Supplementary Information

Regioselective addition/annulation of ferrocenyl thioamides with 1,3-diynes *via* a sulfur-transfer rearrangement to construct extended π -conjugated ferrocenes with luminescent property

Lipeng Yan, Jingbo Lan,* Hu Cheng, Yihang Li, Mangang Zhang, Di Wu, and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China

Table of Contents

I. General Remarks						
II. Synthesis of 1,3-diynes 2						
III. Rh catalyzed <i>ortho</i> -C–H activation/addition of ferrocenyl amide 1 with 1,3-diyne						
2a						
IV. Optimization of regioselective addition/annulation of ferrocenyl thioamide 5 with						
1,3-diyne 2a						
V. General procedure for regioselective addition/annulation of ferrocenyl thioamide 5						
with 1,3-diynes 2						
VI. Gram-scale synthesis of 6a						
VII. Mechanistic studies						
VIII. Synthesis of extended π -conjugated ferrocenes 7						
IX. Calculated molecular conformations, photophysical and electrochemical						
properties						
X. Preparation and characterization of the described compounds						
XI. References						
XII. Copies of ¹ H, ¹³ C and ¹ H- ¹ H NOESY NMR spectra						

I. General Remarks

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Ferrocenyl amide **1**,¹ ferrocenyl thioamide **5**,¹ methyl ferrocene carboxylate **8**,² and 2,5-diphenylthiophene **9**³ and 1-(deca-1,3-diyn-1-yl)-4-methoxybenzene **2n**⁴ were prepared according to literature procedures. **1**,3-Diynes **2a-2e** and **2h-2j** were prepared by homocouplings of the corresponding terminal alkynes.⁵ **1**,3-Diynes **2f**, **2g**, **2k-2m** and **2o-2r** were prepared *via* the Sonogashira coupling reaction of the corresponding brominated (hetero)arenes with trimethylsilylacetylene, desilication, and homocoupling of the resulting terminal alkynes.⁵

NMR spectra were obtained on an Agilent 400-MR DD2 spectrometer. ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ or DMSO-*d*₆ as the internal reference (CDCl₃: δ = 7.26 ppm; DMSO-*d*₆: δ = 2.50 ppm). ¹³C NMR (100 MHz) chemical shifts were measured relative to CDCl₃ or DMSO-*d*₆ as the internal reference (CDCl₃: δ = 77.16 ppm; DMSO-*d*₆: δ = 39.52 ppm). High-resolution mass spectra (HRMS) were obtained with a Shimadzu LCMS-IT-TOF (ESI) spectrometer. Melting points were determined with XRC-1 with no correction. The absorption and fluorescence spectra were obtained using a HITACHI U-2910 spectrometer and a Horiba Fluorolog-3 fluorescence spectrometer, respectively.

Cyclic voltammetry (CV) measurements were carried out on a CHI660D electrochemical workstation at a scan rate of 50 mV/s in dry acetonitrile containing 0.1 M of *n*-Bu₄NPF₆ supporting electrolyte under an N₂ atmosphere, using Fc/Fc⁺ (0.08 V) as reference. The three-electrode setup consisted of an Ag/Ag⁺ (0.01 M of AgNO₃ in acetonitrile) reference electrode, a platinum wire counter electrode, and a platinum plate working electrode.

Spectroelectrochemical experiments were performed in a thin-layer (1 mm) quartz cell under an N_2 atmosphere, employing dry acetonitrile as solvent with *n*-Bu₄NPF₆ (0.1 M) as supporting electrolyte. The three-electrode setup consisted of a platinum

network working electrode, a platinum wire counter electrode, and an Ag/AgCl reference electrode (0.52 V, vs Fc/Fc^+).

II. Synthesis of 1,3-diynes 2

2.1 Synthesis of 1,3-diyne 2s^{5,6}

A solution of 5-bromoindole (0.98 g, 5 mmol) in anhydrous DMF (15 mL) was added dropwise over 20 min to a stirred suspension of NaH (60% dispersion in mineral oil, 0.32 g, 8 mmol) in anhydrous DMF (15 mL) in an ice bath. A solution of *n*-octyl bromide (0.9 mL, 5.2 mmol) in anhydrous DMF (15 mL) was slowly added over 5 min. Then, the mixture was warmed to room temperature and stirred overnight. The reaction was quenched with ethanol (10 mL) carefully and poured into ice-water. The resulting mixture was extracted with dichloromethane twice. The combined organic layer was washed with brine, dried with anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) to give 5-bromo-1-octyl-1*H*-indole as a yellow oil in 87% yield (1.34 g).

A three-necked flask with a magnetic stir bar was charged with 5-bromo-1-octyl-1*H*-indole (1.23 g, 4 mmol), trimethylsilylacetylene (1.1 mL, 8 mmol), Pd(PPh₃)₂Cl₂ (140.4 mg, 5 mol%), CuI (76.2 mg, 10 mol%), triethylamine (3 mL) and THF (9 mL) under an N₂ atmosphere. After stirred at 80 °C for 24 h, the resulting mixture was cooled to room temperature. Then, KF (0.46 g, 8 mmol) was added along with CH₃OH (10 mL), and the mixture was stirred under air for another 4 h. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. Then the filtrate was concentrated under reduced pressure and purified by column

chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) to provide 5-ethynyl-1-octyl-1*H*-indole as a yellow oil in 79% yield (0.80 g).

Cul (38.1 mg, 10 mol%) and TMEDA (0.3 mL, 2 mmol) was added to the solution of 5-ethynyl-1-octyl-1*H*-indole (0.51 g, 2 mmol) in DMF (5 mL). The resulting mixture was then stirred at room temperature overnight. Then, the mixture was diluted in ethyl acetate (50 mL). The organic layer was washed with saline, dried over MgSO₄, filtered and the filtrate was concentrated under reduced pressure. The residue was then purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) to give 1,4-bis(1-octyl-1*H*-indol-5-yl)buta-1,3-diyne (**2s**) as a yellow oil in a yield of 81% (0.41 g).

2.2 Synthesis of 1,3-diyne 2t^{5,7}

Acetyl ferrocene (1.14 g, 5 mmol) was dissolved in DMF (15 mL) and then phosphorus oxychloride (3 mL) in DMF (10 mL) was added dropwise at 0 °C under N₂. The reaction mixture was stirred at 0 °C for 15 min and then warmed to room temperature for 2 h. The mixture was poured to 20% of NaOAc solution (100 mL) under N₂ and stirred for 1.5 h. The mixture was extracted with dichloromethane and washed with saline. The organic phase was dried over MgSO₄, filtered and the filtrate was concentrated under reduced pressure to give the crude product. To the solution of the crude product in 1,4-dioxane (8 mL) under N₂, 0.5 M of NaOH solution (5 mL) was added. Then the reaction mixture was refluxed for 5 min and poured into ice-water (50 mL). The mixture was subsequently neutralized by 1 N of HCl solution and extracted with ethyl acetate. The organic layer was washed with saline, dried over MgSO₄, filtered and the filtrate was concentrated under reduced pressure. The organic layer was washed with saline, dried over MgSO₄, filtered and the filtrate was concentrated under reduced pressure. The organic layer was washed with saline, dried over MgSO₄, filtered and the filtrate was concentrated under reduced pressure. The crude product was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) to give ethynyl ferrocene in a yield of 61% (0.64 g).

Cul (38.1 mg, 10 mol%) and TMEDA (0.3 mL, 2 mmol) was added to the solution of ethynyl ferrocene (0.42 g, 2 mmol) in DMF (5 mL). The resulting mixture was then stirred at room temperature overnight. Then, the mixture was diluted in ethyl acetate (50 mL). The organic layer was washed with saline, dried over MgSO₄, filtered and the filtrate was concentrated under reduced pressure. The residue was then purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v) to give 1,4-diferrocenylbuta-1,3-diyne (**2t**) as a red solid in a yield of 67% (0.28 g).

2.3 Synthesis of 1,3-diyne 2u and 2v⁵

$$Ar-Br \xrightarrow{(1) TMS \longrightarrow}_{Pd(PPh_{3})_{2}Cl_{2}} Ar \longrightarrow Ar \longrightarrow Ar \longrightarrow Ar \longrightarrow Ar \longrightarrow Ar$$

A three-necked flask with a magnetic stir bar was charged with the brominated arenes (5 mmol), trimethylsilylacetylene (10 mmol), Pd(PPh₃)₂Cl₂ (5 mol%), CuI (10 mol%), triethylamine (3 mL) and THF (9 mL) under an N₂ atmosphere. After refluxed at 80 °C for 24 h, the resulting mixture was cooled to room temperature. Then, KF (10 mmol) was added along with CH₃OH (10 mL), and the mixture was stirred under air for another 4 h. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. Then the filtrate was concentrated under reduced pressure and purified by column chromatography on silica gel to provide the corresponding terminal alkynes.

Cul (10 mol%) and TMEDA (2 mmol) was added to the solution of the acquired terminal alkyne (2 mmol) in DMF (5 mL). The resulting mixture was then stirred at room temperature overnight. Then, the mixture was diluted in ethyl acetate (50 mL). The organic layer was washed with saline, dried over MgSO₄, filtered and the filtrate was concentrated under reduced pressure. The residue was then purified by column chromatography on silica gel to give the final 1,3-diyne products.

III. Rh catalyzed ortho-C–H activation/addition of ferrocenyl amide 1

with 1,3-diyne 2a

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with ferrocenyl amides **1** (59.4 mg, 0.2 mmol), 1,4-diphenylbuta-1,3-diyne **2a** (40.5 mg, 0.2 mmol, 1.0 equiv.), [Cp*RhCl₂]₂ (6.2 mg, 5 mol%), AgSbF₆ (13.7 mg, 20 mol%), Cu(OAc)₂·H₂O (79.9 mg, 0.4 mmol, 2.0 equiv.), Zn(OAc)₂·2H₂O (87.8 mg, 0.4 mmol, 2.0 equiv.) and 1,4-dioxane (2 mL) under an N₂ atmosphere. The resulting mixture was stirred at 120 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. Then the filtrate was concentrated under reduced pressure and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 4/1, v/v) to provide compound **4** as a yellow solid in a yield of 14% (14.2 mg).

IV. Optimization of regioselective addition/annulation of ferrocenyl thioamide 5 with 1,3-diyne 2a

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with ferrocenyl thioamide **5** (62.6 mg, 0.2 mmol, 2.0 equiv.), 1,4-diphenyl-1,3-butadiyne **2a** (20.2 mg, 0.1 mmol), [Rh], [Ag], oxidant and solvent under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 16-24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. Then the filtrate was concentrated under reduced pressure.

The residue was dissolved in CDCl₃ and analyzed by ¹H NMR with CH₂Br₂ (3.5 μ L, 0.05 mmol) as the internal standard. The NMR yields determined by the characteristic proton signal of **6a** at 4.88 ppm relative to the internal standard signal of CH₂Br₂ at 4.93 ppm. If necessary, the residue would be purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1, v/v) to give the isolated yield of **6a**.

 Table S1. Optimization of regioselective addition/annulation of 1,3-diyne 2a with ferrocenyl

 thioamide 5.^a

	N Fe	+	[Rh], [Ag] Oxidant Cosolvent CH ₃ OH	Fe Ph	
	5	2a		6a	
Entry	[Rh]	[Ag]	Oxidant	Solvent	Yield (%) ^b
1	[Cp*RhCl ₂] ₂	$AgSbF_6$	Cu(OAc) ₂ ·H ₂ O	CH₃OH	46 ^c
2	[Cp*RhCl ₂] ₂	AgBF ₄	Cu(OAc) ₂ ·H ₂ O	CH₃OH	49
3	[Cp*RhCl ₂] ₂	AgOTf	Cu(OAc) ₂ ·H ₂ O	CH₃OH	38
4	[Cp*RhCl ₂] ₂	$AgNTf_2$	Cu(OAc) ₂ ·H ₂ O	CH₃OH	55
5	[Cp*RhCl ₂] ₂	AgOTs	Cu(OAc) ₂ ·H ₂ O	CH₃OH	61
6	[Cp*RhCl ₂] ₂	AgOTs	Cu(OPiv) ₂	CH₃OH	37
7	[Cp*RhCl ₂] ₂	AgOTs	AgOAc	CH₃OH	trace
8	[Cp*RhCl ₂] ₂	AgOTs	Oxygen (1 atm)	CH₃OH	N.D.
9	[Cp*RhCl ₂] ₂	AgOTs	Benzoquinone	CH₃OH	N.D.
10 ^{<i>d</i>}	[Cp*RhCl ₂] ₂	AgOTs	Cu(OAc) ₂ ·H ₂ O	CH₃OH	79
11 ^e	[Cp*RhCl ₂] ₂	AgOTs	Cu(OAc) ₂ ·H ₂ O	DCE/CH₃OH	65
12 ^{<i>f</i>}	[Cp*RhCl ₂] ₂	AgOTs	Cu(OAc) ₂ ·H ₂ O	Cl ₃ CCH ₂ OH/CH ₃ OH	83 (81 ^c)
13 ^g	[Cp*RhCl ₂] ₂	AgOTs	Cu(OAc) ₂ ·H ₂ O	Cl ₃ CCH ₂ OH/CH ₃ OH	69
14 ^{<i>h</i>}	[Cp*RhCl ₂] ₂	AgOTs	Cu(OAc) ₂ ·H ₂ O	Cl ₃ CCH ₂ OH/CH ₃ OH	47
15 ⁱ	[Cp*Rh(CH ₃ CN) ₃](OTs) ₂	-	Cu(OAc) ₂ ·H ₂ O	Cl ₃ CCH ₂ OH/CH ₃ OH	72
16 ^j	[Cp*Rh(CH ₃ CN) ₃](OTs) ₂	-	Air (1 atm)	Cl ₃ CCH ₂ OH/CH ₃ OH	N.D.

^{*a*}Reactions were carried out by using **5** (0.2 mmol), **2a** (0.1 mmol), [Rh] (5 mol%), [Ag] (20 mol%) and oxidant (2.0 equiv.) in CH₃OH (1 mL) at 80 °C for 24 h under an N₂ atmosphere. ^{*b*}NMR yields. ^{*c*}Isolated yields. ^{*d*}CH₃OH (2 mL). ^{*e*}1,2-Dichloroethane (DCE, 0.5 mL) and CH₃OH (1.5 mL). ^{*f*}Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL). ^{*g*}Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL). ^{*g*}Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL). ^{*f*}Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL). ^{*f*}Clp*Rh(CH₃CN)₃](OTs)₂ (10 mol%), Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL). ^{*f*}Clp*Rh(CH₃CN)₃](OTs)₂ (10 mol%), Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL). ^{*f*}Clp*Rh(CH₃CN)₃](OTs)₂ (10 mol%), Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL). ^{*f*}Clp*Rh(CH₃CN)₃](OTs)₂ (10 mol%), Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL). ^{*f*}Clp*Rh(CH₃CN)₃](OTs)₂ (10 mol%), Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL) under air. N.D. = not detected.

V. General procedure for regioselective addition/annulation of

ferrocenyl thioamide 5 with 1,3-diynes 2

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with ferrocenyl thioamide **5** (0.2 mmol), 1,3-diyne **2** (0.1 mmol), [Cp*RhCl₂]₂ (5 mol%), AgOTs (20 mol%), Cu(OAc)₂·H₂O (0.2 mmol), Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with about 20 mL of dichloromethane. Then the filtrate was concentrated under reduced pressure and purified by column chromatography on silica gel to provide desired products **6**.

VI. Gram-scale synthesis of 6a

A 100 mL three-necked flask with a magnetic stir bar was charged with ferrocenyl thioamides **5** (1.88 g, 6.0 mmol, 2.0 equiv.), 1,4-diphenylbuta-1,3-diyne **2a** (0.61 g, 3.0 mmol), $[Cp*RhCl_2]_2$ (92.7 mg, 5 mol%), AgOTs (167.4 mg, 20 mol%), Cu(OAc)_2·H_2O (1.20 g, 6.0 mmol, 2.0 equiv.), Cl_3CCH_2OH (7.5 mL) and CH_3OH (22.5 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h and then diluted with 20 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 30 mL of dichloromethane. Then the filtrate was concentrated under reduced

pressure and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 15:1, v/v) to provide the desired product **6a** (1.03 g, 72% yield).

VII. Mechanistic studies

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with ferrocenyl thioamide **5** (31.3 mg, 0.1 mmol), 1,4-diphenylbuta-1,3-diyne **2a** (20.2 mg, 0.1 mmol), $[Cp*RhCl_2]_2$ (30.9 mg, 0.05 mmol, 50 mol%), AgOTs (55.8 mg, 0.2 mmol, 2.0 equiv.), Cl_3CCH_2OH (0.5 mL) and CH_3OH (1.5 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. The filtrate was concentrated under reduced pressure, followed by dissolved in CDCl₃. The in-situ ¹H NMR spectrum of the reaction mixture showed that there was no product **6a** obtained.

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with ferrocenyl thioamide **5** (31.3 mg, 0.1 mmol), 1,4-diphenylbuta-1,3-diyne **2a** (20.2 mg, 0.1 mmol), $[Cp*RhCl_2]_2$ (30.9 mg, 0.05 mmol, 50 mol%), AgOTs (55.8 mg, 0.2 mmol, 2.0 equiv.), $Cu(OAc)_2$ ·H₂O (4.0 mg, 0.02 mmol, 20 mol%), Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. The filtrate was concentrated under reduced pressure and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 15:1, v/v), providing compound **6a** with 43% yield (20.6 mg).

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with ferrocenyl amide **1** (59.4 mg, 0.2 mmol, 2.0 equiv.), 1,4-diphenylbuta-1,3-diyne **2a** (20.2 mg, 0.1 mmol), the corresponding external sulfur source (0.3 mmol, 3.0 equiv.), $[Cp*RhCl_2]_2$ (3.1 mg, 5 mol%), AgOTs (5.6 mg, 20 mol%), Cu(OAc)₂·H₂O (39.9 mg, 0.2 mmol, 2.0 equiv.), Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. The filtrate was concentrated under reduced pressure, followed by dissolved in CDCl₃. In-situ ¹H NMR spectra of all the reaction mixtures showed that there was no product **6a** obtained.

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with methyl ferrocene carboxylate **8** (48.8 mg, 0.2 mmol, 2.0 equiv.), 1,4-diphenylbuta-1,3-diyne **2a** (20.2 mg, 0.1 mmol), the corresponding external sulfur source (0.3 mmol, 3.0 equiv.), [Cp*RhCl₂]₂ (3.1 mg, 5 mol%), AgOTs (5.6 mg, 20 mol%), Cu(OAc)₂·H₂O (39.9 mg, 0.2 mmol, 2.0 equiv.), Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. The filtrate was concentrated under reduced pressure, followed by dissolved in CDCl₃. In-situ ¹H NMR spectra of all the reaction mixtures showed that there was no product **6a** obtained.

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with **4** (49.9 mg, 0.1 mmol), the corresponding external sulfur source (0.3 mmol, 3.0 equiv.), $[Cp*RhCl_2]_2$ (3.1 mg, 5 mol%), AgOTs (5.6 mg, 20 mol%), Cu(OAc)_2·H_2O (39.9 mg, 0.2 mmol, 2.0 equiv.), Cl_3CCH_2OH (0.5 mL) and CH_3OH (1.5 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. The filtrate was concentrated under reduced pressure, followed by dissolved in CDCl₃. The in-situ ¹H NMR spectrum of the reaction mixture showed that there was no product **6a** obtained.

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with ferrocenyl amide **1** (59.4 mg, 0.2 mmol, 2.0 equiv.), 2,5-diphenylthiophene **9** (23.6 mg, 0.1 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 5 mol%), AgOTs (5.6 mg, 20 mol%), Cu(OAc)_2·H_2O (39.9 mg, 0.2 mmol, 2.0 equiv.), Cl_3CCH_2OH (0.5 mL) and CH_3OH (1.5 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. The filtrate was concentrated under reduced pressure, followed by dissolved in CDCl₃. In-situ ¹H NMR spectra of all the reaction mixtures showed that there was no product **6a** obtained.

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with ferrocenyl thioamide **5** (62.6 mg, 0.2 mmol, 2.0 equiv.), 2,5-diphenylthiophene **9** (23.6 mg, 0.1 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 5 mol%), AgOTs (5.6 mg, 20 mol%), Cu(OAc)_2·H_2O (39.9 mg, 0.2 mmol, 2.0 equiv.), Cl_3CCH_2OH (0.5 mL) and CH_3OH (1.5 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. The filtrate was concentrated under reduced pressure, followed by dissolved in CDCl₃. In-situ ¹H NMR spectra of all the reaction mixtures showed that there was no product **6a** obtained.

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with methyl ferrocene carboxylate **8** (48.8 mg, 0.2 mmol, 2.0 equiv.), 2,5-diphenylthiophene **9** (23.6 mg, 0.1 mmol), [Cp*RhCl₂]₂ (3.1 mg, 5 mol%), AgOTs (5.6 mg, 20 mol%), Cu(OAc)₂·H₂O (39.9 mg, 0.2 mmol, 2.0 equiv.), Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. The filtrate was concentrated under reduced pressure, followed by dissolved in CDCl₃. In-situ ¹H NMR spectra of all the reaction mixtures showed that there was no product **6a** obtained.

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with ferrocenyl thioamide **5** (62.6 mg, 0.2 mmol, 2.0 equiv.), 1,4-diphenylbuta-1,3-diyne **2a** (20.2 mg, 0.1 mmol), heavy-oxygen water ($H_2^{18}O$, 90 μ L, 5.0 mmol, 50 equiv.), [Cp*RhCl₂]₂ (3.1

mg, 5 mol%), AgOTs (5.6 mg, 20 mol%), anhydrous Cu(OAc)₂ (36.3 mg, 0.2 mmol, 2.0 equiv.) and dry CH₃OH (2 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. The filtrate was concentrated under reduced pressure and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 15:1, v/v), providing 36.4 mg of compound **6a**⁻¹⁸**O** in 76% yield. The ESI-HRMS of **6a**⁻¹⁸**O** calculated for $C_{28}H_{22}Fe^{16}O^{18}OSNa [M+Na]^+ 503.0625$, was found 503.0627.

Fig. S1. ESI-HRMS spectrum of 6a-18O.

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with ferrocenyl thioamide **5** (62.6 mg, 0.2 mmol, 2.0 equiv.), 1,4-diphenylbuta-1,3-diyne **2a** (20.2 mg, 0.1 mmol), $[Cp*RhCl_2]_2$ (3.1 mg, 5 mol%), AgOTs (5.6 mg, 20 mol%), Cu(OAc)_2·H_2O (39.9 mg, 0.2 mmol, 2.0 equiv.) and CH_3CH_2OH (2 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. The filtrate was concentrated under reduced pressure, and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 15:1, v/v) to provide compound **10** as a yellow solid in a yield of 47% (23.3 mg).

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with ferrocenyl thioamide **5** (62.6 mg, 0.2 mmol, 2.0 equiv.), 1,4-diphenylbuta-1,3-diyne **2a** (20.2 mg, 0.1 mmol), aniline (27 μ L, 0.3 mmol, 3.0 equiv.), [Cp*RhCl₂]₂ (3.1 mg, 5 mol%), AgOTs (5.6 mg, 20 mol%), Cu(OAc)₂·H₂O (39.9 mg, 0.2 mmol, 2.0 equiv.), Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. The filtrate was concentrated under reduced pressure and purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 15:1, v/v) to provide compound **11** as a yellow solid in 41% yield (22.7 mg).

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with thienylferrocene **6a** (47.8 mg, 0.1 mmol), aniline (27 μ L, 0.3 mmol, 3.0 equiv.), [Cp*RhCl₂]₂ (3.1 mg, 5 mol%), AgOTs (5.6 mg, 20 mol%), Cu(OAc)₂·H₂O (39.9 mg, 0.2 mmol, 2.0 equiv.), Cl₃CCH₂OH (0.5 mL) and CH₃OH (1.5 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. The filtrate was concentrated under reduced pressure, followed by dissolved in CDCl₃. In-situ ¹H NMR spectra of the reaction mixture showed that there was no product **11** obtained.

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with ferrocenyl thioamide **5** (31.3 mg, 0.1 mmol), 1,4-diphenylbuta-1,3-diyne **2a** (20.2 mg, 0.1 mmol),

 $[Cp*RhCl_2]_2$ (30.9 mg, 50 mol%), AgOTs (55.8 mg, 2.0 equiv.), Cu(OAc)_2·H_2O (39.9 mg, 0.2 mmol, 2.0 equiv.) and CH_3OH (2 mL) under an N₂ atmosphere. The resulting mixture was stirred at 80 °C for 2 h, and then cooled to room temperature for ESI-HRMS detection.

Intermediate I: calcd for C₂₆H₃₃FeNRhS [M]⁺ 550.0733, found 550.0731;

Intermediate II: calcd for C₄₂H₄₃FeNRhS [M]⁺ 752.1515, found 752.1521;

Intermediate III: calcd for C₃₂H₂₈FeNS [M]⁺ 514.1286, found 514.1289.

Fig. S3. ESI-HRMS spectrum of intermediate II.

VIII. Synthesis of extended π -conjugated ferrocenes 7

4 M of NaOH solution (15 mL) was added to the solution of thienylferrocene **6** (0.3 mmol) and EtOH (45 mL). Monitored by thin-layer chromatography, the mixture was refluxed until hydrolyzed completely. Then, 2 N of HCl solution was added carefully at room temperature until the mixture was weakly acidic. After evaporated under reduced pressure, the residue was diluted with 150 mL of ethyl acetate and washed

with saline solution (200 mL) three times. The organic layer was dried over MgSO₄, filtered, and concentrated under reduced pressure. The residue was re-dissolved in 50 mL of dichloromethane and filtered out the insoluble. Finally, the filtrate was concentrated under reduced pressure to give the hydrolysate.

Then, oxalyl chloride (45 μ L, 0.53 mmol) was added to the solution of the hydrolysate in dry dichloromethane (20 mL) at 0 °C under N₂, followed by two drops of DMF. The mixture was stirred for 6 h at room temperature and evaporated under reduced pressure. To a mixture of AlCl₃ (160.0 mg, 1.2 mmol) in dry dichloromethane (20 mL) cooled to -20 °C, the solution of the prepared acyl chloride re-dissolved in dry dichloromethane (20 mL), which had also been cooled to -20 °C, was added *via* a double-ended needle under an N₂ atmosphere. The resulting mixture was stirred for overnight at -20 °C. Then 2 mL water was poured into the reaction flask at -20 °C, stirring for 5 min. The mixture was diluted with 100 mL of dichloromethane and washed with NH₄Cl, NaHCO₃ and saline solution (150 mL) successively. The organic layer was dried over MgSO₄, filtered, concentrated under reduced pressure, and purified by column chromatography on silica gel to provide extended π -conjugated ferrocenes **7**.

IX. Calculated molecular conformations, photophysical and electrochemical properties

Fig. S4 UV-Vis absorption spectra of 6u, 6v, 7b and 7c in CH₃CN (1 × 10⁻⁵ M).

Fig. S5 Calculated molecular conformation of (a) **6u** and (b) **7b**. Molecular optimization was performed by density functional theory computation with Gaussian 09 at the B3LYP/6-31G* level.

Fig. S6 Fluorescence spectra of **6u** and **7b** in CH₃CN (1×10^{-5} M). Inset: Fluorescent images of **6u** (left) and **7b** (right) in CH₃CN (1×10^{-5} M) under UV light (365 nm).

Fig. S7 Fluorescence spectra of (a) 7b and (b) 7c in different solvents.

Fig. S8 Cyclic voltammograms of **6v**. Measurements were carried out at a scan rate of 50 mV/s in CH₃CN with **6v** (1×10^{-3} M) containing *n*-Bu₄NPF₆ (0.1 M), using Fc/Fc⁺ (0.08 V) as reference. The three-electrode setup consisted of an Ag/Ag⁺ (0.01 M of AgNO₃ in CH₃CN) reference electrode, a platinum wire counter electrode, and a platinum plate working electrode.

Fig. S9 Changes by the evolution of the fluorescence intensity of **6v** at 432 nm with time. Stepwise oxidation and reduction cycles carried out in CH₃CN with **6v** (5×10^{-6} M) containing *n*-Bu₄NPF₆ (0.1 M) by chronoamperometric analysis, which uses fixed potentials at + 0.48 V (for oxidation, vs Fc/Fc⁺) and – 0.62 V (for reduction, vs Fc/Fc⁺) changed every 150 s.

X. Preparation and characterization of the described compounds

1,4-Bis(1-octyl-1*H*-indol-5-yl)buta-1,3-diyne (2s)

¹H NMR (400 MHz, CDCl₃): δ = 0.87 (t, *J* = 7.2 Hz, 6H), 1.25-1.30 (m, 20H), 1.79-1.86 (m, 4H), 4.09 (t, *J* = 7.2 Hz, 4H), 6.48 (d, *J* = 2.8 Hz, 2H), 7.12 (d, *J* = 2.8 Hz, 2H), 7.28 (d, *J* = 8.4 Hz, 2H), 7.36 (dd, *J* = 8.4 Hz, 1.6 Hz, 2H), 7.85 (s, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.2, 22.7, 27.1, 29.29, 29.32, 30.4, 31.9, 46.7, 72.3, 82.8, 101.5, 109.7, 112.5, 125.8, 126.2, 128.5, 129.1, 136.1 ppm.

1,4-Diferrocenylbuta-1,3-diyne (2t)

¹H NMR (400 MHz, CDCl₃): δ = 4.25 (t, *J* = 2.0 Hz, 4H), 4.26 (s, 10H), 4.51 (t, *J* = 2.0 Hz, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 63.8, 69.4, 70.3, 71.1, 72.3, 79.2 ppm.

4,4'-(buta-1,3-diyne-1,4-diyl)bis(N,N-diphenylaniline) (2u)

¹H NMR (400 MHz, CDCl₃): δ = 6.95 (dt, *J* = 8.8 Hz, 2.0 Hz, 4H), 7.06-7.12 (m, 12H), 7.27-7.30 (m, 8H), 7.34 (dt, *J* = 8.8 Hz, 2.0 Hz, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 73.6, 82.1, 114.3, 121.7, 124.1, 125.5, 129.6, 133.5, 147.0, 148.7 ppm.

1,4-Di(9,9'-spirobifluoren-2-yl)buta-1,3-diyne (2v)

¹H NMR (400 MHz, CDCl₃): δ = 6.70 (d, *J* = 7.6 Hz, 4H), 6.74 (d, *J* = 7.6 Hz, 2H), 6.82 (s, 2H), 7.08-7.15 (m, 6H), 7.34-7.39 (m, 6H), 7.46 (dd, *J* = 8.0 Hz, 1.6 Hz, 2H), 7.76 (d, *J* = 8.0 Hz, 2H), 7.81-7.84 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 65.8, 74.4, 82.4, 120.1, 120.2, 120.6, 120.9, 124.1, 124.3, 128.0, 128.1, 128.2, 128.7, 132.4, 140.9, 141.9, 142.8, 148.0, 149.1, 149.3 ppm.

N-[2-(1,4-diphenylbut-1-en-3-yn-2-yl)ferrocenylformyl]piperidine (4)

M.p.: 84-87 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.45-1.71 (m, 6H), 3.11-3.22 (m, 2H), 3.45-3.48 (m, 1H), 3.64-3.67 (m, 1H), 4.33 (t, *J* = 2.4 Hz, 1H), 4.40 (s, 5H), 4.57 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 4.60 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 6.93 (s, 1H), 7.31-7.44 (m, 6H), 7.67 (dt, *J* = 6.4 Hz, 1.6 Hz, 2H), 8.00 (d, *J* = 7.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 24.6, 25.3, 26.2, 43.1, 47.9, 65.9, 67.5, 71.7, 72.8, 85.0, 85.6, 88.8, 96.6, 119.8, 123.6, 128.1, 128.5, 128.59, 128.64, 128.8, 131.8, 132.4, 136.9, 167.7 ppm. ESI-HRMS: calcd for C₃₂H₂₉FeNONa [M+Na]⁺ 522.1491, found 522.1487.

Methyl 2-(2,5-diphenylthien-3-yl)ferrocene carboxylate (6a)

Following the general procedure for regioselective addition/annulation reaction, compound **6a** was obtained as a yellow solid (38.8 mg, 81% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1, v/v). M.p.: 155-156 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.58 (s, 3H), 4.25 (s, 5H), 4.36 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 4.42 (t, *J* = 2.4 Hz, 1H), 4.88 (dd, *J* = 2.8 Hz, 1.6 Hz, 1H), 7.16-7.24 (m, 5H), 7.31-7.35 (m, 1H), 7.44 (t, *J* = 8.0 Hz, 2H), 7.69-7.72 (m, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.6, 70.0, 70.1, 70.8, 71.1, 74.6, 85.4, 125.9, 127.3, 127.6, 128.3, 128.7, 129.1, 129.2, 133.4, 134.5, 134.6, 140.1, 140.6, 171.7 ppm. ESI-HRMS: calcd for C₂₈H₂₃FeO₂S [M+H]⁺ 479.0763, found 479.0770.

Methyl 2-[2,5-di(4-methylphenyl)thien-3-yl]ferrocene carboxylate (6b)

Following the general procedure for regioselective addition/annulation reaction, compound **6b** was obtained as a yellow solid (38.2 mg, 75% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1, v/v). M.p.: 93-95 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.29 (s, 3H), 2.40 (s, 3H), 3.58 (s, 3H), 4.24 (s, 5H), 4.34 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 4.41 (t, *J* = 2.4 Hz, 1H), 4.87 (dd, *J* = 2.8 Hz, 1.6 Hz, 1H), 7.00-7.06 (m, 4H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.4 Hz, 2H), 7.65 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.3, 21.4, 51.6, 69.9, 70.1, 70.7, 71.1, 74.6, 85.7, 125.8, 128.5, 128.8, 129.0, 129.7, 131.8, 131.9, 132.8, 137.0, 137.4, 139.8, 140.3, 171.8 ppm. ESI-HRMS: calcd for C₃₀H₂₇FeO₂S [M+H]⁺ 507.1076, found 507.1082.

Methyl 2-[2,5-di(4-tert-butylphenyl)thien-3-yl]ferrocene carboxylate (6c)

Following the general procedure for regioselective addition/annulation reaction, compound **6c** was obtained as a yellow solid (40.9 mg, 69% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1, v/v). M.p.: 92-94 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.28 (s, 9H), 1.37 (s, 9H), 3.55 (s, 3H), 4.23 (s, 5H), 4.38-4.39 (m, 1H), 4.42 (t, *J* = 2.4 Hz, 1H), 4.87 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 7.10 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.8 Hz, 2H), 7.62 (d, *J* = 8.8 Hz, 2H), 7.65 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 31.4, 31.5, 34.7, 34.8, 51.6, 69.9, 70.1, 70.7, 71.1, 74.7, 85.6, 125.2, 125.6, 125.9, 128.2, 129.0, 131.8, 131.9, 132.8, 139.7, 140.2, 150.1, 150.6, 171.7 ppm. ESI-HRMS: calcd for C₃₆H₃₈FeO₂SNa [M+Na]⁺ 613.1834, found 613.1835.

Methyl 2-[2,5-di(4-methoxylphenyl)thien-3-yl]ferrocene carboxylate (6d)

Following the general procedure for regioselective addition/annulation reaction, compound **6d** was obtained as a yellow solid (39.6 mg, 74% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1, v/v). M.p.: 164-167 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.60 (s, 3H), 3.77 (s, 3H), 3.86 (s, 3H), 4.24 (s, 5H), 4.33 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 4.40 (t, *J* = 2.4 Hz, 1H), 4.87 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 6.74 (dt, *J* = 8.8 Hz, 2.0 Hz, 2H), 6.96 (dt, *J* = 8.8 Hz, 2.0 Hz, 2H), 7.07 (dt, *J* = 8.8 Hz, 2.0 Hz, 2H), 7.58 (s, 1H), 7.61 (dt, *J* = 8.8 Hz, 2.0 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.6, 55.3, 55.5, 69.9, 70.0, 70.7, 71.1, 74.6, 85.7, 113.8, 114.4, 127.1, 127.3, 127.6, 128.3, 129.9, 132.5, 139.1, 139.8, 158.8, 159.2, 171.8 ppm. ESI-HRMS: calcd for C₃₀H₂₇FeO₄S [M+H]⁺ 539.0974, found 539.0977.

Methyl 2-[2,5-di(4-fluorophenyl)thien-3-yl]ferrocene carboxylate (6e)

Following the general procedure for regioselective addition/annulation reaction, compound **6e** was obtained as a yellow solid (37.2 mg, 72% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1, v/v). M.p.: 141-143 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.61 (s, 3H), 4.24 (s, 5H), 4.30-4.31 (m, 1H), 4.42 (t, *J* = 2.4 Hz, 1H), 4.87 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 6.88-6.94 (m, 2H), 7.08-7.16 (m, 4H), 7.62-7.67 (m, 3H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.6, 69.9, 70.1, 70.9, 71.2, 74.5, 85.2, 115.4 (d, *J* = 21.5 Hz), 116.1 (d, *J* = 21.7 Hz), 127.6 (d, *J* = 8.0 Hz), 129.2 (d, *J* = 0.8 Hz), 130.4 (d, *J* = 8.0 Hz), 130.6 (d, *J* = 3.4 Hz), 130.7 (d, *J* = 3.3 Hz), 133.5, 138.8 (d, *J* = 0.8 Hz), 139.5, 162.1 (d, *J* = 246.1 Hz), 162.5 (d, *J* = 245.8 Hz),

171.5 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -114.54 – -114.48 (m, 1F), -114.47 – -114.41 (m, 1F) ppm. ESI-HRMS: calcd for C₂₈H₂₀F₂FeO₂SNa [M+Na]⁺ 537.0394, found 537.0396.

Methyl 2-[2,5-di(4-acetylphenyl)thien-3-yl]ferrocene carboxylate (6f)

Following the general procedure for regioselective addition/annulation reaction, compound **6f** was obtained as a yellow solid (38.5 mg, 68% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1, v/v). M.p.: 169-172 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.56 (s, 3H), 2.65 (s, 3H), 3.59 (s, 3H), 4.27 (s, 5H), 4.35 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 4.47 (t, *J* = 2.4 Hz, 1H), 4.92 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 7.24-7.26 (m, 2H), 7.77-7.82 (m, 4H), 7.86 (s, 1H), 8.04 (dt, *J* = 8.4 Hz, 2.0 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 26.7, 26.8, 51.7, 70.0, 70.4, 71.2, 71.3, 74.6, 84.8, 125.7, 128.5, 128.6, 129.4, 131.1, 135.4, 135.7, 136.1, 138.6, 139.1, 140.2, 140.4, 171.4, 197.4, 197.6 ppm. ESI-HRMS: calcd for C₃₂H₂₆FeO₄SNa [M+Na]⁺ 585.0793, found 585.0797.

Methyl 2-[2,5-di(4-methoxycarbonylphenyl)thien-3-yl]ferrocene carboxylate (6g)

Following the general procedure for regioselective addition/annulation reaction, compound **6g** was obtained as a yellow solid (39.0 mg, 66% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 2/1, v/v). M.p.: 189-191 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.58 (s, 3H), 3.89 (s, 3H), 3.95 (s, 3H), 4.26 (s, 5H), 4.33 (dd, *J* = 2.8 Hz, 1.6 Hz, 1H), 4.45 (t, *J* = 2.8 Hz, 1H), 4.91 (dd, *J* = 2.8 Hz,

1.6 Hz, 1H), 7.22 (dt, J = 8.4 Hz, 2.0 Hz, 2H), 7.75 (dt, J = 8.4 Hz, 2.0 Hz, 2H), 7.84 (s, 1H), 7.88 (dt, J = 8.4 Hz, 2.0 Hz, 2H), 8.10 (dt, J = 8.4 Hz, 2.0 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): $\delta = 51.7$, 52.26, 52.34, 70.0, 70.3, 71.17, 71.24, 74.6, 84.8, 125.5, 128.4, 128.8, 129.2, 129.7, 130.5, 130.9, 135.2, 138.5, 139.0, 140.1, 140.4, 166.9, 171.4 ppm. ESI-HRMS: calcd for C₃₂H₂₆FeO₆SNa [M+Na]⁺ 617.0692, found 617.0694.

Methyl 2-[2,5-di(3-methylphenyl)thien-3-yl]ferrocene carboxylate (6h)

Following the general procedure for regioselective addition/annulation reaction, compound **6h** was obtained as a yellow solid (36.2 mg, 71% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1, v/v). M.p.: 59-63 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.25 (s, 3H), 2.44 (s, 3H), 3.58 (s, 3H), 4.24 (s, 5H), 4.35 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 4.41 (t, *J* = 2.4 Hz, 1H), 4.87 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 6.92 (d, *J* = 7.6 Hz, 1H), 6.99-7.02 (m, 2H), 7.08 (t, *J* = 7.6 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 1H), 7.50-7.52 (m, 2H), 7.68 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.5, 21.7, 51.6, 69.9, 70.1, 70.7, 71.1, 74.6, 85.5, 123.0, 125.8, 126.6, 128.0, 128.2, 128.4, 128.9, 129.1, 129.4, 133.2, 134.48, 134.51, 137.9, 138.7, 140.1, 140.6, 171.8 ppm. ESI-HRMS: calcd for C₃₀H₂₇FeO₂S [M+H]⁺ 507.1076, found 507.1076.

Methyl 2-[2,5-di(3-methoxylphenyl)thien-3-yl]ferrocene carboxylate (6i)

Following the general procedure for regioselective addition/annulation reaction, compound **6i** was obtained as a yellow solid (39.5 mg, 73% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 10/1, v/v). ¹H NMR

(400 MHz, DMSO-*d*₆): δ = 3.43 (s, 3H), 3.59 (s, 3H), 3.85 (s, 3H), 4.30 (s, 5H), 4.49 (br, 1H), 4.59 (br, 1H), 4.81 (br, 1H), 6.55 (s, 1H), 6.72 (d, *J* = 7.6 Hz, 1H), 6.78 (d, *J* = 8.4 Hz, 1H), 6.96 (d, *J* = 8.0 Hz, 1H), 7.17 (t, *J* = 8.0 Hz, 1H), 7.25 (s, 1H), 7.34 (d, *J* = 7.6 Hz, 1H), 7.41 (t, *J* = 8.0 Hz, 1H), 7.79 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 51.2, 54.9, 55.3, 69.7, 70.1, 70.2, 71.0, 74.1, 84.7, 111.0, 112.9, 113.2, 113.3, 117.9, 120.2, 129.6, 129.7, 130.4, 133.9, 134.8, 135.1, 138.4, 139.4, 158.9, 159.8, 170.4 ppm. ESI-HRMS: calcd for C₃₀H₂₇FeO₄S [M+H]⁺ 539.0974, found 539.0968.

Methyl 2-[2,5-di(3-fluorophenyl)thien-3-yl]ferrocene carboxylate (6j)

Following the general procedure for regioselective addition/annulation reaction, compound **6j** was obtained as a yellow solid (33.3 mg, 65% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1, v/v). ¹H NMR (400 MHz, CDCl₃): δ = 3.61 (s, 3H), 4.26 (s, 5H), 4.35 (dd, *J* = 2.8 Hz, 1.6 Hz, 1H), 4.45 (t, *J* = 2.8 Hz, 1H), 4.91 (dd, *J* = 2.8 Hz, 1.6 Hz, 1H), 6.84-6.95 (m, 3H), 7.00-7.05 (m, 1H), 7.15-7.21 (m, 1H), 7.37-7.43 (m, 2H), 7.47 (dt, *J* = 8.0 Hz, 1.2 Hz, 1H), 7.72 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.6, 69.9, 70.2, 71.1, 71.2, 74.5, 84.8, 112.6 (d, *J* = 22.6 Hz), 114.3 (d, *J* = 21.1 Hz), 114.5 (d, *J* = 21.1 Hz), 115.4 (d, *J* = 22.4 Hz), 121.6 (d, *J* = 2.8 Hz), 124.4 (d, *J* = 2.9 Hz), 129.9 (d, *J* = 8.5 Hz), 130.0, 130.6 (d, *J* = 8.6 Hz), 134.3, 136.39 (d, *J* = 8.1 Hz), 163.3 (d, *J* = 244.6 Hz), 171.5 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -112.95 - -112.88 (m, 1F), -112.68 - -112.62 (m, 1F) ppm. ESI-HRMS: calcd for C₂₈H₂₁F₂FeO₂S [M+H]⁺ 515.0574, found 515.0571.

Methyl 2-[2,5-di(3,5-dimethylphenyl)thien-3-yl]ferrocene carboxylate (6k)

Following the general procedure for regioselective addition/annulation reaction, compound **6k** was obtained as a yellow solid (38.5 mg, 72% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1, v/v). M.p.: 88-91 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.19 (s, 6H), 2.40 (s, 6H), 3.58 (s, 3H), 4.24 (s, 5H), 4.34 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 4.40 (t, *J* = 2.4 Hz, 1H), 4.87 (dd, *J* = 2.8 Hz, 1.6 Hz, 1H), 6.77 (s, 2H), 6.82 (s, 1H), 6.96 (s, 1H), 7.30 (s, 2H), 7.64 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.4, 21.6, 51.6, 69.9, 70.0, 70.7, 71.1, 74.7, 85.6, 123.8, 126.5, 128.8, 128.9, 129.3, 133.0, 134.4, 134.5, 137.7, 138.6, 140.1, 140.6, 171.8 ppm. ESI-HRMS: calcd for C₃₂H₃₁FeO₂S [M+H]⁺ 535.1389, found 535.1395.

Methyl 2-[2,5-di(3,5-dimethoxylphenyl)thien-3-yl]ferrocene carboxylate (6l)

Following the general procedure for regioselective addition/annulation reaction, compound **6I** was obtained as a yellow solid (39.9 mg, 67% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 7/1, v/v). M.p.: 125-129 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.59 (s, 3H), 3.64 (s, 6H), 3.88 (s, 6H), 4.25 (s, 5H), 4.38-4.39 (m, 1H), 4.43 (t, *J* = 2.8 Hz, 1H), 4.88 (dd, *J* = 2.8 Hz, 1.6 Hz, 1H), 6.29-6.32 (m, 3H), 6.45 (t, *J* = 2.0 Hz, 1H), 6.84 (d, *J* = 2.0 Hz, 2H), 7.66 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.6, 55.4, 55.6, 70.0, 70.2, 70.7, 71.1, 74.7, 85.4, 99.3, 100.1, 104.4, 106.5, 129.6, 133.5, 136.2, 136.4, 139.9, 140.4, 160.4, 161.2, 171.6 ppm. ESI-HRMS: calcd for C₃₂H₃₁FeO₆S [M+H]⁺ 599.1185, found 599.1181.

Methyl 2-[2,5-di(3,4-dimethoxylphenyl)thien-3-yl]ferrocene carboxylate (6m)

Following the general procedure for regioselective addition/annulation reaction, compound **6m** was obtained as a yellow solid (41.5 mg, 69% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 6/1, v/v). M.p.: 153-156 °C. ¹H NMR (400 MHz, DMSO- d_6): δ = 3.44 (s, 3H), 3.49 (s, 3H), 3.71 (s, 3H), 3.81 (s, 3H), 3.88 (s, 3H), 4.29 (s, 5H), 4.48 (br, 1H), 4.58 (t, J = 2.4 Hz, 1H), 4.80 (br, 1H), 6.50 (s, 1H), 6.71 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 7.05 (d, J = 8.4 Hz, 1H), 7.22 (s, 1H), 7.27 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 7.64 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ = 51.1, 55.0, 55.4, 55.62, 55.65, 69.4, 69.8, 69.9, 70.9, 74.1, 85.1, 109.2, 111.3, 111.6, 112.3, 117.9, 120.2, 126.5, 126.6, 128.4, 132.7, 137.8, 139.0, 147.9, 148.0, 148.7, 149.1, 170.4 ppm. ESI-HRMS: calcd for C₃₂H₃₁FeO₆S [M+H]⁺ 599.1185, found 599.1185.

Methyl 2-[5-hexyl-2-(4-methoxylphenyl)thien-3-yl]ferrocene carboxylate (6n)

Following the general procedure for regioselective addition/annulation reaction, CH₃OH (2.0 mL) was used as solvent, and compound **6n** was obtained as a yellow liquid (13.8 mg, 27% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1, v/v). ¹H NMR (400 MHz, CDCl₃): δ = 0.92 (t, *J* = 7.2 Hz, 3H), 1.33-1.38 (m, 4H), 1.44-1.50 (m, 2H), 1.73-1.80 (m, 2H), 2.86 (t, *J* = 7.6 Hz, 2H), 3.60 (s, 3H), 3.75 (s, 3H), 4.20 (s, 5H), 4.25 (dd, *J* = 2.8 Hz, 1.6 Hz, 1H), 4.35 (t, *J* = 2.8 Hz, 1H), 4.84 (dd, *J* = 2.8 Hz, 1.6 Hz, 1H), 6.71 (dt, *J* = 9.2 Hz, 2.8 Hz, 2H), 7.02 (dt, *J* = 8.8 Hz, 2.8 Hz, 2H), 7.15 (t, *J* = 0.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.3, 22.8, 29.1, 30.3, 31.81, 31.83, 51.5, 55.3, 69.8, 69.9, 70.6, 71.0, 74.7, 85.9, 113.6, 127.7, 129.9, 130.2, 131.0, 137.9, 141.6, 158.5, 171.9 ppm. ESI-HRMS: calcd for C₂₉H₃₂FeO₃SNa [M+Na]⁺ 539.1314, found 539.1311.

Methyl 2-[2,5-di(furan-2-yl)thien-3-yl]ferrocene carboxylate (60)

Following the general procedure for regioselective addition/annulation reaction, CH₃OH (2.0 mL) was used as solvent, and compound **60** was obtained as a yellow solid (20.7 mg, 45% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v). ¹H NMR (400 MHz, CDCl₃): δ = 3.60 (s, 3H), 4.30 (s, 5H), 4.51-4.54 (m, 2H), 4.96 (dd, *J* = 2.4 Hz, 2.0 Hz, 1H), 5.81 (dd, *J* = 3.6 Hz, 0.8 Hz, 1H), 6.26 (dd, *J* = 3.6 Hz, 2.0 Hz, 1H), 6.49 (dd, *J* = 3.6 Hz, 2.0 Hz, 1H), 6.56 (dd, *J* = 3.6 Hz, 0.8 Hz, 1H), 7.28 (dd, *J* = 2.0 Hz, 0.8 Hz, 1H), 7.46 (dd, *J* = 2.0 Hz, 0.8 Hz, 1H), 7.54 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.6, 70.1, 70.4, 70.7, 71.2, 74.5, 85.1, 105.5, 107.0, 111.7, 111.9, 128.4, 128.9, 130.0, 132.8, 141.3, 141.9, 149.0, 149.3, 171.7 ppm. ESI-HRMS: calcd for C₂₄H₁₉FeO₄S [M+H]⁺ 459.0348, found 459.0353.

Methyl 2-[2,5-di(thien-2-yl)thien-3-yl]ferrocene carboxylate (6p)

Following the general procedure for regioselective addition/annulation reaction, CH₃OH (2.0 mL) was used as solvent, and compound **6p** was obtained as a yellow solid (25.8 mg, 53% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v). M.p.: 160-162 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.62 (s, 3H), 4.28 (s, 5H), 4.47-4.48 (m, 1H), 4.50 (t, *J* = 2.8 Hz, 1H), 4.94 (dd, *J* = 2.8 Hz, 1.6 Hz, 1H), 6.82 (dd, *J* = 3.6 Hz, 1.2 Hz, 1H), 6.87 (dd, *J* = 5.2 Hz, 3.6 Hz, 1H), 7.06 (dd, *J* = 5.2 Hz, 3.6 Hz, 1H), 7.11 (dd, *J* = 4.8 Hz, 1.2 Hz, 1H), 7.23 (dd, *J* = 3.6 Hz, 1.2 Hz, 1H), 7.25-7.26 (m, 1H), 7.50 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.7, 70.2, 70.8, 70.9, 71.1, 74.9, 84.7, 123.9, 124.6, 125.3, 125.8, 127.2, 128.1, 129.9, 132.7, 133.4, 133.6, 136.1, 137.3, 171.6 ppm. ESI-HRMS: calcd for C₂₄H₁₉FeO₂S₃ [M+H]⁺ 490.9891, found 490.9896.

Methyl 2-[2,5-di(5-methylthien-2-yl)thien-3-yl]ferrocene carboxylate (6q)

Following the general procedure for regioselective addition/annulation reaction, CH₃OH (2.0 mL) was used as solvent, and compound **6q** was obtained as a yellow solid (35.4 mg, 68% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v). M.p.: 153-157 °C. ¹H NMR (400 MHz, CDCl₃): δ = 2.36 (s, 3H), 2.51 (s, 3H), 3.64 (s, 3H), 4.27 (s, 5H), 4.47-4.49 (m, 2H), 4.93 (t, *J* = 2.0 Hz, 1H), 6.50 (dd, *J* = 3.6 Hz, 0.8 Hz, 1H), 6.58 (d, *J* = 3.6 Hz, 1H), 6.70 (dd, *J* = 3.6 Hz, 0.8 Hz, 1H), 6.99 (d, *J* = 3.2 Hz, 1H), 7.39 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 15.4, 15.6, 51.7, 70.1, 70.7, 70.8, 71.1, 75.0, 84.9, 123.6, 125.4, 125.6, 126.1, 129.3, 132.6, 132.7, 133.2, 133.9, 135.0, 139.2, 139.9, 171.8 ppm. ESI-HRMS: calcd for C₂₆H₂₃FeO₂S₃ [M+H]⁺ 519.0204, found 519.0205.

Methyl 2-[2,5-di(5-chlorothien-2-yl)thien-3-yl]ferrocene carboxylate (6r)

Following the general procedure for regioselective addition/annulation reaction, CH₃OH (2.0 mL) was used as solvent, and compound **6r** was obtained as a yellow solid (26.3 mg, 47% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v). M.p.: 152-155 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.67 (s, 3H), 4.28 (s, 5H), 4.46 (br, 1H), 4.52 (br, 1H), 4.96 (br, 1H), 6.62 (d, *J* = 4.0 Hz, 1H), 6.68 (d, *J* = 4.0 Hz, 1H), 6.87 (d, *J* = 4.0 Hz, 1H), 6.98 (d, *J* = 4.0 Hz, 1H), 7.40 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.8, 70.5, 70.6, 71.16, 71.22, 75.0, 84.0, 123.2, 125.0, 126.2, 127.2, 129.0, 129.8, 130.1, 132.2, 132.6, 134.0, 134.6, 135.6, 171.4 ppm. ESI-HRMS: calcd for C₂₄H₁₇³⁵Cl₂FeO₂S₃ [M+H]⁺ 558.9112, found 558.9108; C₂₄H₁₇³⁵Cl³⁷ClFeO₂S₃ [M+H]⁺ 560.9082, found 560.9085; C₂₄H₁₇³⁷Cl₂FeO₂S₃ [M+H]⁺ 562.9053, found 562.9049.

Methyl 2-[2,5-di(1-octyl-1H-indol-5-yl)thien-3-yl]ferrocene carboxylate (6s)

Following the general procedure for regioselective addition/annulation reaction, 1,2-dichloroethane (1.0 mL) and CH₃OH (1.0 mL) were used as solvent, and compound **6s** was obtained as a yellow liquid (47.8 mg, 61% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1, v/v). ¹H NMR (400 MHz, CDCl₃): δ = 0.86-0.90 (m, 6H), 1.29-1.34 (m, 20H), 1.80 (t, *J* = 6.8 Hz, 2H), 1.87 (t, *J* = 6.8 Hz, 2H), 3.60 (s, 3H), 4.05 (t, *J* = 7.2 Hz, 2H), 4.14 (t, *J* = 7.2 Hz, 2H), 4.25 (s, 5H), 4.34-4.35 (m, 2H), 4.88 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 6.40 (d, *J* = 3.2 Hz, 1H), 6.55 (d, *J* = 2.8 Hz, 1H), 6.97 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H), 7.05 (d, *J* = 3.2 Hz, 1H), 7.13-7.15 (m, 2H), 7.39 (d, *J* = 8.4 Hz, 1H), 7.52 (s, 1H), 7.58 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H), 7.69 (s, 1H), 7.96 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.2, 22.8, 27.2, 29.3, 29.4, 29.9, 30.4, 30.5, 31.91, 31.93, 46.6, 46.7, 51.6, 69.7, 70.2, 70.6, 71.0, 74.9, 86.1, 101.37, 101.40, 109.1, 109.9, 118.3, 120.4, 121.3, 123.0, 126.1, 126.6, 128.2, 128.3, 128.6, 128.8, 129.1, 131.8, 135.3, 135.7, 140.8, 141.4, 172.1 ppm. ESI-HRMS: calcd for C₄₈H₅₇FeN₂O₂S [M+H]⁺ 781.3485, found 781.3481.

Methyl 2-(2,5-diferrocenylthien-3-yl)ferrocene carboxylate (6t)

Following the general procedure for regioselective addition/annulation reaction, 1,2-dichloroethane (1.0 mL) and CH₃OH (1.0 mL) were used as solvent, and compound **6t** was obtained as a red solid (36.3 mg, 52% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 15/1, v/v). M.p.:

113-117 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.62 (s, 3H), 4.04-4.05 (m, 1H), 4.06 (s, 5H), 4.08-4.09 (m, 1H), 4.11-4.12 (m, 1H), 4.14-4.15 (m, 1H), 4.21 (s, 5H), 4.24 (s, 5H), 4.32 (t, *J* = 1.6 Hz, 2H), 4.40 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 4.44 (t, *J* = 2.4 Hz, 1H), 4.63-4.65 (m, 2H), 4.89 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 7.19 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.5, 66.9, 67.0, 68.1, 68.2, 68.3, 68.7, 69.7, 70.0, 70.1, 70.5, 70.6, 70.9, 74.6, 80.2, 80.7, 86.2, 128.0, 132.1, 137.5, 137.7, 171.7 ppm. ESI-HRMS: calcd for C₃₆H₃₁Fe₃O₂S [M+H]⁺ 695.0088, found 695.0091.

Methyl 2-[2,5-di(4-diphenylaminophenyl)thien-3-yl]ferrocene carboxylate (6u)

Following the general procedure for regioselective addition/annulation reaction, 1,2-dichloroethane (2.0 mL) and CH₃OH (2.0 mL) were used as solvent, and the reaction mixture was stirred at 120 °C for 24 h under an N₂ atmosphere. Then, compound **6u** was obtained as a yellow solid (23.8 mg, 29% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 20/1/2, v/v/v). M.p.: 122-124 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.60 (s, 3H), 4.24 (s, 5H), 4.42 (br, 1H), 4.43 (br, 1H), 4.85 (t, *J* = 2.0 Hz, 1H), 6.89 (d, *J* = 8.4 Hz, 2H), 6.98-7.03 (m, 5H), 7.05-7.07 (m, 6H), 7.11-7.16 (m, 6H), 7.22-7.30 (m, 7H), 7.54 (d, *J* = 8.8 Hz, 2H), 7.58 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.6, 69.9, 70.2, 70.7, 71.1, 74.5, 85.9, 123.1, 123.2, 124.0, 124.58, 124.60, 126.6, 128.4, 128.7, 128.8, 129.3, 129.4, 129.5, 132.8, 139.2, 139.8, 146.8, 147.3, 147.6, 147.7, 171.6 ppm. ESI-HRMS: calcd for C₅₂H₄₁FeN₂O₂S [M+H]⁺ 813.2233, found 813.2230.

Methyl 2-[2,5-di(9,9'-spirobifluoren-2-yl)thien-3-yl]ferrocene carboxylate (6v)

Following the general procedure for regioselective addition/annulation reaction, 1,2-dichloroethane (2.0 mL) and CH_3OH (2.0 mL) were used as solvent, and the reaction mixture was stirred at 120 °C for 24 h under an N₂ atmosphere. Then, compound 6v was obtained as a yellow solid (34.2 mg, 36% yield) via column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 10/1/2, v/v/v). M.p.: 204-206 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.35 (s, 3H), 4.07-4.11 (m, 7H), 4.49 (dd, J = 2.8 Hz, 1.6 Hz, 1H), 6.24 (d, J = 2.0 Hz, 1H), 6.61-6.67 (m, 3H), 6.71 (d, J = 7.6 Hz, 1H), 6.77 (d, J = 7.6 Hz, 2H), 6.88 (d, J = 1.6 Hz, 1H), 7.01-7.14 (m, 7H), 7.28-7.40 (m, 7H), 7.62 (d, J = 8.0 Hz, 1H), 7.66 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 7.72-7.77 (m, 3H), 7.83-7.87 (m, 4H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 51.3, 65.8, 66.1, 69.4, 69.8, 70.8, 70.9, 74.0, 85.2, 119.8, 119.9, 120.0, 120.08, 120.10, 120.18, 120.19, 120.5, 121.5, 124.0, 124.08, 124.12, 124.25, 124.34, 125.5, 127.68, 127.72, 127.8, 127.89, 127.90, 127.93, 127.99, 128.02, 128.1, 128.2, 128.9, 133.5, 134.0, 134.2, 139.9, 140.5, 140.7, 141.3, 141.35, 141.41, 141.7, 141.8, 141.86, 141.89, 148.3, 148.5, 148.56, 148.62, 149.2, 149.3, 149.7, 171.4 ppm. ESI-HRMS: calcd for C₆₆H₄₂FeO₂SNa [M+Na]⁺ 977.2147, found 977.2150.

1,3-Diphenyl-7*H*-ferrocene[1',2':3,4]cyclopenta[1,2-*c*]thiophen-7-one (7a)

Following the general procedure for synthesis of extended π -conjugated ferrocenes, 4 M of NaOH solution (5 mL) was added to the solution of the thienylferrocene **6a** (239.2 mg, 0.5 mmol) and EtOH (15 mL) in the first step. Then, oxalyl chloride (68 μ L, 0.8 mmol) and AlCl₃ (266.7 mg, 2.0 mmol) was used respectively in the next steps. Compound **7a** was obtained as an orange solid (141.8 mg, 64% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate = 20/1, v/v). M.p.: 181-184 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.92 (s, 5H), 4.68 (br, 1H), 5.07 (br, 1H), 5.14 (br, 1H), 7.36 (t, *J* = 7.2 Hz, 1H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.50-7.55 (m, 2H), 7.61 (t, *J* = 7.6 Hz, 1H), 7.71 (d, *J* = 7.6 Hz, 2H), 8.00 (d, *J* = 8.0 Hz, 1H), 8.46 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 69.3, 69.7, 71.0, 72.0, 83.1, 83.6, 124.1, 125.9, 127.9, 128.4, 128.9, 129.2, 130.6, 131.9, 132.4, 133.5, 135.0, 136.1, 137.7, 143.4, 194.2 ppm. ESI-HRMS: calcd for C₂₇H₁₈FeOSNa [M+Na]⁺ 469.0320, found 469.0318.

1,3-Di(4-diphenylaminophenyl)-7*H*-ferrocene[1',2':3,4]cyclopenta[1,2-*c*]thiophen-7 -one (7b)

Following the general procedure for synthesis of extended π-conjugated ferrocenes, compound **7b** was obtained as a yellow solid (79.4 mg, 34% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 20/1/2, v/v/v). M.p.: 99-102 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.93 (s, 5H), 4.64 (br, 1H), 5.02 (br, 1H), 5.05 (br, 1H), 7.03-7.18 (m, 15H), 7.27-7.32 (m, 8H), 7.38 (br, 1H), 7.55 (d, *J* = 8.8 Hz, 2H), 7.83 (d, *J* = 8.8 Hz, 1H), 8.10 (d, *J* = 2.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 69.0, 69.7, 71.0, 71.9, 83.2, 83.7, 123.0, 123.3, 123.4, 123.5, 123.8, 124.8, 124.9, 126.6, 127.4, 129.5, 129.7, 130.1, 135.5, 136.1, 136.2, 142.2, 147.2, 147.4, 147.5, 147.9, 193.9 ppm. ESI-HRMS: calcd for C₅₁H₃₆FeN₂OSNa [M+Na]⁺ 803.1790, found 803.1794.

1,3-Di(9,9'-spirobifluoren-2-yl)-7*H*-ferrocene[1',2':3,4]cyclopenta[1,2-c]thiophen-7one (7c)

Following the general procedure for synthesis of extended π-conjugated ferrocenes, compound **7c** was obtained as a yellow solid (146.6 mg, 53% yield) *via* column chromatography on silica gel (petroleum ether/ethyl acetate/dichloromethane = 10/1/2, v/v/v). M.p.: > 250 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.85 (s, 5H), 4.61 (br, 1H), 4.95 (br, 1H), 5.08 (br, 1H), 6.66-6.82 (m, 6H), 6.95 (d, *J* = 1.2 Hz, 1H), 7.06-7.18 (m, 7H), 7.23 (s, 1H), 7.34-7.43 (m, 6H), 7.57 (dd, *J* = 8.0 Hz, 1.6 Hz, 1H), 7.81 (t, *J* = 8.0 Hz, 2H), 7.87-7.94 (m, 4H), 7.99 (d, *J* = 7.6 Hz, 1H), 8.86 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 66.1, 66.2, 68.6, 69.8, 71.0, 71.9, 83.5, 83.8, 120.2, 120.3, 120.4, 120.6, 121.0, 121.1, 121.6, 123.97, 124.03, 124.1, 124.16, 124.20, 124.27, 124.31, 124.4, 126.3, 127.9, 127.99, 128.03, 128.13, 128.15, 128.20, 128.25, 128.3, 128.8, 131.6, 133.0, 135.9, 136.1, 137.2, 140.5, 140.9, 141.77, 141.83, 141.9, 142.0, 142.2, 143.0, 148.1, 148.3, 148.4, 148.5, 149.40, 149.41, 149.6, 152.9, 194.8 ppm. ESI-HRMS: calcd for C₆₅H₃₈FeOSNa [M+Na]⁺ 945.1885, found 945.1882.

Ethyl 2-(2,5-diphenylthien-3-yl)ferrocene carboxylate (10)

M.p.: 45-46 °C. ¹H NMR (400 MHz, CDCl₃): δ = 1.19 (t, *J* = 7.2 Hz, 3H), 3.94-4.16 (m, 2H), 4.25 (s, 5H), 4.33 (dd, *J* = 2.8 Hz, 1.6 Hz, 1H), 4.41 (t, *J* = 2.8 Hz, 1H), 4.90 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 7.16-7.24 (m, 5H), 7.30-7.35 (m, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.69-7.72 (m, 2H), 7.73 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 14.5, 60.2, 69.9, 70.5, 70.8, 71.1, 74.5, 85.6, 125.8, 127.2, 127.6, 128.3, 128.7, 129.1, 129.5, 133.5,

134.51, 134.55, 140.0, 140.4, 171.1 ppm. ESI-HRMS: calcd for C₂₉H₂₅FeO₂S [M+H]⁺ 493.0919, found 493.0921.

Methyl N-phenyl-2-(2,5-diphenylthien-3-yl)ferrocene carbimidate (11)

M.p.: 169-173 °C. ¹H NMR (400 MHz, CDCl₃): δ = 3.88 (s, 3H), 4.02 (dd, *J* = 2.4 Hz, 1.6 Hz, 1H), 4.09 (t, *J* = 2.4 Hz, 1H), 4.18 (s, 5H), 4.18-4.19 (m, 1H), 6.38 (d, *J* = 7.2 Hz, 2H), 6.80 (t, *J* = 7.6 Hz, 1H), 6.87-6.90 (m, 2H), 7.03 (t, *J* = 7.6 Hz, 2H), 7.18-7.20 (m, 3H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.46 (t, *J* = 8.0 Hz, 2H), 7.57 (s, 1H), 7.70 (dd, *J* = 8.4 Hz, 1.2 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 54.1, 68.2, 70.7, 70.9, 71.2, 76.1, 82.7, 121.4, 122.6, 125.7, 127.3, 127.7, 128.1, 128.2, 128.5, 129.17, 129.18, 134.1, 134.2, 134.6, 138.6, 140.9, 148.6, 160.7 ppm. ESI-HRMS: calcd for C₃₄H₂₈FeNOS [M+H]⁺ 554.1236, found 554.1232.

XI. References

- Y.-H. Liu, P.-X. Li, Q.-J. Yao, Z.-Z. Zhang, D.-Y. Huang, M. D. Le, H. Song, L. Liu and B.-F. Shi, Org. Lett., 2019, 21, 1895–1899.
- 2 T. Wang, J. Du, S. Ye, L. Tan and J. Fu, ACS Appl. Mater. Interfaces, 2019, 11, 4425–4438.
- 3 G. Zhang, H. Yi, H. Chen, C. Bian, C. Liu and A. Lei, *Org. Lett.*, 2014, **16**, 6156–6159.
- 4 X. Li, X. Liu, H. Chen, W. Wu, C. Qi and H. Jiang, *Angew. Chem., Int. Ed.*, 2014, **53**, 14485– 14489.
- R. S. Jordan, Y. L. Li, C.-W. Lin, R. D. McCurdy, J. B. Lin, J. L. Brosmer, K. L. Marsh, S. I. Khan, K.
 N. Houk, R. B. Kaner and Y. Rubin, *J. Am. Chem. Soc.*, 2017, **139**, 15878–15890.
- T. Yang, W. Moreira, S. A. Nyantakyi, H. Chen, D. Aziz, M.-L. Go and T. Dick, J. Med. Chem., 2017, 60, 2745–2763.
- 7 P. Chen, C. Liu, J. Hu, H. Zhang and R. Sun, *J. Organomet. Chem.*, 2018, **854**, 113–121.

XII. Copies of ¹H, ¹³C and ¹H-¹H NOESY NMR spectra

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -184 fl (ppm)

-112 616 -112 632 -112 633 -112 633 -112 653 -112 654 -112 883 -112 883 -112 883 -112 899 -112 996 -112 936

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -184 fl (ppm)

S59

