALGIPELVNQGQALEPK43[1047mA;1055mL;1061mA]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK44[1055mL;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK45[1047mA;1050mD;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK46[1047mA;1055mL;1061mA;1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK47[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK48[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK50[1047mA;1055mL;1061mA;1076mL;1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK51NCBDSALQDLLRTLKSPSSPQQQQQVLNILKSNPQU_JAAFJKORTAKYVAN***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 41       | [1004INL;1077mV]                                          |                                                                               |
| 43[1047mA; 1036mL; 106 mA]EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK44[1055mL; 1076mL; 1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK45[1047mA; 1055mL; 1061mA; 1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK46[1047mA; 1055mL; 1061mA; 1076mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK47[1047mA; 1055mL; 1076mL; 1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK48[1047mA; 1055mL; 1061mA; 1076mL; 1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK49[1047mA; 1055mL; 1061mA; 1076mL; 1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK50[1047mA; 1055mL; 1061mA; 1076mL; 1083mL]EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK51NCBDSALQDLLRTLKSPSSPQQQQQVLNILKSNPQU JAAFJKORTAKYVAN***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42<br>13 | [100410L,100500L]<br>[1047mA:1055mL:1061mA]               |                                                                               |
| 44     [1053mL, 1076mL, 1053mL]     EGGSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK       45     [1047mA;1050mD;1061mA;1076mL]     EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK       46     [1047mA;1055mL;1061mA;1076mL]     EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK       47     [1047mA;1055mL;1061mA;1076mL]     EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK       48     [1047mA;1055mL;1061mA;1076mL;1083mL]     EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK       49     [1047mA;1055mL;1061mA;1076mL;1083mL]     EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK       50     [1047mA;1055mL;1061mA;1076mL;1083mL]     EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK       50     [1047mA;1055mL;1061mA;1076mL;1083mL]     EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK       50     [1047mA;1055mL;1061mA;1076mL;1083mL]     EGQSDERALLDQLHTLLSNIDATGLEEIDRALGIPELVNQGQALEPK       51     NCBD     SALQDLLRTLKSPSSPQQQQQVLNILKSNPQU_JAAFJKORTAKYVAN***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 43       | [104711A, 103011L, 100 111A]<br>[1055ml :1076ml :1082ml ] |                                                                               |
| 45       [1047mA; 1050mL; 100 mIA; 1070mL]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         46       [1047mA; 1055mL; 1061mA; 1076mL]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         47       [1047mA; 1055mL; 1076mL; 1083mL]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         48       [1047mA; 1076mL; 1083mL]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         49       [1047mA; 1055mL; 1061mA; 1076mL; 1083mL]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         50       [1047mA; 1055mL; 1061mA; 1076mL; 1083mL; 1085mP]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         51       NCBD       SALQDLLRTLKSPSSPQQQQQVLNILKSNPQL JAAFJKORTAKYVAN***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44       | [103300], 107000], 100300]                                |                                                                               |
| 40       [1047mA; 1035mL; 100 mIA; 1076mL; 1083mL]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         47       [1047mA; 1055mL; 1076mL; 1083mL]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         48       [1047mA; 1055mL; 1061mA; 1076mL; 1083mL]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         49       [1047mA; 1055mL; 1061mA; 1076mL; 1083mL]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         50       [1047mA; 1055mL; 1061mA; 1076mL; 1083mL; 1085mP]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         51       NCBD       SALQDLLRTLKSPSSPQQQQQVLNILKSNPQU JAAFJKORTAKYVAN***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 45       | [1047mA:1055m]:1061mA:1076m]]                             |                                                                               |
| 47       [1047mA;1050mL;1060mL;1083mL]       EGGSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         48       [1047mA;1076mL;1083mL]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         49       [1047mA;1055mL;1061mA;1076mL;1083mL]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         50       [1047mA;1055mL;1061mA;1076mL;1083mL;1085mP]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         51       NCBD       SALQDLLRTLKSPSSPQQQQQVLNILKSNPQI_JAAFJKORTAKYVAN***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40       | [1047mA:1055ml:1076ml:1083ml]                             |                                                                               |
| 49       [1047mA;1055mL;1061mA;1076mL;1083mL]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         50       [1047mA;1055mL;1061mA;1076mL;1083mL;1085mP]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         51       NCBD       SALQDLLRTLKSPSSPQQQQQVLNILKSNPQLJAAFIKORTAKYVAN***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 41<br>18 | [1047mA·1061mA·1076mI ·1093mL]                            |                                                                               |
| 50       [1047mA;1055mL;1061mA;1076mL;1083mL;1085mP]       EGQSDERALLDQLHTLLSNTDATGLEEIDRALGIPELVNQGQALEPK         51       NCBD       SALQDLLRTLKSPSSPQQQQQVLNILKSNPQI JAAFIKORTAKYVAN***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40       | [10/7mA·1055m] ·1061mA·1076m] ·1082m] 1                   |                                                                               |
| 51 NCBD SALQDLLRTLKSPSSP000Q0VLNILKSNP0I JAAFIKORTAKYVAN***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | [1047mA·1055m] ·1061mA·1076ml ·1083ml ·1085mD]            |                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51       | NCBD                                                      | SALQDLLRTLKSPSSPQQQQQQVLNII KSNPQI JAAFIKQRTAKYVAN***                         |

# Residues in red are α-methylated;
 \* These sequences correspond to protein variants with canonical amino acids incorporated to modify the helix propensity: lešmantavičius et al. *Angew. Chem. Int. Ed.* 2014, 53, 1548-1551. We synthesized these protein variants and included them in our study to compare their properties with α-methylated analogues;
 \*\* These variants were reported in our previous communication: Schmidtgall et al. *Chem. Commun.* 2017, *53*, 7369-7372;
 \*\*\* J = *Nle* = norleucine in the NCBD sequence replaces Met being nearly isosteric to the native residue and resistant to oxidation.

| Protein                                                  | Measured mass [Da] | Calculated mass [Da] |
|----------------------------------------------------------|--------------------|----------------------|
| [S1043M;D1050E;T1054Q]                                   | 5184.9             | 5184.8               |
| [A1047G]                                                 | 5085.1             | 5085.6               |
| [1048mL]                                                 | 5113.7             | 5113.6               |
| [1049mL]                                                 | 5113.6             | 5113.6               |
| [1052mL]                                                 | 5113.6             | 5113.6               |
| [1055mL]                                                 | 5113.6             | 5113.6               |
| [1056mL]                                                 | 5113.6             | 5113.6               |
| [1064mL]                                                 | 5112.6             | 5113.6               |
| [1072mA]                                                 | 5128.3             | 5127.6               |
| [1077mV]                                                 | 5114.6             | 5113.6               |
| [1080mA]                                                 | 5127.9             | 5127.6               |
| [1082mA]                                                 | 5113.8             | 5113.6               |
| [1047mA;1072mA]                                          | 5142.2             | 5141.6               |
| [1047mA;1077mV]                                          | 5128.0             | 5127.6               |
| [1048mL;1076mL]                                          | 5127.6             | 5127.6               |
| [1048mL;1077mV]                                          | 5127.6             | 5127.6               |
| [1048mL;1083mL]                                          | 5127.6             | 5127.6               |
| [1050mD;1071mL]                                          | 5127.5             | 5127.6               |
| [1050mD;1072mA]                                          | 5141.4             | 5141.6               |
| [1050mD; 1076mL]                                         | 5127.5             | 5127.6               |
| [1050mD;1077mV]                                          | 5126.6             | 5127.6               |
| [1055mL;1076mL]                                          | 5127.6             | 5127.6               |
| [1061mA;1071mL]                                          | 5128.8             | 5127.6               |
| [1061mA;1077mV]                                          | 5127.9             | 5127.6               |
| [1064mL;1071mL]                                          | 5127.6             | 5127.6               |
| [1064mL;1076mL]                                          | 5127.1             | 5127.6               |
| [1064mL;1077mV]                                          | 5127.9             | 5127.6               |
| [1064mL;1083mL]                                          | 5128.3             | 5127.6               |
| [1047mA;1055mL;1061mA]                                   | 5141.6             | 5141.6               |
| [1055mL;1076mL;1083mL]                                   | 5141.0             | 5141.6               |
| [1047mA;1050mD;1061mA;1076mL]                            | 5155.7             | 5155.7               |
| [1047mA;1055mL;1061mA;1076mL]                            | 5155.0             | 5155.7               |
| [1047mA;1055mL;1076mL;1083mL]                            | 5155.7             | 5155.7               |
| [1047mA;1061mA;1076mL;1083mL]                            | 5155.5             | 5155.7               |
| [1047mA;1055mL;1061mA;1076mL;1083mL]                     | 5169.7             | 5169.7               |
| [1047mA;1055mL;1061mA;1076mL;1083mL;1085mP]              | 5183.7             | 5183.7               |
| WT-AD1-ACTR-GGG-(PEG)₃-K(Biotin)-amide*                  | 5826.5             | 5827.5               |
| [1055mL]AD1-ACTR-GGG-(PEG)₃-K(Biotin)-amide*             | 5841.3             | 5841.5               |
| [1076mL]AD1-ACTR-GGG-(PEG)₃-K(Biotin)-amide*             | 5841.7             | 5841.5               |
| [1055mL;1076mL]AD1-ACTR-GGG-(PEG)₃-K(Biotin)-amide*      | 5854.9             | 5855.5               |
| [1064mL;1071mL]AD1-ACTR-GGG-(PEG)₃-K(Biotin)-amide*      | 5854.2             | 5855.5               |
| Fluo-(PEG)₅-WT-AD1-ACTR*                                 | 5879.3             | 5880.5               |
| Fluo-(PEG) <sub>5</sub> -[1055meLeu;1076meLeu]-AD1-ACTR* | 5907.3             | 5908.5               |

Table S2. Characterization of synthesized proteins by mass-spectrometry\*\*.

\* The exact chemical structure for 'Fluo-(PEG)<sub>5</sub>' is provided on p.5;

\*\* For HPLC traces see Figure S25, purity for all samples was equal or exceeded 95%. Analytical ESI-MS characterization of the variants marked with two asterisks (\*\*) in Table S1 is not listed here and reported in our previous communication: Schmidtgall et al. *Chem. Commun.* **2017**, *53*, 7369-7372.

|    |                                              | K     | *0    | 411   | TAS    |
|----|----------------------------------------------|-------|-------|-------|--------|
|    | Protein                                      |       |       |       | - I Δ3 |
| -  |                                              |       |       |       |        |
| 1  |                                              | 0.206 | -9.30 | -12.7 | 3.40   |
| 2  | [S1043M;D1050E;11054Q]                       | 0.188 | -9.36 | -13.7 | 4.29   |
| 3  | [A1047G]                                     | 0.844 | -8.45 | -13.8 | 5.33   |
| 4  | [1047mA]^^                                   | 0.145 | -9.51 | -11.8 | 2.29   |
| 5  | [1048mL]                                     | 0.281 | -9.12 | -12.2 | 3.04   |
| 6  | [1049mL]                                     | 0.806 | -8.48 | -14.8 | 6.32   |
| 1  | [1050mD] <sup></sup>                         | 0.800 | -8.48 | -11.7 | 3.22   |
| 8  | [1052mL]                                     | 0.634 | -8.63 | -12.1 | 3.52   |
| 9  |                                              | 0.075 | -9.91 | -18.7 | 8.78   |
| 10 | [1056mL]                                     | 2.60  | -7.77 | -9.07 | 1.30   |
| 11 | [1061mA]^^                                   | 0.327 | -9.02 | -13.6 | 4.58   |
| 12 | [1064mL]                                     | 1.34  | -8.17 | -12.6 | 4.43   |
| 13 | [10/1mL]^^                                   | 7.11  | -7.16 | -5.58 | -1.58  |
| 14 | [10/2mA]                                     | 0.144 | -9.52 | -11.8 | 2.30   |
| 15 | [1076mL]**                                   | 0.206 | -9.30 | -15.0 | 5.70   |
| 16 | [1077mV]                                     | 0.347 | -8.99 | -20.5 | 11.5   |
| 17 | [1080mA]                                     | 0.496 | -8.77 | -19.4 | 10.7   |
| 18 | [1082mA]                                     | 0.518 | -8.75 | -18.3 | 9.58   |
| 19 | [1083mL]**                                   | 0.520 | -8.74 | -13.1 | 4.36   |
| 20 | [1085mP]**                                   | 0.487 | -8.78 | -14.8 | 6.02   |
| 21 | [1047mA;1071mL]**                            | 5.11  | -7.36 | -5.18 | -2.18  |
| 22 | [1047mA;1072mA]                              | 0.569 | -8.69 | -15.2 | 6.51   |
| 23 | [1047mA;1076mL]**                            | 0.055 | -10.1 | -13.2 | 3.10   |
| 24 | [1047mA;1077mV]                              | 0.311 | -9.06 | -18.9 | 9.88   |
| 25 | [1047mA;1083mL]**                            | 0.166 | -9.43 | -11.5 | 2.07   |
| 26 | [1048mL;1076mL]                              | 0.301 | -9.08 | -15.9 | 6.79   |
| 27 | [1048mL;1077mV]                              | 0.483 | -8.79 | -14.4 | 5.59   |
| 28 | [1048mL;1083mL]                              | 0.788 | -8.49 | -13.4 | 4.97   |
| 29 | [1050mD; 1071mL]                             | 4.99  | -7.37 | -4.20 | -3.18  |
| 30 | [1050mD;1072mA]                              | 0.798 | -8.49 | -14.3 | 5.86   |
| 31 | [1050mD; 1076mL]                             | 0.659 | -8.60 | -17.1 | 8.46   |
| 32 | [1050mD;1077mV]                              | 0.595 | -8.66 | -16.5 | 7.81   |
| 33 | [1050mD;1083mL]**                            | 0.614 | -8.64 | -11.7 | 3.06   |
| 34 | [1055mL;1076mL]                              | 0.042 | -10.3 | -20.4 | 10.1   |
| 35 | [1061mA;1071mL]                              | 3.37  | -7.62 | -6.50 | -1.12  |
| 36 | [1061mA;1076mL]**                            | 0.180 | -9.38 | -16.3 | 6.92   |
| 37 | [1061mA;1077mV]                              | 0.236 | -9.22 | -19.2 | 9.96   |
| 38 | [1061mA;1083mL]**                            | 0.277 | -9.12 | -15.3 | 6.18   |
| 39 | [1064mL;1071mL]                              | 6.05  | -7.26 | -2.20 | -5.06  |
| 40 | [1064mL;1076mL]                              | 0.796 | -8.49 | -15.4 | 6.94   |
| 41 | [1064mL;1077mV]                              | 0.829 | -8.46 | -15.2 | 6.69   |
| 42 | [1064mL;1083mL]                              | 1.60  | -8.07 | -13.3 | 5.20   |
| 43 | [1047mA;1055mL;1061mA]                       | 0.177 | -9.40 | -20.2 | 10.8   |
| 44 | [1055mL;1076mL;1083mL]                       | 0.042 | -10.3 | -20.3 | 10.0   |
| 45 | [1047mA;1050mD;1061mA;1076mL]                | 0.221 | -9.20 | -18.1 | 8.91   |
| 46 | [1047mA;1055mL;1061mA;1076mL]                | 0.136 | -9.56 | -21.6 | 12.0   |
| 47 | [1047mA;1055mL;1076mL;1083mL]                | 0.298 | -9.07 | -16.8 | 7.71   |
| 48 | [1047mA;1061mA;1076mL;1083mL]                | 0.155 | -9.48 | -18.6 | 9.16   |
| 49 | [1047mA;1055mL;1061mA;1076mL;1083mL]         | 0.090 | -9.80 | -21.8 | 12.0   |
| 50 | [1047mA:1055mL:1061mA:1076mL:1083mL: 1085mP] | 0.108 | -9.70 | -20.5 | 10.8   |

**Table S3.** Thermodynamic parameters of binding of AD1-ACTR variants to NCBD obtained by isothermal titration calorimetry (ITC)<sup>\*,#</sup>. The error estimation for  $K_D$  and  $\Delta H$  values are  $\pm 20$  % and  $\pm 5-8$  %, respectively.

\* The ITC data for 13 analogues marked with two asterisks (\*\*) were published in our previous communication: Schmidtgall et al. *Chem. Commun.* **2017**, 53, 7369-7372;

<sup>#</sup> The respective values of  $\Delta H$  and  $\Delta S$  for all  $\alpha$ -methylated variants can be fitted with a linear regression ( $\Delta H = a + b \times \Delta S$ ), where the slope *b* or "compensation temperature" is 340 ± 7 K.

| AD1-ACTR variant complexed with NCBD        | T <sub>m</sub> [°C] |
|---------------------------------------------|---------------------|
| WT                                          | 69                  |
| [1071mL]                                    | 50                  |
| [1047mA;1071mL]                             | 50                  |
| [A1047G]                                    | 67                  |
| [1050mD]                                    | 67                  |
| [1056mL]                                    | 66                  |
| [1047mA;1076mL]                             | 73                  |
| [S1043M;D1050E;T1054Q]                      | 74                  |
| [1055mL]                                    | >85                 |
| [1055mL;1076mL]                             | >85                 |
| [1047mA;1061mA;1076mL;1083mL]               | >85                 |
| [1047mA;1055mL;1061mA;1076mL;1083mL]        | >85                 |
| [1047mA;1055mL;1061mA;1076mL;1083mL;1086mP] | >85                 |

Table S4. Apparent melting points of AD1-ACTR/NCBD complexes (CD-monitored).

|    | Protein                                     | $\theta_{222}/\theta_{199}$ |
|----|---------------------------------------------|-----------------------------|
| 1  | WT AD1-ACTR                                 | 0.23                        |
| 2  | [S1043M;D1050E;T1054Q]                      | 0.33                        |
| 3  | [A1047G]                                    | 0.20                        |
| 4  | -<br>[1047mA]**                             | 0.23                        |
| 5  | [1048mL]                                    | 0.30                        |
| 6  | [1049mL]                                    | 0.28                        |
| 7  | [1050mD]**                                  | 0.26                        |
| 8  | [1052mL]                                    | 0.31                        |
| 9  | [1055mL]                                    | 0.44                        |
| 10 | [1056mL]                                    | 0.26                        |
| 11 | [1061mA]**                                  | 0.24                        |
| 12 | [1064mL]                                    | 0.25                        |
| 13 | [1071mL]**                                  | 0.24                        |
| 14 | [1072mA]                                    | 0.26                        |
| 15 | <br>[1076mL]**                              | 0.27                        |
| 16 | [1077mV]                                    | 0.29                        |
| 17 | [1080mA]                                    | 0.24                        |
| 18 | [1082mA]                                    | 0.25                        |
| 19 | [1083mL]**                                  | 0.26                        |
| 20 | [1085mP]**                                  | 0.25                        |
| 21 | [1047mA;1071mL]**                           | 0.26                        |
| 22 | [1047mA;1072mA]                             | 0.24                        |
| 23 | [1047mA;1076mL]**                           | 0.28                        |
| 24 | [1047mA;1077mV]                             | 0.29                        |
| 25 | [1047mA;1083mL]**                           | 0.25                        |
| 26 | [1048mL;1076mL]                             | 0.34                        |
| 27 | [1048mL;1077mV]                             | 0.37                        |
| 28 | [1048mL;1083mL]                             | 0.28                        |
| 29 | [1050mD; 1071mL]                            | 0.21                        |
| 30 | [1050mD;1072mA]                             | 0.23                        |
| 31 | [1050mD; 1076mL]                            | 0.23                        |
| 32 | [1050mD;1077mV]                             | 0.24                        |
| 33 | [1050mD;1083mL]**                           | 0.27                        |
| 34 | [1055mL;1076mL]                             | 0.40                        |
| 35 | [1061mA;1071mL]                             | 0.25                        |
| 36 | [1061mA;1076mL]**                           | 0.31                        |
| 37 | [1061mA;1077mV]                             | 0.30                        |
| 38 | [1061mA;1083mL]**                           | 0.25                        |
| 39 | [1064mL;1071mL]                             | 0.26                        |
| 40 | [1064mL;1076mL]                             | 0.28                        |
| 41 | [1064mL;1077mV]                             | 0.33                        |
| 42 | [1064mL;1083mL]                             | 0.23                        |
| 43 | [1047mA;1055mL;1061mA]                      | 0.48                        |
| 44 | [1055mL;1076mL;1083mL]                      | 0.50                        |
| 45 | [1047mA;1050mD;1061mA;1076mL]               | 0.29                        |
| 46 | [1047mA;1055mL;1061mA; 1076mL]              | 0.57                        |
| 47 | [1047mA;1055mL;1076mL;1083mL]               | 0.63                        |
| 48 | [1047mA;1061mA;1076mL;1083mL]               | 0.29                        |
| 49 | [1047mA;1055mL;1061mA;1076mL;1083mL]        | 0.61                        |
| 50 | [1047mA;1055mL;1061mA;1076mL;1083mL;1085mP] | 0.75                        |

Table S5. Ratios of ellipticities in CD spectra of AD1-ACTR variants.

\*\* The CD spectra for these analogues were previously published in our preceding communication: Schmidtgall et al. *Chem. Commun.* **2017**, *53*, 7369-7372.

|    | Protein complex                                    | $\theta_{222}/\theta_{208}$ |
|----|----------------------------------------------------|-----------------------------|
| 1  | WT AD1-ACTR / NCBD                                 | 0.949                       |
| 2  | [S1043M;D1050E;T1054Q] / NCBD                      | 0.948                       |
| 3  | [A1047G] / NCBD                                    | 0.924                       |
| 4  | [1047mA] / NCBD**                                  | 0.964                       |
| 5  | [1048mL] / NCBD                                    | 0.953                       |
| 6  | [1049mL] / NCBD                                    | 0.944                       |
| 7  | [1050mD] / NCBD**                                  | 0.934                       |
| 8  | [1052mL] / NCBD                                    | 0.941                       |
| 9  | [1055mL] / NCBD                                    | 0.960                       |
| 10 | [1056mL] / NCBD                                    | 0.922                       |
| 11 | [1061mA] / NCBD**                                  | 0.949                       |
| 12 | [1064mL] / NCBD                                    | 0.935                       |
| 13 | [1071mL] / NCBD**                                  | 0.889                       |
| 14 | [1072mA] / NCBD                                    | 0.939                       |
| 15 | [1076mL] / NCBD**                                  | 1.00                        |
| 16 | [1077mV] / NCBD                                    | 0.932                       |
| 17 | [1080mA] / NCBD                                    | 0.968                       |
| 18 | [1082mA] / NCBD                                    | 0.963                       |
| 19 | [1083mL] / NCBD**                                  | 0.968                       |
| 20 | [1085mP] / NCBD**                                  | 0.975                       |
| 21 | [1047mA;1071mL] / NCBD**                           | 0.893                       |
| 22 | [1047mA;1072mA] / NCBD                             | 0.959                       |
| 23 | [1047mA;1076mL] / NCBD**                           | 1.02                        |
| 24 | [1047mA;1077mV] / NCBD                             | 0.987                       |
| 25 | [1047mA;1083mL] / NCBD**                           | 0.924                       |
| 26 | [1048mL;1076mL] / NCBD                             | 0.974                       |
| 27 | [1048mL;1077mV] / NCBD                             | 0.977                       |
| 28 | [1048mL;1083mL] / NCBD                             | 0.943                       |
| 29 | [1050mD; 1071mL] / NCBD                            | 0.944                       |
| 30 | [1050mD;1072mA] / NCBD                             | 0.943                       |
| 31 | [1050mD; 1076mL] / NCBD                            | 0.979                       |
| 32 | [1050mD;1077mV] / NCBD                             | 0.981                       |
| 33 | [1050mD;1083mL] / NCBD**                           | 0.980                       |
| 34 | [1055mL;1076mL] / NCBD                             | 0.949                       |
| 35 | [1061mA;1071mL] / NCBD                             | 0.900                       |
| 36 | [1061mA;1076mL] / NCBD**                           | 0.989                       |
| 37 | [1061mA;1077mV] / NCBD                             | 0.993                       |
| 38 | [1061mA;1083mL] / NCBD**                           | 0.981                       |
| 39 | [1064mL;1071mL] / NCBD                             | 0.882                       |
| 40 | [1064mL;1076mL] / NCBD                             | 0.973                       |
| 41 | [1064mL;1077mV] / NCBD                             | 0.953                       |
| 42 | [1064mL;1083mL] / NCBD                             | 0.938                       |
| 43 | [1047mA;1055mL;1061mA] / NCBD                      | 0.973                       |
| 44 | [1055mL;1076mL;1083mL] / NCBD                      | 1.02                        |
| 45 | [1047mA;1050mD;1061mA;1076mL] / NCBD               | 1.01                        |
| 46 | [1047mA;1055mL;1061mA; 1076mL] / NCBD              | 0.996                       |
| 47 | [1047mA;1055mL;1076mL;1083mL] / NCBD               | 0.965                       |
| 48 | [104/mA;1061mA;1076mL;1083mL] / NCBD               | 0.986                       |
| 49 | [1047mA;1055mL;1061mA;1076mL;1083mL] / NCBD        | 0.990                       |
| 50 | [1047mA;1055mL;1061mA;1076mL;1083mL;1085mP] / NCBD | 0.994                       |

Table S6. Ratios of ellipticities in CD spectra of AD1-ACTR variants complexes with NCBD.

\*\* The CD spectra for these analogues were previously published in our preceding communication: Schmidtgall et al. *Chem. Commun.* **2017**, *53*, 7369-7372.

| Residue number | Residue type | Ηα             | Сα             | Сβ             |
|----------------|--------------|----------------|----------------|----------------|
| 1040           | E            | not determined | not determined | not determined |
| 1041           | G            | 4.008          | 45.136         | not present    |
| 1042           | Q            | 4.415          | 55.818         | 29.566         |
| 1043           | S            | 4.441          | 58.257         | 63.699         |
| 1044           | D            | 4.611          | 54.425         | 41.175         |
| 1045           | E            | 4.188          | 57.569         | 29.878         |
| 1046           | R            | 4.205          | 56.889         | 30.325         |
| 1047           | A            | 4.249          | 53.193         | 18.778         |
| 1048           | L            | 4.262          | 55.807         | not assigned   |
| 1049           | L            | 4.230          | 56.089         | not assigned   |
| 1050           | D            | 4.537          | 55.082         | 40.978         |
| 1051           | Q            | 4.275          | 56.359         | 29.160         |
| 1052           | L            | 4.251          | 55.927         | not assigned   |
| 1053           | Н            | 4.573          | 57.182         | 30.926         |
| 1054           | Т            | 4.227          | 62.600         | 69.496         |
| 1055           | L            | 4.363          | 55.206         | not assigned   |
| 1056           | L            | 4.363          | 55.240         | not assigned   |
| 1057           | S            | 4.447          | 58.437         | 63.746         |
| 1058           | N            | 4.803          | 53.316         | 38.898         |
| 1059           | Т            | 4.341          | 61.985         | 69.592         |
| 1060           | D            | 4.615          | 54.391         | 41.134         |
| 1061           | A            | 4.381          | 52.635         | 19.113         |
| 1062           | Т            | 4.295          | 62.508         | 69.849         |
| 1063           | G            | 3.980          | 45.452         | not present    |
| 1064           | L            | 4.340          | 54.830         | not assigned   |
| 1065           | E            | 4.244          | 57.036         | 30.158         |
| 1066           | E            | 4.264          | 56.773         | 30.150         |
| 1067           | 1            | 4.100          | 61.515         | 38.933         |
| 1068           | D            | 4.563          | 54.650         | 41.001         |
| 1069           | R            | 4.233          | 56.581         | 30.527         |
| 1070           | A            | 4.274          | 52.797         | 18.824         |
| 1071           | L            | 4.300          | 55.270         | not assigned   |
| 1072           | G            | 3.880          | 45.108         | not present    |
| 1073           | 1            | 4.443          | 58.970         | 38.389         |
| 1074           | Р            | 4.374          | 63.692         | 32.081         |
| 1075           | E            | 4.211          | 56.942         | 30.196         |
| 1076           | L            | 4.344          | 55.247         | not assigned   |
| 1077           | V            | 4.077          | 62.512         | 32.748         |
| 1078           | N            | 4.692          | 53.267         | 38.769         |
| 1079           | Q            | 4.305          | 56.228         | 29.229         |
| 1080           | G            | 3.944          | 45.391         | not present    |
| 1081           | Q            | 4.324          | 55.657         | 29.646         |
| 1082           | Α            | 4.313          | 52.366         | 19.063         |
| 1083           | L            | 4.336          | 55.593         | not assigned   |
| 1084           | E            | 4.580          | 54.229         | 29.933         |
| 1085           | P            | 4.413          | 63.335         | 31.919         |
| 1086           | К            | 4.169          | 57.434         | 33.957         |

**Table S7.** Chemical shifts (ppm) for wild type [1040-1086]-fragment of AD1-ACTR measured on a 700 MHz spectrometer used to calculate secondary chemical shifts.

| Residue number | Residue type | Ηα             | Сα             | Сβ                                                                                  |
|----------------|--------------|----------------|----------------|-------------------------------------------------------------------------------------|
| 1040           | E            | not determined | not determined | not determined                                                                      |
| 1041           | G            | 4.042          | 45.134         | not present                                                                         |
| 1042           | Q            | 4.408          | 55.897         | 29.548                                                                              |
| 1043           | S            | 4.442          | 58.500         | 63.6830                                                                             |
| 1044           | D            | 4.609          | 54.442         | 41.172                                                                              |
| 1045           | E            | 4.165          | 57.827         | 29.870                                                                              |
| 1046           | R            | 4.181          | 57.143         | 30.2490                                                                             |
| 1047           | A            | 4.245          | 53.484         | 18.660                                                                              |
| 1048           | L            | 4.225          | 56.209         | not assigned                                                                        |
| 1049           | L            | 4.195          | 56.332         | not assigned                                                                        |
| 1050           | D            | 4.524          | 55.631         | 40.899                                                                              |
| 1051           | Q            | 4.181          | 56.383         | 28.904                                                                              |
| 1052           | L            | 4.186          | 56.372         | not assigned                                                                        |
| 1053           | Н            | 4.483          | 58.010         | 30.642                                                                              |
| 1054           | Т            | 4.062          | 64.236         | 69.290                                                                              |
| 1055           | mL (meLeu)   | n/a            | n/a            | α-CH <sub>3</sub> (C: 23.79 ppm;<br>H 1.501 ppm), Leu<br>side chain not<br>assigned |
| 1056           | L            | 4.195          | 56.391         | not assigned                                                                        |
| 1057           | S            | 4.381          | 59.288         | 63.586                                                                              |
| 1058           | N            | 4.834          | 53.341         | 39.066                                                                              |
| 1059           | Т            | 4.359          | 62.149         | 69.749                                                                              |
| 1060           | D            | 4.617          | 54.388         | 41.116                                                                              |
| 1061           | A            | 4.368          | 52.709         | 19.131                                                                              |
| 1062           | Т            | 4.283          | 62.625         | 69.805                                                                              |
| 1063           | G            | 3.979          | 45.498         | not present                                                                         |
| 1064           | L            | 4.400          | 54.823         | not assigned                                                                        |
| 1065           | E            | 4.229          | 57.167         | 30.144                                                                              |
| 1066           | E            | 4.257          | 56.834         | 30.096                                                                              |
| 1067           | 1            | 4.085          | 61.599         | 38.890                                                                              |
| 1068           | D            | 4.552          | 54.748         | 41.000                                                                              |
| 1069           | R            | 4.224          | 56.624         | 30.508                                                                              |
| 1070           | A            | 4.269          | 52.845         | 18.843                                                                              |
| 1071           | L            | 4.296          | 55.278         | not assigned                                                                        |
| 1072           | G            | 3.868          | 45.112         | not present                                                                         |
| 1073           | 1            | 4.432          | 59.036         | 38.355                                                                              |
| 1074           | Р            | 4.369          | 63.746         | 32.068                                                                              |
| 1075           | E            | 4.205          | 57.003         | 30.185                                                                              |
| 1076           | L            | 4.355          | 55.258         | not assigned                                                                        |
| 1077           | V            | 4.072          | 62.530         | 32.741                                                                              |
| 1078           | N            | 4.690          | 53.280         | 38.716                                                                              |
| 1079           | Q            | 4.302          | 56.257         | 29.222                                                                              |
| 1080           | G            | 3.943          | 45.396         | not present                                                                         |
| 1081           | Q            | 4.322          | 55.679         | 29.633                                                                              |
| 1082           | A            | 4.311          | 52.376         | 19.078                                                                              |
| 1083           | L            | 4.333          | 55.298         | not assigned                                                                        |
| 1084           | E            | 4.578          | 54.238         | 29.933                                                                              |
| 1085           | P            | 4.412          | 63.325         | 31.925                                                                              |
| 1086           | К            | 4.167          | 57.419         | 33.957                                                                              |

**Table S8.** Chemical shifts (ppm) for [1055meLeu] variant of [1040-1086]-fragment of AD1-ACTR measured on a700 MHz spectrometer used to calculate secondary chemical shifts.

| Residue number | Residue type | Ηα             | Сα             | Сβ                                                                                  |
|----------------|--------------|----------------|----------------|-------------------------------------------------------------------------------------|
| 1040           | E            | not determined | not determined | not determined                                                                      |
| 1041           | G            | 4.029          | 45.138         | not present                                                                         |
| 1042           | Q            | 4.414          | 55.848         | 29.561                                                                              |
| 1043           | S            | 4.445          | 58.469         | 63.703                                                                              |
| 1044           | D            | 4.612          | 54.437         | 41.158                                                                              |
| 1045           | E            | 4.164          | 57.857         | 29.856                                                                              |
| 1046           | R            | 4.178          | 57.160         | 30.239                                                                              |
| 1047           | А            | 4.244          | 53.514         | 18.641                                                                              |
| 1048           | L            | 4.223          | 56.303         | not assigned                                                                        |
| 1049           | L            | 4.184          | 56.433         | not assigned                                                                        |
| 1050           | D            | 4.522          | 55.732         | 40.867                                                                              |
| 1051           | Q            | 4.173          | 56.432         | 28.905                                                                              |
| 1052           | L            | 4.181          | 56.434         | not assigned                                                                        |
| 1053           | Н            | 4.466          | 58.159         | 30.675                                                                              |
| 1054           | Т            | 4.045          | 64.419         | 69.241                                                                              |
| 1055           | mL (meLeu)   | n/a            | n/a            | $\alpha$ -CH <sub>3</sub> (C: 23.68 ppm; H: 1.500 pm), Leu side chain not assigned  |
| 1056           | L            | 4.177          | 56.436         | not assigned                                                                        |
| 1057           | S            | 4.380          | 59.356         | 63.580                                                                              |
| 1058           | N            | 4.838          | 53.321         | 39.102                                                                              |
| 1059           | Т            | 4.361          | 62.150         | 69.740                                                                              |
| 1060           | D            | 4.619          | 54.381         | 41.114                                                                              |
| 1061           | А            | 4.362          | 52.768         | 19.112                                                                              |
| 1062           | Т            | 4.280          | 62.671         | 69.787                                                                              |
| 1063           | G            | 3.978          | 45.503         | not present                                                                         |
| 1064           | L            | 4.334          | 54.843         | not assigned                                                                        |
| 1065           | E            | 4.224          | 57.241         | 30.110                                                                              |
| 1066           | E            | 4.253          | 56.884         | 30.111                                                                              |
| 1067           | 1            | 4.077          | 61.677         | 38.868                                                                              |
| 1068           | D            | 4.548          | 54.802         | 41.018                                                                              |
| 1069           | R            | 4.217          | 56.689         | 30.498                                                                              |
| 1070           | A            | 4.269          | 52.905         | 18.831                                                                              |
| 1071           | L            | 4.300          | 55.302         | not assigned                                                                        |
| 1072           | G            | 3.880          | 45.149         | not present                                                                         |
| 1073           | 1            | 4.408          | 59.205         | 38.289                                                                              |
| 1074           | Р            | 4.397          | 63.589         | 32.083                                                                              |
| 1075           | E            | 4.133          | 57.820         | 29.891                                                                              |
| 1076           | mL (meLeu)   | n/a            | n/a            | $\alpha$ -CH <sub>3</sub> (C: 24.54 ppm; H: 1.444 ppm), Leu side chain not assigned |
| 1077           | V            | 3.928          | 63.806         | 32.180                                                                              |
| 1078           | N            | 4.704          | 53.641         | 38.847                                                                              |
| 1079           | Q            | 4.307          | 56.411         | 29.133                                                                              |
| 1080           | G            | 3.956          | 45.506         | not present                                                                         |
| 1081           | Q            | 4.327          | 55.685         | 29.600                                                                              |
| 1082           | А            | 4.315          | 52.357         | 19.093                                                                              |
| 1083           | L            | 4.329          | 55.363         | not assigned                                                                        |
| 1084           | E            | 4.578          | 54.226         | 29.935                                                                              |
| 1085           | P            | 4.411          | 63.330         | 31.929                                                                              |
| 1086           | К            | 4.169          | 57.430         | 33.962                                                                              |

**Table S9.** Chemical shifts (ppm) for [1055meLeu;1076meLeu] variant of [1040-1086]-fragment of AD1-ACTR measured on a 700 MHz spectrometer used to calculate secondary chemical shifts.

|         | WT AD1-ACTR [1055me |             | meLeu] [1055meLeu;1076meL |             | ı;1076meLeu]   |             |
|---------|---------------------|-------------|---------------------------|-------------|----------------|-------------|
| Residue | R <sub>1</sub>      | uncertainty | R <sub>1</sub>            | uncertainty | R <sub>1</sub> | uncertainty |
| 1040    | N/A                 | N/A         | N/A                       | N/A         | N/A            | N/A         |
| 1041    | N/A                 | N/A         | N/A                       | N/A         | N/A            | N/A         |
| 1042    | 2.29                | 1.15        | 2.40                      | 1.56        | 2.53           | 1.15        |
| 1043    | 2.22                | 0.832       | 2.23                      | 0.647       | 2.44           | 1.44        |
| 1044    | 2.38                | 0.882       | 2.30                      | 0.836       | 2.49           | 1.80        |
| 1045    | 2.50                | 1.41        | 2.11                      | 0.864       | 1.96           | 1.02        |
| 1046    | 2.49                | 1.76        | 2.56                      | 1.36        | 2.17           | 1.01        |
| 1047    | 2.35                | 0.772       | 2.27                      | 0.579       | 2.42           | 1.27        |
| 1048    | 2.55                | 0.870       | 1.65                      | 0.405       | 1.90           | 0.80        |
| 1049    | 2.47                | 1.04        | 2.40                      | 0.953       | 2.17           | 1.29        |
| 1050    | 2.25                | 0.839       | 2.45                      | 1.43        | 2.44           | 1.45        |
| 1051    | 2.48                | 0.887       | 1.94                      | 1.21        | 2.37           | 1.49        |
| 1052    | 2.26                | 1.13        | 2.37                      | 0.507       | 2.00           | 1.17        |
| 1053    | 2.31                | 0.579       | 2.22                      | 1.15        | 2.71           | 0.853       |
| 1054    | 2.36                | 0.777       | 2.41                      | 1.05        | 2.50           | 1.47        |
| 1055    | 2.26                | 1.61        | N/A                       | N/A         | N/A            | N/A         |
| 1056    | 2.40                | 1.59        | 2.40                      | 0.953       | 2.10           | 1.04        |
| 1057    | 2.32                | 1.16        | 2.21                      | 1.06        | 2.18           | 1.23        |
| 1058    | 2.33                | 0.871       | 2.18                      | 1.06        | 2.28           | 1.60        |
| 1059    | 2.41                | 1.12        | 2.12                      | 1.46        | 2.53           | 1.40        |
| 1060    | 2.46                | 0.842       | 2.32                      | 1.04        | 2.30           | 1.21        |
| 1061    | 2.14                | 1.01        | 2.29                      | 0.894       | 2.18           | 1.14        |
| 1062    | 2.25                | 1.04        | 2.08                      | 0.875       | 2.14           | 1.57        |
| 1063    | N/A                 | N/A         | N/A                       | N/A         | N/A            | N/A         |
| 1064    | 2.51                | 1.08        | 2.38                      | 0.880       | 2.71           | 1.13        |
| 1065    | 2.46                | 0.762       | 2.25                      | 0.488       | 2.24           | 1.13        |
| 1066    | 2.37                | 1.51        | 2.43                      | 0.624       | 2.42           | 1.03        |
| 1067    | 2.40                | 1.48        | 2.11                      | 0.787       | 2.24           | 0.947       |
| 1068    | 2.36                | 1.45        | 2.31                      | 1.09        | 2.64           | 0.569       |
| 1069    | 2.31                | 0.881       | 2.22                      | 0.743       | 2.54           | 0.995       |
| 1070    | 2.35                | 0.893       | 2.00                      | 1.19        | 2.02           | 1.14        |
| 1071    | 2.41                | 0.628       | 2.26                      | 0.894       | 1.89           | 0.713       |
| 1072    | N/A                 | N/A         | N/A                       | N/A         | N/A            | N/A         |
| 1073    | 2.61                | 0.858       | 2.45                      | 1.28        | 2.36           | 1.21        |
| 1074    | 2.45                | 0.703       | 2.37                      | 0.683       | 2.30           | 1.01        |
| 1075    | 2.37                | 1.37        | 2.00                      | 0.837       | 2.54           | 0.988       |
| 1076    | 2.39                | 1.02        | 2.20                      | 0.789       | N/A            | N/A         |
| 1077    | 2.50                | 1.05        | 2.50                      | 1.11        | 2.36           | 1.05        |
| 1078    | 2.67                | 1.10        | 2.51                      | 0.875       | 2.25           | 2.22        |
| 1079    | 2.23                | 1.15        | 2.15                      | 0.842       | 2.37           | 0.789       |
| 1080    | N/A                 | N/A         | N/A                       | N/A         | N/A            | N/A         |
| 1081    | 2.45                | 1.10        | 2.45                      | 0.768       | 2.55           | 0.015       |
| 1082    | 2.33                | 1.10        | 2.50                      | 1.17        | 2.07           | 1.10        |
| 1083    | 2.54                | 1.02        | 2.44                      | 0.072       | 2.10           | 0.032       |
| 1084    | 2.00<br>2.27        | 0.988       | 2.03                      | 0.973       | 2.01           | 0.784       |
| 1000    | 2.31                | 1.03        | 2.30                      | 0.470       | 2.20           | 1.29        |
| 1000    | 1.97                | 0.971       | 1.90                      | 1.02        | 1.00           | 1.20        |

**Table S10.** The  ${}^{13}C\alpha$  spin-lattice  $R_1$  relaxation rates (s<sup>-1</sup>) for wild type AD1-ACTR, [1055meLeu] and [1055meLeu;1076meLeu] variants.

|         | WT AD          | WT AD1-ACTR [1055meLeu] |                | [1055meLeu;1076meLeu] |                |             |
|---------|----------------|-------------------------|----------------|-----------------------|----------------|-------------|
| Residue | R <sub>2</sub> | uncertainty             | R <sub>2</sub> | uncertainty           | R <sub>2</sub> | uncertainty |
| 1040    | N/A            | N/A                     | N/A            | N/A                   | N/A            | N/A         |
| 1041    | N/A            | N/A                     | N/A            | N/A                   | N/A            | N/A         |
| 1042    | 3.25           | 1.04                    | 3.92           | 0.937                 | 4.09           | 0.708       |
| 1043    | 4.33           | 0.694                   | 4.43           | 1.29                  | 5.48           | 1.11        |
| 1044    | 5.28           | 1.10                    | 5.56           | 1.27                  | 5.98           | 1.31        |
| 1045    | 5.76           | 0.864                   | 6.67           | 1.10                  | 8.66           | 0.923       |
| 1046    | 5.66           | 0.772                   | 8.78           | 1.18                  | 6.48           | 0.451       |
| 1047    | 5.49           | 1.39                    | 8.21           | 0.871                 | 8.61           | 0.701       |
| 1048    | 5.23           | 0.805                   | 7.31           | 0.932                 | 11.0           | 0.984       |
| 1049    | 6.24           | 1.16                    | 8.66           | 0.668                 | 10.5           | 0.515       |
| 1050    | 6.00           | 0.405                   | 13.2           | 1.36                  | 16.0           | 0.853       |
| 1051    | 6.87           | 0.970                   | 9.44           | 1.17                  | 9.45           | 1.27        |
| 1052    | 6.58           | 1.45                    | 11.0           | 0.958                 | 10.2           | 1.01        |
| 1053    | 6.85           | 0.744                   | 10.6           | 0.967                 | 14.3           | 0.801       |
| 1054    | 6.14           | 0.834                   | 14.0           | 0.831                 | 24.9           | 0.689       |
| 1055    | 5.17           | 0.615                   | N/A            | N/A                   | N/A            | N/A         |
| 1056    | 6.31           | 0.917                   | 8.66           | 0.668                 | 9.73           | 1.17        |
| 1057    | 4.37           | 1.12                    | 9.41           | 0.507                 | 9.83           | 1.26        |
| 1058    | 5.10           | 0.745                   | 6.70           | 0.671                 | 7.23           | 0.748       |
| 1059    | 5.39           | 0.990                   | 5.99           | 1.20                  | 7.45           | 1.05        |
| 1060    | 4.87           | 0.598                   | 5.48           | 0.922                 | 5.62           | 1.35        |
| 1061    | 4.75           | 0.696                   | 4.50           | 1.20                  | 6.55           | 1.16        |
| 1062    | 4.70           | 0.844                   | 5.59           | 1.30                  | 6.89           | 1.01        |
| 1063    | N/A            | N/A                     | N/A            | N/A                   | N/A            | N/A         |
| 1064    | 4.18           | 0.900                   | 4.10           | 1.07                  | 4.45           | 0.672       |
| 1065    | 6.20           | 1.01                    | 9.62           | 1.02                  | 10.5           | 0.976       |
| 1066    | 7.51           | 1.25                    | 7.02           | 1.15                  | 8.00           | 0.974       |
| 1067    | 6.59           | 0.843                   | 6.92           | 0.380                 | 9.04           | 0.999       |
| 1068    | 6.28           | 1.46                    | 7.90           | 0.520                 | 8.18           | 0.926       |
| 1069    | 5.58           | 0.920                   | 8.06           | 1.43                  | 8.71           | 0.649       |
| 1070    | 5.21           | 0.710                   | 7.00           | 1.22                  | 6.70           | 0.791       |
| 1071    | 5.37           | 0.968                   | 5.51           | 1.52                  | 5.46           | 0.880       |
| 1072    | N/A            | N/A                     | N/A            | N/A                   | N/A            | N/A         |
| 1073    | 8.42           | 0.860                   | 7.77           | 0.999                 | 13.0           | 0.524       |
| 1074    | 5.64           | 0.396                   | 6.73           | 1.05                  | 8.32           | 0.842       |
| 1075    | 6.98           | 0.868                   | 6.58           | 1.05                  | 8.06           | 0.549       |
| 1076    | 6.01           | 0.802                   | 6.15           | 1.57                  | N/A            | N/A         |
| 1077    | 4.54           | 0.439                   | 4.74           | 0.835                 | 7.28           | 1.08        |
| 1078    | 4.67           | 1.22                    | 5.26           | 0.795                 | 6.50           | 0.965       |
| 1079    | 4.87           | 0.716                   | 5.48           | 0.918                 | 6.02           | 1.12        |
| 1080    | N/A            | N/A                     | N/A            | N/A                   | N/A            | N/A         |
| 1081    | 4.59           | 0.900                   | 4.18           | 0.888                 | 4.90           | 1.43        |
| 1082    | 3.50           | 1.14                    | 3.26           | 0.775                 | 4.24           | 0.729       |
| 1083    | 5.32           | 0.637                   | 5.51           | 1.016                 | 7.31           | 1.11        |
| 1084    | 3.91           | 0.687                   | 4.05           | 0.828                 | 4.00           | 0.579       |
| 1085    | 2.83           | 1.08                    | 3.12           | 1.01                  | 3.10           | 0.574       |
| 1086    | 2.55           | 0.853                   | 2.73           | 0.557                 | 2.76           | 1.069       |

Table S11. The  ${}^{13}C\alpha$  spin-spin  $R_2$  relaxation rates (s<sup>-1</sup>) for wild type AD1-ACTR, [1055meLeu] and [1055meLeu;1076meLeu] variants.

| h                              |                                                                                                            |
|--------------------------------|------------------------------------------------------------------------------------------------------------|
| Data collection                |                                                                                                            |
| X-ray source                   | Swiss Light Source (PXIII beamline)                                                                        |
| Wavelength                     | 1.00003 Å                                                                                                  |
| Resolution range               | 41.72 - 2.28 Å (2.362 - 2.28 Å)                                                                            |
| Space group                    | C 2                                                                                                        |
| Unit cell                      | a = 103.18 Å, $b = 42.46$ Å, $c = 113.79$ Å,<br>$\alpha = \gamma = 90^{\circ}$ , $\beta = 101.125^{\circ}$ |
| Total reflections              | 73662 (7372)                                                                                               |
| Unique reflections             | 21924 (2175)                                                                                               |
| Multiplicity                   | 3.4 (3.4)                                                                                                  |
| Completeness                   | 97.23 % (96.97 %)                                                                                          |
| Mean I/sigma(I)                | 9.58 (1.94)                                                                                                |
| Wilson B-factor                | 33.76 Å <sup>2</sup>                                                                                       |
| R-merge                        | 0.09578 (0.6837)                                                                                           |
| CC1/2                          | 0.995 (0.745)                                                                                              |
| Refinement                     |                                                                                                            |
| Reflections used in refinement | 21873 (2173)                                                                                               |
| Reflections used for R-free    | 1100 (107)                                                                                                 |
| R-work                         | 0.2264 (0.2965)                                                                                            |
| R-free                         | 0.2712 (0.3260)                                                                                            |
| Number of non-hydrogen atoms   | 3765                                                                                                       |
| macromolecules                 | 3578                                                                                                       |
| ligands                        | 29                                                                                                         |
| solvent                        | 158                                                                                                        |
| Protein residues               | 466                                                                                                        |
| RMS(bonds)                     | 0.006                                                                                                      |
| RMS(angles)                    | 1.13                                                                                                       |
| Ramachandran favored           | 97.36 %                                                                                                    |
| Ramachandran allowed           | 2.64 %                                                                                                     |
| Ramachandran outliers          | 0 %                                                                                                        |
| Rotamer outliers               | 2.72 %                                                                                                     |
| Clash score                    | 7.93                                                                                                       |
| Average B-factor               | 50.92 Å <sup>2</sup>                                                                                       |
| macromolecules                 | 51.33 Å <sup>2</sup>                                                                                       |
| ligands                        | 36.86 Å <sup>2</sup>                                                                                       |
| solvent                        | 44.35 Å <sup>2</sup>                                                                                       |
| Number of TLS groups           | 8                                                                                                          |

 Table S12.
 Crystallographic data collection and refinement statistics for the complex of NCBD with

 [1055meLeu;1076meLeu]AD1-ACTR variant (values in parentheses are for the highest resolution shell).

**Table S13.** Hydrogen bond analysis: the increase in occurrences of intermolecular hydrogen bonds between AD1-ACTR and NCBD for the [1055meLeu]AD1-ACTR and [1055meLeu;1076meLeu]AD1-ACTR analogues indicates the increase in stabilizing interactions between the two proteins and agrees with enhanced binding affinities observed for NCBD binding. The differences in the hydrogen bonding patterns between activation domain of ACTR and NCBD for different complexes indicate structural differences between the three complexes. Listed are hydrogen bonds that occur for at least 20% of the time in at least one of the three complexes. Shaded in gray are hydrogen bonds that occur in at least two complexes (10 out of 40). First 50 ns were excluded from the analysis.

| Hvdrogen Bond                           |               | Occurrence (%)  |                      |
|-----------------------------------------|---------------|-----------------|----------------------|
|                                         | WT AD1-ACTR / | [1055mL]        | [1055mL:1076mL] AD1- |
|                                         | NCBD          | AD1-ACTR / NCBD | ACTR / NCBD          |
| ACTR:Glu1066 NH – NCBD:Ser2077 O        | 0.0           | 69.7            | 0.0                  |
| NCBD:Ser2077 NH – ACTR:Leu1064 O        | 0.0           | 65.9            | 0.0                  |
| NCBD:GIn2086 NH – ACTR:Glu1065 OE1      | 0.0           | 65.5            | 0.0                  |
| NCBD:GIn2085 NE2HE22 - ACTR:Glu1065 OE2 | 0.0           | 63.6            | 0.0                  |
| NCBD:Lys2076 NH - ACTR:Gly1063 O        | 0.0           | 60.8            | 0.0                  |
| NCBD:Leu2088 NH – ACTR:Glu1065 OE2      | 0.0           | 58.3            | 0.0                  |
| NCBD:Val2087 NH – ACTR:Glu1065 OE2      | 0.0           | 55.3            | 0.0                  |
| NCBD:Ser2079 NH – ACTR:Glu1065 OE2      | 13.9          | 0.0             | 49.9                 |
| NCBD:GIn2104 NH – ACTR:Asp1068 OD1      | 0.0           | 0.0             | 48.9                 |
| NCBD:Ser2079 NH – ACTR:Glu1065 OE1      | 10.8          | 0.0             | 48.4                 |
| NCBD:Ser2079 OGHG – ACTR:Glu1065 OE1    | 5.1           | 4.6             | 44.6                 |
| NCBD:Ser2079 OGHG – ACTR:Glu1065 OE2    | 2.5           | 3.1             | 44.4                 |
| NCBD:Lys2103 NH – ACTR:Asp1068 OD1      | 0.0           | 0.0             | 43.7                 |
| NCBD:Val2087 NH – ACTR:Glu1065 OE1      | 0.0           | 43.6            | 0.0                  |
| NCBD:GIn2085 NE2HE21 - ACTR:Glu1066 O   | 0.0           | 41.6            | 0.0                  |
| NCBD:GIn2085 NE2HE22 - ACTR:Glu1065 OE1 | 0.0           | 39.7            | 0.0                  |
| NCBD:GIn2104 NH – ACTR:Asp1068 OD2      | 0.0           | 0.0             | 38.8                 |
| NCBD:Ser2080 NH - ACTR:Glu1065 OE2      | 38.2          | 3.2             | 19.1                 |
| NCBD:Lys2103 NH – ACTR:Asp1068 OD2      | 0.0           | 0.0             | 36.1                 |
| NCBD:Ser2080 OGHG - ACTR:Glu1065 OE2    | 36.1          | 1.5             | 16.9                 |
| NCBD:GIn2086 NE2HE22 - ACTR:Glu1065 OE1 | 0.0           | 35.4            | 0.0                  |
| NCBD:Arg2105 NH - ACTR:Asp1068 OD1      | 0.0           | 0.0             | 34.9                 |
| NCBD:Arg2105 NH - ACTR:Asp1068 OD2      | 0.0           | 0.0             | 34.9                 |
| ACTR:Leu1064 NH – NCBD:Leu2091 O        | 34.4          | 0.0             | 0.0                  |
| NCBD:Ser2079 NH – ACTR:Glu1066 OE2      | 0.0           | 34.2            | 0.0                  |
| ACTR:Leu25 NH – NCBD:Leu2075 O          | 0.0           | 0.0             | 33.7                 |
| NCBD:Ser2080 NH – ACTR:Glu1065 OE1      | 33.5          | 19.7            | 15.1                 |
| NCBD:Arg2105 NEHE – ACTR:Asp1068 O      | 0.0           | 0.0             | 32.9                 |
| ACTR:Gly24 NH – NCBD:Leu2075 O          | 0.0           | 0.0             | 31.4                 |
| NCBD:Ser2080 OGHG – ACTR:Glu1065 OE1    | 29.4          | 2.0             | 15.5                 |
| NCBD:Ser2079 NH – ACTR:Glu1066 OE1      | 0.0           | 29.3            | 0.0                  |
| NCBD:Asn2089 ND2HD22 – ACTR:Thr1054 O   | 28.0          | 0.0             | 0.0                  |
| NCBD:Ser2079 OGHG – ACTR:Glu1066 OE2    | 0.0           | 24.5            | 0.0                  |
| NCBD:Gln2086 NH – ACTR:Glu1065 OE2      | 0.0           | 24.2            | 0.0                  |
| NCBD:Leu2068 NH – ACTR:Asn1058 O        | 21.9          | 0.0             | 0.0                  |
| NCBD:Ser2079 OGHG – ACTR:Glu1066 OE1    | 0.0           | 21.9            | 0.0                  |
| NCBD:Thr2106 OG1HG1 - ACTR:Glu1084 OE2  | 21.6          | 0.0             | 0.0                  |
| NCBD:Tyr2109 OHHH – ACTR:Asp1068 OD2    | 0.0           | 20.6            | 1.2                  |
| NCBD:Tyr2109 OHHH – ACTR:Asp1068 OD1    | 0.0           | 20.2            | 3.2                  |
| NCBD:Thr2106 NH – ACTR:Glu1084 OE2      | 20.0          | 0.0             | 0.0                  |

**Table S14.** Salt-bridge analysis: the differences in occurrences of intermolecular and intramolecular salt bridges between AD1-ACTR and NCBD for the three complexes agree with the results of the hydrogen bond analysis and indicate structural differences at the ACTR/NCBD interface of the complexes. First 50 ns are excluded from the analysis.

#### Intermolecular salt bridges:

| Salt Bridge                         | Occurrence (%)     |                   |                      |  |  |
|-------------------------------------|--------------------|-------------------|----------------------|--|--|
|                                     | WT AD1-ACTR / NCBD | [1055mL] AD1-ACTR | [1055mL;1076mL] AD1- |  |  |
|                                     |                    | / NCBD            | ACTR / NCBD          |  |  |
| ACTR:Glu1045 OE1 – NCBD:Arg2073 NH2 | 30.9               | 7.2               | 0.2                  |  |  |
| ACTR:Glu1045 OE2 – NCBD:Arg2073 NH2 | 30.6               | 7.5               | 0.2                  |  |  |
| ACTR:Asp1060 OD2 – NCBD:Lys2092 NZ  | 24.3               | 0.0               | 0.0                  |  |  |
| ACTR:Glu1045 OE1 – NCBD:Arg2073 NH1 | 23.1               | 3.8               | 0.2                  |  |  |
| ACTR:Asp1060 OD1 – NCBD:Lys2092 NZ  | 23.1               | 0.0               | 0.0                  |  |  |
| ACTR:Glu1045 OE2 – NCBD:Arg2073 NH1 | 22.0               | 3.9               | 0.2                  |  |  |
| ACTR:Glu1066 OE1 – NCBD:Lys2076 NZ  | 13.7               | 8.9               | 0.0                  |  |  |
| ACTR:Glu1066 OE2 – NCBD:Lys2076 NZ  | 12.5               | 8.8               | 0.0                  |  |  |
| ACTR:Glu1084 OE1 – NCBD:Lys2108 NZ  | 10.7               | 0.0               | 0.0                  |  |  |
| ACTR:Asp1060 OD1 – NCBD:Arg2105 NH2 | 0.0                | 29.5              | 0.0                  |  |  |
| ACTR:Asp1060 OD2 – NCBD:Arg2105 NH2 | 0.0                | 29.2              | 0.0                  |  |  |
| ACTR:Asp1060 OD1 – NCBD:Arg2105 NH1 | 0.0                | 12.5              | 0.0                  |  |  |
| ACTR:Asp1060 OD2 – NCBD:Arg2105 NH1 | 0.0                | 13.0              | 0.0                  |  |  |
| ACTR:Asp1068 OD1 – NCBD:Arg2105 NH2 | 1.6                | 27.3              | 14.5                 |  |  |
| ACTR:Asp1068 OD2 – NCBD:Arg2105 NH2 | 1.8                | 26.9              | 15.5                 |  |  |
| ACTR:Asp1068 OD1 – NCBD:Arg2105 NH1 | 1.3                | 21.5              | 12.8                 |  |  |
| ACTR:Asp1068 OD2 – NCBD:Arg2105 NH1 | 1.3                | 20.7              | 12.8                 |  |  |
| ACTR:Asp1060 OD1 – NCBD:Lys2076 NZ  | 0.0                | 1.5               | 29.9                 |  |  |
| ACTR:Asp1060 OD2 – NCBD:Lys2076 NZ  | 0.0                | 1.3               | 29.5                 |  |  |
| ACTR:Glu1075 OE2 – NCBD:Lys2092 NZ  | 0.0                | 1.8               | 23.1                 |  |  |
| ACTR:Glu1075 OE1 – NCBD:Lys2092 NZ  | 0.0                | 1.6               | 21.7                 |  |  |
| ACTR:Glu1066 OE1 – NCBD:Lys2103 NZ  | 6.2                | 0.0               | 12.3                 |  |  |
| ACTR:Glu1066 OE2 – NCBD:Lys2103 NZ  | 6.7                | 0.0               | 11.9                 |  |  |

#### Intramolecular salt bridges:

| Salt Bridge               | Occurrence (%)     |                   |                      |  |  |
|---------------------------|--------------------|-------------------|----------------------|--|--|
|                           | WT AD1-ACTR / NCBD | [1055mL] AD1-ACTR | [1055mL;1076mL] AD1- |  |  |
|                           |                    | / NCBD            | ACTR / NCBD          |  |  |
| ASP1050 OD2 - HIS1053 NE2 | 19.4               | 27.3              | 3.0                  |  |  |
| ASP1050 OD1 - HIS1053 NE2 | 18.7               | 29.7              | 3.0                  |  |  |
| Glu1084 OE2 – LYS1086 NZ  | 16.7               | 28.3              | 19.8                 |  |  |
| Glu1084 OE1 – LYS1086 NZ  | 15.6               | 18.0              | 19.8                 |  |  |
| ASP1060 OD2 – LYS1086 NZ  | 12.1               | 0.3               | 0.0                  |  |  |
| ASP1060 OD1 – LYS1086 NZ  | 11.8               | 0.5               | 0.0                  |  |  |
| GLU1066 OE1 – ARG1069 NH2 | 10.1               | 18.6              | 33.3                 |  |  |
| GLU1066 OE2 – ARG1069 NH2 | 9.6                | 17.5              | 34.2                 |  |  |
| GLU1066 OE1 – ARG1069 NH1 | 9.0                | 22.1              | 37.3                 |  |  |
| GLU1066 OE2 – ARG1069 NH1 | 8.6                | 21.5              | 37.9                 |  |  |
| GLU1040 OE1 – ARG1046 NH1 | 0.0                | 19.1              | 3.6                  |  |  |
| GLU1040 OE2 – ARG1046 NH1 | 0.0                | 18.0              | 3.5                  |  |  |
| GLU1040 OE2 – ARG1046 NH2 | 0.0                | 17.6              | 3.7                  |  |  |
| ASP1068 OD2 – ARG1069 NH2 | 0.1                | 12.7              | 1.6                  |  |  |
| ASP1068 OD1 – ARG1069 NH2 | 0.1                | 12.6              | 3.0                  |  |  |
| ASP1068 OD2 – ARG1069 NH1 | 0.2                | 10.2              | 0.8                  |  |  |
| ASP1068 OD1 – ARG1069 NH1 | 0.1                | 10.0              | 2.0                  |  |  |
| GLU1045 OE1 – ARG1046 NH2 | 3.7                | 5.7               | 15.1                 |  |  |
| GLU1045 OE2 – ARG1046 NH2 | 4.2                | 5.1               | 14.6                 |  |  |
| GLU1045 OE1 – ARG1046 NH1 | 2.3                | 3.6               | 12.6                 |  |  |
| GLU1045 OE2 – ARG1046 NH1 | 2.6                | 3.0               | 11.9                 |  |  |

**Table S15.** The values from the fit of helix-helix packing in the structure of [1055meLeu;1076meLeu]AD1-ACTR/NCBD complex to the generalized Crick parameters (see Figure S18). The secondary structure was assigned by DSSP (https://2struc.cryst.bbk.ac.uk/twostruc) and coordinates of helices were submitted to CCCP server for analysis (https://grigoryanlab.org/cccp/). The C $\alpha$  RMSD for pairwise helix parametrization are in the 0.41-1.2 Å range which is satisfactory and illustrates that the helix pairwise interactions follow the appropriate geometric restrains validated by the analysis of a large number of helix-helix interaction motifs in PDB (1). The attempts to parametrize the selected helices as three-helical bundles led to much higher RMSDs (> 2 Å). There is an apparent correlation of the quality of helix-helix packing with C $\alpha$  RMSD of the parametric fit with the lowest values corresponding to the tightest and most complementary interfaces of H1-ACTR–H1-NCBD and H1-NCBD–H2-NCBD helix pairs, whereas the highest C $\alpha$  RMSD was obtained for the loosest right-handed H3-NCBD–H1-ACTR helix-helix interaction.

| Helix pair                     | H1-ACTR-<br>H1-NCBD | H1-NCBD-<br>H2-NCBD | H2-NCBD-<br>H2-ACTR | H2-ACTR-<br>H3-NCBD | H3-NCBD-<br>H3-ACTR | H3-NCBD-<br>H1-ACTR |
|--------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Orientation                    | parallel            | antiparallel        | parallel            | antiparallel        | parallel            | parallel            |
| Interhelical crossing          | left-handed         | left-handed         | right-handed        | left-handed         | right-handed        | right-handed        |
| R <sub>0</sub> (Å)             | 5.49                | 4.98                | 5.45                | 6.20                | 5.52                | 5.76                |
| R <sub>1</sub> (Å)             | 2.33                | 2.32                | 2.28                | 2.30                | 2.24                | 2.29                |
| ω <sub>0</sub> (°/res)         | -4.0                | -3.2                | 6.0                 | -7.1                | 7.1                 | 3.0                 |
| $\omega_1$ (°/res)             | 101.8               | 101.9               | 93.9                | 103.6               | 91.8                | 96.3                |
| α (°)                          | -15.0               | -10.4               | 21.9                | -31.2               | 27.2                | 11.9                |
| $\Delta Z_{\rm off}({ m \AA})$ | 0.81                | -2.47               | 1.23                | -0.68               | 0.35                | 0.19                |
| Rise per<br>residue (Å)        | 1.49                | 1.52                | 1.52                | 1.48                | 1.50                | 1.47                |
| Pitch (Å)                      | 128.4               | 169.9               | 85.1                | 64.2                | 67.515              | 172.6               |
| Ca RMSD                        | 0.48 Å              | 0.41 Å              | 0.58 Å              | 0.80 Å              | 0.91 Å              | 1.17 Å              |

| Temperature | AD1-ACTR variant | <i>k</i> on (M⁻¹⋅s⁻¹)  | <i>k</i> <sub>off</sub> (s <sup>-1</sup> ) | K <sub>D</sub> (nM, from<br>kinetics) | Chi <sup>2</sup> from<br>kinetics (RU <sup>2</sup> ) |
|-------------|------------------|------------------------|--------------------------------------------|---------------------------------------|------------------------------------------------------|
|             | WT               | 1.20 × 10 <sup>6</sup> | 0.286                                      | 238                                   | 0.25                                                 |
| 20°C        | [1076mL]         | 1.28 × 10 <sup>6</sup> | 0.339                                      | 264                                   | 0.17                                                 |
| (293 K)     | [1055mL]         | 1.46 × 10 <sup>6</sup> | 0.031                                      | 21.6                                  | 1.0                                                  |
|             | [1055mL;1076mL]  | 2.71 × 10 <sup>6</sup> | 0.021                                      | 7.57                                  | 1.1                                                  |
|             | WT               | 1.21 × 10 <sup>6</sup> | 0.356                                      | 295                                   | 0.20                                                 |
| 22°C        | [1076mL]         | 1.35 × 10 <sup>6</sup> | 0.410                                      | 304                                   | 0.14                                                 |
| (295 K)     | [1055mL]         | 1.54 × 10 <sup>6</sup> | 0.036                                      | 23.4                                  | 0.88                                                 |
|             | [1055mL;1076mL]  | 2.97 × 10 <sup>6</sup> | 0.024                                      | 8.06                                  | 0.96                                                 |
|             | WT               | 1.09 × 10 <sup>6</sup> | 0.406                                      | 374                                   | 0.17                                                 |
| 25°C        | [1076mL]         | 1.07 × 10 <sup>6</sup> | 0.521                                      | 489                                   | 0.07                                                 |
| (298 K)     | [1055mL]         | 1.85 × 10 <sup>6</sup> | 0.049                                      | 26.3                                  | 1.2                                                  |
|             | [1055mL;1076mL]  | 3.77 × 10 <sup>6</sup> | 0.030                                      | 7.84                                  | 0.69                                                 |
|             | WT               | 1.02 × 10 <sup>6</sup> | 0.454                                      | 448                                   | 0.19                                                 |
| 27°C        | [1076mL]         | 1.07 × 10 <sup>6</sup> | 0.526                                      | 493                                   | 0.15                                                 |
| (300 K)     | [1055mL]         | 1.78 × 10 <sup>6</sup> | 0.059                                      | 33.3                                  | 1.2                                                  |
|             | [1055mL;1076mL]  | 3.20 × 10 <sup>6</sup> | 0.034                                      | 10.6                                  | 0.76                                                 |
|             | WT               | 7.14 × 10 <sup>5</sup> | 0.602                                      | 843                                   | 0.15                                                 |
| 31°C        | [1076mL]         | 7.72 × 10 <sup>5</sup> | 0.696                                      | 902                                   | 0.10                                                 |
| (304 K)     | [1055mL]         | 1.57 × 10 <sup>6</sup> | 0.084                                      | 53.3                                  | 0.53                                                 |
|             | [1055mL;1076mL]  | 3.03 × 10 <sup>6</sup> | 0.055                                      | 18.1                                  | 0.60                                                 |

**Table S16.** Binding parameters obtained upon fitting the SPR binding of AD1-ACTR variants to NCBD using a 1:1 association model with BiaEvaluation 3.2 software. Values of  $k_{on}$  and  $k_{off}$  are near the limit of the method, therefore, a steady-state analysis (Table S17) was performed for comparison.

| Temperature | AD1-ACTR variant      | K₀<br>(nM ± uncertainty) | R <sub>max</sub><br>(RU ± uncertainty) | <i>R</i> <sub>min</sub><br>(RU ± uncertainty) |
|-------------|-----------------------|--------------------------|----------------------------------------|-----------------------------------------------|
|             | WT                    | 180 ± 24                 | 1.018 ± 0.041                          | 0.013 ± 0.015                                 |
| 20 °C       | [1076meLeu]           | 199 ± 35                 | 0.768 ± 0.041                          | 0.015 ± 0.013                                 |
| (293 K)     | [1055meLeu]           | 31.6 ± 0.2               | 1.147 ± 0.001                          | 0.017 ± 0.001                                 |
|             | [1055meLeu;1076meLeu] | 15.3 ± 0.2               | 1.543 ± 0.002                          | 0.097 ± 0.004                                 |
|             | WT                    | 186 ± 25                 | 1.007 ± 0.041                          | 0.000 ± 0.015                                 |
| 22 °C       | [1076meLeu]           | 208 ± 39                 | 0.714 ± 0.041                          | 0.013 ± 0.012                                 |
| (295 K)     | [1055meLeu]           | 33.2 ± 0.1               | 1.134 ± 0.001                          | 0.013 ± 0.001                                 |
|             | [1055meLeu;1076meLeu] | 15.9 ± 0.2               | 1.375 ± 0.002                          | 0.085 ± 0.004                                 |
|             | WT                    | 233 ± 38                 | 0.973 ± 0.051                          | 0.000 ± 0.015                                 |
| 25 °C       | [1076meLeu]           | 268 ± 57                 | 0.635 ± 0.046                          | 0.004 ± 0.012                                 |
| (298 K)     | [1055meLeu]           | 35.5 ± 0.3               | 1.070 ± 0.002                          | 0.018 ± 0.002                                 |
|             | [1055meLeu;1076meLeu] | 16.7 ± 0.2               | 1.114 ± 0.002                          | 0.086 ± 0.003                                 |
|             | WT                    | 251 ± 36                 | 1.090 ± 0.053                          | 0.011 ± 0.014                                 |
| 27 °C       | [1076meLeu]           | 270 ± 51                 | 0.704 ± 0.046                          | 0.005 ± 0.011                                 |
| (300 K)     | [1055meLeu]           | 43.8 ± 0.3               | 1.320 ± 0.002                          | 0.036 ± 0.002                                 |
|             | [1055meLeu;1076meLeu] | 22.1 ± 0.4               | 1.287 ± 0.003                          | 0.120 ± 0.004                                 |
|             | WT                    | 388 ± 63                 | 1.203 ± 0.077                          | -0.005 ± 0.013                                |
| 31 °C       | [1076meLeu]           | 396 ± 90                 | 0.700 ± 0.064                          | 0.001 ± 0.011                                 |
| (304 K)     | [1055meLeu]           | 69.2 ± 0.1               | 1.526 ± 0.001                          | 0.012 ± 0.000                                 |
|             | [1055meLeu;1076meLeu] | 30.2 ± 0.2               | 1.177 ± 0.001                          | 0.050 ± 0.001                                 |

 Table S17. Steady-state analysis of SPR data with a 1:1 binding isotherm model.

# **Supplementary Figures**

**Figure S1.** Isothermal titration calorimetry of binding of AD1-ACTR variants to NCBD (consists of 36 panels on p. 33-41).





Figure S1. Isothermal titration calorimetry of binding of AD1-ACTR variants to NCBD (continued from p. 33).



Figure S1. Isothermal titration calorimetry of binding of AD1-ACTR variants to NCBD (continued from p. 34).



Figure S1. Isothermal titration calorimetry of binding of AD1-ACTR variants to NCBD (continued from p. 35).


Figure S1. Isothermal titration calorimetry of binding of AD1-ACTR variants to NCBD (continued from p. 36).



Figure S1. Isothermal titration calorimetry of binding of AD1-ACTR variants to NCBD (continued from p. 37).



Figure S1. Isothermal titration calorimetry of binding of AD1-ACTR variants to NCBD (continued from p. 38).



Figure S1. Isothermal titration calorimetry of binding of AD1-ACTR variants to NCBD (continued from p. 39).



Figure S1. Isothermal titration calorimetry of binding of AD1-ACTR variants to NCBD (continued from p. 40).



**Figure S2.** "Double mutant cycle" analysis for Gibbs free energy of complex formation for AD1-ACTR variants with two  $\alpha$ -methylations according to relationship:  $\Delta\Delta\Delta G = \Delta\Delta G_{\text{variant-X}} + \Delta\Delta G_{\text{variant-Y}} - \Delta\Delta G_{\text{double-XY}}$ , where  $\Delta\Delta G_{\text{variant}}$  is the variation in Gibbs free energy for a singly modified ACTR variant and  $\Delta\Delta G_{\text{double-XY}}$  is the variation in Gibbs free energy for the doubly  $\alpha$ -methylated protein. The numbering of protein variants is provided in Table S1.



**Figure S3.** Circular dichroism (CD) spectra of AD1-ACTR variants and their complexes with NCBD. (a) Top panel: two control variants [S1043M;D1050E;T1054Q] (2) and [A1047G] (3) and protein analogues containing one  $\alpha$ -methylated residue overlaid onto spectrum of wild-type (1); middle: analogues with two  $\alpha$ -methylated amino acids, and bottom: containing multiple  $\alpha$ -methylated residues. (b) Representative CD spectra of stabilized [1055mL] (9) (top panel), [1055mL;1076mL] (34) (middle panel), and destabilized [1064mL;1071mL] (39) (bottom panel) variants complexed with NCBD overlaid onto the corresponding spectrum of wild type complex.



AD1-ACTR variant / NCBD complex

**Figure S4.** (a) Ellipticity ratio  $\theta_{222}/\theta_{199}$  of AD1-ACTR protein variants illustrating different helical content, which increases upon multiple  $\alpha$ -methylation. (b) Ellipticity ratio  $\theta_{222}/\theta_{208}$  of complexes of AD1-ACTR with NCBD suggesting non-identical secondary/tertiary structure in different complexes. Note especially diminished values for analogues **13**, **21**, **35** and **39**, all containing 1071meLeu residue and the least stable in the library, although there is no straightforward correlation between helicity and stability. Different colors are used to highlight differences in values (blue correspond to lower values, red to higher values).

а



**Figure S5.** Thermal stability of AD1-ACTR/NCBD complexes evaluated by CD spectroscopy. Ellipticity at 222 nm was monitored as a function of temperature. The signal fully restores upon cooling after heating, i.e., thermal denaturation is reversible. Apparent melting points are provided in Table S4 and are in general agreement with relative order of thermodynamic stabilities ( $\Delta G$ ) of the protein variants obtained by isothermal titration calorimetry (ITC).



**Figure S6.** A comparison of <sup>13</sup>C-HSQC spectra in D<sub>2</sub>O. (a) <sup>13</sup>C-HSQC spectra acquired in D<sub>2</sub>O for wild type (WT) AD1-ACTR (in black) and two [1055meLeu] (in red) and [1055meLeu;1076meLeu] (in green) variants. (b) Pairwise superposition of the spectral regions corresponding to C $\alpha$ -H $\alpha$  correlations with the same color-coding as in (a).



**Figure S7.** A comparison of <sup>13</sup>C-HSQC spectra in D<sub>2</sub>O. The excerpts of the <sup>13</sup>C-HSQC spectra of WT AD1-ACTR (in black), [1055meLeu] variant (in red) and [1055meLeu;1076meLeu] variant (in green) recorded in D<sub>2</sub>O. The spectra are overlaid in a pairwise manner to illustrate the additional peaks for  $\alpha$ -methyl groups of residues 1055meLeu and 1076meLeu in the corresponding proteins.



**Figure S8.** Superposition of the region of <sup>13</sup>C-HSQC spectra of WT AD1-ACTR (in black), [1055meLeu] variant (in red) and [1055meLeu;1076meLeu] variant (in green) recorded in  $D_2O$  shown to illustrate the changes of chemical shifts for CH $\alpha$  groups for residues Thr1054 and Val1077, which are in close proximity to helix-stabilizing 1055meLeu and 1076meLeu, respectively.



**Figure S9.** Spin-lattice relaxation rates ( $R_1$ ) are not perturbed significantly in two studied  $\alpha$ -methylated [1055meLeu] (in red) and [1055meLeu;1076meLeu] (in green) variants of AD1-ACTR in comparison to wild type (in black). The vertical dashed lines in black indicate positions for  $\alpha$ -methylation (1055 and 1076). The horizontal dashed lines (in magenta) in all three panels indicate the average  $R_1$  value for WT AD1-ACTR. The  $R_1$  values and the experimental uncertainties are listed in Table S10.



**Figure S10.** A comparison of methyl regions in the <sup>13</sup>C-HSQC spectra of complexes with NCBD. WT AD1-ACTR is depicted in black and two analogues [1055meLeu] and [1055meLeu;1076meLeu] are in red and green, respectively.



Figure S11. Fo-Fc simulated annealing omit map (contoured at  $2\sigma$ ) calculated for ACTR activation domain.



**Figure S12.** Comparison with the previously reported structures. The X-ray structure of  $\alpha$ -methylated [1055meLeu;1076meLeu]AD1-ACTR variant complexed with NCBD of CBP shows similar arrangement of six  $\alpha$ -helices with previously solved NMR structure (1KBH) and significant deviations from the other reported structure (6ES7). For comparison, other known structures containing NCBD are superimposed onto new X-ray structure. These include SRC1 isoform of p160 (2C52), complex with IRF3 (1ZOQ), transactivation domain (TAD) of p53 (2L14), and free NCBD (2KKJ).



**Figure S13.** Stereochemical Newman projections for residues 1055meLeu (left) and 1076meLeu (right) in the X-ray structure of [1055meLeu;1076meLeu]AD1-ACTR/NCBD complex. Torsional angles  $C\gamma$ -C $\beta$ -C $\alpha$ -C $\beta$ (methyl) are depicted.



**Figure S14.** The protein-protein interface is less tight than in the NMR complex (1KBH). The overall buried surface area decreased from 1655 to 1066 Å<sup>2</sup>. The trend is similar and the highest difference is between residues 1059-1064 (linker between helix 1 and 2), which shows high flexibility in the crystal and the C-terminal helix which no longer makes close interactions with NCBD. Star (\*) indicates  $\alpha$ -methyl-Leu residues in the sequence.



**Figure S15.** Visualization of molecular interactions in the crystal. Crystal packing does not affect the orientation of  $\alpha$ -helices in the [1055meLeu;1076meLeu]AD1-ACTR/NCBD complex.



**Figure S16.** Molecular dynamics (MD) simulations of WT AD1-ACTR/NCBD complex and of the corresponding analogues [1055meLeu] and [1055meLeu;1076meLeu]. (a) Backbone atom-positional root-mean-square deviations (RMSD) of complexes from its initial structure indicate a large structural change around 37 ns. The RMSF analysis, Ramachandran plots, hydrogen bonding and salt-bridge analysis therefore exclude the first 50 ns. Black line: WT complex, red line: [1055meLeu]AD1-ACTR/NCBD complex, green line: [1055meLeu;1076meLeu]AD1-ACTR/NCBD complex, green line: [1055meLeu;1076meLeu]AD1-ACTR/NCBD complex has the most compact structure. (c) The analysis of helical content per residue shows the overall increase of helicity in the ACTR chain that occurs upon  $\alpha$ -methylation of Leu1076. The pre-organization of ACTR analogues into segments with helical conformations was also observed in CD and NMR experiments on free AD1-ACTR proteins. The secondary structural analysis was performed using the DSSP program as implemented in GROMOS. The helical content per residue was calculated as the sum of the occurrences for 3<sub>10</sub>-helix,  $\alpha$ -helix and  $\pi$ -helix. For this analysis the entire trajectory was used. (d) The conformational distribution of the neighboring residues Thr1054, Leu1056, Glu1075 and Val1077 also gets reduced upon  $\alpha$ -methylation of Leu1055 and Leu1076. First 50 ns were omitted from the latter analysis.



**Figure S17.** (a) Overlay of five representative conformations (first five central member structures from the conformational clustering) for MD simulation of wild-type AD1-ACTR/NCBD (left), [1055meLeu]AD1-ACTR/NCBD (center) and [1055meLeu;1076meLeu]AD1-ACTR/NCBD (right) complexes. In all plots, chain corresponding to ACTR is colored in purple and for NCBD in orange, while residues 1055 and 1076 are highlighted in green. Evident are the structural differences between the complexes and structural variations within each ensemble. Those are the largest for wild type complex and smallest for [1055meLeu]AD1-ACTR/NCBD complex. (b) Comparison of orientation of helices in the structure of wild-type complex determined by NMR (PDB ID: 1KBH), of the [1055meLeu;1076meLeu]AD1-ACTR/NCBD complex determined by X-ray crystallography in this study (PDB ID: 6SQC) and of the first central member structure from the conformational clustering of the corresponding MD simulation.



**Figure S18.** Structural details of the complex of [1055meLeu;1076meLeu]AD1-ACTR/NCBD in the crystal structure 6SQC. (a) Six  $\alpha$ -helices form an irregular helix bundle lacking symmetry between helices. (b) The helix-helix interactions can be analyzed pairwise using generalized Crick parameters with the help of CCCP software (https://grigoryanlab.org/cccp/). The pairs of helices represented as tubes in different colors illustrate C $\alpha$  fits of parametrized helices to the helical segments in the experimental structure (parameters for each fitted pair are in Table S15). (c) Helical diagrams illustrating interactions between helices. Knob-into-hole interactions were identified using SOCKET software (http://coiledcoils.chm.bris.ac.uk/socket/), the knob residues are represented as circles in magenta. The residues Arg2105 and Asp1068 forming the salt-bridge anchoring helix H2-ACTR and H3-NCBD are shown as blue and red circles, respectively. Below are the sequences corresponding to each helix and the heptad registers for the positions in the helix-helix dimers assigned by CCCP. Two alternative registers are provided for H1-NCBD for the coiled coil packing against H1-ACTR (upper register) and H2-NCBD (lower register) signifying multi-faceted helix interactions (36) that can be enabled by LXXLLXXL sequence pattern. Note that the heptad register is applicable for the description of contacts between helices with left-handed crossings and not right-handed (2). (d) The knob-into-hole contacts between different helix pairs are shown as well as poor packing at the H1-ACTR–H3-NCBD interface. Knobs are in magenta and sides of holes are in cyan. The residue IDs are shown for knobs.

**Figure S19** (consists of 5 panels on pp. 56-60). Surface plasmon resonance binding data for WT AD1-ACTR, [1055meLeu]AD1-ACTR, [1076meLeu]AD1-ACTR and [1055meLeu;1076meLeu] AD1-ACTR at 20 °C (293 K) (curves in black correspond to fitting to 1:1 association model).



#### Panel 1:

**Figure S19** (continued from p. 56). Surface plasmon resonance binding data for WT AD1-ACTR, [1055meLeu]AD1-ACTR, [1076meLeu]AD1-ACTR and [1055meLeu;1076meLeu]AD1-ACTR at 22 °C (295 K) (curves in black correspond to fitting to 1:1 association model).



#### Panel 2:

**Figure S19** (continued from p. 57). Surface plasmon resonance binding data for WT AD1-ACTR, [1055meLeu]AD1-ACTR, [1076meLeu]AD1-ACTR and [1055meLeu;1076meLeu]AD1-ACTR at 25 °C (298 K) (curves in black correspond to fitting to 1:1 association model).



#### Panel 3:

**Figure S19** (continued from p. 58). Surface plasmon resonance binding data for WT AD1-ACTR, [1055meLeu]AD1-ACTR, [1076meLeu]AD1-ACTR and [1055meLeu;1076meLeu]AD1-ACTR at 27 °C (300 K) (curves in black correspond to fitting to 1:1 association model).



### Panel 4:

**Figure S19** (continued from p. 59). Surface plasmon resonance curves for WT AD1-ACTR, [1055meLeu] AD1-ACTR, [1076meLeu] AD1-ACTR and [1055meLeu;1076meLeu] AD1-ACTR at 31 °C (304 K) (curves in black correspond to fitting to 1:1 association model).



Panel 5:



**Figure S20.** Steady-state analysis of the NCBD binding to four variants of AD1-ACTR (WT, [1076meLeu], [1055meLeu], [1055meLeu], [1055meLeu], at five different temperatures (a) 20 °C, (b) 22 °C, (c) 25 °C, (d) 27 °C and (e) 31 °C. Normalized equilibrium responses ( $R_{eq}$ ) plotted as a function of NCBD concentration and fitted with a 1:1 binding model (see Table S17 for fitted values).



**Figure S21.** Steady-state analysis of the CBP binding to WT AD1-ACTR and [1055meLeu;1076meLeu] variant at 10 °C. Normalized equilibrium responses ( $R_{eq}$ ) are plotted as a function of CBP concentration and fitted using a 1:1 binding model (WT:  $K_D = 1164 \pm 60$  nM; [1055meLeu;1076meLeu] AD1-ACTR:  $K_D = 59.2 \pm 2.0$  nM).



**Figure S22.** Fluorescent polarization measurements of [1055meLeu;1076meLeu]AD1-ACTR resulted in  $K_D = 8.1 \pm 2.5$  nM, whereas for the WT AD1-ACTR  $K_D$  could not be calculated accurately because of not reaching the saturation but the affinity is definitively significantly lower. The difference in  $K_D$  in the fluorescence polarization and SPR measurements may be explained by distinct conditions (FP: T = 25 °C, buffer: 25 mM Hepes pH 7.5, 150 mM NaCl, 1 mM TCEP, 0.05% Tween-20, protease inhibitors versus SPR: T = 10 °C, buffer: 50 mM Tris pH 7.5, 300 mM NaCl, 1 mM TCEP, 0.01% P20, protease inhibitors). In SPR experiments, higher salt concentration was used to minimize nonspecific binding to the chip surface.



**Figure S23.** SPR sensogram of binding of 265 kDa CBP to [1064meLeu;1071meLeu]AD1-ACTR indicating no appreciable binding. Negative signal after reference and buffer subtraction is due to non-specific binding of CBP at higher concentrations.



**Figure S24.** The MCF7 cell extract was treated with the biotin conjugated [1055meLeu;1076meLeu]AD1-ACTR or wild type peptide as a bait, then Strep-Tactin resin was used to pull down the proteins interacting with it. The SDS-PAGE and the Western-blot showing the full-length CBP confirming its interaction with the  $\alpha$ -methylated peptide (lane 2) and the wild type peptide (lane 4) but absent in the control (lane 3, no peptide treatment). The purified CBP used as a control (lane 1). The results of the pull-down were analyzed by label free quantitative MS analysis (with the help of a Thermo Scientific Orbitrap Elite mass-spectrometer). The preliminary data showed the increased enrichment of CBP by > 2 fold for [1055meLeu;1076meLeu]AD1-ACTR variant versus wild type sample with the statistical significance (based on 3 technical replicates).

Figure S25. Analytical reverse phase HPLC chromatograms of proteins studied in this work (UV adsorption monitored at 220 nm). The conditions of analysis (HPLC column, gradient) varied for different groups of samples. This Figure is to show that all protein samples were homogeneous with purity  $\geq$ 95% based on peak integration. The numbering and designation of proteins is according to Table S1 and Table S2. All samples were additionally analyzed by electrospray ionization mass-spectrometry (ESI-MS) and had correct molecular weights.



#1 wild type (WT) AD1-ACTR

















# #13 [1071mL]



# #14 [1072mA]







## #16 [1077mV]



## #17 [1080mA]



## #18 [1082mA]





# #20 [1085mP]






### #22 [1047mA;1072mA]



#### #23 [1047mA;1076mL]



#### #24 [1047mA;1077mV]



### #25 [1047mA;1083mL]









#### 74



















#### #34 [1055mL;1076mL]



#### #35 [1061mA;1071mL]







#### #37 [1061mA;1077mV]





























#### #45 [1047mA;1050mD;1061mA;1076mL]





#49 [1047mA;1055mL;1061mA;1076mL;1083mL]

## WT-AD1-ACTR-GGG-(PEG)<sub>3</sub>-K(Biotin)-amide













# [1055mL;1076mL]AD1-ACTR-GGG-(PEG)3-K(Biotin)-amide









Fluo-(PEG)5-[1055meLeu;1076meLeu]-AD1-ACTR



#### **Supplementary References**

- 1. G. Grigoryan, W. F. DeGrado, Probing designability via a generalized model of helical bundle geometry. J. Mol. Biol. 2011, 405, 1079-1100.
- 2. P. B. Harbury, J. J. Ptecs, B. Tidor, T. Alber, P. S. Kim, High-resolution protein design with backbone freedom. *Science* **1998**, *282*, 1462-1467.
- 3. J. Walshaw, D. N. Woolfson, SOCKET: a program for identifying and analysing coiled-coil motifs within protein structures. J. Mol. Biol. 2001, 307, 1427-1450.
- 4. P. Jemth, X. Mu, Å. Engström, J. Dogan, A frustrated binding interface for intrinsically disordered proteins. *J. Biol. Chem.* **2014**, *289*, 5528-5533.
- 5. B. Schmidtgall, O. Chaloin, V. Bauer, M. Sumyk, C. Birck, V. Torbeev, Dissecting mechanism of coupled folding and binding of an intrinsically disordered protein by chemical synthesis of conformationally constrained analogues. *Chem. Commun.* **2017**, 53, 7369-7372.
- G. Stavropoulos, D. Gatos, V. Magafa, K. Barlos, Preparation of polymer-bound trityl-hydrazines and their application in the solid phase synthesis of partially protected peptide hydrazides. *Lett. Pept. Sci.* 1995, 2, 315-318.
- 7. J.-S. Zheng, S. Tang, Y. Guo, H. N. Chang, L. Liu, Synthesis of cyclic peptides and cyclic proteins via ligation of peptide hydrazides. *ChemBioChem* **2012**, *13*, 542-546.
- 8. G.-M. Fang, J. X. Wang, L. Liu, Convergent chemical synthesis of proteins by ligation of peptide hydrazides, *Angew. Chem. Int. Ed.* 2012, *51*, 10347-10350.
- 9. A. Bekesi et al. Challenges in the structural-functional characterization of multidomain, partially disordered proteins CBP and p300: preparing native proteins and developing nanobody tools. *Methods Enzymol.* **2018**, *611*, 607-675.
- 10. S. Keller, C. Vargas, H. Zhao, G. Piszczek, C. A. Brautigam, P. Schuck, High-precision isothermal titration calorimetry with automated peak-shape analysis. *Anal. Chem.* **2012**, *84*, 5066-5073.
- 11. T. H. Scheuermann, C. A. Brautigam, High-precision, automated integration of multiple isothermal titration calorimetric thermograms: New features of NITPIC. *Methods* **2015**, *76*, 87-98.
- 12. C. A. Brautigam, H. Zhao, C. Vargas, S. Keller, P. Schuck, Integration and global analysis of isothermal titration calorimetry data for studying macromolecular interactions, *Nat. Protocols* **2016**, *11*, 882-894.
- 13. V. Iešmantavičius, J. Dogan, P. Jemth, K. Teilum, M. Kjaergaard, Helical propensity in an intrinsically disordered protein accelerates ligand binding. *Angew. Chem. Int. Ed.* **2014**, *53*, 1548-1551.
- 14. S. C. Kwok, R. S. Hodges, Stabilizing and destabilizing clusters in the hydrophobic core of long twostranded alpha-helical coiled-coils. *J. Biol. Chem.* **2004**, *279*, 21576-21588.
- D. S. Wishart, C. G. Bigam, J. Yao, F. Abildgaard, H. J. Dyson, E. Oldfield, J. L. Markley, B. D. Sykes, <sup>1</sup>H, <sup>13</sup>C and <sup>15</sup>N chemical shift referencing in biomolecular NMR. *J. Biomol. NMR* 1995, *6*, 135-140.
- L. E. Kay, D. A. Torchia, A. Bax, Backbone dynamics of proteins as studied by N-15 inverse detected heteronuclear NMR-spectroscopy - application to staphylococcal nuclease. *Biochemistry* 1989, 28, 8972-8979.
- W. F. Vranken, W. Boucher, T. J. Stevens, R. H. Fogh, A. Pajon, M. Llinas, E. L. Ulrich, J. L. Markley, J. Ionides, E. D. Laue, The CCPN data model for NMR spectroscopy: development of a software pipeline. *Proteins* 2005, *59*, 687-696.
- 18. J. T. Nielsen, F. A. A. Mulder, POTENCI: prediction of temperature, neighbor and pH-corrected chemical shifts for intrinsically disordered proteins. *J. Biomol. NMR* **2018**, *70*, 141-165.
- 19. W. Kabsch, XDS. Acta Crystallogr. D (Biol. Crystallogr.) 2010, 66, 125-132.

- 20. T. Jin, W. Chuenchor, J. Jiang, J. Cheng, Y. Li, K. Fang, M. Huang, P. Smith, T. S. Xiao, Design of an expression system to enhance MBP-mediated crystallization. *Sci. Rep.* **2017**, *7*, 40991.
- A. J. McCoy, R. W. Grosse-Kunstleve, P. D. Adams, M. D. Winn, L. C. Storoni, R. J. Read, Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658-674.
- 22. P. D. Adams et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. D (Biol. Crystallogr.)* **2010**, *66*, 213-221.
- N. W. Moriarty, R. W. Grosse-Kunstleve, P. D. Adams, electronic Ligand Builder and Optimization Workbench (eLBOW): a tool for ligand coordinate and restraint generation. *Acta Crystallogr. D (Biol. Crystallogr.)* 2009, 65, 1074-1080.
- 24. J. Painter, E. A. Merritt, Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. *Acta Crystallogr. D (Biol. Crystallogr.)* **2006**, *62*, 439-450.
- 25. N. Schmid, C. D. Christ, M. Christen, A. P. Eichenberger, W. F. van Gunsteren, Architecture, implementation and parallelisation of the GROMOS software for biomolecular simulation. *Comput. Phys. Commun.* **2012**, *183*, 890-903.
- 26. D. Poger, W. F. van Gunsteren, A. E. Mark, A new force field for simulating phosphatidylcholine bilayers. J. Comput. Chem. 2010, 31, 1117-1125.
- N. Schmid, A. P. Eichenberger, A. Choutko, S. Riniker, M. Winger, A. E. Mark, W. F. van Gunsteren, Definition and testing of the GROMOS force-field versions 54A7 and 54B7. *Eur. Biophys. J.* 2011, 40, 843-856.
- H. J. C., Berendsen, J. P. M. Postma, W. F. van Gunsteren, J. Hermans, Interaction models for water in relation to protein hydration. In *Intermolecular Forces*; Pullman, B., Ed.; Reidel: Dordrecht, The Netherlands, 1981; pp 331-342.
- 29. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, J. R. Haak, Molecular dynamics with coupling to an external bath. *J. Chem. Phys.* **1984**, *81*, 3684-3690.
- J. P. Ryckaert, G. Ciccotti, H. J. C. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23, 327-341.
- 31. I. G. Tironi, R. Sperb, P. E. Smith, W. F. van Gunsteren, A generalized reaction field method for molecular dynamics simulations. J. Chem. Phys. 1995, 102, 5451-5459.
- 32. A. Glättli, X. Daura, W. F. van Gunsteren, Derivation of an improved simple point charge model for liquid water: SPC/A and SPC/L. J. Chem. Phys. 2002, 116, 9811-9828.
- 33. A. P. Eichenberger, J. R. Allison, J. Dolenc, D. P. Geerke, B. A. C. Horta, K. Meier, C. Oostenbrink, N. Schmid, D. Steiner, D. Q. Wang, W. F. van Gunsteren, GROMOS++ software for the analysis of biomolecular simulation trajectories. *J. Chem. Theory Comput.* 2011, *7*, 3379-3390.
- 34. X. Daura, W. F. van Gunsteren, A. E. Mark, Folding-unfolding thermodynamics of a β-heptapeptide from equilibrium simulations. *Proteins* **1999**, *34*, 269-280.
- 35. S. Fournane, S. Charbonnier, A. Chapelle, B. Kieffer, G. Orfanoudakis, G. Travé, M. Masson, Y. Nominé, Surface plasmon resonance analysis of the binding of high-risk mucosal HPV E6 oncoproteins to the PDZ1 domain of the tight junction protein MAGI-1. *J. Mol. Recognit.* **2010**, *24*, 511-523.
- 36. J. Walshaw, D. N. Woolfson, Open-and-shut cases in coiled-coil assembly: α-sheets and α-cylinders. *Protein Sci.* **2001**, *10*, 668-673.