Electronic Supplementary Information

Modulating the ground state, stability and charge transport in OFETs of biradicaloïd Hexahydro-diindenopyrene derivatives and a proposed method to estimate the biradical character

Tanguy Jousselin-Oba, ${ }^{\text {a }}$ Masashi Mamada,*b Atsushi Okazawa, ${ }^{\text {c }}$ Jérome Marrot, ${ }^{\text {a }}$ Takayuki Ishida, ${ }^{\text {d }}$ Chihaya Adachi, ${ }^{\text {b,e }}$ Abderrahim Yassar, ${ }^{\dagger}$ Michel Frigoli*a

a. UMR CNRS 8180, UVSQ, Institut Lavoisier de Versailles, Université Paris-Saclay, 45 avenue des Etats-Unis, 78035 Versailles Cedex, France. michel.frigoli@uvsq.fr
b. Center for Organic Photonics and Electronics Research (OPERA), JST ERATO Adachi Molecular Exciton Engineering Project, and Academia-Industry Molecular Systems for Devices Research and Education Center, Kyushu University, Kyushu University, Nishi, Fukuoka, 819-0395 Japan. mamada@opera.kyushu-u.ac.jp
c. Division of Chemistry, Institute of Liberal Education, Nihon University School of Medicine, Itabashi, Tokyo173-8610, Japan.
d. Department of Engineering Science, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan.
e. International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, Nishi, Fukuoka 819-0395, Japan.
f. Ecole Polytechnique, Institut Polytechnique de Paris, LPICM, CNRS, route de Saclay, 91128 Palaiseau, France.
Content
GENERAL METHODS FOR SYNTHESIS S3
INSTRUMENTS S3
SYNTHESIS S4
X-RAY STRUCTURE OF alcohol by product (CCDC: 1987611) S14
X-RAY STRUCTURE OF HDIP (CCDC: 1987607) S15
X-RAY STRUCTURE OF LINEAR-HDIP (CCDC: 1987608) S16
X-RAY STRUCTURE OF Syn-HDIP (CCDC: 1987609) S17
X-RAY STRUCTURE OF Anti-HDIP (CCDC: 1987610) S18
VARIABLE TEMPERATURE ${ }^{1} \mathrm{H}$ NMR of HDIP in o-DCB (d_{4}) S19
VARIABLE TEMPERATURE ${ }^{1} \mathrm{H}$ NMR of linear-HDIP in o-DCB $\left(\mathrm{d}_{4}\right)$ with COSY and NOESY S20
VARIABLE TEMPERATURE ${ }^{1} \mathrm{H}$ NMR of syn-HDIP in o-DCB $\left(\mathrm{d}_{4}\right)$ S22
VARIABLE TEMPERATURE ${ }^{1} \mathrm{H}$ NMR of anti-HDIP in o-DCB $\left(\mathrm{d}_{4}\right)$ with COSY and NOESY S23
ESR and SQUID MEASUREMENTS S25
STABILITY TESTS OF HDIP DERIVATIVES S27
THERMOGRAVIMETRY ANALYSIS OF HDIP derivatives under N_{2} S29
THEORITICAL CALCULATIONS S30
HDIP: Bond length comparison of X-ray structure and calculations S32
Linear-HDIP: Bond length comparison of X-ray structure and calculations S34
Syn-HDIP: Bond length comparison of X-ray structure and calculations S36
Anti-HDIP: Bond length comparison of X-ray structure and calculations S38
TIPS-octazethrene: Bond length comparison of X-ray structure and calculations S40
TIPS-heptazethrene: Bond length comparison of X-ray structure and calculations S42
Linear-DIAn: Bond length comparison of X-ray structure and calculations S44
ODD-ELECTRON DENSITY MAPS FOR FF DERIVATIVES S53
OFET DEVICES S54
RMN SPECTRA S56
INFRARED SPECTRA S63
MALDI (TOF) of HDIP derivatives S67
REFERENCES S71

GENERAL METHODS FOR SYNTHESIS

All reactions were carried out under argon. Dichloromethane was distilled from $\mathrm{P}_{2} \mathrm{O}_{5}$, THF and Toluene were distilled over $\mathrm{Na} /$ benzophenone. Dichloromethane and Toluene were kept over activated $3 \AA$ molecular sieves. All commercial reagents were used without further purification. 4,9-dibromo-1,2,3,6,7,8-hexahydropyrene, i methyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzoate, ii methyl 1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-naphthoate, iii 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-naphthoate, iv and methyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2-naphthoate, were obtained according to procedures described from literature. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at room temperature on Brucker Avance-300 MHz NMR spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300 MHz and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 75 MHz . Chloroform residual peak was taken as internal reference at 7.26 ppm for ${ }^{1} \mathrm{H}$ NMR and 77 ppm for ${ }^{13} \mathrm{C}$ NMR. o-Dichlorobenzene-d4 residual peak was taken as internal reference at 7.20 ppm for ${ }^{1} \mathrm{H}$ NMR. Infrared spectra were recorded from Nicolet 6700 FT-IR spectrometer. High-resolution mass spectra were obtained by using Waters Xevo Q-Tof using positive mode. MALDI High-resolution mass spectra and Elementary analysis were performed by the analysis platform of ICSN (Centre de Recherche de Gif - www.icsn.cnrs-gif.fr).

INSTRUMENTS

Thermogravimetry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC) were performed on a TA Instruments SDT Q600 unit under a N_{2} atmosphere with a heating rate of 10 ${ }^{\circ} \mathrm{C}$ per minute. Cyclic voltammetry was performed with BAS Electrochemical system in a threeelectrode single-compartment cell with platinum working electrode, a platinum wire counter electrode, and an $\mathrm{Ag} / \mathrm{AgNO}_{3}$ reference electrode. The measurements were carried out in dry chlorobenzene using a 0.1 M terabutylammonium hexafluorophoshate (TBAPF_{6}) electrolyte, the solution being purged with nitrogen prior to measurement. All potentials were internally referred to the ferrocene/ferrocenium couple. Ultraviolet-visible (UV-vis) absorption spectra were recorded on UV-vis (Lambda 950-PKA, PerkinElmer) spectrophotometer. The thickness of CYTOP was measured by surface profiler Bruker Dektak XT . The channel width and length were measured optically with a laser scanning microscope (Olympus LEXT).

SYNTHESIS

Compound 1a

A solution of 4,9-dibromo-1,2,3,6,7,8-hexahydropyrene (1 g, 2.73 mmol), methyl 2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate ($2.12 \mathrm{~g} ; 8.1 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(3.44 \mathrm{~g} ; 16.2 \mathrm{mmol})$ and toluene/water ($36 / 4 \mathrm{~mL}$) was degassed for 30 min with argon. Tris(dibenzylideneacetone)dipalladium (0) $\left(\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right)(124 \mathrm{mg} ; 0.135 \mathrm{mmol})$ and S -Phos ($\left.111 \mathrm{mg} ; 0.270 \mathrm{mmol}\right)$ were then added. The resulting solution was heated at $100^{\circ} \mathrm{C}$ for 36 hours. The crude mixture was left to return to room temperature, diluted with chloroform. The solution was heated and then filtered through a pad of silica gel with hot chloroform several times. The resulting solution was concentrated under vacuum. The crude product was precipitated in $\mathrm{DCM} / \mathrm{MeOH}$. The solid obtained was then pass through a pad of silica gel eluted first with Petroleum ether / DCM (50/50) then with DCM to obtain a mixture of atroposiomers (white solid, $1.20 \mathrm{~g}, 92 \%)$. Only ${ }^{1} \mathrm{H}$ NMR could be performed due to low solubility. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.59-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{td}, J=7.6,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 2.7 \mathrm{H}), 3.62(\mathrm{~s}, 3.3 \mathrm{H}), 3.10-3.00(\mathrm{~m}, 4 \mathrm{H}), 2.75-2.70(\mathrm{~m}, 4 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 4 \mathrm{H})$. IR $\left(\mathrm{cm}^{-1}\right)=1719$ (COOMe); Elementary analysis: calculated for \%C: 80.65; \%H: 5.92; found for \%C: 80.38; \%H: 5.94.

Compound 1b

The synthesis of $\mathbf{1 b}$ follows the same recipe as described for $\mathbf{1 a}$ with 4,9-dibromo-1,2,3,6,7,8hexahydropyrene ($1 \mathrm{~g}, 2.70 \mathrm{mmol}$), methyl 1-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2naphthoate ($2.53 \mathrm{~g} ; 8.10 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(5.16 \mathrm{~g} ; 24.3 \mathrm{mmol})$, toluene/water ($54 / 6 \mathrm{~mL}$), $\left.\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right)(186$ $\mathrm{mg} ; 0.203 \mathrm{mmol}$) and S-Phos (167 mg ; 0.407 mmol). Only ${ }^{1} \mathrm{H}$ NMR could be performed due to low solubility. Yield $90 \%(2.13 \mathrm{~g}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.55(\mathrm{~s}, 2 \mathrm{H}), 8.00(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.86(\mathrm{t}, \mathrm{J}$ $=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1.1 \mathrm{H}), 7.73(\mathrm{~s}, 0.9 \mathrm{H}), 7.65-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{~s}, 2.7 \mathrm{H})$, $3.69(\mathrm{~s}, 3.3 \mathrm{H}), 3.10-3.09(\mathrm{~m}, 4 \mathrm{H}), 2.81-2.77(\mathrm{~m}, 4 \mathrm{H}), 2.02-1.90(\mathrm{~m}, 4 \mathrm{H})$; IR $\left(\mathrm{cm}^{-1}\right)=1718(\mathrm{COOMe})$; Elementary analysis: calculated for \%C: 83.31; \%H: 5.59; found for \%C: 82.96; \%H: 5.63.

Compound 1c

The synthesis of $\mathbf{1 c}$ follows the same recipe as described for $\mathbf{1 a}$ with 4,9-dibromo-1,2,3,6,7,8hexahydropyrene ($1 \mathrm{~g}, 4.10 \mathrm{mmol}$), methyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2naphthoate ($2.53 \mathrm{~g} ; 8.10 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(3.44 \mathrm{~g} ; 16.2 \mathrm{mmol})$, toluene/water $\left.(36 / 4 \mathrm{~mL}), \mathrm{Pd}_{2}(\mathrm{dba}){ }_{3}\right)(124$ $\mathrm{mg} ; 0.135 \mathrm{mmol}$) and S-Phos ($111 \mathrm{mg} ; 0.270 \mathrm{mmol}$). The crude product was purified by column chromatography using as eluent first EP/DCM (50/50) to collect first diastereoisomers (transconfiguration, 745 mg) then with dichloromethane to collect the second diastereoisomers (cisconfiguration, 519 mg). The global yield is of 90% with a ratio trans/cis of 59/41.

First diastereosimer (trans): Rf: $0.54(30 / 70, \mathrm{PE} / \mathrm{DCM}),{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.03(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.62-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 6 \mathrm{H}), 3.06-3.02$ $(\mathrm{m}, 4 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.53-2.44(\mathrm{~m}, 2 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.06$, $142.49,134.85,133.65,132.64,132.60,131.82,129.72,128.24,127.86,127.60,127.49,127.41$, $126.68,125.70,125.53,52.10,31.35,28.86,23.10 ; 13 C$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl} 3$) $\delta 168.06,142.49,134.85$, $133.65,132.64,132.60,131.82,129.72,128.24,127.86,127.60,127.49,127.41,126.68,125.70$, 125.53, 52.10, $31.35,28.86,23.10$; IR $\left(\mathrm{cm}^{-1}\right)=1723$ (COOMe); Elementary analysis: calculated for \%C: 83.31; \%H: 5.59; found for \%C: 83.15; \%H: 5.61.

Second diastereosimer (cis): Rf: 0.30 (30/70, PE/DCM), ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.94$ (dd, $\mathrm{J}_{A B}=16.0$, $8.5 \mathrm{~Hz}, 6 \mathrm{H}), 7.58-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{~s}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 6 \mathrm{H}), 3.05-3.99(\mathrm{~m}, 2 \mathrm{H}), 2.74$

- $2.62(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.0-1.85(\mathrm{~m}, 4 \mathrm{H})$; Elementary analysis: calculated for \%C: 83.31; \%H: 5.59; found for \%C: 83.17; \%H: 5.61.

Compound 1d

The synthesis of $\mathbf{1 d}$ follows the same recipe as described for 1 a with 4,9-dibromo-1,2,3,6,7,8hexahydropyrene ($1 \mathrm{~g}, 4.10 \mathrm{mmol}$), methyl 3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2naphthoate ($2.53 \mathrm{~g} ; 8.10 \mathrm{mmol}$), $\mathrm{K}_{3} \mathrm{PO}_{4}(3.44 \mathrm{~g} ; 16.2 \mathrm{mmol})$, toluene/water ($36 / 4 \mathrm{~mL}$), $\left.\left.\mathrm{Pd}_{2}(\mathrm{dba})\right)_{3}\right)(124$ $\mathrm{mg} ; 0.135 \mathrm{mmol}$) and S-Phos ($111 \mathrm{mg} ; 0.270 \mathrm{mmol}$). Only ${ }^{1} \mathrm{H}$ NMR could be performed due to low solubility. Yield $85 \%(1.11 \mathrm{~g}) ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.99(\mathrm{td}, J=8.1,2.1 \mathrm{~Hz}, 6 \mathrm{H}), 7.67-7.57(\mathrm{~m}$, $4 \mathrm{H}), 7.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1.1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 0.9 \mathrm{H}), 7.20(\mathrm{~s}, 2 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.12-3.08$ $(\mathrm{m}, 4 \mathrm{H}), 2.90-2.87(\mathrm{~m}, 4 \mathrm{H}), 2.11-1.90(\mathrm{~m}, 4 \mathrm{H})$; IR $\left(\mathrm{cm}^{-1}\right)=1727$ (COOMe); Elementary analysis: calculated for \%C: 83.31; \%H: 5.59; found for \%C: 83.14; \%H: 5.61.

Compound 2a

Compound 1a ($900 \mathrm{mg}, 1.89 \mathrm{mmol}$) was put in suspension in 1,2-Dichloroethane (72 mL). TfOH (5.83 $\mathrm{mL}, 66 \mathrm{mmol}$) was then added dropwise. The resulting mixture was stirred at room temperature overnight then was transferred to an Erlenmeyer flask with a minimum amount of dichloromethane. $\mathrm{MeOH}(150 \mathrm{~mL})$ was carefully added followed by a saturated aq. NaHCO_{3} solution until neutral pH then diluted with plenty of water. The resulting precipitate was filtered, washed with water and MeOH . After drying under vacuum, compound $\mathbf{2 a}$ was obtained as orange solid ($677 \mathrm{mg}, 78 \%$). Due the insolubility of the compound, only IR was measured. IR $\left(\mathrm{cm}^{-1}\right)=1692$ ($\mathrm{C}=\mathrm{O}$ stretching of 5-membered ring); Elementary analysis: calculated for \%C: 87.36; \%H: 4.89; found for \%C: 86.99; \%H: 4.93.

Compound 2b

Compound $1 \mathbf{1 b}(1.5 \mathrm{~g}, 2.60 \mathrm{mmol})$ was put in suspension in 1,2-Dichloroethane (100 mL). TfOH (8 mL , 91 mmol) was then added dropwise. The resulting mixture was stirred at room temperature for 5 h then was transferred to an Erlenmeyer flask with a minimum amount of dichloromethane. MeOH (200 mL) was carefully added followed by a saturated aq. NaHCO_{3} solution until neutral pH then diluted with plenty of water. The resulting precipitate was filtered, washed with water and MeOH . After drying under vacuum, compound $\mathbf{2 b}$ was obtained as orange solid ($1.29 \mathrm{~g}, 98 \%$). Due the insolubility of the compound, only IR was measured. IR (cm^{-1}) = 1691 ($\mathrm{C}=\mathrm{O}$ stretching of 5-membered ring); Elementary analysis: calculated for \%C: 89.04; \%H: 4.72; found for \%C: 88.65; \%H: 4.75.

Compound 2c

Compound 2c ($408 \mathrm{mg}, 0.708 \mathrm{mmol}$) was put in suspension in 1,2-Dichloroethane (27 mL). TfOH (4.38 $\mathrm{mL}, 49.6 \mathrm{mmol}$) was then added dropwise. The resulting mixture was stirred at room temperature overnight then was transferred to an Erlenmeyer flask with a minimum amount of dichloromethane. $\mathrm{MeOH}(60 \mathrm{~mL})$ was carefully added followed by a saturated aq. NaHCO_{3} solution until neutral pH then diluted with plenty of water. The resulting precipitate was filtered, washed with water and MeOH . After drying under vacuum, compound 2c was obtained as orange-red solid ($323 \mathrm{mg}, 89 \%$). Due the insolubility of the compound, only IR was measured. IR $\left(\mathrm{cm}^{-1}\right)=1688(\mathrm{C}=0$ stretching of 5-membered ring); Elementary analysis: calculated for \%C: 89.04; \%H: 4.72; found for \%C: 88.25; \%H: 4.77.

Compound 2d

Compound 1d ($850 \mathrm{mg}, 1.47 \mathrm{mmol}$) was put in suspension in 1,2-Dichloroéthane (56 mL). TfOH (8 mL , $91 \mathrm{mmol})$ was then added dropwise. The resulting mixture was stirred at room temperature for 5 h than was transferred to an Erlenmeyer flask with a minimum amount of dichloromethane. MeOH (110 mL) was carefully added followed by a saturated aq. NaHCO_{3} solution until neutral pH then diluted with plenty of water. The resulting precipitate was filtered, washed with water and MeOH . After drying under vacuum, compound 2d was obtained as orange-red solid ($766 \mathrm{mg}, 75 \%$). Due the insolubility of the compound, only IR was measured. IR $\left(\mathrm{cm}^{-1}\right)=1676$ ($\mathrm{C}=\mathrm{O}$ stretching of 5 -membered ring); Elementary analysis: calculated for \%C: 89.04; \%H: 4.72; found for \%C: 88.60; \%H: 4.75.

HDIP

(Triisopropylsilyl)acetylene ($0.46 \mathrm{~g}, 2.45 \mathrm{mmol}$) in THF (6 mL) was cooled to $0{ }^{\circ} \mathrm{C} . n$-BuLi $(1.51 \mathrm{~mL}$, $2,41 \mathrm{mmol}, 1.6 \mathrm{M}$) was added and the mixture stirred at $0^{\circ} \mathrm{C}$ for 30 min . In a separate flask, compound 2a ($206 \mathrm{mg}, 0,049 \mathrm{mmol}$) in THF (60 mL) was sonicated for 30 min and then cooled to $0^{\circ} \mathrm{C}$. The lithiate solution was cannulated into the cold dione suspension and the reaction was stirred for 3 h 30 at room temperature. The reaction was quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with water and dried (MgSO_{4}), filtered, and concentrated under vacuum keeping the temperature below $40^{\circ} \mathrm{C}$. The crude product was precipitated purified by filtration on an alumina gel pad, eluting with different mixture of solvent: petroleum ether/Dichloromethane/diethyl ether/methanol: starting with 10/0/0/0 to remove the excess of TIPS-acetylene, then 0/8/2/0 to collect the first diol diastereoisomer, and then 0/9/0/1 to collect the second diol diastereoisomer. The obtain diols after concentration under vacuum at temperature below $40^{\circ} \mathrm{C}$ were then precipitated in a mixture of dichloromethane/petroleum ether, filtered and dried under vacuum to afford the crude diols: 98 mg of the trans diol and 232 mg of the cis diol.

The diol ($330 \mathrm{mg}, 0.424 \mathrm{mmol}$) was dissolved in anhydrous toluene (126 ml), degassed for 30 min with Ar under sonication, then $\mathrm{SnCl}_{2}(322 \mathrm{mg}, 1.69 \mathrm{mmol})$ was added. The resulting mixture was stirred at room temperature for 1 h 20 then filtered over a pad of silica gel eluted with dichloromethane. After concentration the product was precipitated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeCN and filtered. The filtrate is purified by column chromatography eluted with petroleum ether/dichloromethane: 9/1 to afford a bit of HDIP and the partially aromatized monoalcohol ($39 \mathrm{mg}, 12 \%$). The fraction of the HDIP obtain by chromatography is putted together with the previously obtained precipitate, and is precipitated in a mixture of dichloromethane/petroleum ether to afford the expected HDIP ($163 \mathrm{mg}, 48 \%$) as a blue solid. Due to the low solubility of HDIP, only the ${ }^{1} \mathrm{H}$ NMR was recorded. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.70(\mathrm{dd}, \mathrm{J}=6.2,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53$ $-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 4 \mathrm{H}), 3.58(\mathrm{t}, \mathrm{J}=6.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.27(\mathrm{t}, \mathrm{J}=6.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.16-1.92(\mathrm{~m}, 4 \mathrm{H})$, 1.35 - $1.12(\mathrm{~m}, 42 \mathrm{H})$; HRMS (MALDI-TOF): calculated for $\mathrm{C}_{52} \mathrm{H}_{62} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right)$: 742.43901; found: 742.43850.

${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 9.64(\mathrm{~d}, J=7.5 \mathrm{~Hz}, \mathrm{H} 1), 8.67(\mathrm{~d}, J=8.3 \mathrm{~Hz}, \mathrm{H} 2), 8.22(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, \mathrm{H} 3)$, $7.94(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, \mathrm{H} 4), 7.77(\mathrm{~d}, J=7.2 \mathrm{~Hz}, \mathrm{H} 5), 7.70(\mathrm{t}, J=8.0 \mathrm{~Hz}, \mathrm{H} 6), 7.65(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, \mathrm{H} 7), 7.49(\mathrm{t}, \mathrm{J}$ $=6.9 \mathrm{~Hz}, \mathrm{H} 8), 7.43(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H} 9), 7.37(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H} 10), 7.28(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, \mathrm{H} 11), 3.95-3.80(\mathrm{~m}$, H12), $3.68-3.53$ (m, H13), $3.52-3.35$ (m, H14, H14'), 2.59 (s, OH), 2.31 - 2.04 ($\mathrm{m}, \mathrm{H} 15, \mathrm{H} 15^{\prime}$), 1.33 1.21 (m, 21H, TIPS), 1.01 (s, 21H, TIPS).

Linear-HDIP

(Triisopropylsilyl)acetylene ($0.854 \mathrm{~g}, 4.68 \mathrm{mmol}$) in THF (12 mL) was cooled to $0{ }^{\circ} \mathrm{C} . n$-BuLi $(2.8 \mathrm{~mL}$, $4.53 \mathrm{mmol}, 1.6 \mathrm{M}$) was added and the mixture stirred at $0^{\circ} \mathrm{C}$ for 30 min . In a separate flask, compound $\mathbf{2 b}(390 \mathrm{mg}, 0,76 \mathrm{mmol})$ in THF (120 mL) was sonicated for 30 min and then cooled to $0^{\circ} \mathrm{C}$. The lithiated solution was cannulated into the cold dione suspension and the reaction was stirred for 4 h at room temperature. The reaction was quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with water and dried (MgSO_{4}), filtered, and concentrated under vacuum keeping the temperature below $40^{\circ} \mathrm{C}$. The crude product was precipitated purified by filtration on an alumina gel pad, eluting with different mixture of solvent: petroleum ether/dichloromethane/diethyl ether/methanol: starting with 10/0/0/0 to remove the excess of TIPS-acetylene, then 0/8/2/0 to collect the first trans-diastereoisomer, and then 0/9/0/1 to collect the cis-diol diastereoisomer. The obtain diols after concentration under vacuum at temperature below $40^{\circ} \mathrm{C}$ were then precipitated in a mixture of dichloromethane/petroleum ether, filtered and dried under vacuum to afford the crude diols 175 mg of the trans-diol and 474 mg of the cis-diol.

The trans-diol ($175 \mathrm{mg}, 0.200 \mathrm{mmol}$) was dissolved in anhydrous toluene (70 ml), degassed for 30 min with Ar under sonication, then $\mathrm{SnCl}_{2}(151 \mathrm{mg}, 0.798 \mathrm{mmol})$ was added. The resulting mixture was stirred at room temperature for 2 h 30 , and then filtered over a pad of silica gel eluted with dichloromethane. After concentration the product was precipitated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeCN and
filtered. The precipitate is solubilized in dichloromethane and precipitated with petroleum ether upon evaporation of the dichloromethane under vacuum and then filtrated. The MeCN and petroleum ether filtrate are put together and purified by column chromatography eluted with petroleum ether/dichloromethane: 9/1 to afford a bit of linear-HDIP. The fraction of the linearHDIP obtain by chromatography is putted together with the previously obtained precipitate, and is precipitated again twice in a mixture of dichloromethane/petroleum ether to afford the expected linear-HDIP ($73 \mathrm{mg}, 41 \%$) as a dark blue solid.

Starting with the cis-diol ($474 \mathrm{mg}, 0,540 \mathrm{mmol}$) under the same condition, the reaction time is 1 h 20 until completion and afford the about the same yield ($191 \mathrm{mg}, 40 \%$).

Due to the low solubility of linear-HDIP, only the ${ }^{1} \mathrm{H}$ NMR was recorded. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~s}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 2 \mathrm{H}), 7.83-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 4 \mathrm{H}), 3.67(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.40(\mathrm{t}, \mathrm{J}=6.1$ $\mathrm{Hz}, 4 \mathrm{H}$), 2.12 (dt, J = 12.2, $6.1 \mathrm{~Hz}, 4 \mathrm{H}$), 1.29 (dd, $J=16.8,3.9 \mathrm{~Hz}, 42 \mathrm{H})$; HRMS (MALDI-TOF): calculated for $\mathrm{C}_{60} \mathrm{H}_{66} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right): 842.47031$; found: 842.47138 .

Syn-HDIP

(Triisopropylsilyl)acetylene ($0.854 \mathrm{~g}, 4.68 \mathrm{mmol}$) in THF (12 mL) was cooled to $0{ }^{\circ} \mathrm{C} . n$-BuLi $(2.8 \mathrm{~mL}$, $4.53 \mathrm{mmol}, 1.6 \mathrm{M})$ was added and the mixture stirred at $0^{\circ} \mathrm{C}$ for 30 min . In a separate flask, compound $\mathbf{2 b}(400 \mathrm{mg}, 0,78 \mathrm{mmol})$ in THF (120 mL) was sonicated for 30 min and then cooled to $0^{\circ} \mathrm{C}$. The lithiated solution was cannulated into the cold dione suspension and the reaction was stirred for 4 h at room temperature. The reaction was quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with water and dried (MgSO_{4}), filtered, and concentrated under vacuum keeping the temperature below $40^{\circ} \mathrm{C}$. The crude product was precipitated purified by filtration on an alumina gel pad, eluting with different mixture of solvent: petroleum ether/dichloromethane/diethyl ether: starting with 10/0/0 to remove the excess of TIPSacetylene, then 5/5/0 to collect the trans-diol diastereoisomer and then 0/5/5 to collect the cis-diol diastereoisomer. The obtain diols after concentration under vacuum at temperature below $40^{\circ} \mathrm{C}$ were then precipitated twice in a mixture of dichloromethane/petroleum ether, filtered and dried under vacuum to afford the crude diols 268 mg of the trans-diol and 173 mg of the cis-diol.

The cis-diol ($170 \mathrm{mg}, 0.194 \mathrm{mmol}$) was dissolved in anhydrous toluene (70 ml), degassed for 30 min with Ar under sonication, then $\mathrm{SnCl}_{2}(147 \mathrm{mg}, 0.775 \mathrm{mmol})$ was added. The resulting mixture was stirred at room temperature for 1 h 30 , and then filtered over a pad of silica gel eluted with dichloromethane. After concentration the product was precipitated with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeCN and
filtered and precipitated again in dichloromethane/methanol. The precipitate is purified by column chromatography eluted with petroleum ether/dichloromethane: $9 / 1$ to afford a syn-HDIP. The fraction of the syn-HDIP obtain by chromatography is putted together with the previously obtained precipitate, and is precipitated again twice in a mixture of dichloromethane/petroleum ether to afford the expected syn-HDIP ($31 \mathrm{mg}, 13 \%$) as a dark blue solid.

Starting with the trans-diol ($268 \mathrm{mg}, 0.305 \mathrm{mmol}$) under the same condition, the reaction time is 1 h 50 until completion and afford about the same yield ($61 \mathrm{mg}, 8 \%$).

Due to the low solubility of syn-HDIP, only the ${ }^{1} \mathrm{H}$ NMR was recorded. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~s}, 4 \mathrm{H}), 7.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.63(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 4 \mathrm{H}), 3.36-3.23(\mathrm{~m}, 4 \mathrm{H}), 2.04-1.80(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.12(\mathrm{~m}, 42 \mathrm{H})$; HRMS (MALDITOF): calculated for $\mathrm{C}_{60} \mathrm{H}_{66} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right)$: 842.47031; found: 842.47254 .

Anti-HDIP

(Triisopropylsilyl)acetylene ($1.07 \mathrm{~g}, 5.85 \mathrm{mmol}$) in THF (16 mL) was cooled to $0{ }^{\circ} \mathrm{C}$. n-BuLi $(3.53 \mathrm{~mL}$, $5.64 \mathrm{mmol}, 1.6 \mathrm{M}$) was added and the mixture stirred at $0^{\circ} \mathrm{C}$ for 30 min . In a separate flask, compound $\mathbf{2 b}(500 \mathrm{mg}, 0,98 \mathrm{mmol})$ in THF (150 mL) was sonicated for 30 min and then cooled to $0^{\circ} \mathrm{C}$. The lithiated solution was cannulated into the cold dione suspension and the reaction was stirred for 4 h at room temperature. The reaction was quenched by addition of saturated aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$. The organic layer was washed with water and dried (MgSO_{4}), filtered, and concentrated under vacuum keeping the temperature below $40^{\circ} \mathrm{C}$. The crude product was precipitated purified by filtration on an alumina gel pad, eluting with different mixture of solvent: petroleum ether/dichloromethane/diethyl ether/methanol: starting with 10/0/0/0 to remove the excess of TIPS-acetylene, then $0 / 8 / 2 / 0$ to collect the trans-diol diastereoisomer, and then 0/8/0/2 to collect the cis-diol diastereoisomer. The obtain diols after concentration under vacuum at temperature below $40^{\circ} \mathrm{C}$ were then precipitated in a mixture of dichloromethane/petroleum ether, filtered and dried under vacuum to afford the crude diols: 244 mg of the trans-diol and 478 mg of the cis-diol.

The trans-diol ($100 \mathrm{mg}, 0.114 \mathrm{mmol}$) was dissolved in anhydrous toluene (40 ml), degassed for 30 min with Ar under sonication, then $\mathrm{SnCl}_{2}(87 \mathrm{mg}, 0.456 \mathrm{mmol})$ was added. The resulting mixture was stirred at room temperature for 4 h 30 , and then filtered over a pad of silica gel eluted with dichloromethane and then hot toluene. After concentration the product was precipitated twice with
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and MeCN , filtered, washed with MeCN , methanol, petroleum ether and acetone and dried under vacuum to afford anti HDIP ($53 \mathrm{mg}, 51 \%$) as a dark blue solid.

Starting with the trans-diol ($100 \mathrm{mg}, 0.114 \mathrm{mmol}$) under the same condition, the reaction time is 2 h 30 until completion and afford about the same yield ($52 \mathrm{mg}, 52 \%$).

Due to the low solubility of Anti-HDIP, only the ${ }^{1} \mathrm{H}$ NMR was recorded; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.68-9.63(\mathrm{~m}, 2 \mathrm{H}), 7.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{dd}, J=6.3,3.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-$ $7.36(\mathrm{~m}, 3 \mathrm{H}), 3.69(\mathrm{t}, \mathrm{J}=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.35(\mathrm{t}, \mathrm{J}=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.15-1.94(\mathrm{~m}, 4 \mathrm{H}), 1.60-0.96(\mathrm{~m}, 42 \mathrm{H})$; HRMS (MALDI-TOF): calculated for $\mathrm{C}_{60} \mathrm{H}_{66} \mathrm{Si}_{2}\left(\mathrm{M}^{+}\right)$: 842.47031; found: 842.47270.

X-RAY STRUCTURE OF alcohol by product (CCDC: 1987611)

Crystal data for alcohol by product : $\mathrm{C}_{52} \mathrm{H}_{60} \mathrm{OSi}_{2}, M_{\mathrm{w}}=757.18$, triclinic, space group $P-1$; dimensions: $a=11.6952$ (3) $\AA, b=12.3024$ (3) $\AA, c=18.2803$ (5) $\AA, \alpha=72.922(1)^{\circ}, \beta=$ $72.859(1)^{\circ}, \gamma=66.635(1)^{\circ}, V=2259.89(10) \AA^{3} ; Z=2 ; \mu=0.11 \mathrm{~mm}^{-1} ; 55136$ reflections measured at 296 K ; independent reflections: 10425 [$7533 \mathrm{Fo}>4 \sigma(F \mathrm{o})$]; data were collected up to a $2 \Theta \max$ value of $55.2^{\circ}(99.6 \%$ coverage $)$. Number of variables: $509 ; R_{1}=0.080, \mathrm{w} R_{2}=$ $0.232, S=1.05$; highest residual electron density $0.64 \mathrm{e} . \AA^{-3} ; \mathrm{CCDC}=1987611$.

X-RAY STRUCTURE OF HDIP (CCDC: 1987607)

Crystal data for HDIP : $\mathrm{C}_{52} \mathrm{H}_{62} \mathrm{Si}_{2}, M_{\mathrm{w}}=743.19$, triclinic, space group $P-1$; dimensions: $a=$ 7.7000 (5) $\AA, b=8.2465$ (5) $\AA, c=17.9156$ (8) $\AA, \alpha=89.138(4)^{\circ}, \beta=79.878(4)^{\circ}, \gamma=75.346$ $(5)^{\circ}, \mathrm{V}=1082.95(11) \AA^{3} ; \mathrm{Z}=1 ; \mu=0.12 \mathrm{~mm}^{-1} ; 17540$ reflections measured at 123 K ; independent reflections: 4955 [3978 F o $>4 \sigma(F \mathrm{o})$]; data were collected up to a 2Θ max value of 54.8° (99.9 \% coverage). Number of variables: 250; $R_{1}=0.045, \mathrm{w} R_{2}=0.123, S=1.05$; highest residual electron density $0.51 \mathrm{e} . \AA^{-3} ; \mathrm{CCDC}=1987607$.

X-RAY STRUCTURE OF LINEAR-HDIP (CCDC: 1987608)

Crystal data for linear-HDIP : $\mathrm{C}_{78} \mathrm{H}_{90} \mathrm{Si}_{2}, M_{\mathrm{w}}=1083.67$, triclinic, space group $P-1$; dimensions: $a=8.8789$ (6) $\AA, b=12.7356(5) \AA, c=14.6701$ (9) $\AA, \alpha=99.626(4)^{\circ}, \beta=104.748(6)^{\circ}, \gamma=$ $98.811(4)^{\circ}, \mathrm{V}=1547.92(16) \AA^{3} ; \mathrm{Z}=1 ; \mu=0.10 \mathrm{~mm}^{-1} ; 17632$ reflections measured at 100 K ; independent reflections: 6212 [4914 $\mathrm{Fo}>4 \sigma(F \mathrm{~F})$]; data were collected up to a 2Θ max value of 52.6° (98.3% coverage). Number of variables: $370 ; R_{1}=0.059, \mathrm{w} R_{2}=0.144, S=1.03$; highest residual electron density $0.86 \mathrm{e} . \AA^{-3} ; \mathrm{CCDC}=1987608$.

X-RAY STRUCTURE OF Syn-HDIP (CCDC: 1987609)

Crystal data for syn-HDIP : $\mathrm{C}_{60} \mathrm{H}_{66} \mathrm{Si}_{2}, M_{\mathrm{w}}=843.30$, monoclinic, space group $P 2_{1} /$ c; dimensions: $a=8.1631$ (3) $\AA, b=13.8454$ (6) $\AA, c=21.1693$ (8) $\AA, \beta=91.995$ (4$)^{\circ}, \mathrm{V}=$ 2391.13 (18) $\AA^{3} ; \mathrm{Z}=2 ; \mu=0.11 \mathrm{~mm}^{-1} ; 21124$ reflections measured at 123 K ; independent reflections: 5474 [$4380 \mathrm{Fo}>4 \sigma(F \mathrm{o})$]; data were collected up to a $2 \Theta \max$ value of $54.9^{\circ}(99.8$ \% coverage). Number of variables: 286; $R_{1}=0.042$, $\mathrm{w} R_{2}=0.103, S=1.03$; highest residual electron density $0.37 \mathrm{e} . \AA^{-3} ; C C D C=1987609$.

X-RAY STRUCTURE OF Anti-HDIP (CCDC: 1987610)

Crystal data for anti-HDIP : $\mathrm{C}_{60} \mathrm{H}_{66} \mathrm{Si}_{2}, M_{\mathrm{w}}=843.30$, triclinic, space group $P-1$; dimensions: a $=8.2869$ (3) $\AA, b=9.3544$ (4) $\AA, c=15.0106$ (7) $\AA, \alpha=83.361(4)^{\circ}, \beta=81.878(4)^{\circ}, \gamma=$ $89.500(3)^{\circ}, \mathrm{V}=1144.18(8) \AA^{3} ; \mathrm{Z}=1 ; \mu=0.12 \mathrm{~mm}^{-1} ; 26342$ reflections measured at 100 K ; independent reflections: 5252 [4265 $\mathrm{Fo}>4 \sigma(F \mathrm{~F})$]; data were collected up to a 2Θ max value of $54.9^{\circ}(99.9 \%$ coverage $)$. Number of variables: 286; $R_{1}=0.041, \mathrm{w} R_{2}=0.107, S=1.04$; highest residual electron density $0.29 \mathrm{e} . \AA^{-3} ; \mathrm{CCDC}=1987610$.

VARIABLE TEMPERATURE ${ }^{1} \mathrm{H}$ NMR of linear-HDIP in o-DCB (d_{4}) with COSY and NOESY

VARIABLE TEMPERATURE ${ }^{1} \mathrm{H}$ NMR of syn-HDIP in o-DCB (d_{4})

VARIABLE TEMPERATURE ${ }^{1} \mathrm{H}$ NMR of $a n t i-H D I P$ in o-DCB (d_{4}) with COSY and NOESY

ESR and SQUID MEASUREMENTS

Magnetic susceptibilities of the samples were measured using a Quantum Design MPMS-XL7 SQUID magnetometer in a temperature range of 200-400 K at an applied magnetic field of 1 T . The magnetic response was corrected with diamagnetic blank from the sample holder measured separately. The diamagnetism of the sample itself was estimated from Pascal's constant. Electron spin resonance (ESR) measurements were carried out on a Bruker ELEXSYS X-band (9.7 GHz) spectrometer. The ESR spectra of the polycrystalline samples were recorded in a temperature range from 200-500 K, where a cryostat (Oxford) was applied using liquid nitrogen. The samples were contained in a glass tube where inner gasses were removed in vacuum and sealed by using flame in order to prevent oxygen containing. Unfortunately, a detectable response derived from the excited spin triplet state in the samples cannot be found in SQUID and ESR results in the measuring temperature range, because the magnetic susceptibility and ESR responses for all the HDIP samples showed anomalous paramagnetic behavior quite similar to those in the previous report. ${ }^{\text {vi }}$ According to the reference, the anomalous behavior was derived from a small concentration of radical cations generated through exposure to ambient atmosphere (oxygen, water) and light even for extra-purified samples. The broadening ($\Delta H_{\mathrm{pp}}=\sim 15 \mathrm{G}$) of ESR signals is supportive of such anomalous behavior, which seems to be a nature of aggregated samples different from a chemically oxidized radical cation showing a sharp signal. The unexpected paramagnetic response was not avoided in our magnetic experiments, which masks the contribution of the inherent excited triplet state in the HDIP singlet biradicals.

Figure S1. Temperature dependences (a) of $\chi_{\mathrm{mol}} T$ and (b) of χ_{mol} for the HDIP derivatives.

Figure S2. Temperature dependences of ESR spectra on the polycrystalline samples of (a) HDIP, (b) linear-HDIP, (c) syn-HDIP, and (d) anti-HDIP.

STABILITY TESTS OF HDIP DERIVATIVES

The stability tests were performed in 100 ml volumetric flask containing a toluene solution of the materials at a concentration of $26.6 \mu \mathrm{M}$. Air bubbling on the toluene solution for 30 min and 1 hour left with open bottle prior the dilution was done. All the samples were prepared at the same time and the volumetric flask with capped on were left on the bench with light on. Aliquots of 2.5 mL were taken at different times and were put in the cuvette for recording UV/vis absorption spectra.

Change of UV/vis absorption spectra over time (left) and plot of At/AO at their own $\lambda_{\max } \mathrm{nm}$ vs time (right)

THEORITICAL CALCULATIONS

The computations were mainly performed using the computer facilities at the Research Institute for Information Technology, Kyushu University. Molecular orbital calculations were performed using the program Gaussian 16 except for odd-electron density and NICS calculations. ${ }^{\text {vii }}$ The geometries were optimized at the B3LYP/6-311G(d,p) level for the singlet and UB3LYP/6-311G(d,p) for the triplet, and these optimized structures are used for the further calculations of the singlet and triplet, respectively, unless otherwise noted according to the literature. ${ }^{\text {viii }}$ The presence of energy minima for the geometry optimization was confirmed by the absence of imaginary modes (no imaginary frequencies). To numerically achieve accurate values, we have used a fine grid. The triisopropylsilyl (TIPS) groups were substituted with trimethylsilyl (TMS) groups. We adopted four model systems, which are main aromatic backbone without substituents (native FF series), with TMS-acetylene groups (FF series), with propane groups (native HDIP series), and with propane and TMS-acetylene groups (HDIP series) (Figure $\mathrm{S} 1)$. The singlet biradical was investigated by re-optimizing the geometry using open-shell brokensymmetry calculations at the UB3LYP/6-311G(d,p) level. The structures were also optimized at the CAM-B3LYP/6-311+G(d,p), broken symmetry UCAM-B3LYP/6-311+G(d,p), and UCAM-B3LYP/6$311+G(d, p)$ for closed-shell singlet, open-shell singlet, and triplet, respectively.

The singlet biradical factor was also calculated by the natural orbital occupation number (NOON) of the LUMO in a projected spin-unrestricted Hartree-Fock (PUHF) calculation using $6-31+G(d, p)$ basis set. ${ }^{\text {ix }}$ The broken symmetry PUHF/6-31+G(d,p) calculations gave LUMO occupation number. According to the Yamaguchi scheme, ${ }^{\mathrm{x}}$ the index for singlet biradical character is expressed as

$$
y_{i}=1-\frac{2 T_{i}}{1+T_{i}^{2}}
$$

where T_{i} is the orbital overlap between the corresponding orbital pairs and it can be presented using the NOON of HOMO and LUMO.

$$
T_{i}=\frac{n_{\text {НОмО }}-n_{\text {LUMO }}}{2}
$$

The diradical characters by the theoretical calculation are listed in Table S1.
The TD-DFT calculations were conducted at the B3LYP/6-311+G(d,p) level for the excited states calculations.

Odd-electron density distribution were calculated using the program Multiwfn ${ }^{\mathrm{xi}}$
NICS calculations were performed using Gaussian 09 and Aroma 1.0. xii NICS values employ σ-only model to obtain the effect of the π contribution only. $\operatorname{NICS}(0) \pi z z, \operatorname{NICS}(1) \pi z z$, and $\operatorname{NICS}(1.7) \pi z z$, where the dummy atoms are positioned ring center at $0 \AA, 1 \AA$, and $1.7 \AA$ above the ring, respectively. The NICS values were estimated using the GIAO-B3LYP/6-311+G(d,p) methods for the structures calculated at the B3LYP basis set and the GIAO-CAM-B3LYP/6-311+G(d,p) methods for the structures calculated at the CAM-B3LYP basis set, and these data are summarized in Table S5 and S6.

native IF

IF

native FF

FF

native linear-FF

linear-FF

native syn-FF

native anti-FF

syn-FF

native anti-HDIP

HDIP

native linear-HDIP

linear-HDIP

syn-HDIP

anti-HDIP

native syn-DIAn

native anti-DIAn

native DIAn

native linear-DIAn

linear-DIAn

syn-DIAn

native anti-IIDBT

anti-IIDBT

syn-IIDBT

native heptazethrene

native octazethrene

heptazethrene

octazethrene

Figure S3. Chemical structures of the calculated molecules

HDIP: Bond length comparison of X-ray structure and calculations

TMS

Bond	X-ray	RB3LYP	\mid RB3LYP - XR \|	UB3LYP
a	$1.454(2)$	1.455	0.001	1.453
b	$1.406(2)$	1.409	0.003	1.419
c	$1.415(2)$	1.421	0.006	1.413
d	$1.391(2)$	1.399	0.008	1.407
e	$1.458(2)$	1.462	0.004	1.457
f	$1.451(2)$	1.453	0.002	1.449
g	$1.362(2)$	1.371	0.009	1.373
h	$1.447(2)$	1.454	0.007	1.451

|RB3LYP-XR| corresponds to the bond length difference between the structure optimized at RB3LYP and the X-ray structure.

| Bond | X-ray | RCAM-B3LYP | UCAM-B3LYP | RUCAM
 RCAM*0.45 +UCAM*0.55 | \|RUCAM-XR| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | $1.454(2)$ | 1.459 | 1.450 | 1.453 | 0.001 |
| b | $1.406(2)$ | 1.384 | 1.424 | 1.406 | 0.000 |
| c | $1.415(2)$ | 1.431 | 1.399 | 1.413 | 0.003 |
| d | $1.391(2)$ | 1.378 | 1.411 | 1.396 | 0.005 |
| e | $1.458(2)$ | 1.465 | 1.442 | 1.452 | 0.004 |
| f | $1.451(2)$ | 1.459 | 1.443 | 1.450 | 0.001 |
| g | $1.362(2)$ | 1.356 | 1.365 | 1.361 | 0.001 |
| h | $1.447(2)$ | 1.456 | 1.442 | 1.448 | 0.001 |

|RUCAM-XR| corresponds to the bond lengths difference between the resonance hybrid between CAM structures as RCAM* 0.45 +UCAM* 0.55 and the X-ray structure.

Accordingly. y_{0} is in the range of 0.55 ± 0.05 by into account the standard deviation of the apical bond length.
y_{o} is of 0.56 calculated at PUHF from R-BL3YP structure.
y_{0} is of 0.54 calculated at PUHF from X-ray structure.

Linear-HDIP: Bond length comparison of X-ray structure and calculations

UB3LYP

TMS

| Bond | X-ray | RB3LYP | \|RB3LYP - XR | | UB3LYP |
| :---: | :---: | :---: | :---: | :---: |
| a | $1.445(3)$ | 1.456 | 0.011 | 1.453 |
| b | $1.403(3)$ | 1.406 | 0.003 | 1.420 |
| c | $1.411(3)$ | 1.423 | 0.012 | 1.413 |
| d | $1.393(3)$ | 1.397 | 0.004 | 1.407 |
| e | $1.460(4)$ | 1.465 | 0.005 | 1.458 |
| f | $1.447(3)$ | 1.455 | 0.008 | 1.449 |
| g | $1.364(3)$ | 1.368 | 0.004 | 1.372 |
| h | $1.447(3)$ | 1.456 | 0.009 | 1.451 |

|RB3LYP-XR| corresponds to the bond length difference between the structure optimized at RB3LYP and the X-ray structure.

| Bond | X-ray | RCAM-B3LYP | UCAM-B3LYP | RUCAM
 RCAM*0.52 +UCAM*0.48 | \|RUCAM-XR| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | $1.445(3)$ | 1.460 | 1.448 | 1.454 | 0.009 |
| b | $1.403(3)$ | 1.382 | 1.426 | 1.403 | 0.000 |
| c | $1.411(3)$ | 1.433 | 1.399 | 1.417 | 0.006 |
| d | $1.393(3)$ | 1.376 | 1.412 | 1.393 | 0.000 |
| e | $1.460(4)$ | 1.468 | 1.442 | 1.456 | 0.004 |
| f | $1.447(3)$ | 1.461 | 1.443 | 1.452 | 0.005 |
| g | $1.364(3)$ | 1.354 | 1.365 | 1.359 | 0.005 |
| h | $1.447(3)$ | 1.457 | 1.442 | 1.450 | 0.003 |

|RUCAM-XR| corresponds to the bond lengths difference between the resonance hybrid between CAM structures as RCAM* 0.52 +UCAM* 0.48 and the X-ray structure.

Accordingly. y_{0} is in the range of 0.48 ± 0.07 by into account the standard deviation of the apical bond length.
y_{0} is of 0.58 calculated at PUHF from R-BL3YP structure.
y_{0} is of 0.58 calculated at PUHF from X-ray structure.

U-B3LYP

U-CAMB3LYP

| Bond | X-ray | RB3LYP | \|RB3LYP - XR | | UB3LYP |
| :---: | :---: | :---: | :---: | :---: |
| a | $1.443(2)$ | 1.446 | 0.003 | 1.445 |
| b | $1.400(2)$ | 1.407 | 0.007 | 1.409 |
| c | $1.408(2)$ | 1.416 | 0.008 | 1.414 |
| d | $1.394(2)$ | 1.400 | 0.006 | 1.402 |
| e | $1.455(2)$ | 1.457 | 0.002 | 1.456 |
| f | $1.449(2)$ | 1.454 | 0.005 | 1.453 |
| g | $1.369(2)$ | 1.38 | 0.011 | 1.381 |
| h | $1.456(2)$ | 1.458 | 0.002 | 1.457 |

|RB3LYP-XR| corresponds to the bond length difference between the structure optimized at RB3LYP and the X-ray structure.

| Bond | X-ray | RCAM-B3LYP | UCAM-B3LYP | RUCAM
 RCAM*0.47 +UCAM*0.53 | \|RUCAM-XR| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | $1.443(2)$ | 1.451 | 1.442 | 1.446 | 0.003 |
| b | $1.400(2)$ | 1.382 | 1.416 | 1.400 | 0.000 |
| c | $1.408(2)$ | 1.427 | 1.399 | 1.412 | 0.004 |
| d | $1.394(2)$ | 1.377 | 1.407 | 1.393 | 0.001 |
| e | $1.455(2)$ | 1.46 | 1.44 | 1.449 | 0.005 |
| f | $1.449(2)$ | 1.462 | 1.449 | 1.455 | 0.006 |
| g | $1.369(2)$ | 1.364 | 1.371 | 1.368 | 0.001 |
| h | $1.456(2)$ | 1.459 | 1.447 | 1.452 | 0.004 |

|RUCAM-XR| corresponds to the bond lengths difference between the resonance hybrid between CAM structures as RCAM* 0.47 +UCAM* 0.53 and the X-ray structure.

Accordingly. y_{0} is in the range of 0.53 ± 0.05 by into account the standard deviation of the apical bond length.
y_{0} is of 0.59 calculated at PUHF from R-BL3YP structure.
y_{0} is of 0.56 calculated at PUHF from X-ray structure.

Anti-HDIP: Bond length comparison of X-ray structure and calculations

| Bond | X-ray | RB3LYP | \|RB3LYP - XR | | UB3LYP |
| :---: | :---: | :---: | :---: | :---: |
| a | $1.444(2)$ | 1.45 | 0.006 | 1.448 |

b	$1.419(2)$	1.423	0.004	1.434
c	$1.412(2)$	1.414	0.002	1.406
d	$1.400(2)$	1.409	0.009	1.417
e	$1.448(2)$	1.457	0.009	1.452
f	$1.442(2)$	1.445	0.003	1.443
g	$1.370(2)$	1.378	0.008	1.38
h	$1.435(2)$	1.446	0.011	1.443

|RB3LYP-XR| corresponds to the bond length difference between the structure optimized at RB3LYP and the X -ray structure.

| Bond | X-ray | RCAM-B3LYP | UCAM-B3LYP | RUCAM
 RCAM*0.43 +UCAM*0.57 | \|RUCAM-XR| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | $1.444(2)$ | 1.459 | 1.444 | 1.450 | 0.006 |
| b | $1.419(2)$ | 1.394 | 1.438 | 1.419 | 0.000 |
| c | $1.412(2)$ | 1.426 | 1.393 | 1.407 | 0.005 |
| d | $1.400(2)$ | 1.385 | 1.419 | 1.404 | 0.004 |
| e | $1.448(2)$ | 1.46 | 1.438 | 1.447 | 0.001 |
| f | $1.442(2)$ | 1.454 | 1.44 | 1.446 | 0.004 |
| g | $1.370(2)$ | 1.362 | 1.369 | 1.366 | 0.004 |
| h | $1.435(2)$ | 1.447 | 1.435 | 1.440 | 0.005 |

|RUCAM-XR| corresponds to the bond lengths difference between the resonance hybrid between CAM structures as RCAM* 0.43 +UCAM*0.57and the X-ray structure.

Accordingly. y_{0} is in the range of 0.57 ± 0.05 by taking into account the standard deviation of the apical bond length.
y_{0} is of 0.65 calculated at PUHF from R-BL3YP structure.
y_{0} is of 0.62 calculated at PUHF from X-ray structure.

TIPS-octazethrene: Bond length comparison of X-ray structure and calculations

| Bond | X-ray | RB3LYP | \|RB3LYP - XR | | UB3LYP |
| :---: | :---: | :---: | :---: | :---: |
| a | $1.443(2)$ | 1.451 | 0.008 | 1.441 |
| b | $1.409(2)$ | 1.403 | 0.006 | 1.423 |
| c | $1.415(2)$ | 1.422 | 0.007 | 1.408 |
| d | $1.381(2)$ | 1.379 | 0.002 | 1.393 |
| e | $1.443(2)$ | 1.446 | 0.003 | 1.438 |
| f | $1.424(2)$ | 1.428 | 0.004 | 1.42 |
| g | $1.373(2)$ | 1.371 | 0.002 | 1.378 |
| h | $1.454(2)$ | 1.459 | 0.005 | 1.452 |

|RB3LYP-XR| corresponds to the bond length difference between the structure optimized at RB3LYP and the X-ray structure.

| Bond | X-ray | RCAM-B3LYP | UCAM-B3LYP | RUCAM
 RCAM*0.33 +UCAM*0.67 | \|RUCAM-XR| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | $1.443(2)$ | 1.456 | 1.433 | 1.440 | 0.003 |
| b | $1.409(2)$ | 1.379 | 1.424 | 1.409 | 0.000 |
| c | $1.415(2)$ | 1.431 | 1.399 | 1.410 | 0.005 |
| d | $1.381(2)$ | 1.361 | 1.394 | 1.383 | 0.002 |
| e | $1.443(2)$ | 1.446 | 1.427 | 1.433 | 0.010 |
| f | $1.424(2)$ | 1.435 | 1.415 | 1.422 | 0.002 |
| g | $1.373(2)$ | 1.356 | 1.374 | 1.368 | 0.005 |
| h | $1.454(2)$ | 1.461 | 1.443 | 1.449 | 0.005 |

|RUCAM-XR| corresponds to the bond lengths difference between the resonance hybrid between CAM structures as RCAM* 0.33 +UCAM*0.67and the X-ray structure.

Accordingly. y_{0} is in the range of 0.67 ± 0.05 by taking into account the standard deviation of the apical bond length.
y_{0} is of 0.68 calculated at PUHF from R-BL3YP structure.

TIPS-heptazethrene: Bond length comparison of X-ray structure and calculations

| Bond | X-ray | RB3LYP | \|RB3LYP - XR | | UB3LYP |
| :---: | :---: | :---: | :---: | :---: |
| a | $1.443(2)$ | 1.453 | 0.010 | 1.448 |
| b | $1.398(2)$ | 1.399 | 0.001 | 1.409 |
| c | $1.426(2)$ | 1.427 | 0.001 | 1.421 |
| d | $1.377(2)$ | 1.371 | 0.006 | 1.376 |
| e | $1.450(2)$ | 1.451 | 0.001 | 1.445 |

|RB3LYP-XR| corresponds to the bond length difference between the structure optimized at RB3LYP and the X-ray structure.

| Bond | X-ray | RCAM-B3LYP | UCAM-B3LYP | RUCAM
 RCAM*0.44 +UCAM*0.56 | \|RUCAM-XR| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | $1.443(2)$ | 1.457 | 1.435 | 1.445 | 0.002 |
| b | $1.398(2)$ | 1.377 | 1.415 | 1.398 | 0.000 |
| c | $1.426(2)$ | 1.434 | 1.411 | 1.421 | 0.005 |
| d | $1.377(2)$ | 1.356 | 1.377 | 1.368 | 0.009 |
| e | $1.450(2)$ | 1.453 | 1.432 | 1.440 | 0.01 |

|RUCAM-XR| corresponds to the bond lengths difference between the resonance hybrid between CAM structures as RCAM* 0.44 +UCAM* 0.56 and the X-ray structure.

Accordingly. y_{0} is in the range of 0.56 ± 0.05 by taking into account the standard deviation of the apical bond length.
y_{0} is of 0.58 calculated at PUHF from R-BL3YP structure.

Linear-DIAn: Bond length comparison of X-ray structure and calculations

| Bond | X-ray | RB3LYP | \|RB3LYP - XR | | UB3LYP |
| :---: | :---: | :---: | :---: | :---: |
| a | $1.452(2)$ | 1.452 | 0.000 | 1.445 |
| b | $1.397(2)$ | 1.392 | 0.005 | 1.413 |
| c | $1.406(2)$ | 1.412 | 0.006 | 1.397 |
| d | $1.387(2)$ | 1.385 | 0.002 | 1.404 |
| e | $1.442(2)$ | 1.450 | 0.008 | 1.436 |
| f | $1.389(2)$ | 1.393 | 0.004 | 1.407 |
| g | $1.437(2)$ | 1.442 | 0.005 | 1.436 |
| h | $1.354(2)$ | 1.356 | 0.002 | 1.360 |
| i | $1.452(2)$ | 1.457 | 0.005 | 1.448 |
| j | $1.450(2)$ | 1.458 | 0.008 | 1.452 |

|RB3LYP-XR| corresponds to the bond length difference between the structure optimized at RB3LYP and the X-ray structure.

| Bond | X-ray | RCAM-B3LYP | UCAM-B3LYP | RUCAM
 RCAM* $^{*} 0.35+$ UCAM*0.65 2 | \|RUCAM-XR| |
| :---: | :---: | :---: | :---: | :---: | :---: |
| a | $1.452(2)$ | 1.460 | 1.442 | 1.448 | 0.004 |
| b | $1.397(2)$ | 1.369 | 1.412 | 1.397 | 0.000 |
| c | $1.406(2)$ | 1.422 | 1.387 | 1.399 | 0.007 |
| d | $1.387(2)$ | 1.365 | 1.407 | 1.392 | 0.005 |
| e | $1.442(2)$ | 1.456 | 1.425 | 1.436 | 0.006 |
| f | $1.389(2)$ | 1.372 | 1.402 | 1.392 | 0.004 |
| g | $1.437(2)$ | 1.448 | 1.434 | 1.439 | 0.002 |
| h | $1.354(2)$ | 1.343 | 1.353 | 1.350 | 0.004 |
| i | $1.452(2)$ | 1.460 | 1.438 | 1.446 | 0.006 |
| j | $1.450(2))$ | 1.458 | 1.446 | 1.450 | 0.000 |

|RUCAM-XR| corresponds to the bond lengths difference between the resonance hybrid between CAM structures as RCAM* 0.33 +UCAM* 0.65 and the X-ray structure.

Accordingly. y_{0} is in the range of 0.65 ± 0.05 by taking into account the standard deviation of the apical bond length.
y_{0} is of 0.64 calculated at PUHF from R-BL3YP structure.

Table S1. Energies of converged wavefunctions (hartrees) and relative energies ($\mathrm{kcal} / \mathrm{mol}$) at the B3LYP/6-311G(d,p) and the biradical character $\left(y_{0}\right)$ at the PUHF/6-31+G(d,p)

Compound	Closed-shell singlet (CS)	Open-shell singlet (OS)	Triplet	$\left.\Delta E_{(O S}-\mathrm{CS}\right)^{\text {a }}$	$\Delta E_{\text {S- }}{ }^{\text {b }}$)	y_{0}
native IF	-769.52124942	-769.52124942	-769.49034105	0.00	19.40	0.28
IF	-1739.38280622	-1739.38280622	-1739.36320050	0.00	12.30	0.40
native FF	-923.18888752	-923.18900444	-923.17356793	0.07	9.69	0.48
native linear-FF	-1230.54513905	-1230.54529985	-1230.53075353	0.10	9.13	0.50
native syn-FF	-1230.53704651	-1230.53721199	-1230.52296173	0.10	8.94	0.55
native anti-FF	-1230.54382220	-1230.54431377	-1230.53183541	0.31	7.83	0.57
FF	-1893.05249659	-1893.05398597	-1893.04440163	0.93	6.01	0.58
linear-FF	-2200.40810469	-2200.40968699	-2200.40055400	0.99	5.73	0.59
syn-FF	-2200.40066681	-2200.40204899	-2200.39274993	0.87	5.84	0.64
anti-FF	-2200.40335095	-2200.40534341	-2200.39719645	1.25	5.11	0.67
native HDIP	-1156.72854260	-1156.72854260	-1156.70989822	0.00	11.70	0.46
native linear-HDIP	-1464.08405566	-1464.08405566	-1464.06713677	0.00	10.62	0.48
native syn-HDIP	-1464.05798717	-1464.05798734	-1464.03842845	0.00	12.27	0.51
native anti-HDIP	-1464.08311923	-1464.08311923	-1464.06734824	0.00	9.90	0.55
HDIP	-2126.58486864	-2126.58531503	-2126.57374924	0.28	7.26	0.56
linear-HDIP	-2433.93942087	-2433.94014249	-2433.92975057	0.45	6.52	0.58
syn-HDIP	-2433.91450704	-2433.91452257	-2433.90098567	0.01	8.49	0.59
anti-HDIP	-2433.93072698	-2433.93136220	-2433.92102161	0.40	6.49	0.65
native DIAn	-1076.85624712	-1076.85881937	-1076.84994738	1.61	5.57	0.61
native linear-DIAn	-1384.21210192	-1384.21484025	-1384.20626624	1.72	5.38	0.62
native syn-DIAn	-1384.20526975	-1384.20777358	-1384.19965657	1.57	5.09	0.67
native anti-DIAn	-1384.21222328	-1384.21536122	-1384.20815568	1.97	4.52	0.69
DIAn	-2744.88104284	-2744.88448685	-2744.87707957	2.16	4.65	0.62
linear-DIAn	-3052.23793645	-3052.24124909	-3052.23363228	2.08	4.78	0.64
syn-DIAn	-3052.22960530	-3052.23323423	-3052.22684354	2.28	4.01	0.68
anti-DIAn	-3052.23233266	-3052.23685485	-3052.23137688	2.84	3.44	0.71
native	-1076.90444272	-1076.90445862	-1076.88826202	0.01	10.16	0.53
heptazethrene						
heptazethrene	-2046.75379628	-2046.75425773	-2046.74198270	0.29	7.70	0.58
native octazethrene	-1230.57027544	-1230.57212751	-1230.56185401	1.16	6.45	0.62
octazethrene	-2200.41998699	-2200.42299252	-2200.41526878	1.89	4.85	0.67
native anti-IIDBT	-1872.06835017	-1872.06930443	-1872.05661519	0.60	7.96	0.60
anti-IIDBT	-2570.24747191	-2570.24864296	-2570.23672709	0.73	7.48	0.61
syn-IIDBT	-2570.24854268	-2570.24961174	-2570.23871638	0.67	6.84	$0.66{ }^{\text {b }}$

${ }^{a}$ CS singlet energy minus OS broken symmetry singlet energy. ${ }^{b}$ Unrestricted triplet energy minus singlet energy. ${ }^{\text {b }}$ Taken from ref. 10k

Table S2. Energies of converged wavefunctions (hartrees) and relative energies ($\mathrm{kcal} / \mathrm{mol}$) at the CAM-B3LYP/6-311+G(d,p) and the biradical character $\left(y_{0}\right)$ at the PUHF/6-31+G(d,p)

Compound	Closed-shell singlet (CS)	Open-shell singlet (OS)	Triplet	$\left.\Delta E_{(O S}-\mathrm{CS}\right)^{\text {a }}$	$\Delta E_{\text {S-T }}{ }^{\text {b }}$
native IF	-769.0732628	-769.0732627	-769.0462274	0	16.96
IF	-1738.658809	-1738.660159	-1738.645013	0.85	9.50
native FF	-922.6489708	-922.6533314	-922.6413541	2.74	7.52
native linear-FF	-1229.829566	-1229.834487	-1229.82282	3.09	7.32
native syn-FF	-1229.821737	-1229.826584	-1229.81644	3.04	6.37
native anti-FF	-1229.827648	-1229.83387	-1229.825152	3.90	5.47
FF	-1892.23608	-1892.245729	-1892.238296	6.05	4.66
linear-FF	-2199.416364	-2199.42643	-2199.419002	6.32	4.66
syn-FF	-2199.408936	-2199.418743	-2199.412107	6.15	4.16
anti-FF	-2199.410665	-2199.422277	-2199.416573	7.29	3.58
native HDIP	-1156.058067	-1156.060068	-1156.045713	1.26	9.01
native linear-HDIP	-1463.237932	-1463.240735	-1463.227422	1.76	8.35
native syn-HDIP	-1463.213241	-1463.214228	-1463.199956	0.62	8.96
native anti-HDIP	-1463.236667	-1463.239675	-1463.228596	1.89	6.95
HDIP	-2125.638655	-2125.645083	-2125.636268	4.03	5.53
linear-HDIP	-2432.817853	-2432.825374	-2432.817051	4.72	5.22
syn-HDIP	-2432.794826	-2432.798787	-2432.789178	2.49	6.03
anti-HDIP	-2432.808872	-2432.816412	-2432.809202	4.73	4.52
native DIAn	-1076.22458672	-1076.23645822	-1076.22907545	7.45	4.63
native linear-DIAn	-1383.40488855	-1383.41747022	-1383.4099442	7.90	4.72
native syn-DIAn	-1383.3977314	-1383.41009682	-1383.40422381	7.76	3.69
native anti-DIAn	-1383.40385572	-1383.41773781	-1383.41261766	8.71	3.21
DIAn	-2743.56490649	-2743.57857523	-2743.57166282	8.58	4.34
linear-DIAn	-3050.74633106	-3050.7602359	-3050.75286788	8.73	4.62
syn-DIAn	-3050.73839664	-3050.75294294	-3050.74782001	9.13	3.21
anti-DIAn	-3050.74004091	-3050.75651663	-3050.75227925	10.34	2.66
native heptazethrene	-1076.28030160	-1076.28430459	-1076.26995009	2.51	9.01
heptazethrene	-2045.85629974	-2045.86299689	-2045.85162679	4.20	7.13
native octazethrene	-1229.85484398	-1229.86571016	-1229.85556919	6.82	6.36
octazethrene	-2199.43087659	-2199.44492911	-2199.43706064	8.82	4.94
native anti-IIDBT	-1871.43545589	-1871.44431405	-1871.43599431	5.56	5.22
anti-IIDBT	-2569.20275724	-2569.21238289	-2569.20456691	6.04	4.90
syn-IIDBT	-2569.20334655	-2569.21264788	-2569.20578774	5.84	4.30

${ }^{a}$ CS singlet energy minus OS broken symmetry singlet energy. ${ }^{b}$ Unrestricted triplet energy minus singlet energy

Table S3. Molecular orbitals at the B3LYP/6-311+G(d.p)

Compound		HOMO	LUMO
HDIP	α-spin β-spin		
	α-spin		
linear-HDIP	β-spin		
	α-spin		
syn-HDIP	β-spin		
anti-HDIP	α-spin		

Figure S4. Simulated absorption spectra for HDIP derivatives at the TD-B3LYP/6-311+G(d.p)

Figure S5. Simulated absorption spectra for FF derivatives at the TD-B3LYP/6-311+G(d.p)

Table S4. Calculated vertical excitation energies (VEE) for singlet excited states. wavelength. and oscillator strength (f) at the B3LYP/6-311+G(d.p) level

Compound	Excited states	$\begin{aligned} & \hline \text { VEE } \\ & (\mathrm{eV}) \end{aligned}$	wavelength (nm)	f	Compound	Excited states	$\begin{aligned} & \hline \text { VEE } \\ & \text { (eV) } \end{aligned}$	wavelength (nm)	f
HDIP	1	1.757	705.49	0.9171	linear HDIP	1	1.685	735.88	1.1411
	2	1.798	689.45	0.0001		2	1.815	683.20	0
	3	2.576	481.36	0		3	2.343	529.08	0
	4	2.721	455.70	0		4	2.514	493.14	0
	5	2.897	427.94	0.0679		5	2.546	486.95	0.0244
	6	3.278	378.22	0.0263		6	3.007	412.31	0.0038
	7	3.344	370.75	0.0002		7	3.009	412.08	0.0565
	8	3.378	367.07	0.1284		8	3.103	399.53	0.1550
	9	3.422	362.34	0.0001		9	3.324	372.97	0
	10	3.731	332.32	0.0470		10	3.350	370.13	0.0013
	11	3.737	331.75	0		11	3.400	364.71	0.0002
	12	3.819	324.67	0		12	3.427	361.82	1.4020
syn HDIP	1	1.501	826.25	0	anti HDIP	1	1.496	828.53	0
	2	1.637	757.19	0.7178		2	1.537	806.95	0.8811
	3	2.284	542.80	0.0994		3	2.337	530.57	0
	4	2.453	505.36	0		4	2.424	511.60	0.1304
	5	2.584	479.82	0		5	2.488	498.36	0
	6	2.976	416.55	0		6	2.881	430.30	0.0054
	7	3.132	395.83	0.1182		7	3.005	412.60	0
	8	3.260	380.28	1.2512		8	3.136	395.36	0.0005
	9	3.279	378.11	0.3462		9	3.191	388.53	0
	10	3.321	373.37	0.0086		10	3.348	370.30	0
	11	3.336	371.70	0.0002		11	3.351	370.04	0.1694
	12	3.371	367.77	0.0002		12	3.454	358.92	0
FF	1	1.748	709.26	0.9332	linear FF	1	1.677	739.42	1.1720
	2	1.760	704.55	0.0001		2	1.814	683.41	0
	3	2.517	492.55	0		3	2.278	544.21	0
	4	2.788	444.67	0		4	2.492	497.59	0.0344
	5	2.881	430.34	0.0564		5	2.494	497.19	0.0011
	6	3.300	375.77	0		6	3.004	412.70	0.0850
	7	3.302	375.50	0.0003		7	3.072	403.67	0.0001
	8	3.339	371.34	0.2338		8	3.103	399.57	0.1865
	9	3.384	366.36	0.0001		9	3.368	368.11	0
	10	3.668	338.02	0.0451		10	3.371	367.75	0.0003
	11	3.747	330.92	1.6062		11	3.393	365.38	0
	12	3.921	316.19	0		12	3.440	360.40	1.6131
syn FF	1	1.388	893.09	0	anti FF	1	1.422	871.66	0
	2	1.572	788.89	0.7156		2	1.512	820.01	0.8825
	3	2.214	559.96	0.0961		3	2.380	520.85	0
	4	2.390	518.87	0		4	2.405	515.46	0.1412
	5	2.655	467.06	0		5	2.442	507.73	0
	6	2.876	431.17	0		6	2.821	439.52	0.0115
	7	3.073	403.46	0.1594		7	3.004	412.78	0
	8	3.242	382.42	0.0006		8	3.180	389.84	0
	9	3.243	382.30	0.0029		9	3.184	389.46	0.0003
	10	3.244	382.25	0.3482		10	3.350	370.15	0.0016
	11	3.259	380.48	1.3806		11	3.371	367.80	0.2174
	12	3.262	380.12	0.0098		12	3.405	364.18	0.0002

Table S5. $\mathrm{NICS}(0) \pi z z, \operatorname{NICS}(1) \pi z z$, and $\operatorname{NICS}(1.7) \pi z z$ values at the GIAO-B3LYP/6-311+G(d,p) for native aromatic cores ${ }^{a}$

	CS singlet			OS singlet					Triplet		
Ring	$\begin{gathered} \text { NICS(0) } \\ \pi z z \end{gathered}$	$\begin{gathered} \operatorname{NICS}(1) \\ \pi z z \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{NICS}(1.7) \\ \pi z z \\ \hline \end{gathered}$	Ring	$\begin{gathered} \text { NICS(0) } \\ \pi z z \end{gathered}$	$\begin{gathered} \mathrm{NICS}(1) \\ \pi z z \end{gathered}$	$\begin{gathered} \operatorname{NICS}(1.7) \\ \pi z z \end{gathered}$	Ring	$\begin{gathered} \text { NICS(0) } \\ \pi z z \end{gathered}$	$\begin{gathered} \operatorname{NICS}(1) \\ \pi z z \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{NICS}(1.7) \\ \pi z z \\ \hline \end{gathered}$
native FF											
A	2.35	1.61	-0.12	A	1.32	0.69	-0.59	A	-11.13	-11.38	-6.09
B	15.37	11.06	3.31	B	15.03	10.75	3.16	B	9.90	7.83	2.20
C	-23.94	-19.55	-10.82	C	-24.10	-19.69	-10.90	C	-19.40	-16.73	-9.50
native linear-FF											
A	-1.42	-1.78	-1.72	A	-2.45	-2.68	-2.19	A	-13.25	-13.11	-6.99
B	12.49	8.15	2.02	B	12.26	7.94	1.92	B	9.02	6.51	1.65
C	-22.95	-20.34	-11.66	C	-23.02	-20.40	-11.70	C	-16.29	-15.73	-9.26
D	-32.06	-27.23	-15.66	D	-32.14	-27.30	-15.69	D	-29.74	-25.23	-14.42
native syn-FF											
A	7.80	6.28	2.37	A	6.04	4.72	1.57	A	-14.80	-13.71	-7.80
B	25.66	19.79	7.23	B	24.66	18.91	6.81	B	14.68	11.36	3.53
C	-21.05	-18.58	-10.51	C	-21.27	-18.77	-10.64	C	-12.49	-12.55	-7.41
D	-30.70	-25.89	-14.93	D	-30.83	-26.00	-14.99	D	-26.91	-23.29	-13.24
native anti-FF											
A	7.02	6.01	2.22	A	3.84	3.20	0.78	A	-8.64	-10.34	-5.75
B	22.02	17.20	6.08	B	20.43	15.80	5.42	B	11.15	7.95	2.17
C	-21.28	-18.50	-10.52	C	-21.54	-18.73	-10.68	C	-13.70	-13.70	-8.25
D	-32.79	-27.56	-15.86	D	-32.90	-27.66	-15.91	D	-31.42	-25.93	-14.83
FF											
A	-0.61	-0.73	-1.45	A	-5.19	-4.76	-3.50	A	-13.20	-12.99	-7.04
B	14.61	10.52	3.00	B	13.28	9.32	2.38	B	9.24	7.24	1.77
C	-24.67	-20.00	-11.09	C	-25.43	-20.65	-11.46	C	-22.56	-19.27	-10.84
linear-FF											
A	-4.01	-3.74	-2.89	A	-7.85	-7.11	-4.61	A	-14.76	-14.24	-7.67
B	12.24	8.11	1.89	B	11.50	7.41	1.52	B	9.39	6.81	1.64
C	-23.54	-20.68	-11.89	C	-23.98	-21.06	-12.11	C	-19.54	-18.34	-10.65
D	-31.97	-27.12	-15.64	D	-32.33	-27.43	-15.81	D	-30.98	-26.27	-15.08
syn-FF											
A	4.36	3.54	0.84	A	-1.49	-1.65	-1.81	A	-17.35	-15.67	-8.95
B	23.92	18.39	6.51	B	20.92	15.75	5.23	B	13.45	10.27	2.84
C	-21.62	-18.93	-10.79	C	-22.51	-19.71	-11.29	C	-16.66	-15.82	-9.22
D	-31.32	-26.41	-15.24	D	-31.83	-26.85	-15.49	D	-28.75	-24.91	-14.20
anti-FF											
A	3.66	3.40	0.75	A	-3.44	-2.89	-2.45	A	-11.01	-11.43	-6.16
B	21.86	16.98	5.90	B	18.56	14.05	4.50	B	13.56	10.24	3.13
C	-20.65	-17.94	-10.27	C	-21.56	-18.74	-10.77	C	-17.48	-16.56	-9.72
D	-32.63	-27.46	-15.73	D	-32.99	-27.78	-15.90	D	-32.25	-26.93	-15.37

${ }^{a}$ Ring positions are shown in the following drawings

Table S6. NICS(0) $\pi z z, \operatorname{NICS}(1) \pi z z$, and $\operatorname{NICS}(1.7) \pi z z$ values at the GIAO-CAM-B3LYP/6-311+G(d,p) for aromatic cores ${ }^{a}$

	CS singlet			OS singlet					Triplet		
Ring	$\begin{gathered} \text { NICS(0) } \\ \pi z z \end{gathered}$	$\begin{gathered} \operatorname{NICS}(1) \\ \pi z z \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{NICS}(1.7) \\ \pi z z \\ \hline \end{gathered}$	Ring	$\begin{gathered} \text { NICS(0) } \\ \pi z z \end{gathered}$	$\begin{gathered} \mathrm{NICS}(1) \\ \pi z z \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{NICS}(1.7) \\ \pi z z \end{gathered}$	Ring	$\begin{gathered} \text { NICS(0) } \\ \pi z z \end{gathered}$	$\begin{gathered} \operatorname{NICS}(1) \\ \pi z z \\ \hline \end{gathered}$	$\begin{gathered} \operatorname{NICS}(1.7) \\ \pi z z \end{gathered}$
native FF											
A	1.69	0.90	-0.48	A	-9.81	-8.98	-5.66	A	-14.97	-14.48	-7.75
B	11.97	8.14	1.82	B	11.72	7.87	1.59	B	9.60	7.92	2.08
C	-29.55	-24.25	-13.35	C	-27.85	-22.86	-12.64	C	-23.10	-19.44	-10.91
native linear-FF											
A	-0.57	-1.21	-1.31	A	-11.82	-10.78	-6.42	A	-16.55	-15.80	-8.43
B	10.84	6.75	1.37	B	10.81	6.65	1.18	B	8.30	6.37	1.47
C	-27.26	-23.93	-13.63	C	-24.75	-21.85	-12.54	C	-19.74	-18.15	-10.61
D	-34.69	-29.46	-16.92	D	-33.93	-28.80	-16.49	D	-31.84	-27.03	-15.44
native syn-FF											
A	5.18	3.93	1.07	A	-8.55	-8.01	-5.15	A	-19.83	-17.93	-10.32
B	19.69	14.72	4.68	B	17.41	12.74	3.72	B	13.41	11.36	3.63
C	-27.15	-23.66	-13.34	C	-24.15	-21.23	-12.12	C	-13.53	-13.68	-7.95
D	-33.47	-28.27	-16.29	D	-32.91	-27.80	-15.97	D	-31.70	-26.78	-15.33
native anti-FF											
A	5.14	4.27	1.24	A	-10.66	-9.41	-5.88	A	-13.53	-13.20	-6.96
B	16.72	12.65	3.78	B	14.64	10.80	2.90	B	11.47	9.87	3.10
C	-27.61	-23.81	-13.47	C	-23.32	-20.30	-11.65	C	-17.57	-16.04	-9.48
D	-34.93	-29.45	-16.98	D	-34.32	-28.84	-16.51	D	-33.45	-28.02	-15.97
FF											
A	-0.11	-0.41	-1.29	A	-16.02	-14.12	-8.42	A	-16.74	-15.86	-8.55
B	11.78	8.12	1.76	B	11.08	7.38	1.24	B	8.85	7.17	1.59
C	-29.72	-24.27	-13.40	C	-28.57	-23.33	-12.90	C	-26.28	-21.93	-12.22
linear-FF											
A	-2.42	-2.55	-2.18	A	-17.17	-15.12	-8.82	A	-17.72	-16.65	-8.92
B	10.75	6.84	1.31	B	10.63	6.60	1.00	B	8.32	6.32	1.29
C	-27.51	-24.01	-13.72	C	-25.64	-22.45	-12.88	C	-23.21	-20.90	-12.09
D	-34.56	-29.32	-16.88	D	-34.03	-28.85	-16.56	D	-33.03	-28.02	-16.08
syn-FF											
A	3.46	2.72	0.33	A	-14.56	-13.00	-7.79	A	-18.63	-17.07	-9.41
B	19.45	14.64	4.60	B	15.61	11.22	2.91	B	13.53	10.33	2.73
C	-27.14	-23.54	-13.33	C	-25.18	-21.98	-12.60	C	-17.70	-16.96	-9.74
D	-33.74	-28.51	-16.43	D	-33.60	-28.41	-16.32	D	-26.53	-23.72	-13.22
anti-FF											
A	3.61	3.26	0.56	A	-16.11	-13.89	-8.24	A	-15.24	-14.45	-7.66
B	17.96	13.68	4.18	B	14.26	10.30	2.55	B	11.54	9.55	2.73
C	-26.70	-23.01	-13.05	C	-23.72	-20.61	-11.85	C	-21.07	-18.92	-11.05
D	-34.92	-29.46	-16.88	D	-34.51	-29.07	-16.58	D	-34.11	-28.69	-16.35

${ }^{a}$ Ring positions are shown in the following drawings

OFET DEVICES

Bottom-gate/top-contact (BG/TC) OFETs were constructed on heavily doped n-type silicon wafers covered with thermally grown silicon dioxide (300 nm) which was cleaned by piranha solution. The silicon dioxide acts as a gate dielectric layer. and the silicon wafer serves as a gate electrode. The crosslinked PVP (poly-4-vinylphenol) was prepared by spin-coating from a solution of PVP (Aldrich 436224. $\mathrm{Mw} \sim 25.000 .1 .0 \mathrm{wt} \%$) and poly(melamine-co-formaldehyde) ($\mathrm{Mn} \sim 432.1 .0 \mathrm{wt} \%$) in propylene glycol monomethyl ether acetate (PGMEA) at the rotational speed of 500 rpm for 5 s and then 4000 rpm for 60 s . followed by the cross-linkage at temperatures of $150^{\circ} \mathrm{C}$ for 60 min under nitrogen atmosphere. Organic semiconductor layers were formed by drop-casting (see Figure S5) from a $0.1^{\sim} 0.2 \mathrm{wt} \%$ solution of HDIP derivatives with $1 / 4 \mathrm{wt} \%$ polystyrene (PS) in o-dichlorobenzene at $60^{\circ} \mathrm{C}$. followed by thermal annealing at $60^{\circ} \mathrm{C}$ for ca. 30 min . Top-contact gold source-drain electrodes (50 nm) were deposited on PVP through a shadow mask with $L=50.100 .150$ and $200 \mu \mathrm{~m}$. and $W=2000 \mu \mathrm{~m}$.

Bottom-contact/top-gate (BC/TG) OFETs were constructed on Corning's EAGLE glass substrates with the cross-linked PVP. which was prepared by spin-coating from a solution of PVP (10.0 wt\%) and poly(melamine-co-formaldehyde) ($10.0 \mathrm{wt} \%$) in PGMEA at the rotational speed of 500 rpm for 5 s and then 4000 rpm for 60 s . followed by the cross-linkage at temperatures of $150{ }^{\circ} \mathrm{C}$ for 60 min under nitrogen atmosphere. Bottom-contact gold source-drain electrodes (50 nm) were deposited on PVP through a shadow mask with $L=50.100 .150$ and $200 \mu \mathrm{~m}$. and $W=2000 \mu \mathrm{~m}$. Organic semiconductor layers were formed by drop-casting from a 0.05-0.1 wt\% solution of HDIP derivatives with $1 / 4 \mathrm{wt} \% \mathrm{PS}$ in o-dichlorobenzene at $60{ }^{\circ} \mathrm{C}$. followed by thermal annealing at $60{ }^{\circ} \mathrm{C}$ for ca .30 min . The CYTOP dielectric layer (450 nm measured by DektakXT™ Stylus Profiler) was spin-coated from a solution of CYTOP ${ }^{\text {T }}$ CTL-809M in CT-solv 180 from Asahi Glass at the rotational speed of 500 rpm for 5 s and then 1800 rpm for 120 s on top of the organic layer and then was dried at room temperature for 2 h . The Al gate electrode (50 nm) was formed by vacuum evaporation through a shadow mask.

The FET measurements were carried out at room temperature in a glovebox without exposure to air with a semiconductor parameter analyzer (B1500. Agilent). Mobilities (μ) were calculated in the saturation regime by the relationship: $\mu_{\text {sat }}=\left(2 I_{\mathrm{D}} L\right) /\left[W C_{i}\left(V_{G}-V_{\mathrm{th}}\right)^{2}\right]$ where I_{D} is the source-drain saturation current; C_{i} is the capacitance of the insulating layer; V_{G} is the gate voltage and $V_{\text {th }}$ is the threshold voltage. The latter can be estimated as the intercept of the linear section of the plot of V_{G} $\left(I_{D}\right)^{1 / 2}$. The reproducibility of the device performance of the presented devices was confirmed by measuring different samples fabricated on different days.

Figure S6. Schematic image of the drop-casting procedure. The substrates were placed inside the petri-dish with the saturated solvent vapor at $60^{\circ} \mathrm{C}$. then $30 \mu \mathrm{~L}$ of the semiconductor solution was drop-casted.

Figure S7. OFET devices of HDIP derivatives. (a) Transfer and (b) output characteristics of the BG/TC device with a drop-casted HDIP layer. (c) Transfer and (d) output characteristics of the BG/TC device with a drop-casted linear-HDIP layer. (e) Transfer and (f) output characteristics of the TG/BC device with a drop-casted syn-HDIP layer.

RMN SPECTRA

MALDI (TOF) of HDIP derivatives

REFERENCES

' J. Lee and J. Park, Org. Lett., 2015, 17, 3960-3963.
${ }^{i i}$ L. Ling, Y. He, X. Zhang, M. Luo and X. Zeng, Angew. Chem. Int. Ed., 2019, 58, 6554-6558.
iii Y. Xia, Z. Liu, Q. Xiao, P. Qu, R. Ge, Y. Zhang and J. Wang, Angew. Chem. Int. Ed., 2012, 51, 5714-5717.
${ }^{\text {iv }}$ F. Krätzschmar, M. Kaßel, D. Delony and A. Breder, Chem. Eur. J., 2015, 21, 7030-7034.
${ }^{v}$ B. Ghaffari, S. M. Preshlock, D. L. Plattner, R. J. Staples, P. E. Maligres, S. W. Krska, R. E. Maleczka and M. R. Smith, J. Am. Chem. Soc., 2014, 136, 14345-14348.
vi G. P. Eyer, K. R. Kittilstved and T. L. Andrew, J. Phys. Chem. C 2017, 121, 24929-24935.
vii Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
viii G. E. Rudebusch, J. L. Zafra, K. Jorner, K. Fukuda, J. L. Marshall, I. Arrechea-Marcos, G. L. Espejo, R. P. Ortiz, C. J. Gómez-García, L. N. Zakharov, M. Nakano, H. Ottosson, J. Casado and M. M. Haley, Nat. Chem., 2016, 8, 753759.
${ }^{\text {ix }}$ D. D. Dohnert and J. Koutecký, J. Am. Chem. Soc., 1980, 102, 1789-1796.
${ }^{\times}$K. Yamaguchi, Chem. Phys. Lett., 1975, 33, 330-335.
${ }^{\text {xi }}$ T. Lu and F. Chen, Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem., 2012, 33, 580-592.
xii A. Rahalkar, A. Stanger, Aroma: http://chemistry.technion.ac.il/members/amnon-stanger/; (b) A. Stanger, J. Org. Chem., 2006, 71, 883-893; (c) A. Stanger, J. Org. Chem., 2010, 75, 2281-2288; (d) R. Gershoni-Poranne and A. Stanger, Chem. Eur. J., 2014, 20, 5673-5688.

