Reappraising Schmidpeter's Bis(iminophosphoranyl)phosphides: Coordination to Transition Metals and Bonding Analysis

Adrien T. Normand,* E. Daiann Sosa Carrizo,* Corentin Magnoux, Esteban Lobato, Hélène Cattey, Philippe Richard, Stéphane Brandès, Charles H. Devillers, Anthony Romieu, Pierre Le Gendre and Paul Fleurat-lessard

Supporting Information

TABLE OF CONTENTS

I. G	ENERAL PROCEDURES	
1.	REAGENTS AND CONDITIONS	S4
2.	ANALYSES	S4
II.S	YNTHESIS OF COMPOUNDS	S6
Syr	nthesis of P4 (white phosphorus)	S6
Syr	nthesis of pro proligand 2a	
Synthesis of pro proligand 2b		
Syr	nthesis of pro proligand 2b'	
Syr	nthesis of complex 3a	
Syr	nthesis of complex 3b	
Syr	nthesis of complex 4a	
Syr	nthesis of complex 5a	
Syr	nthesis of complex 5b	
Syr	nthesis of complex 6a-Py	
Syr	nthesis of complex 6a	
Syr	nthesis of complex 6b	
Syr	nthesis of complex 7 b	
Syr	nthesis of complex 8b	
Syr	nthesis of complex 9b	S71
III.	ATTEMPTED SYNTHESES AND	FAILED
EXI	PERIMENTS	
Att	tempted synthesis of 4b	
Re	action of 4a with ferrocene carboxaldehyde	
Att	empted syntheses of the Zr analogues of 4a	
Re	action of 5a with ferrocene carboxaldehyde	
Att	tempted synthesis of 7a	
Att	tempted double metalation of 6b with CuBr	
Re	action of 2a and 2b' with [Au(THT)Cl]	
Att	tempted synthesis of 9a	
IV.	COMPUTATIONAL STUDIES	
Co	mputational details	

ELF Bonding basins	S91
AIM analysis	
Natural Transition Orbitals for 9b and D ⁺	S96
Cartesian coordinates and energies in au	S97

Additional bond distances and angles	
Crystal data and structure refinement for 2b'	S102
Crystal data and structure refinement for 3a	S104
Crystal data and structure refinement for 3b	S105
Crystal data and structure refinement for 4a	S106
Crystal data and structure refinement for 5a	S107
Crystal data and structure refinement for 5b	S108
Crystal data and structure refinement for 6a-Py	S109
Crystal data and structure refinement for 6a	S110
Crystal data and structure refinement for 6b	S111
Crystal data and structure refinement for 7 b	S112
Crystal data and structure refinement for 8b	S114
Crystal data and structure refinement for 9b	S115
Structural Trans Effect in octahedral BIPP complexes	S116

I. General procedures

1. Reagents and conditions

All reactions were carried out under Ar using conventional Schlenk techniques or in an Ar glovebox. Toluene, CH₂Cl₂, Et₂O, pentane and THF were dried using an MBraun MB SPS-800 solvent purification system. Bromobenzene was distilled over CaH₂ and stored over activated 3Å molecular sieves in the glovebox. 1,4-Dioxane was distilled over sodium benzophenone ketyl and stored similarly. Deuterated solvents were dried by passage through a short column of activated neutral alumina (Brockman grade II) and stored over activated 3Å molecular sieves in the glovebox, either at room temperature (C₆D₆, C₆D₅Br...) or at -18°C (d₈-THF, CD₂Cl₂...). Alumina and molecular sieves were activated by heating for at least 6 hours above 230°C under vacuum. Diatomaceous earth (dicalite) was dried in an oven at 110 °C. The following compounds were aminophosphines,¹ $[TiCl_3(THF)]_{3}^2$ according to literature procedures: prepared $[(C_5H_5)_2Fe][B(C_6H_5)_4]^3$ [TiCl₂(N^tBu)(Py)₃]⁴ [Au(THT)Cl)]⁵ Copper(I) bromide was purified and dried according to the literature.⁶ Sodium 2,6-dimethylphenate was prepared by reaction of 2,6dimethylphenol with NaH in Et₂O. Lithium phosphinoamides were prepared by the reaction of the corresponding aminophosphines with n-BuLi in Et₂O (1a) and pentane (1b). All other reagents were commercially available and used as received.

2. Analyses

The identity and purity of the compounds were established using elemental analysis, high-resolution mass spectrometry (ESI-MS), X-ray diffraction analysis, cyclic voltammetry, NMR, EPR, IR and UV-vis spectroscopies.

Elemental analyses were performed by Mr Marcel Soustelle using analytical equipement of the Plateforme d'Analyse de l'Institut de Chimie Moléculaire de l'Université de Bourgogne.

IR and UV-Vis spectra were obtained on an Agilent Cary 630 FTIR and an Agilent Cary 60 UV-Vis spectrometer respectively in an Ar glovebox.

NMR spectra (¹H, ¹¹B, ¹³C, ¹⁹F, ³¹P) were recorded on Bruker AV500 and AV600 spectrometers. NMR spectroscopy chemical shifts are quoted in parts per million (δ) relative to TMS (for ¹H and ¹³C), BF₃·Et₂O (for ¹¹B and ¹⁹F) or H₃PO₄ (for ³¹P). For ¹H and ¹³C spectra, values were determined

¹ a) R. F. Hudson, R. J. G. Searle and F. H. Devitt, *J. Chem. Soc. C: Organic* **1966**, 1001-1004; b) C. Jiang and D. W. Stephan, *Dalton Trans.* **2013**, *42*, 3318-3325.

² N. A. Jones, S. T. Liddle, C. Wilson and P. L. Arnold, Organometallics 2007, 26, 755-757.

³ I. M. Piglosiewicz, R. Beckhaus, G. Wittstock, W. Saak, D. Haase and Inorg. Chem. 2007, 46, 7610-7620.

⁴ A. J. Blake, P. E. Collier, S. C. Dunn, W.-S. Li, P. Mountford and O. V. Shishkin, *J. Chem. Soc. Dalton Trans.* **1997**, 1549-1558.

⁵ R. Uson, A. Laguna and J. Vicente, J. Organomet. Chem. 1977, 131, 471-475.

⁶ W. L. F. Armarego and C. L. L. Chai, *Chapter 5 - Purification of Inorganic and Metal-Organic Chemicals:* (*Including Organic compounds of B, Bi, P, Se, Si, and ammonium and metal salts of organic acids*), in Purification of Laboratory Chemicals (Sixth Edition), Eds.: W. L. F. Armarego and C. L. L. Chai, Butterworth-Heinemann, Oxford, **2009**, pp. 445-576.

by using solvent residual signals (*e.g.* CDHCl₂ in CD₂Cl₂) as internal standards.⁷ The ³¹P, ¹⁹F and ¹¹B NMR spectra were referenced according to IUPAC recommendations (Absolute referencing).

EPR spectra were obtained on a Bruker ELEXSYS 500 spectrometer. The instrument was equipped with a 4122SHQE/0405 X-band resonant cavity operating at 9.43GHz, and an X-band high-power dual-gun-oscillator bridge.

Electrochemical manipulations were performed in an Ar glovebox at room temperature, using 0.1M NaBPh₄ in THF as a supporting electrolyte. The following electrolyte volumes were used fo voltammetric analyses: working electrode compartment: V = 5 mL; reference electrode compartment: V = 5 mL. Voltammetric analyses were carried out in a standard three-electrode cell, with Biologic SP-300 potentiostat, connected to an interfaced computer that employed EC-Lab (v. 11.25) software. The reference electrode was a silver wire separated from the analyzed solution by a sintered glass disk filled with the background solution. The auxiliary electrode was a platinum foil. For all voltammetric measurements, the working electrode was a glassy carbon (GC) electrode ($\emptyset = 3$ mm). Before each voltammetric analysis, the GC electrode was polished with a diamond suspension. In these conditions, when operating in THF NaBPh₄ 0.1M, the formal potential for the ferrocene (+/0) couple was +0.57 V vs. Ag⁺/Ag.

Luminescence measurements of compound **9b** in solution were performed on a SAFAS Flx-Xenius XC spectrofluorimeter using quartz cells (SAFAS, Quartz Suprasil for SAFAS flx Xenius, $45 \times 12.5 \times 12.5$ mm, pathlength: 10 mm, chamber volume: 3.5 mL), at 298 K (using a temperature control system combined with water circulation). The following set of parameters was used: Ex./Em. bandwidth = 5 nm, integration time = 0.1 s, 1 nm step and tunable PMT voltage (actual: 1200 V). All emission spectra were corrected. Solid state measurements were also achieved with the same spectrofluorimeter equipped with a BaSO₄ integrating sphere and using the following set of parameters: Ex./Em. bandwidth = 5 nm, integration time = 0.1 s, 1 nm step, full filtering both in Ex. and Em.)

X-ray diffraction analyses: crystals of all compound were selected and mounted on a mylar loop with oil on a 'Bruker APEX-II CCD' or a 'Bruker D8 venture Photon 100' diffractometer. Crystal were kept at 115 K or 100 K during data collection. Using Olex2,⁸ the structures were solved with the ShelXT⁹ structure solution program using Direct Methods and refined with the XL¹⁰ refinement package using Least Squares minimization. More details can be found in section V and in the Crystallographic Information Files in which are included .res and .hkl files.

⁷ G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics* 2010, **29**, 2176-2179.

⁸ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J. Appl. Crystallogr.* 2009, **42**, 339-341.

⁹ G. Sheldrick, Acta Crystallogr. Sect. A 2015, 71, 3-8.

¹⁰ G. Sheldrick, Acta Crystallogr. Sect. C 2015, 71, 3-8.

II. Synthesis of compounds

Synthesis of P_4 (white phosphorus)

Hazards and risks analysis:

Mechanical hazards:

The allotropic conversion of phosphorus originally developed by H. Brereton Baker involves the thermolysis of red phosphorus under vacuum in a sulphur vapour bath (444 °C).¹¹ Maintaining the physical integrity of the glassware throughout this procedure is of paramount importance due to the combination of vacuum, heat, and the presence of toxic and pyrophoric materials.

Recently, Baker's procedure was adapted to modern day chemistry techniques by Arnold, Hu and Tsai.¹² However, these authors used normal borosilicate glassware. Due to the superior heat resistance of fused silica glass over that of borosilicate, the former is an intrinsically safer alternative. Indeed, we have observed cracks in the borosilicate Schlenk flasks used to perform the thermolysis — 2000 W heatgun at maximum power, ~650 °C — of red phosphorus on several occasions, whilst this problem was never encountered with the fused silica glass Schlenk tube depicted below (Steps 2, 3, 7 and 8). Therefore, we warn against the use of borosilicate glass for the thermolysis of red phosphorus.

Chemical hazards:

Red phosphorus is a flammable solid and it is sensitive to friction. It should also be considered toxic by inhalation and ingestion, but it is not a cause for special concern in an academic chemistry lab, especially when stored in a glovebox.

White phosphorus, on the other hand, is considerably more hazardous due to its well-documented toxicity (by inhalation/ingestion and, indirectly, through exposure to pyrophosphoric acid, ultimately causing the occupational disease known as "phossy jaw"¹³) and pyrophoric properties. Obviously, the risk level associated with these hazards correlates with the manipulated quantities, the presence of flammable material (*e.g.* organic solvents, paper wipes...) in the vicinity of white phosphorus, and compliance of the operator with health and safety regulations, including the obligation to wear personal protective equipment.

Upon exposition to moist air, white phosphorus becomes covered with a protective layer of sticky dust. This is due to the oxidation by atmospheric oxygen, generating P_4O_{10} fumes, which react with moisture to give a complex mixture containing ortho- and pyrophosphoric acid. As a result, white phosphorus particles become passivated and hence, can be difficult to quench completely: passivated white phosphorus is stable in air and can be reactivated by washing with water. This phenomenon is a serious hazard, especially if the glassware is to be cleaned with a flammable

¹¹ H. B. Baker, Phil. Trans. A 1888, 179, 571-559.

¹² C. W. Hsu, Y. C. Tsai, B. M. Cossairt, C. Camp, J. Arnold, B. M. Cossairt, B. M. Cossairt, C. C. Cummins and Y.

C. Tsai Synthetic route to white phosphorus (P4) and arsenic triphosphide (AsP3), in Inorganic Syntheses, (Ed. P. P. Power), **2019**, pp. 123-134.

¹³ W. B. Hinshaw and L. D. Quin, *Phosphorus*, Sulfur, Silicon Relat. Elem. 2015, 190, 2082-2093.

solvent (such as acetone) subsequently. We have found that it is preferable to burn small quantities of white phosphorus residues under a vigorous stream of air (*vide infra*, Step 7) in order to eliminate most of the pyrophoric material before washing the glassware. This step should be performed under a well ventilated fumehood with the sash lowered to a minimum. Oxidation of white phosphorus may also be achieved with concentrated nitric acid, but this procedure is tedious, generates large amounts of corrosive waste, and it can be dangerous when performed with finely divided white phosphorus (due to the risk of ignition).

Procedure:

In an Ar glovebox, red phosphorus (12.4 g, 0.400 mol) was placed in a fused silica glass Schlenk tube (General Electric, semiconductor grade) greased with Apiezon H grease. The vessel was removed from the glovebox and evacuated at a vacuum line for 5 min. The vessel was positioned almost horizontally with a very slight twist, in order to force the flow of liquid P₄ towards the stopper (*vide infra*, Step 1). A 2000 W heatgun at full power was placed underneath the pile of red phosphorus and moved progressively (ca. 30 min) towards the bottom end of the vessel. After cooling, the vessel was taken into the glovebox and scraped with a spatula. The gathered solids were extracted during the night with 500 mL of CH_2Cl_2 in a normal borosilicate Schlenk flask. The suspension was filtered over a grade 4 sintered glass frit, the red solid was dried on the frit; this residue (5.7 g) can be reused to make white phosphorus, although ideally it should be mixed with fresh red phosphorus. The solution was evaporated to dryness, and finely divided P₄ was obtained and stored away from light in the glovebox freezer (4.5 g, yield 82%).

White phosphorus residues were burned under a vigorous stream of air; after cooling, water was used to remove the acidic residue, and the glassware was cleaned using water and cleaning powder. Borosilicate glassware was cleaned in a base bath followed by an acid bath, whilst the fused silica glass Schlenk tube was cleaned with water, acetone and CH₂Cl₂ (to remove the grease) only.

³¹P{¹H} NMR (202 MHz, C₆D₆, 298 K): $\delta = -521.1$

<u>Step 1</u> : beginning of thermolysis. The heatgun is placed underneath the pile of red phosphorus. Note that the	<u>Step 2</u> : after a few minutes, white phosphorus condenses on the cooler parts of
Schlenk tube is placed under static vacuum and lubricated with Apiezon H grease.	the Schlenk tube. The heatgun is progressively moved towards the bottom end of the tube (right).
<u>Step 3</u> : after cooling and transfer in the glovebox, the Schlenk tube is scraped and the solids are extracted with CH_2Cl_2 in an ordinary Schlenk flask lubricated with Dow Corning Si grease.	Step 4: after overnight extraction, the solids are filtered over a grade 4 glass frit in the glovebox. Note that for this batch, residual lumps of P_4 can be observed. A second extraction was necessary in order to completely separate P_4 from red phosphorus.
<u>Step 5</u> : the CH_2Cl_2 solution is evaporated to dryness with a vacuum line.	<u>Step 6</u> : finely divided P_4 is obtained after collection in the glovebox.

<u>Step 7:</u> residues of P_4 are burned under a flow P_4 and P_4 are burned under a flow P_4 and P_4 are burned under a flow P_4 and P_4 are burned under a flow P_4 are b	ow of air.	Step 8: the Schlenk tube can no	w be cleaned
fumehood completely lowered, in order to p	ish of the rotect the	safely.	
operator from toxic $P_x O_y$ fumes. A larger n	netal pan airborne		
burning P_4 particles if required. The glassi	vare may		
then be cleaned with water and cleaning pou	vder.		
	1		- 52
	C-H D		
	ConxDy		
1н		³¹ P{ ¹ H}	
	150 100 5	50 0 -50 -100 -150 -200 -250 -300 -350 -400 f1 (ppm)	-450 -500 -550
		ମାନନଙ୍କ	
l	lu		
		· · · · · · · · · · · · · · · · · · ·	
15 14 13 12 11 10 9 8	/ 6 f1 (ppm)	5 4 3 2 I U -I	-2 -3

Figure S1: ¹H (500MHz, C₆D₆, 298 K) and ³¹P{¹H} NMR (202 MHz, C₆D₆, 298 K)

In an Ar glovebox, lithium phosphinoamide 1a (4.29 g, 12.0 mmol) and white phosphorus (2.97 g, 24.0 mmol) were suspended in 1,4-dioxane (30 mL) in a Schlenk flask. The vessel was transferred into a sand bath at 100 °C, stirred for a couple of minutes under Ar, then closed under slight static vacuum (quick 180 ° rotation of the stopcock). The heterogeneous reaction mixture quickly turned dark brown and was heated to 100 °C for 66 h, after which it was allowed to cool to room temperature, and filtered over a sintered glass frit in the glovebox. The black cake was rinsed with 1,4-dioxane, and the filtrate was evaporated to dryness outside of the glovebox. Upon returning to the glovebox, the solid residue was triturated in 50 mL of pentane and stirred until a fine powder was obtained. The powder was filtered over a sintered glass frit and rinsed with pentane (4 x 10 mL), then dried on the frit. Compound **2a** was obtained as a pale yellow powder (3.20 g, yield 81%).

[†]Cautionary note: Extreme care must be taken when disposing of reaction by-products, since even minute amounts of residual P₄ may ignite upon exposure to air. This is especially critical when using an isopropanol base bath to clean glassware. <u>In this particular instance it is essential that</u> the LixPy black cake be rinsed with solvent and not be allowed to become too warm upon removal from the glovebox, otherwise it may ignite spontaneously. The cake can be quenched in a dish by slow oxidation by atmospheric O₂; cooling by periodic additions of small amounts of liquid N₂ was found to be both convenient and safe. Refer to local chemical waste disposal policies to dispose of the oxidized residue.

Elemental Analysis: calculated for C₄₀H₃₈LiN₂O₂P₃: C, 70.80; H, 5.64; N, 4.13. Found: C, 70.53; H, 5.47; N, 4.06.

UV-vis (0.1 mm cell): $\lambda_1 = 298 \text{ nm}$ (shoulder, $\epsilon = 27000 \text{ M}^{-1} \text{.cm}^{-1}$).

IR (ATR): 1586 (m), 1478 (s), 1432 (m), 1292 (s), 1261 (s), 1255 (s), 1175 (m), 1117 (m), 1095 (m), 1074 (m), 1029 (m), 996 (s), 980 (m), 971 (m), 871 (m), 768 (m), (767 (m), 750 (s), 741 (s), 715 (m), 690 (vs), 631 (b, s), 609 (s), 539 (s), 516 (m), 491 (s) cm⁻¹.

¹**H NMR (500 MHz, d₈-THF, 298 K):** $\delta = 7.60 \text{ (m, 8H, } o \text{ of PPh}_2\text{)}, 7.19 \text{ (m, 4H, } p \text{ of PPh}_2\text{)}, 7.09 \text{ (m, 8H, } m \text{ of PPh}_2\text{)}, 6.74 \text{ (m, 4H, } m \text{ of NPh}\text{)}, 6.52 \text{ (m, 4H, } o \text{ of NPh}\text{)}, 6.39 \text{ (m, 2H, } p \text{ of NPh}\text{)}, 3.56 \text{ (s, 8H, } CH_2\text{O}\text{)}.$

¹H-¹H COSY (500 MHz, d₈-THF, 298 K)[selected cross-peaks]: 7.60 / 7.09 (o of PPh₂ / m of PPh₂), 7.19 / 7.09 (p of PPh₂ / m of PPh₂), 7.09 / 7.60 (m of PPh₂ / o of PPh₂), 7.09 / 7.49 (m of PPh₂ / p of PPh₂), 6.74 / 6.52 (m of NPh / o of NPh), 6.74 / 6.39 (m of NPh / p of NPh), 6.52 / 6.74 (o of NPh / m of NPh), 6.39 / 6.74 (p of NPh / m of NPh).

¹H-¹³C HMBC (500 MHz / 126 MHz, d₈-THF, 298 K)[selected cross-peaks]: 7.60 / 136.0 (*o* of PPh₂ / *i* of PPh₂), 7.60 / 132.7 (*o* of PPh₂ / *m* of PPh₂), 7.19 / 132.7 (*p* of PPh₂ / *m* of PPh₂), 7.09 / 136.0 (*m* of PPh₂ / *i* of PPh₂), 7.09 / 132.7 (*m* of PPh₂ / *m* of PPh₂), 7.09 / 128.1 (*m* of PPh₂ / *o* of PPh₂), 6.74 / 153.7 (*m* of NPh / *i* of NPh), 6.74 / 128.3 (*m* of NPh / *m* of NPh), 6.52 / 123.6 (*o* of NPh / *o* of NPh), 6.39 / 123.6 (*p* of NPh / *o* of NPh).

¹³C{¹H} NMR (126 MHz, d₈-THF, 298 K): $\delta = 153.7$ (m, *i* of NPh), 136.0 (m, *i* of PPh₂), 132.7 (m, *m* of PPh₂), 130.3 (s, *p* of PPh₂), 128.3 (s, *m* of NPh), 128.1 (m, *o* of PPh₂), 123.6 (m, *o* of NPh), 117.1 (s, *p* of NPh), 67.7 (s, CH₂O overlapping with solvent signal).

³¹P{¹H} NMR (202 MHz, d₈-THF, 298 K): $\delta = 31.8$ (d, ¹ $J_{PP} = 411$ Hz, PPh_2), -118.7 (t, ¹ $J_{PP} = 411$ Hz, central *P*).

⁷Li NMR (194 MHz, d₈-THF, 298 K): $\delta = 1.2 (\nu \approx 23 \text{ Hz}).$

Figure S2: UV-vis (0.1 mm cell)

Figure S4: ¹H NMR (500 MHz, d₈-THF, 298 K)

Figure S5: ¹H-¹H COSY (500 MHz, d₈-THF, 298 K)

Figure S6: ¹H-¹³C HMBC (500 MHz / 126 MHz, d₈-THF, 298 K)

155 150 145 140 135 130 125 120 115 110 105 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 fl (ppm)

Figure S7: $^{13}C\{^{1}H\}$ NMR (126 MHz, d₈-THF, 298 K)

Figure S8: ³¹P{¹H} NMR (202 MHz, d₈-THF, 298 K); ⁷Li NMR (194 MHz, d₈-THF, 298 K)

In an Ar glovebox, lithium phosphinoamide **1b** (1.78 g, 8.3 mmol) and white phosphorus (2.06 g, 16.6 mmol) were suspended in 1,4-dioxane (20 mL) in a Schlenk flask. A vivid pink color was observed immediately. The vessel was transferred into a sand bath at 100 °C, stirred for a couple of minutes under Ar, then closed under slight static vacuum (quick 180 ° rotation of the stopcock). The heterogeneous reaction mixture quickly turned dark brown and was heated to 100 °C for 13 h, after which it was allowed to cool to room temperature, and filtered over a sintered glass frit in the glovebox. The black cake was rinsed with pentane, and the filtrate was evaporated to dryness outside of the glovebox. Upon returning to the glovebox, the solid residue was dissolved in 15 mL of pentane stored in the glovebox freezer at -20 °C. Yellow crystals **2b** were collected and dried on a frit (0.65 g, yield 31%).

[†]Cautionary note: Extreme care must be taken when disposing of reaction by-products, since even minute amounts of residual P₄ may ignite upon exposure to air. This is especially critical when using an isopropanol base bath to clean glassware. <u>In this particular instance it is essential that</u> the LixPy black cake be rinsed with solvent and not be allowed to become too warm upon removal from the glovebox, otherwise it may ignite spontaneously. The cake can be quenched in a dish by slow oxidation by atmospheric O₂; cooling by periodic additions of small amounts of liquid N₂ was found to be both convenient and safe. Refer to local chemical waste disposal policies to dispose of the oxidized residue.

Elemental Analysis: calculated for C₂₈H₄₆LiN₂O₂P₃: C, 61.99; H, 8.55; N, 5.16. Found: C, 62.13; H, 9.22; N, 5.29.

UV-vis (THF, 0.1 mm cell): $\lambda_1 = 270$ nm (global maximum, $\epsilon = 27000$ M⁻¹.cm⁻¹).

IR (ATR): 2958 (w), 2860 (m), 1582 (s), 1472 (s), 1448 (m), 1383 (w), 1360 (w), 1293 (m), 1243 (vs), 1228 (vs), 1166 (m), 1123 (s), 1107 (m), 1079 (m), 1029 (m), 995 (s), 969 (s), 949 (s), 892 (m), 877 (vs), 869 (vs), 775 (vs), 750 (s), 702 (vs), 680 (m), 655 (s), 613 (vs), 574 (vs), 548 (s), 525 (s), 503 (vs), 464 (s) cm⁻¹.

¹**H NMR (500 MHz, C₆D₆, 293 K):** δ = 7.18 (m, 4H, *m* of NPh), 7.04 (m, 4H, *o* of NPh), 6.80 (m, 2H, *p* of NPh), 3.18 (s, 8H, CH₂O), 2.51 (m, 4H, CH of ^{*i*}Pr), 1.30 (m, 24H, CH₃ of ^{*i*}Pr).

¹H-¹H COSY (500 MHz, C₆D₆, 293 K)[selected cross-peaks]: 7.60 / 7.09 (o of PPh₂ / m of PPh₂), 7.19 / 7.09 (p of PPh₂ / m of PPh₂), 7.09 / 7.60 (m of PPh₂ / o of PPh₂), 7.09 / 7.49 (m of PPh₂ / p of PPh₂), 6.74 / 6.52 (m of NPh / o of NPh), 6.74 / 6.39 (m of NPh / p of NPh), 6.52 / 6.74 (o of NPh / m of NPh), 6.39 / 6.74 (p of NPh / m of NPh).

¹H-¹³C HMBC (500 MHz / 126 MHz, C₆D₆, 293 K)[selected cross-peaks]: 7.60 / 136.0 (o of PPh₂ / i of PPh₂), 7.60 / 132.7 (o of PPh₂ / m of PPh₂), 7.19 / 132.7 (p of PPh₂ / m of PPh₂), 7.09 / 136.0

(*m* of PPh₂ / *i* of PPh₂), 7.09 / 132.7 (*m* of PPh₂ / *m* of PPh₂), 7.09 / 128.1 (*m* of PPh₂ / *o* of PPh₂), 6.74 / 153.7 (*m* of NPh / *i* of NPh), 6.74 / 128.3 (*m* of NPh / *m* of NPh), 6.52 / 123.6 (*o* of NPh / *o* of NPh), 6.52 / 117.1 (*o* of NPh / *o* of NPh), 6.39 / 123.6 (*p* of NPh / *o* of NPh).

¹³C{¹H} NMR (151 MHz, C₆D₆, 293 K): $\delta = 153.7$ (m, *i* of NPh), 129.4 (s, *m* of NPh), 124.1 (m, *o* of NPh), 118.3 (s, *p* of NPh), 67.0 (s, CH₂O), 32.0 (m, CH of ^{*i*}Pr), 18.9 (m, CH₃ of ^{*i*}Pr), 18.7 (m, CH₃ of ^{*i*}Pr).

³¹P{¹H} NMR (202 MHz, C₆D₆, 293 K): $\delta = 62.2$ (d, ¹ $J_{PP} = 462$ Hz, $P^{i}Pr_{2}$), -201.6 (t, ¹ $J_{PP} = 462$ Hz, central P).

2b (THF) 3000 20000 15000 0 20000 5000 0 250 350 450 550 650 750 Wavelength (nm)

⁷Li NMR (194 MHz, C₆D₆, 293 K): $\delta = 1.0 (\nu \approx 12 \text{ Hz}).$

Figure S9: UV-vis (THF, 0.1 mm cell)

Figure S11: ¹H NMR (500 MHz, C₆D₆, 293 K)

Figure S12: ¹H-¹H COSY (500 MHz, C₆D₆, 293 K)

Figure S13: ¹H-¹³C HMBC (500 MHz / 126 MHz, C₆D₆, 293 K)

0.73---

Figure S15: ³¹P{¹H} NMR (202 MHz, C₆D₆, 293 K); ⁷Li NMR (194 MHz, C₆D₆, 293 K)

Synthesis of pro proligand 2b'

In an Ar glovebox, lithium phosphinoamide 1b (4.00 g, 18.2 mmol) and white phosphorus (1.13 g, 9.10 mmol) were suspended in THF (70 mL) in a Schlenk flask. A vivid pink color was observed immediately. The vessel was transferred into an oil bath at 65 °C, stirred for a couple of minutes under Ar, then closed under slight static vacuum (quick 180 ° rotation of the stopcock). The heterogeneous reaction mixture quickly turned dark brown and was heated to 65 °C for 40 min, after which it was allowed to cool to room temperature, and another portion of P₄ (1.13 g, 9.10 mmol) was added. The mixture was heated again for 45 min and this procedure was repeated twice, (overall amount of P_4 : 4.50 g, 36.3 mmol). Analysis of the reaction mixture revealed that the reaction was not complete, therefore it was heated again at 65 °C for 2 h. After cooling, the mixture was filtered over a sintered glass frit in the glovebox. The black cake was rinsed with pentane, and the filtrate was evaporated to dryness outside of the glovebox. Upon returning to the glovebox, the solid residue was dissolved in 100 mL of pentane and evaporated again. Addition of 30 mL of pentane followed by agitation then storage in the glovebox freezer at -20 °C for two days afforded orange crystals. The crystals were collected, crushed and dried on a frit, yielding 2b' as an orange powder (1.25 g, yield 26%). Single crystals suitable for X-ray diffraction analysis were grown by cooling a saturated solution of **2b'** in pentane at -20 °C.

[†]Cautionary note: Extreme care must be taken when disposing of reaction by-products, since even minute amounts of residual P₄ may ignite upon exposure to air. This is especially critical when using an isopropanol base bath to clean glassware. <u>In this particular instance it is essential that</u> the LixPy black cake be rinsed with solvent and not be allowed to become too warm upon removal from the glovebox, otherwise it may ignite spontaneously. The cake can be quenched in a dish by slow oxidation by atmospheric O₂; cooling by periodic additions of small amounts of liquid N₂ was found to be both convenient and safe. Refer to local chemical waste disposal policies to dispose of the oxidized residue.

Elemental Analysis: calculated for C₂₈H₄₆LiN₂OP₃: C, 63.87; H, 8.81; N, 5.32. Found: C, 63.15; H, 9.00; N, 5.34.

UV-vis (10 mm cell): $\lambda_1 = 249$ nm (global maximum, $\epsilon = 25000 \text{ M}^{-1} \cdot \text{cm}^{-1}$); $\lambda_1 = 270$ nm (shoulder, $\epsilon = 17000 \text{ M}^{-1} \cdot \text{cm}^{-1}$).

IR (ATR): 2955 (m), 2864 (m), 1586 (m), 1476 (s), 1381 (w), 1358 (w), 1284 (m), 1246 (m), 1228 (m), 1169 (m), 1123 (s), 1034 (m), 1027 (m), 1003 (m), 996 (m), 970 (m), 696 (m), 894 (m), 877 (m), 784 (m), 769 (m), 756 (m), 746 (m), 702 (s), 656 (m), 611 (s), 577 (s), 551 (m), 511 (b, m), 465 (m) cm⁻¹.

¹**H NMR (500 MHz, d₈-THF, 298 K):** δ = 7.00 (m, 4H, *m* of NPh), 6.97 (m, 4H, *o* of NPh), 6.56 (m, 2H, *p* of NPh), 3.62 (m, 4H, CH₂O), 2.57 (m, 4H, CH of ^{*i*}Pr), 1.77 (m, 4H, CH₂CH₂O), 1.27 (m, 24H, CH₃ of ^{*i*}Pr).

¹³C{¹H} NMR (151 MHz, d₈-THF, 298 K): $\delta = 155.0$ (m, *i* of NPh), 128.8 (s, *m* of NPh), 125.0 (m, *o* of NPh), 117.8 (s, *p* of NPh), 68.0 (s, CH₂O), 32.2 (m, CH of ^{*i*}Pr), 26.2 (s, CH₂CH₂O), 18.8 (m, CH₃ of ^{*i*}Pr), 18.7 (m, CH₃ of ^{*i*}Pr).

³¹P{¹H} NMR (202 MHz, d₈-THF, 298 K): $\delta = 61.0 (d, {}^{1}J_{PP} = 450 Hz, P^{i}Pr_{2}), -190.8 (t, {}^{1}J_{PP} = 450 Hz, central P).$

Figure S16: UV-vis (THF, 10 mm cell)

Figure S17: IR (ATR)

Figure S18: ¹H NMR (500 MHz, d₈-THF, 298 K)(p: pentane)

100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -50 -50 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

Figure S20: ³¹P{¹H} NMR (202 MHz, d₈-THF, 298 K)

Synthesis of complex **3a**

In an Ar glovebox, proligand **2a** (2.63 g, 3.86 mmol) and $[TiCl_3(THF)_3]$ (1.48 g, 4.00 mmol) were suspended in THF (20 mL). The reaction mixture was stirred for 14 h, during which a pale green precipitate appeared. The suspension was filtered over a sintered glass frit (porosity grade 4), the solid was rinsed with THF (3 x 10 mL) and dried on the frit, yielding **3a** as a blue-green powder (2.28 g, yield 74%). Single crystals suitable for X-ray diffraction were grown by cooling a saturated THF solution of **3a** at -20 °C.

Elemental Analysis: calculated for C₄₀H₃₈Cl₂N₂OP₃Ti: C, 62.04; H, 4.95; N, 3.62. Found: C, 61.69; H, 5.15; N, 3.61.

UV-vis (0,1 mm cell): $\lambda = 300$ nm (shoulder). (Note: due to the poor solubility of 3a in organic solvents, the UV spectrum was recorded in a saturated, filtered solution in THF, hence the practical impossibility to determine an ε value)

IR (ATR): 3050 (w), 2873 (w), 1591 (m), 1483 (m), 1433 (m), 1335 (w), 1316 (w), 1278 (w), 1223 (s), 1189 (w), 1175 (w), 1160 (w), 1155 (w), 1097 (s), 1075 (w), 1034 (w), 1019 (w), 1018 (w), 999 (w), 973 (m), 957 (m), 903 (w), 886 (b, w), 801 (m), 787 (s), 752 (s), 737 (s), 718 (m), 686 (s), 635 (m), 632 (m), 611 (m), 611 (m), 561 (m), 540 (s), 532 (m), 525 (m), 512 (s), 503 (s), 482 (s), $439 (m) \text{ cm}^{-1}$.

EPR (THF, 295 K): g = 1.9524, $(A^{47/49Ti}) = 15.7 \times 10^{-4} \text{ cm}^{-1}$.

Figure S21: UV-vis (THF, 10 mm cell)

Figure S22: IR (ATR)

Figure S23: EPR (THF, 295 K)

Synthesis of complex 3b

In an Ar glovebox, proligand **2b** (0.537 g, 1.20 mmol) and $[TiCl_3(THF)_3]$ (0.371 g, 1.20 mmol) were suspended in THF (5 mL). The reaction mixture turned quickly into a clear emerald green solution. After stirring overnight, a bright yellow precipitate appeared. The suspension was filtered over a sintered glass frit (porosity grade 4), the solid was rinsed with cold THF (2 x 1.5 mL) and dried on the frit, yielding **3b** as a bright yellow powder (0.367 g, yield 52%). Single crystals suitable for X-ray diffraction were grown by cooling a saturated THF solution of **3b** at -20 °C.

Elemental Analysis: calculated for C₂₄H₃₈Cl₂N₂P₃Ti: C, 50.91; H, 6.76; N, 4.95. Found: C, 50.65; H, 6.82; N, 4.85.

UV-vis (0.1 mm cell): $\lambda_1 = 291$ nm (shoulder, $\epsilon = 4900$ M⁻¹.cm⁻¹).

IR (ATR): 2962 (w), 2929 (w), 1589 (m), 1483 (m), 1454 (w), 1446 (w), 1388 (w), 1446 (w), 1388 (w), 1367 (w), 1233 (m), 1224 (s), 1073 (w), 1034 (w), 1026 (w), 958 (s), 904 (w), 874 (w), 814 (m), 802 (vs), 753 (m), 743 (m), 701 (m), 693 (m), 670 (m), 656 (m), 641 (s), 618 (w), 606 (w), 543 (m), 527 (m), 501 (m), 479 (m), 478 (m), 458 (w) cm⁻¹.

EPR (THF, 295 K): g = 1.9520, $(A^{47/49Ti}) = 15.7 \text{ x } 10^{-4} \text{ cm}^{-1}$.

Figure S24: UV-vis (THF, 0.1 mm cell)

Figure S25: IR (ATR)

Figure S26: EPR (THF, 295 K)

Synthesis of complex 4a

In an Ar glovebox, complex **3a** (194 mg, 0.250 mmol) and $[Cp_2Fe][BPh_4]$ (126 mg, 0.250 mmol) were mixed in THF (3 mL). The reaction mixture turned quickly red. Sodium 3,5dimethylphenolate etherate was added and the mixture was stirred for 5 min. The resulting solution was evaporated to dryness and the residue was triturated in toluene to remove ferrocene. The residue was dissolved in 3 mL of CH_2Cl_2 , filtered over a plug of diatomaceous earth, and an orange solid was precipitated by addition to 50 mL of pentane under vigorous agitation. The solid was filtered over a sintered glass frit, suspended and washed with toluene (3 x 5 mL), then pentane (3 x 5 mL). After drying on the frit under vacuum for 20 min, complex **4a** was obtained as an orange powder containing 50 mol% of CH_2Cl_2 and 15 mol% of pentane (202 mg, yield 66%). Single crystals suitable for X-ray diffraction were obtained by diffusion of pentane into a CH_2Cl_2 solution of **4a** at -20 °C. **Elemental Analysis:** a satisfactory elemental analysis could not be obtained; carbon was always too low. This problem has been encountered previously with BPh₄⁻ salts of Ti, see: *Chem. Eur. J.* **2019**, *25*, 2803-2815 and *Organometallics* **2015**, *34*, 2000-2011.

UV-vis (CH₂Cl₂, 10 mm cell): $\lambda_1 = 391$ nm (shoulder, $\epsilon = 1000$ M⁻¹.cm⁻¹).

IR (ATR): 3053 (w), 3031 (w), 1579 (w), 1479 (w), 1434 (w), 1424 (w), 1264 (w), 1211 (b, m), 1199 (m), 1199 (m), 1095 (m), 1032 (b, w), 996 (w), 953 (m), 911 (m), 808 (m), 768 (w), 767 (w), 739 (m), 729 (s), 761 (s), 686 (vs), 656 (m) cm⁻¹.

¹**H** NMR (600 MHz, CD₂Cl₂, 260 K): $\delta = 7.67$ (m, 2H, p of PPh₂), 7.58 (m, 4H, m of PPh₂), 7.46 (m, 4H, o of PPh₂ overlapping with p of PPh₂), 7.42 (m, 2H, p of PPh₂ overlapping with o of PPh₂), 7.35 (m, 4H, m of PPh₂), 7.29 (m, 8H, o of BPh), 7.20-7.12 (m, 6H, o of PPh₂ overlapping with m of OAr), 7.01 (m, 8H, m of BPh overlapping with p of OAr, m of NPh and m of OAr), 6.99-6.91 (m, 7H, p of OAr, m of NPh and m of OAr overlapping with p of NPh and m of BPh), 6.86 (m, 4H, p of BPh), 6.77-6.71 (m, 7H, o of NPh overlapping with m of OAr and p of OAr), 2.33 (s, 6H, CH₃ of OAr), 1.89 (s, 6H, CH₃ of OAr).

¹H-¹H COSY (600 MHz, CD₂Cl₂, 260 K)[selected cross-peaks]: COSY was uninformative due to the overlap of multiple signals in the aromatic region.

¹H-¹³C HMBC (600 MHz / 151 MHz, CD₂Cl₂, 260 K)[selected cross-peaks]: $\delta = 7.67 / 132.2$ (*p* of PPh₂ / *m* of PPh₂), 7.58 / 134.8 (*m* of PPh₂ / *p* of PPh₂), 7.58 / 127.4 (*m* of PPh₂ / *i* of PPh₂), 7.46 / 129.8 (*o* of PPh₂ / *o* of PPh₂), 7.46 / 127.4 (*o* of PPh₂ / *i* of PPh₂), 7.42 / 132.0 (*p* of PPh₂ / *m* of PPh₂), 7.35 / 134.2 (*m* of PPh₂ / *p* of PPh₂), 7.35 / 122.3 (*m* of PPh₂ / *i* of PPh₂), 7.29 / 164.0 (*o* of BPh / *i* of BPh), 7.29 / 135.9 (*o* of BPh / *o* of BPh), 7.29 / 126.0-125.7 (*o* of BPh / *m* of BPh), 7.29 / 121.9 (*o* of BPh / *p* of BPh), 7.20-7.12 / 166.2 (*m* of OAr / *i* of OAr), 7.20-7.12 / 18.3 (*m* of OAr / CH₃ of OAr), 7.01 / 164.0 (*m* of BPh / *i* of BPh), 7.01 / 135.9 (*m* of BPh / *o* of BPh), 6.99-6.91 / 146.7 (*m* of NPh / *i* of NPh), 6.86 / 135.9 (*p* of BPh / *o* of BPh), 6.86 / 126.0-125.7 (*p* of BPh / *m* of BPh), 6.77-6.71 / 166.2 (*m* of OAr i of OAr), 2.33 / 166.2 (CH₃ of OAr), 2.33 / 128.9 (CH₃ of OAr), 2.33 / 166.2 (CH₃ of OAr / *i* of OAr), 2.33 / 128.9 (CH₃ of OAr / *m* of OAr), 1.89 / 129.2 (CH₃ of OAr / *i* of OAr), 1.89 / 129.2 (CH₃ of OAr / *i* of OAr), 1.89 / 129.2 (CH₃ of OAr / *i* of OAr), 1.89 / 129.0 (CH₃ of OAr).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 260 K): $\delta = 166.2$ (m, *i* of OAr), 164.0 (m, *i* of BPh), 146.7 (m, *i* of NPh), 135.9 (s, *o* of BPh), 134.8 (s, *p* of PPh₂), 134.2 (s, *p* of PPh₂), 132.2 (m, *m* of PPh₂), 132.0 (m, *m* of PPh₂), 129.8 (m, *o* of PPh₂), 129.4 (s, *o* of OAr), 129.2 (s, *m* of NPh), 128.9 (s, *m* of OAr), 128.0 (s, *m* of OAr), 127.4 (m, *i* of PPh₂), 126.5 (s, *o* of OAr), 126.0-125.7 (m, *m* of BPh overlapping with *p* of NPh), 124.2 (s, *p* of OAr), 123.4 (m, *o* of NPh overlapping with *p* of OAr), 123.3 (s, *p* of OAr overlapping with *o* of NPh), 122.3 (m, *i* of PPh₂), 121.9 (s, *p* of BPh), 18.3 (s, CH₃ of OAr), 17.0 (s, CH₃ of OAr).

³¹P{¹H} NMR (243 MHz, CD₂Cl₂, 260 K): $\delta = 32.5$ (d, ¹ $J_{PP} = 381$ Hz, PPh_2), -212.9 (t, ¹ $J_{PP} = 381$ Hz, central *P*).

¹¹B{¹H} NMR (194 MHz, CD₂Cl₂, 298 K): $\delta = -6.6$.

Figure S27: UV-vis (CH₂Cl₂, 10 mm cell)

Figure S28: IR (ATR)

Figure S29: ¹H NMR (600 MHz, CD₂Cl₂, 260 K)(p: pentane; d: dichloromethane)

Figure S30: ¹H NMR (600 MHz, CD₂Cl₂, 300 K vs 260 K)

Figure S31: ¹H-¹H COSY (600 MHz, CD₂Cl₂, 260 K)

Figure S32: ¹H-¹³C HMBC (600 MHz / 151 MHz, CD₂Cl₂, 260 K)(whole spectrum)

Figure S33: ¹H-¹³C HMBC (600 MHz / 151 MHz, CD₂Cl₂, 260 K)(zoom)

Figure S34: ¹H-¹³C HMBC (600 MHz / 151 MHz, CD₂Cl₂, 260 K)(zoom)

Figure S35: ¹H-¹³C HMBC (600 MHz / 151 MHz, CD₂Cl₂, 260 K)(zoom)

Figure S36: ¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 260 K)

Figure S37: ³¹P{¹H} NMR (243 MHz, CD₂Cl₂, 260 K); ¹¹B{¹H} NMR (160 MHz, CD₂Cl₂, 298 K)

Synthesis of complex 5a

In an Ar glovebox, zirconium tetrachloride (233 mg, 1.00 mmol) and proligand **2a** (679 mg, 1.00 mmol) were suspended in toluene. The reaction mixture was stirred for 14 h, then filtered on a sintered glass frit and the resulting solid was rinsed with toluene (3 x 3 mL). The solid was suspended in 10 mL of CH_2Cl_2 , filtered over a pad of diatomaceous earth, and the filtrate was evaporated to dryness. The residue was triturated in 5 mL of pentane, filtered on a sintered glass frit and dried on the frit, yielding **5a** as a white powder containing 50 mol% of CH_2Cl_2 (550 mg, yield 67%). Single crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a CH_2Cl_2 solution of **5a** at -20 °C.

Elemental Analysis: calculated for C₃₆H₃₀Cl₃N₂P₃Zr(CH₂Cl₂)_{0.5}: C, 53.23; H, 3.79; N, 3.40. Found: C, 54.63; H, 4.18; N, 3.46.

UV-vis (CH₂Cl₂, 0.1 mm cell): $\lambda_1 = 306$ nm (shoulder, $\epsilon = 9600$ M⁻¹.cm⁻¹).

IR (ATR): 2964 (w), 1588 (w), 1483 (w), 1447 (w), 1446 (w), 1388 (w), 1368 (w), 1350 (w), 1240 (m), 1211 (m), 1169 (w), 1129 (w), 1073 (w), 1031 (w), 1026 (w), 1004 (w), 958 (m), 940 (w), 905 (w), 877 (b, w), 813 (b, m), 755 (w), 699 (m), 676 (m), 650 (m), 621 (w), 527 (m), 502 (w), 496 (w), 478 (w) cm⁻¹.

¹**H NMR (500 MHz, CD₂Cl₂, 291 K):** δ = 7.68 (m, 4H, o of PPh₂), 7.62 (m, 2H, p of PPh₂), 7.46 (m, 4H, m of PPh₂), 7.31 (m, 4H, o of PPh₂), 7.23 (m, 2H, p of PPh₂), 7.18 (m, 4H, m of NPh), 7.09 (m, 4H, o of NPh overlapping with p of NPh), 7.06 (m, 2H, p of NPh), 7.01 (m, 4H, m of PPh₂).

¹H-¹H COSY (500 MHz, CD₂Cl₂, 291 K)[selected cross-peaks]: 7.68 / 7.46 (o of PPh₂ / m of PPh₂), 7.62 / 7.46 (p of PPh₂ / m of PPh₂), 7.46 / 7.68 (m of PPh₂ / o of PPh₂), 7.46 / 7.62 (m of PPh₂ / p of PPh₂), 7.31 / 7.01 (o of PPh₂ / m of PPh₂), 7.23 / 7.01 (p of PPh₂ / m of PPh₂), 7.18 / 7.09 (m of NPh / o of NPh), 7.18 / 7.06 (m of NPh / p of NPh), 7.09 / 7.18 (o of NPh / m of NPh), 7.06 / 7.18 (p of NPh / m of NPh), 7.01 / 7.31 (m of PPh₂ / o of PPh₂), 7.01 / 7.23 (m of PPh₂ / p of PPh₂).

¹H-¹³C HMBC (500 MHz / 126 MHz, CD₂Cl₂, 291 K)[selected cross-peaks]: 7.62 / 133.6 (*p* of PPh₂ / *o* of PPh₂), 7.46 / 130.7 (*m* of PPh₂ / *i* of PPh₂), 7.31 / 133.0 (*o* of PPh₂ / *p* of PPh₂), 7.23 / 132.6 (*p* of PPh₂ / *o* of PPh₂), 7.18 / 147.3 (*m* of NPh / *i* of NPh), 7.18 / 129.0 (*m* of NPh / *m* of NPh), 7.09 / 147.3 (*o* of NPh / *i* of NPh), 7.09 / 125.1 (*o* of NPh / *p* of NPh), 7.06 / 127.7 (*p* of NPh / *o* of NPh), 7.01 / 129.2 (*m* of PPh₂ / *m* of PPh₂), 7.01 / 126.8 (*m* of PPh₂ / *i* of PPh₂).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 291 K): $\delta = 147.3$ (m, *i* of NPh), 133.7 s, *p* of PPh₂ overlapping with *o* of PPh₂), 133.6 (m, *o* of PPh₂ overlapping with *p* of PPh₂), 133.0 (m, *p* of PPh₂), 132.6 (m, *o* of PPh₂), 130.7 (m, *i* of PPh₂), 129.2 (m, *m* of PPh₂), 129.0 (s, *m* of NPh overlapping with *m* of PPh₂), 128.9 (m, *m* of PPh₂ overlapping with *m* of NPh), 127.7 (m, *o* of NPh), 126.8 (m, *i* of PPh₂), 125.1 (s, *p* of NPh).

³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 291 K): $\delta = 27.2$ (d, ¹ $J_{PP} = 351$ Hz, PPh_2), -210.2 (t, ¹ $J_{PP} = 351$ Hz, central *P*).

Figure S38: UV-vis (CH₂Cl₂, 0.1 mm cell)

Figure S39: IR (ATR)

Figure S40: ¹H NMR (500 MHz, CD₂Cl₂, 291 K)(d: dichloromethane)

Figure S41: ¹H-¹H COSY (500 MHz, CD₂Cl₂, 291 K)(aromatic region)

Figure S42: ¹H-¹³C HMBC (500 MHz / 126 MHz, CD₂Cl₂, 291 K)(aromatic region)

Figure S43: ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 291 K)(d: dichloromethane)

Figure S44: ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 291 K)

Synthesis of complex 5b

In an Ar glovebox, zirconium tetrachloride (233 mg, 1.0 mmol) and proligand **2b** (602 mg, 1.0 mmol) were suspended in dry toluene. The reaction mixture was stirred overnight, then filtered on a sintered glass frit and the resulting solid was rinsed with toluene (3 x 3 mL). The solid was suspended in 10 mL of CH_2Cl_2 , filtered over a pad of diatomaceous earth, and the filtrate was evaporated to dryness. The residue was triturated in 5 mL of pentane, filtered on a sintered glass frit, rinsed with 2x5 mL of pentane and dried on the frit, yielding **5a** as a white powder (461 mg, yield 67%). Single crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a CH_2Cl_2 solution of **5b** at -20 °C.

Elemental Analysis: calculated for C₂₄H₃₈Cl₃N₂P₃Zr: C, 44.69; H, 5.94; N, 4.34. Found: C, 44.50; H, 5.93; N, 4.37.

UV-vis (CH₂Cl₂, 0.1 mm cell): $\lambda_1 = 280$ nm (shoulder, $\epsilon = 7200$ M⁻¹.cm⁻¹), $\lambda_2 = 306$ nm (shoulder, $\epsilon = 4600$ M⁻¹.cm⁻¹).

IR (ATR): 2970 (w), 2932 (w), 2873 (w), 1589 (m), 1483 (m), 1458 (w), 1457 (w), 1445 (w), 1389 (w), 1370 (w), 1237 (w), 1213 (s), 1174 (w), 1154 (w), 1090 (w), 1072 (w), 1034 (w), 1028 (w), 1002 (w), 959 (s), 931 (w), 910 (w), 872 (w), 836 (w), 813 (s), 789 (s), 755 (m), 735 (w), 703 (m), 697 (m), 667 (m), 629 (s), 541 (m), 506 (w), 499 (m), 486 (m) cm⁻¹.

¹**H NMR (500 MHz, CD₂Cl₂, 298 K):** δ = 7.35-7.29 (m, 8H, *o* of NPh overlapping with *m* of NPh), 7.15 (m, 2H, *p* of NPh), 2.95 (bs, 4H, CH of ^{*i*}Pr), 1.48 (m, 12H, CH₃ of ^{*i*}Pr), 1.31 (m, 12H, CH₃ of ^{*i*}Pr).

¹H-¹H COSY (500 MHz, CD₂Cl₂, 298 K): COSY was uninformative due to the overlap of signals in the aromatic region and the broadness of the signal of CH of ^{*i*}Pr.

¹H-¹³C HMBC (500 MHz / 126 MHz, CD₂Cl₂, 298 K)[selected cross-peaks]: 7.35-7.29 / 148.5 (*o* of NPh and/or *m* of NPh / *i* of NPh), 7.35-7.29 / 129.2 (*o* of NPh and/or *m* of NPh / *m* of NPh), 7.35-7.29 / 125.5 (*o* of NPh and/or *m* of NPh / *p* of NPh), 7.15 / 127.8 (*p* of NPh / *o* of NPh), 1.48 / 33.3 (CH₃ of ^{*i*}Pr / CH of ^{*i*}Pr), 1.48 / 18.2 (CH₃ of ^{*i*}Pr / CH₃ of ^{*i*}Pr), 1.31 / 33.3 (CH₃ of ^{*i*}Pr / CH of ^{*i*}Pr), 1.48 / 18.2 (CH₃ of ^{*i*}Pr / CH₃ of ^{*i*}Pr), 1.31 / 33.3 (CH₃ of ^{*i*}Pr / CH of ^{*i*}Pr).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K): $\delta = 148.5$ (m, *i* of NPh), 129.2 (m, *m* of NPh), 127.8 (m, *o* of NPh), 125.5 (m, *p* of NPh), 33.3 (bs, CH of ^{*i*}Pr), 19.4 (m, CH₃ of ^{*i*}Pr), 18.2 (m, CH₃ of ^{*i*}Pr).

³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K): $\delta = 56.9$ (d, ¹ $J_{PP} = 384$ Hz, $P^{i}Pr_{2}$), -223.0 (t, ¹ $J_{PP} = 384$ Hz, central P).

Figure S45: UV-vis (CH₂Cl₂, 0.1 mm cell)

Figure S46: IR (ATR)

Figure S47: ¹H NMR (500 MHz, CD₂Cl₂, 298 K)

Figure S48: ¹H-¹H COSY (500 MHz, CD₂Cl₂, 298 K)

Figure S49: ¹H-¹³C HMBC (500 MHz / 126 MHz, CD₂Cl₂, 298 K)

Figure S51: ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K)

Synthesis of complex 6a-Py

In an Ar glovebox, $[TiCl_2(N'Bu)(Py)_3]$ (1.28 g, 3.00 mmol) and proligand **2a** (2.06 g, 3.00 mmol) were suspended in toluene (50 mL). The reaction mixture was stirred for 2 h 30, during which it turned gradually yellow. It was filtered over a sintered glass frit, and the resulting solid was dissolved in CH₂Cl₂ and filtered over a pad of diatomaceous earth. The filtrate was evaporated to dryness outside of the glovebox. Upon returning to the glovebox, the resulting solid was stirred in 20 mL of pentane overnight. The suspension was filtered over a sintered glass frit, and the resulting solid was suspended in 5 mL of pentane and filtered, then dried on the frit. Complex **6a**-**py** was obtained as a yellow powder (1.21 g, yield 50%). Single crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a CH₂Cl₂ solution of **6a-Py** at -20 °C.

Elemental Analysis: calculated for C₄₅H₄₄ClN₄P₃Ti: C, 66.15; H, 5.43; N, 6.86. Found: C, 66.35; H, 5.49; N, 6.71.

UV-vis (CH₂Cl₂, 0.1 mm cell): $\lambda_1 = 277$ nm (shoulder, $\epsilon = 19000$ M⁻¹.cm⁻¹).

IR (ATR): 3057 (w), 2956 (w), 2911 (w), 1586 (m), 1481 (m), 1435 (m), 1347 (w), 1241 (m), 1226 (m), 1097 (m), 1068 (w), 1028 (w), 1005 (w), 973 (m), 800 (m), 790 (s), 746 (m), 737 (m), 714 (m), 698 (m), 685 (s), 631 (s), 612 (m), 560 (w), 535 (s), 517 (s), 508 (s), 477 (m), $449 (m) \text{ cm}^{-1}$.

¹**H NMR (500 MHz, CD₂Cl₂, 292 K):** $\delta = 9.17$ (m, 2H, H2 of Py), 7.68 (m, 1H, H4 of Py), 7.55 (m, 4H, o of PPh₂), 7.48 (m, 4H, o of NPh), 7.40 (m, 2H, p of PPh₂), 7.32-7.19 (m, 10H, o of PPh₂ overlapping with m of PPh₂ and H3 of Py), 7.16-7.09 (m, 6H, p of PPh₂ overlapping with m of NPh), 6.94 (m, 2H, p of NPh), 6.89 (m, 4H, m of PPh₂), 0.60 (s, 9H, CH₃ of N'Bu).

¹H-¹H COSY (500 MHz, CD₂Cl₂, 292 K)[selected cross-peaks]: 9.17 / 7.32-7.19 (H2 of Py / H3 of Py), 7.68 / 7.32-7.19 (H4 of Py / H3 of Py), 7.48 / 7.16-7.09 (*o* of NPh / *m* of NPh), 7.40 / 7.32-7.19 (*p* of PPh₂ / *o* of PPh₂ and/or *m* of PPh₂), 7.32-7.19 / 9.17 (H3 of Py / H2 of Py), 7.32-7.19 / 7.69 (H3 of Py / H4 of Py), 7.32-7.19 / 7.40 (*o* of PPh₂ and/or *m* of PPh₂ / *p* of PPh₂), 7.32-7.19 / 6.89 (*o* of PPh₂ / *m* of PPh₂), 7.16-7.09 / 7.48 (*m* of NPh / *o* of NPh), 7.16-7.09 / 6.94 (*m* of NPh / *p* of NPh), 7.16-7.09 / 6.89 (*p* of PPh₂ / *m* of PPh₂), 6.94 / 7.16-7.09 (*p* of NPh / *m* of NPh), 6.89 / 7.32-7.19 (*m* of PPh₂), 6.89 / 7.16-7.09 (*m* of PPh₂).

¹H-¹³C HMBC (500 MHz / 126 MHz, CD₂Cl₂, 292 K)[selected cross-peaks]: 9.17 / 152.0 (*H*2 of Py / *C*2 of Py), 9.17 / 137.6 (*H*2 of Py / *C*4 of Py), 9.17 / 123.7 (*H*2 of Py / *C*3 of Py), 7.68 / 152.0 (*H*4 of Py / *C*2 of Py), 7.55 / 132.4 (*o* of PPh₂ / *o* of PPh₂), 7.48 / 153.1 (*o* of NPh / *i* of NPh), 7.48 / 126.7 (*o* of NPh / *o* of NPh), 7.48 / 122.2 (*o* of NPh / *p* of NPh), 7.40 / 132.4 (*p* of PPh₂ / *o* of PPh₂), 7.32-7.19 / 152.0 (*H*3 of Py / *C*2 of Py), 7.16-7.09 / 153.1 (*m* of NPh / *i* of NPh), 7.16-7.09 / 132.9 (*p* of PPh₂ / *o* of PPh₂), 0.60 / 71.1 (*CH*₃ of N'Bu / *C*H₃ of N'Bu).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 292 K): $\delta = 153.1$ (m, *i* of NPh), 152.0 (s, C2 of Py), 137.6 (s, C4 of Py), 134.4 (m, *i* of PPh₂), 132.9 (m, *o* of PPh₂), 132.4 (m, *o* of PPh₂), 131.8 (s, *p* of PPh₂), 131.1 (s, *p* of PPh₂), 130.0 (m, *i* of PPh₂), 128.4 (m, *m* of PPh₂ overlapping with *m* of NPh), 128.3 (s, *m* of NPh overlapping with two *m* of PPh₂), 128.2 (m, *m* of PPh₂ overlapping with *m* of NPh), 126.7 (m, *o* of NPh), 123.7 (s, C3 of Py), 122.2 (s, *p* of NPh), 71.1 (s, C of N'Bu), 30.3 (s, CH₃ of N'Bu).

³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 292 K): $\delta = 34.5$ (d, ¹ $J_{PP} = 390$ Hz, PPh_2), -189.3 (t, ¹ $J_{PP} = 390$ Hz, central *P*).

Figure S52: UV-vis (CH₂Cl₂, 0.1 mm cell)

Figure S54: ¹H NMR (500 MHz, CD₂Cl₂, 292 K)

Figure S55: ¹H-¹H COSY (500 MHz, CD₂Cl₂, 292 K)(aromatic region)

Figure S56: ¹H-¹³C HMBC (500 MHz / 126 MHz, CD₂Cl₂, 292 K)

Figure S58: ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 292 K)

Synthesis of complex **6a**

In an Ar glovebox, complex **6a-Py** (0.37 g, 0.45 mmol) was suspended in toluene (40 mL) in a Schlenk flask. Outside of the box, the vessel was connected to a Schlenk line and the reaction mixture was heated until a light reflux was observed. An oil bubbler was used to prevent any build-up of pressure during heating. The solid dissolved gradually, and the solution became paler. The oil bubbler war closed and the reaction mixture was allowed to cool to room temperature. Pentane (100 mL) was added to precipitate a microcrystalline solid, which was filtered on a sintered glass frit in the glovebox. The solid was dried under vacuum at a Schlenk line, yielding **6a** as a pale yellow powder containing 100 mol% of toluene (320 mg, yield 74%). Single crystals suitable for X-ray diffraction were obtained by slow diffusion of pentane into a CH_2Cl_2 solution of **6a** at -20 °C.

Elemental Analysis: calculated for C₄₀H₃₉ClN₃P₃Ti(C₈H₈): C, 68.00; H, 5.71; N, 5.06. Found: C, 67.78; H, 6.10; N, 5.02.

UV-vis (CH₂Cl₂, 0.1 mm cell): $\lambda = 270$ nm (shoulder, $\epsilon = 17600$ M⁻¹.cm⁻¹).

IR (ATR): 3058 (w), 2960 (w), 2858 (w), 1586 (w), 1483 (m), 1433 (m), 1350 (w), 1237 (m), 1209 (m), 1188 (w), 1123 (w), 1095 (m), 1072 (w), 1071 (w), 1027 (w), 997 (w), 953 (m), 936 (m), 907 w), 890 (w), 819 (m), 802 (m), 753 (m), 743 (m), 731 (m), 718 (m), 686 (s), 649 (s), 617 (w), 559 (w), 540 (m), 522 (m), 510 (m), 485 (m), 466 (m), 443 (m), 441 (m), 419 (w), 414 (m) cm⁻¹.

¹**H NMR (500 MHz, CD₂Cl₂, 292 K):** $\delta = 7.73$ (m, 4H, o of PPh₂), 7.51 (m, 2H, p of PPh₂), 7.41 (m, 8H, o of PPh₂ overlapping with m of PPh₂), 7.32-7.23 (m, 4H, p of PPh₂ overlapping with toluene signal), 7.23-7.04 (m, 15H, o of NPh overlapping with toluene signal, m of PPh₂ and m of NPh), 6.94 (m, 2H, p of NPh), 0.57 (s, 9H, CH₃ of N^tBu).

¹H-¹H COSY (500 MHz, CD₂Cl₂, 292 K): COSY was uninformative due to the overlap of signals in the aromatic region.

¹H-¹³C HMBC (500 MHz / 126 MHz, CD₂Cl₂, 292 K)[selected cross-peaks]: 7.23-7.04 / 126.0 (*o* of NPh / *o* of NPh), 7.23-7.04 / 123.4 (*o* of NPh / *p* of NPh), 7.23-7.04 / 152.3 (*o* of NPh / *i* of NPh), 6.94 / 126.0 (*p* of NPh / *o* of NPh), 0.57 / 71.3 (CH₃ of N'Bu / C of N'Bu), 0.57 / 30.4 (CH₃ of N'Bu / CH₃ of N'Bu).

¹³C{¹H} NMR (126 MHz, CD₂C l₂, 292 K): $\delta = 152.3 \text{ (m, } i \text{ of NPh}), 133.1 \text{ (m, } o \text{ of PPh}_2), 132.7 \text{ (s, } p \text{ of PPh}_2), 132.5 \text{ (m, } i \text{ of PPh}_2), 132.1 \text{ (m, } o \text{ of PPh}_2), 131.9 \text{ (s, } p \text{ of PPh}_2), 129.1 \text{ (m, } m \text{ of PPh}_2), 128.7 \text{ (m, } m \text{ of PPh}_2), 128.5 \text{ (m, } m \text{ of NPh} \text{ overlapping with toluene signal}), 127.9 \text{ (m, } i \text{ of PPh}_2), 126.0 \text{ (m, } o \text{ of NPh}), 123.4 \text{ (s, } p \text{ of NPh}), 71.3 \text{ (s, } C \text{ of N'Bu}), 30.4 \text{ (s, } C \text{ H}_3 \text{ of N'Bu}).$

³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 292 K): $\delta = 37.4$ (d, ¹J_{PP} = 416 Hz, PPh₂), -179.2 (t, ¹J_{PP} = 416 Hz, central P).

Figure S59: UV-vis (CH₂Cl₂, 0.1 mm cell)

Figure S61: ¹H NMR (500 MHz, CD₂Cl₂, 292 K)(t: toluene)

Figure S63: ¹H-¹³C HMBC (500 MHz / 126 MHz, CD₂Cl₂, 292 K)

Figure S64: ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 292 K)(t: toluene)

Figure S65: ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 292 K)

Synthesis of complex 6b

In an Ar glovebox, $[TiCl_2(N'Bu)(Py)_3]$ (620 mg, 1.45 mmol) and proligand **2b** (827 mg, 1.52 mmol) were suspended in toluene (50 mL). The reaction mixture was filtered over a pad of diatomaceous earth. The filtrate was evaporated to dryness outside of the glovebox. Upon returning to the glovebox, the resulting solid was stirred in 30 mL of pentane for 5 min. The suspension was filtered over a sintered glass frit, and the resulting solid was suspended three times in pentane (5 mL) and filtered, then dried on the frit. Complex **6b** was obtained as a pale yellow powder (705 mg, yield 81%). Single crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a CH_2Cl_2 solution of **6b** at -20 °C.

Elemental Analysis: calculated for C₂₈H₄₇ClN₃P₃Ti: C, 55.87; H, 7.87; N, 6.98. Found: C, 55.86; H, 8.44; N, 7.25.

UV-vis (CH₂Cl₂, 0.1 mm cell): $\lambda_1 = 279$ nm (shoulder, $\epsilon = 5600$ M⁻¹.cm⁻¹), $\lambda_2 = 344$ nm (local maximum, $\epsilon = 800$ M⁻¹.cm⁻¹).

IR (ATR): 2962 (w), 2912 (w), 2872 (w), 1588 (m), 1485 (m), 1457 (m), 1385 (w), 1366 (w), 1348 (w), 1241 (m), 1229 (m), 1220 (m), 1169 (w), 1122 (w), 1070 (w), 1030 (w), 1026 (m), 955 (s), 902 (m), 879 (w), 820 (m), 804 (s), 746 (m), 696 (s), 683 (m), 655 (s), 642 (m), 622 (m), 606 (w), 536 (w), 529 (m), 476 (m) cm⁻¹.

¹H NMR (600 MHz, CD₂Cl₂, 298 K): $\delta = 7.35$ (m, 4H, o of NPh), 7.25 (m, 4H, m of NPh), 7.06 (m, 2H, p of NPh), 2.59 (m, 2H, CH of ⁱPr), 2.50 (m, 2H, CH of ⁱPr), 1.43 (m, 6H, CH₃ of ⁱPr overlapping with CH₃ of ⁱPr), 1.38 (m, 6H, CH₃ of ⁱPr overlapping with CH₃ of ⁱPr), 1.25 (m, 6H, CH₃ of ⁱPr), 1.04 (m, 6H, CH₃ of ⁱPr), 0.20 (s, 9H, CH₃ of NⁱBu).

¹H-¹H COSY (600 MHz, CD₂Cl₂, 298 K)[selected cross-peaks]: 7.35 / 7.25 (o of NPh / m of NPh), 7.25 / 7.35 (m of NPh / o of NPh), 7.25 / 7.06 (m of NPh / p of NPh), 7.06 / 7.25 (p of NPh / m of NPh), 2.50 / 1.43 (CH of ⁱPr / CH₃ of ⁱPr), 2.50 / 1.25 (CH of ⁱPr / CH₃ of ⁱPr), 1.43 / 2.50 (CH₃ of ⁱPr), 2.50 / 1.25 (CH of ⁱPr), 1.43 / 2.50 (CH₃ of ⁱPr / CH of ⁱPr), 1.25 / 2.50 (CH₃ of ⁱPr / CH of ⁱPr). Note: cross peaks between CH of ⁱPr at 2.59 ppm and CH₃ of ⁱPr at 1.38 and 1.04 ppm were observed, but only under the diagonal.

¹H-¹³C HMBC (600 MHz / 151 MHz, CD₂Cl₂, 298 K)[selected cross-peaks]: 7.35 / 153.3 (o of NPh / i of NPh), 7.35 / 127.1 (o of NPh / o of NPh), 7.35 / 124.0 (o of NPh / p of NPh), 7.26 / 153.3 (m of / i of NPh), 7.26 / 128.9 (m of NPh / m of NPh), 7.06 / 127.1 (p of NPh / o of NPh), 2.59 / 19.5 (CH of ⁱPr / CH₃ of ⁱPr), 2.59 / 17.2 (CH of ⁱPr / CH₃ of ⁱPr), 2.50 / 18.1 (CH of ⁱPr / CH₃ of ⁱPr), 2.50 / 17.9 (CH of ⁱPr / CH₃ of ⁱPr), 1.43 / 30.4 (CH₃ of ⁱPr / CH of ⁱPr), 1.43 / 17.9 (CH₃ of ⁱPr), 2.50 / 17.9 (CH of ⁱPr / CH₃ of ⁱPr), 1.38 / 17.2 (CH of ⁱPr / CH₃ of ⁱPr), 1.25 / 30.4 (CH₃ of ⁱPr), 1.38 / 31.4 (CH₃ of ⁱPr / CH of ⁱPr), 1.38 / 17.2 (CH₃ of ⁱPr), 1.25 / 30.4 (CH₃ of ⁱPr / CH of ⁱPr), 1.25 / 18.1 (CH₃ of ⁱPr), 1.04 / 31.4 (CH₃ of ⁱPr), 0.20 / 70.1 (CH₃ of ⁱPr), 0.20 / 30.2 (CH₃ of N'Bu / C of N'Bu), 0.20 / 30.2 (CH₃ of N'Bu / CH₃ of N'Bu).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 298 K): δ = 153.3 (m, *i* of NPh), 128.9 (s, *m* of NPh), 127.1 (m, *o* of NPh), 124.0 (m, *p* of NPh), 70.1 (s, *C* of N'Bu), 31.4 (m, *C*H of ^{*i*}Pr), 30.4 (m, *C*H of ^{*i*}Pr), 30.2 (s, *C*H₃ of N'Bu), 19.5 (m, *C*H₃ of ^{*i*}Pr), 18.1 (m, *C*H₃ of ^{*i*}Pr), 17.9 (m, *C*H₃ of ^{*i*}Pr), 17.2 (m, *C*H₃ of ^{*i*}Pr).

³¹P{¹H} NMR (243 MHz, CD₂Cl₂, 298 K): $\delta = 67.7$ (d, ¹ $J_{PP} = 474$ Hz, $P^{i}Pr_{2}$), -241.0 (t, ¹ $J_{PP} = 474$ Hz, central P).

Figure S66: UV-vis (CH₂Cl₂, 0.1 mm cell)

Figure S67: IR (ATR)

Figure S68: ¹H NMR (600 MHz, CD₂Cl₂, 298 K)(p: pentane)

Figure S69: ¹H-¹H COSY (600 MHz, CD₂Cl₂, 298 K)(aromatic region)

Figure S70: ¹H-¹³C HMBC (600 MHz / 151 MHz, CD₂Cl₂, 298 K)(whole spectrum)

Figure S71: ¹H-¹³C HMBC (600 MHz / 151 MHz, CD₂Cl₂, 298 K)(zoom)

Figure S72: ¹H-¹³C HMBC (600 MHz / 151 MHz, CD₂Cl₂, 298 K)(zoom)

Figure S73: ¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 298 K)(p: pentane)

Figure S74: ³¹P{¹H} NMR (243 MHz, CD₂Cl₂, 298 K)

Synthesis of complex 7b

In an Ar glovebox, [Au(THT)Cl] (240 mg, 0.750 mmol) and complex **6b** (451 mg, 0.750 mmol) were suspended in CH_2Cl_2 and the reaction mixture was stirred for 5 min, then evaporated to dryness outside of the glovebox. Upon returning to the glovebox, the resulting solid was stirred in 10 mL of pentane for 15 min. The suspension was filtered over a sintered glass frit, and the resulting solid was suspended in 5 mL of pentane and filtered, then dried on the frit. Analysis of the solid by ¹H NMR spectroscopy revealed the presence of residual THT, pentane and CH_2Cl_2 . The solid was heated under vacuum in a warm bath (40 °C) for 1 h, thus drastically reducing the content of pentane and CH_2Cl_2 , but not THT. The solid was stirred in 5 mL of pentane for 1 h, filtered over a sintered glass frit and dried on the frit, affording complex **7b** was obtained as a white powder (300 mg, yield 48%). The moderate yield is essentially due to the solubility of **7b** in pentane, since it is the only observable product by ¹H and ³¹P NMR spectroscopy when the reaction is performed in situ on an analytical scale. Single crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a CH_2Cl_2 solution of **7b** at -20 °C. Complex **7b** slowly degrades in solutions of CD_2Cl_2 or C_6D_6 at room temperature, but can be stored for several months in the solid state at -20 °C under argon without significant degradation.

Elemental Analysis: calculated for $C_{28}H_{47}AuCl_2N_3P_3Ti$: C, 40.31; H, 5.68; N, 5.04. Found: C, 40.21; H, 5.60; N, 4.86.

UV-vis (CH₂Cl₂, 0.1 mm cell): $\lambda_1 = 280$ nm (shoulder, $\epsilon = 7500$ M⁻¹.cm⁻¹), $\lambda_2 = 377$ nm (shoulder, $\epsilon = 900$ M⁻¹.cm⁻¹).

IR (ATR): 3056 (w), 1587 (w), 1482 (m), 1433 (m), 1329 (w), 1306 (w), 1265 (w), 1214 (m), 1210 (m), 1189 (w), 1095 (m), 1093 (m), 1073 (w), 1026 (w), 1005 (w), 997 (w), 964 (s), 910 (w), 802 (m), 793 (s), 790 (s), 740 (s), 716 (m), 691 (m), 684 (s), 631 (s), 613 (m), 557 (m), 533 (s), 505 (vs), 491 (s), 459 (m), 423 (w) cm⁻¹.

¹**H NMR (600 MHz, CD₂Cl₂, 298 K):** $\delta = 7.36 \text{ (m, 4H, } o \text{ of NPh}\text{)}, 7.31 \text{ (m, 4H, } m \text{ of NPh}\text{)}, 7.14 \text{ (m, 2H, } p \text{ of NPh}\text{)}, 2.90 \text{ (bs, 2H, } CH \text{ of }^{i}\text{Pr}\text{)}, 2.67 \text{ (m, 2H, } CH \text{ of }^{i}\text{Pr}\text{)}, 1.74 \text{ (bs, 6H, } CH_3 \text{ of }^{i}\text{Pr}\text{)}, 1.50 \text{ (m, 6H, } CH_3 \text{ of }^{i}\text{Pr}\text{)}, 1.35 \text{ (m, 6H, } CH_3 \text{ of }^{i}\text{Pr}\text{)}, 1.20 \text{ (m, 6H, } CH_3 \text{ of }^{i}\text{Pr}\text{)}, 0.08 \text{ (s, 9H, } CH_3 \text{ of } N^{i}\text{Bu}\text{)}.$

¹H-¹H COSY (600 MHz, CD₂Cl₂, 298 K)[selected cross-peaks]: 7.36 / 7.31 (o of NPh / m of NPh), 7.31 / 7.36 (m of NPh / o of NPh), 7.31 / 7.14 (m of NPh / p of NPh), 7.14 / 7.31 (p of NPh / m of NPh). Note: cross peaks between CH of ^{*i*}Pr and CH₃ of ^{*i*}Pr were observed, but only under the diagonal.

¹H-¹³C HMBC (600 MHz / 151 MHz, CD₂Cl₂, 298 K)[selected cross-peaks]: 7.36 / 127.2 (*o* of NPh / *o* of NPh), 7.35 / 125.2 (*o* of NPh / *p* of NPh), 7.31 / 150.7 (*m* of NPh / *i* of NPh), 7.31 / 129.5 (*m* of NPh / *m* of NPh), 7.14 / 127.2 (*p* of NPh / *o* of NPh), 1.35 / 18.1 (CH₃ of ^{*i*}Pr / CH₃ of ^{*i*}Pr), 0.08 / 73.1 (CH₃ of N'Bu / C of N'Bu), 0.08 / 29.7 (CH₃ of N'Bu / CH₃ of N'Bu).

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 298 K): $\delta = 150.7$ (bs, *i* of NPh), 129.5 (bs, *m* of NPh), 127.2 (bs, *o* of NPh), 125.2 (bs, *p* of NPh), 73.1 (bs, *C* of N'Bu), 31.5 (bs, *C*H of ^{*i*}Pr), 30.2 (bs, *C*H of ^{*i*}Pr), 29.7 (bs, *C*H₃ of N'Bu), 20.0 (m, *C*H₃ of ^{*i*}Pr), 18.1 (m, *C*H₃ of ^{*i*}Pr), 17.7 (m, two overlapping CH₃ of ^{*i*}Pr).

³¹P{¹H} NMR (243 MHz, CD₂Cl₂, 298 K): $\delta = 73.7$ (d, ¹ $J_{PP} = 347$ Hz, $P^i Pr_2$), -160.4 (t, ¹ $J_{PP} = 347$ Hz, central P).

Figure S75: UV-vis (CH₂Cl₂, 0.1 mm cell)

Figure S76: IR (ATR)

Figure S77: ¹H NMR (600 MHz, CD₂Cl₂, 298 K)(p: pentane; i: impurity)

Figure S78: ¹H-¹H COSY (600 MHz, CD₂Cl₂, 298 K)(aromatic region)

Figure S79: ¹H-¹³C HMBC (600 MHz / 151 MHz, CD₂Cl₂, 298 K)(whole spectrum)

Figure S80: ¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 298 K)(p: pentane; i: impurity)

Figure S81: ³¹P{¹H} NMR (243 MHz, CD₂Cl₂, 298 K)(i: impurity)

Synthesis of complex 8b

In an Ar glovebox, [CuBr] (36 mg, 0.25 mmol) and complex **6b** (151 mg, 0.250 mmol) were suspended in CH_2Cl_2 and the reaction mixture was stirred for 10 min, during which it turned orange-brown. A small amount of white solid was removed by filtration over a pad of diatomaceous earth. The reaction mixture was then evaporated to dryness outside of the glovebox. Upon returning to the glovebox, the resulting solid was stirred in 10 mL of pentane, and the suspension was filtered over a sintered glass frit. The resulting solid was suspended three times in pentane (5 mL) and filtered, then dried on the frit. Complex **8b** was obtained as a light brown powder containing 50 mol% of pentane (152 mg, yield 78%). Single crystals suitable for X-ray diffraction were grown by slow diffusion of pentane into a CH_2Cl_2 solution of **8b** at -20 °C.

Elemental Analysis: calculated for C₂₈H₄₇BrClCuN₃P₃Ti(C₅H₁₂)_{0.5}: C, 46.88; H, 6.84; N, 5.38. Found: C, 46.60; H, 7.30; N, 5.39.

UV-vis (CH₂Cl₂, 0.1 mm cell): $\lambda_1 = 280$ nm (shoulder, $\epsilon = 8100$ M⁻¹.cm⁻¹), $\lambda_2 = 366$ nm (shoulder, $\epsilon = 1000$ M⁻¹.cm⁻¹).

IR (ATR): 2960 (w), 2915 (w), 2866 (w), 1589 (m), 1483 (m), 1457 (b, w), 1446 (w), 1386 (w), 1364 (w), 1350 (w), 1248 (m), 1222 (s), 1132 (w), 1071 (w), 1036 (w), 1027 (m), 1004 (w), 960 (s), 903 (m), 882 (w), 873 (w), 808 (s), 743 (w), 695 (m), 677 (m), 651 (m), 625 (m), 605 (w), 527 (m), 511 (m), 497 (m), 483 (m), 461 (m) cm⁻¹.

¹H NMR (500 MHz, CD₂Cl₂, 290 K): $\delta = 7.37$ (m, 4H, o of NPh), 7.30 (m, 4H, m of NPh), 7.13 (m, 2H, p of NPh), 2.81-2.65 (m, 4H, two overlapping CH of ^{*i*}Pr), 1.60 (m, 6H, CH₃ of ^{*i*}Pr), 1.49 (m, 6H, CH₃ of ^{*i*}Pr), 1.34 (m, 6H, CH₃ of ^{*i*}Pr overlapping with pentane signal), 1.10 (m, 6H, CH₃ of ^{*i*}Pr), 0.22 (s, 9H, CH₃ of N'Bu).

¹H-¹H COSY (500 MHz, CD₂Cl₂, 290 K)[selected cross-peaks]: 7.37 / 7.30 (o of NPh / m of NPh), 7.30 / 7.37 (m of NPh / o of NPh), 7.30 / 7.13 (m of NPh / p of NPh), 7.13 / 7.30 (p of NPh / m of NPh). Note: cross peaks between CH of ^{*i*}Pr and CH₃ of ^{*i*}Pr were observed, but only under the diagonal.

¹H-¹³C HMBC (500 MHz / 126 MHz, CD₂Cl₂, 290 K)[selected cross-peaks]: 7.37 / 151.5 (*o* of NPh / *i* of NPh), 7.37 / 126.8 (*o* of NPh / *o* of NPh), 7.37 / 125.0 (*o* of NPh / *p* of NPh), 7.30 / 151.5 (*m* of NPh / *i* of NPh), 7.30 / 129.4 (*m* of NPh / *m* of NPh), 7.30 / 125.0 (*m* of NPh / *p* of NPh), 7.13 / 126.9 (*p* of NPh / *o* of NPh), 2.81-2.65 / 19.8 (CH of ⁱPr / CH₃ of ⁱPr), 1.60 / 30.5 (CH₃ of ⁱPr / CH of ⁱPr), 1.60 / 18.0 (CH₃ of ⁱPr / CH₃ of ⁱPr), 1.49 / 31.2 (CH₃ of ⁱPr / CH of ⁱPr), 1.49 / 17.6 (CH₃ of ⁱPr / CH₃ of ⁱPr), 1.34 / 30.4 (CH₃ of ⁱPr / CH of ⁱPr), 1.34 / 19.0 (CH₃ of ⁱPr / CH₃ of ⁱPr), 1.10 / 19.8 (CH₃ of ⁱPr / CH₃ of ⁱPr), 0.22 / 72.3 (CH₃ of NⁱBu / C of NⁱBu), 0.22 / 30.0 (CH₃ of NⁱBu / CH₃ of NⁱBu).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 290 K): δ = 151.5 (bs, *i* of NPh), 129.4 (s, *m* of NPh), 126.9 (m, *o* of NPh), 125.0 (s, *p* of NPh), 72.3 (s, *C* of N'Bu), 31.2 (m, *C*H of ^{*i*}Pr), 30.5 (m, *C*H of ^{*i*}Pr), 30.0 (s, *C*H₃ of N'Bu), 19.8 (m, *C*H₃ of ^{*i*}Pr), 19.0 (m, *C*H₃ of ^{*i*}Pr), 18.0 (m, *C*H₃ of ^{*i*}Pr), 17.6 (m, *C*H₃ of ^{*i*}Pr).

³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 290 K): $\delta = 70.2$ (d, ¹ $J_{PP} = 414$ Hz, $P^{i}Pr_{2}$), -212.8 (bs, central P).

Figure S82: UV-vis (CH₂Cl₂, 0.1 mm cell)

Figure S83: IR (ATR)

Figure S84: ¹H NMR (500 MHz, CD₂Cl₂, 290 K)(p: pentane)

Figure S85: ¹H-¹H COSY (500 MHz, CD₂Cl₂, 290 K)(aromatic region)

Figure S86: ¹H-¹³C HMBC (500 MHz / 126 MHz, CD₂Cl₂, 290 K)(whole spectrum)

Figure S87: ¹H-¹³C HMBC (500 MHz / 126 MHz, CD₂Cl₂, 290 K)(zoom)

Figure S88: ¹H-¹³C HMBC (500 MHz / 126 MHz, CD₂Cl₂, 290 K)(zoom)

Figure S89: ¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 290 K)(p: pentane)

Figure S90: ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 290 K)

Synthesis of complex 9b

In an Ar glovebox, proligand **2b** (200 mg, 0.33 mmol) and [CuBr] (48 mg, 0.33 mmol) were suspended in toluene (25 mL). The resulting beige slurry was stirred at room temperature for 5 days. Volatiles were removed under vacuum outside of the glovebox. The resulting beige solid was suspended in 20 mL of CH_2Cl_2 and the suspension was filtered over a pad of diatomaceous earth. The filtrate was evaporated to dryness. The solid residue was stirred in 20 mL of pentane overnight. Upon returning in the glovebox, the yellow slurry was filtered over a sintered glass frit and dried under vacuum, yielding complex **9b** as a white powder containing 80 mol% of pentane (121 mg, yield 67%). Single crystals suitable for X-ray diffraction were obtained by slow diffusion of pentane into a CH_2Cl_2 solution of **9b** at -20 °C.

Elemental Analysis: calculated for $C_{48}H_{76}Cu_2N_4P_6(C_5H_{12})_{0.8}$: C, 57.84; H, 7.99; N, 5.19. Found: C, 57.42; H, 8.13; N, 4.95.

UV-vis (Toluene, 10 mm cell): $\lambda_1 = 339$ nm (local maximum, $\epsilon = 16000$ M⁻¹.cm⁻¹).

UV-vis (CH₂Cl₂, 10 mm cell): $\lambda_1 = 269$ nm (local maximum, $\epsilon = 43000$ M⁻¹.cm⁻), 337 nm (local maximum, $\epsilon = 18000$ M⁻¹.cm⁻¹).

UV-vis (THF, 10 mm cell): $\lambda_1 = 264$ nm (local maximum, $\epsilon = 63000$ M⁻¹.cm⁻), 339 nm (local maximum, $\epsilon = 19000$ M⁻¹.cm⁻¹).

IR (ATR): 2957 (w), 2925 (w), 2866 (w), 1585 (m), 1557 (w), 1485 (s), 1472 (s), 1386 (w), 1335 (s), 1272 (m), 1255 (s), 1235 (s), 1171 (m), 1147 (w), 1088 (b, w), 1069 (m), 1051 (m), 1030 (s), 1008 (m), 1001 (m), 968 (s), 923 (w), 900 (w), 875 (m), 800 (s), 746 (s), 694 (s), 683 (s), 673 (s), 637 (m), 621 (m), 562 (w), 524 (s), 496 (s) cm⁻¹.

¹**H NMR (500 MHz, CD₂Cl₂, 298 K):** δ = 7.05 (m, 8H, *m* of NPh), 6.86 (m, 8H, *o* of NPh), 6.71 (m, 4H, *p* of NPh), 2.62 (m, 8H, two overlapping CH of ^{*i*}Pr), 1.29 (m, 48H, CH₃ of ^{*i*}Pr overlapping with pentane signal).

¹H-¹H COSY (500 MHz, CD₂Cl₂, 298 K)[selected cross-peaks]: 7.05 / 6.86 (m of NPh / o of NPh), 7.05 / 6.71 (m of NPh / p of NPh), 6.86 / 7.05 (o of NPh / m of NPh), 6.71 / 7.05 (p of NPh / m of NPh). Note: cross peaks between CH of ^{*i*}Pr and CH₃ of ^{*i*}Pr were observed, but only under the diagonal.

¹H-¹³C HMBC (500 MHz / 126 MHz, CD₂Cl₂, 298 K)[selected cross-peaks]: 7.05 / 151.9 (*m* of NPh / *i* of NPh), 7.05 / 129.0 (*m* of NPh / *m* of NPh), 6.86 / 125.0 (*o* of NPh / *o* of NPh), 6.86 / 119.1 (*o* of NPh / *p* of NPh), 6.71 / 125.0 (*p* of NPh / *o* of NPh), 2.60 / 18.1 (CH of ^{*i*}Pr / CH₃ of ^{*i*}Pr), 1.30 / 32.2 (CH₃ of ^{*i*}Pr / CH of ^{*i*}Pr), 1.30 / 18.3 (CH₃ of ^{*i*}Pr / CH₃ of ^{*i*}Pr).

¹³C{¹H} NMR (126 MHz, CD₂Cl₂, 298 K): $\delta = 151.9$ (m, *i* of NPh), 129.0 (s, *m* of NPh), 125.0 (m, *o* of NPh), 119.1 (s, *p* of NPh), 32.2 (m, CH of ^{*i*}Pr), 31.9 (m, CH of ^{*i*}Pr), 18.3 (m, CH₃ of ^{*i*}Pr).

³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K): $\delta = 59.2$ (broad d, ¹J_{PP} = 349 Hz, $P^{i}Pr_{2}$), -146.2 (t, ¹J_{PP} = 349 Hz, central P).

Figure S91: UV-vis (Toluene, 10 mm cell)

Figure S92: UV-vis (CH₂Cl₂, 10 mm cell)

Figure S93: UV-vis (THF, 10 mm cell)

Figure S94: Emission spectrum in CH₂Cl₂ at 298 K (Excitation wavelength: 335 nm)

Figure S95: Emission spectrum in THF at 298 K (Excitation wavelength: 335 nm)

Figure S96: Solid state emission spectrum at 298 K (Excitation wavelength: 335 nm)

Figure S97: IR (ATR)

Figure S98: ¹H NMR (500 MHz, CD₂Cl₂, 298 K)(p: pentane; t: toluene)

Figure S99: ¹H NMR (500 MHz, CD₂Cl₂, 250-298 K)

Figure S100: ¹H-¹H COSY (500 MHz, CD₂Cl₂, 298 K)

Figure S101: ¹H-¹³C HMBC (500 MHz / 126 MHz, CD₂Cl₂, 298 K)(whole spectrum)

S78

Figure S103: ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K)

Figure S104: ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 250-298 K)

Figure S105: cyclic voltammograms of 9b and 2b (THF 0.1M NaBPh₄; concentration: 3×10^{-3} M; working electrode: glassy carbon $\emptyset = 3$ mm; scan rate = 100 mV s⁻¹)

III. Attempted syntheses and failed experiments

Attempted synthesis of 4b

In an Ar glovebox, complex **3a** (200 mg, 0.35 mmol) and $[Cp_2Fe][BPh_4]$ (178 mg, 0.35 mmol) were mixed in THF (3 mL). The reaction mixture turned quickly red. Sodium 3,5-dimethylphenolate etherate was added and the mixture was stirred for 5 min. The resulting solution was evaporated to dryness and the residue was dissolved in 3 mL of CH_2Cl_2 , filtered over a plug of diatomaceous earth, and an orange solid was precipitated by addition to 50 mL of pentane under vigorous agitation. The resulting solid was dissolved in 3 mL of CH_2Cl_2 and the precipitation procedure was repeated. The resulting solid was extracted with pentane and the supernatant solution was discarded. A gum was obtained (242 mg), which could not be purified further.

Figure S106: ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K)

Reaction of 4a with ferrocene carboxaldehyde

In an Ar glovebox, complex **4a** (31.2 mg, 0.025 mmol) and FcCHO (5.4 mg, 0.025 mmol) were mixed in CD_2Cl_2 . The mixture was analysed by ¹H and ³¹P NMR spectroscopy.

Figure S108: ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K)

Attempted syntheses of the Zr analogues of **4a**

In an Ar glovebox, complexes 5 (5a: 380 mg, 0.46 mmol; 5b; 323 mg, 0.50 mmol) were dissolved in CH_2Cl_2 and sodium 2,6-dimethylphenate etherate (2.0 eq) was added in 6 portions. The mixture was stirred in the glovebox for at least 15 mins and evaporated to dryness. The residue was triturated in pentane and dried under vacuum yielding white powders (260 and 245 mg, respectively). The ³¹P{¹H} NMR spectra revealed the presence of impurities that could not be removed.

Figure S109: ¹H NMR (500 MHz, CD₂Cl₂, 298 K) of experiment a (NB: the ³¹P{¹H} NMR spectrum was uninformative due to the fluxionality of the signal of the lateral phosphorus)

Figure S110: ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K) of experiment b

Reaction of 5a with ferrocene carboxaldehyde

In an Ar glovebox, complex **5a** (32.3 mg, 0.05 mmol) and FcCHO (10.7 mg, 0.05 mmol) were mixed in C₆D₅Br. The mixture was analysed by ¹H and ³¹P NMR spectroscopy, no reaction was observed. The mixture was heated to 60 °C overnight, resulting in product degradation.

Figure S111: ³¹P{¹H} NMR (202 MHz, C₆D₅Br, 298 K)

Attempted synthesis of 7a

In an Ar glovebox, complex **6a** (41.5 mg, 0.05 mmol) and [Au(THT)Cl] (16 mg, 0.05 mmol) were mixed in CD_2Cl_2 . The reaction mixture was analysed by ¹H and ³¹P{¹H} NMR spectroscopy, showing only the presence of the reactants.

Figure S112: ¹H NMR (500 MHz, CD₂Cl₂, 298 K)

Figure S113: ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K)

Attempted double metalation of **6b** with CuBr

In an Ar glovebox, complex **6b** (30.1 mg, 0.05 mmol) and CuBr (14.4 mg, 0.1 mmol) were mixed in CD_2Cl_2 . A small amount of white solid (probably CuBr) remained insoluble. The reaction mixture was analysed by ¹H and ³¹P{¹H} NMR spectroscopy, showing only the presence of complex **7b**.

Figure S114: ¹H NMR (500 MHz, CD₂Cl₂, 298 K)

Figure S115: ³¹P{¹H} NMR (202 MHz, CD₂Cl₂, 298 K)

Reaction of 2a and 2b' with [Au(THT)Cl]

In an Ar glovebox, complexes 2 (0.05 mmol) and [Au(THT)Cl] (16.0 mg, 0.1 mmol) were mixed in C_6D_6 . For 2a, the reaction mixture was filtered over a plug of diatomaceous earth placed over a borosilicate fibre filter. Both mixtures were analysed by ¹H and ³¹P{¹H} NMR spectroscopy, showing a complex mixture (only the ³¹P{¹H} spectrum are shown).

Figure S116: ³¹P{¹H} NMR (202 MHz, C₆D₆, 298 K)

Attempted synthesis of **9a**

In an Ar glovebox, complex **2a** (68 mg, 0.1 mmol) and CuBr (14.4 mg, 0.1 mmol) were mixed in C_6D_6 and the mixture was stirred for 4 days, after which it was filtered over diatomaceous earth placed over a borosilicate fibre filter. The orange solution was analysed by ¹H and ³¹P{¹H} NMR spectroscopy, showing a complex mixture (only the ¹H NMR spectrum is shown). The plug of diatomaceous earth was extracted with d₈-THF. No product could be detected by ¹H and ³¹P{¹H} NMR spectroscopy.

IV. Computational studies

Computational details

All calculations were performed using the Gaussian 16¹⁴ package and the B3PW91 hybrid functional¹⁵ on the real experimental systems. The gold and copper atoms were described with the LANL2DZ¹⁶ pseudopotential. The 6-31+G** basis set were employed for all other atoms. Optimizations were carried out without any symmetry restrictions taking into solvent effect

¹⁴ Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

¹⁵ a) A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652; b) J. P. Perdew, in *Electronic Structure of Solids '91*, Ed. P. Ziesche and H. Eschrig, Akademie Verlag, Berlin, 1991, 11.

¹⁶ P. J. Hay and W. R. Wadt, J. Chem. Phys. 1985, 82, 299-310.

(Toluene) by means of the continuum standard solvation PCM model.¹⁷All stationary points computed were fully optimized. All total energies and Gibbs free energies have been zero-point energy (ZPE) and temperature corrected using unscaled density functional frequencies.

ELF Bonding basins

Figure S118: ELF bonding basins

AIM analysis

In order to gain insight into the nature of the chemical bonding we performed Atoms In Molecules analysis (QTAIM)¹⁸ using AIMALL¹⁹ software and Electronic Localized Function analysis using TopChem package.²⁰ The Electrostatic Potential Surface (ESP) map and NCIPLOT have been plotted with VMD software.²¹

¹⁷ J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.* 2005, 105, 2999-3094.

¹⁸ a) R. F. W. Bader, *Chem. Rev.* **1991**, *91*, 893-928; b) R. F. W. Bader, in Atoms in Molecules, a Quantum Theory, Oxford University Press, New York, 1990.

¹⁹ AIMAll (version 17.11.14B), T-A. Keith, TK Gristmill Software, Overland Park KS, USA, 2014.

²⁰ D. Kozlowski and J. Pilmé, J. Comput. Chem. 2011, 32, 3207-3217.

²¹ a) W. Humphrey, A. Dalke and K. Schulten, *J. Mol. Graphics* **1996**, *14*, 33-38. b) **S91** http://www.ks.uiuc.edu/Research/vmd/.

The AIM analysis was computed at PCM-(Toluene)-B3PW91-D3/def2-SVP-RIFIT(Au or Cu), 6-31+G**(other atoms)//PCM(Toluene)-B3PW91-D3/LANL2DZ(Au), 6-31+G**(other atoms) level of theory. Values are expressed in e.Å⁻³ (ρ); e.Å⁻⁵ ($\nabla^2 \rho$); $E_{\rm h}$.Å⁻³ (G, V, H); $E_{\rm h}$.e⁻¹ (G/ ρ , H/ ρ); ε and DI are dimensionless. Values in grey were exported to Table 3 in the paper.

				_		r			
6a	ρ	$\nabla^2 \rho$	3	DI(A B)	G	V	н	G/ρ	Η/ρ
N2–Ti	1.458	18.195	0.021	1.759	2.220	-3.158	-0.945	1.518	-0.645
N3–Ti	0.614	8.266	0.119	0.512	0.661	-0.749	-0.088	1.079	-0.138
N3-P3	1.221	13.278	0.101	0.777	1.917	-2.909	-0.985	1.57	-0.809
N1-P1	1.215	13.134	0.116	0.799	1.903	-2.888	-0.985	1.563	-0.807
N1–Ti	0.607	8.338	0.102	0.516	0.668	-0.749	-0.081	1.093	-0.134
P2–P3	0.844	-4.386	0.254	1.011	0.236	-0.776	-0.540	0.278	-0.642
P2-P1	0.857	-4.531	0.302	1.022	0.243	-0.810	-0.567	0.287	-0.658
P2–Ti	0.115	0.940	2.527	0.085	0.074	-0.081	-0.007	0.647	-0.071
Cl–Ti	0.459	5.254	0.005	0.543	0.418	-0.472	-0.054	0.923	-0.117
6b	ρ	$\nabla^2 \rho$	3	DI(A B)	G	V	н	G/ρ	Η/ρ
N2–Ti	1.458	18.387	0.012	1.753	2.220	-3.158	-0.931	1.526	-0.642
N1-P1	1.201	13.013	0.138	0.802	1.876	-2.841	-0.965	1.557	-0.8
N1–Ti	0.641	8.676	0.112	0.534	0.709	-0.810	-0.101	1.105	-0.157
N3–Ti	0.641	8.555	0.118	0.53	0.702	-0.803	-0.101	1.09	-0.159
N3-P3	1.208	13.230	0.119	0.797	1.890	-2.848	-0.958	1.567	-0.798
P1–P2	0.844	-4.362	0.269	1.042	0.223	-0.749	-0.526	0.263	-0.626
P2–P3	0.837	-4.241	0.247	1.033	0.216	-0.736	-0.513	0.262	-0.617
Cl–Ti	0.459	5.278	0.005	0.539	0.425	-0.479	-0.054	0.928	-0.117

Α'	ρ	$\nabla^2 \rho$	3	DI(A B)	G	v	Η	G/p	Η/ρ
C1-P1	1.161	-4.844	0.05	0.831	0.844	-2.025	-1.181	0.724	-1.016
C2–P3	1.181	-4.145	0.046	0.828	0.911	-2.112	-1.201	0.774	-1.02
P2–P3	0.857	-4.579	0.311	1.044	0.256	-0.830	-0.574	0.298	-0.670
P2–P1	0.837	-4.265	0.257	1.027	0.236	-0.776	-0.540	0.286	-0.644
С2–В	0.918	1.012	0.047	0.395	0.891	-1.714	-0.823	0.968	-0.892
C1–B	0.945	1.470	0.064	0.394	0.945	-1.782	-0.844	1.000	-0.891
B–C3	1.066	-0.313	0.056	0.425	0.992	-2.004	-1.012	0.931	-0.951
B–C4	1.059	-0.193	0.017	0.419	0.992	-1.998	-1.006	0.937	-0.950

7a	ρ	$\nabla^2 \rho$	3	DI(A B)	G	V	Η	G/p	Η/ρ
N1–Ti	1.491	18.460	0.03	1.749	2.274	-3.253	-0.979	1.524	-0.658
N3–Ti	0.607	8.169	0.116	0.505	0.655	-0.736	-0.081	1.072	-0.132
N1–Ti	0.601	8.290	0.101	0.503	0.655	-0.729	-0.074	1.093	-0.123
N3-P3	1.228	14.218	0.061	0.789	1.971	-2.949	-0.979	1.608	-0.796
P2–P3	0.790	-3.109	0.197	0.815	0.223	-0.668	-0.445	0.284	-0.559
P2-P1	0.790	-3.253	0.258	0.871	0.223	-0.668	-0.445	0.280	-0.567
N1-P1	1.215	13.688	0.095	0.805	1.930	-2.902	-0.972	1.586	-0.798
Cl–Ti	0.466	5.446	0.019	0.544	0.439	-0.493	-0.061	0.936	-0.123
P2–Au	0.803	4.868	0.608	1.296	0.722	-1.100	-0.378	0.896	-0.472
Au–Cl	0.763	12.339	0.202	0.921	1.032	-1.201	-0.169	1.357	-0.220
P2–Ti	0.121	0.988	0.518	0.086	0.081	-0.088	-0.007	0.631	-0.074

<u>Charge analysis</u>

9b	ρ	$ abla^2 ho$	3	DI(A B)	G	v	Н	G/p	Η/ρ
P2–P3	0.769	-3.350	0.180	0.910	0.169	-0.567	-0.398	0.215	-0.519
P2–Cu1	0.547	4.338	0.039	0.509	0.520	-0.742	-0.216	0.957	-0.399
P5-P6	0.769	-3.350	0.180	0.910	0.169	-0.567	-0.398	0.215	-0.519
P4–P5	0.817	-3.928	0.257	0.986	0.196	-0.661	-0.472	0.238	-0.574
P1–P2	0.817	-3.928	0.257	0.986	0.196	-0.661	-0.472	0.238	-0.574
N2-P4	1.228	14.821	0.119	0.815	2.011	-2.990	-0.979	1.636	-0.793
N3-P4	1.228	14.821	0.119	0.815	2.011	-2.990	-0.979	1.636	-0.793
Cu1–N2	0.675	12.073	0.080	0.419	1.059	-1.269	-0.209	1.564	-0.312
Cu2–P5	0.547	4.338	0.039	0.509	0.520	-0.742	-0.216	0.957	-0.399
Cu2–N3	0.675	12.073	0.080	0.419	1.059	-1.269	-0.209	1.564	-0.312
Cu2–Cu1	0.142	2.097	0.399	0.101	0.148	-0.155	-0.007	1.079	-0.040

 $({}^{i}Pr)_{2}P' : P({}^{i}Pr)_{2}$ P1 N^{CU} P P5 Ph Cu2 P({}^{i}Pr)_{2} N1 Ph Cu2 P({}^{i}Pr)_{2} PhN P6

0.078	0.800	1.910	-2.861	•
	P3 N	Ph Cu1 N	2	
	(Pr) ₂ R P2 P~		Р4	
9b	$({}^{i}Pr)_{2}P_{3}$	Cu 🔨	P(ⁱ Pr) ₂	

7b	ρ	$\nabla^2 \rho$	3	DI(A B)	G	V	H	G/p	Η/ρ
Ti–P2	0.135	1.060	0.337	0.099	0.081	-0.094	-0.007	0.627	-0.070
Ti-Cl	0.459	5.398	0.027	0.527	0.432	-0.486	-0.054	0.939	-0.117
Ti–N2	1.478	18.749	0.026	1.733	2.274	-3.239	-0.965	1.539	-0.651
Au-P2	0.783	6.434	2.278	1.331	0.803	-1.147	-0.351	1.024	-0.447
Au-Cl	0.749	12.772	0.345	0.894	1.046	-1.201	-0.155	1.405	-0.207
Ti–N1	0.601	8.194	0.082	0.498	0.648	-0.722	-0.074	1.083	-0.124
P2–P1	0.776	-3.061	0.289	0.869	0.223	-0.668	-0.439	0.290	-0.564
N1-P1	1.201	14.025	0.136	0.818	1.930	-2.875	-0.945	1.602	-0.786
Ti–N3	0.655	8.555	0.112	0.534	0.709	-0.817	-0.108	1.082	-0.165
P2–P3	0.776	-3.012	0.227	0.876	0.223	-0.661	-0.439	0.290	-0.562
N3–P3	1.201	13.688	0.078	0.800	1.910	-2.861	-0.952	1.588	-0.791

Atomic charg	es analysis - Bade	er charges			
	P1	P 2	P3	Au	Cl
6a ¹	2.11	-0.06	2.13		
6b ¹	1.98	-0.15	2.02		
$7a^2$	2.16	-0.30	2.15	1.21	(-0.71)
$7b^2$	1.99	-0.29	2.01	1.07	(-0.74)
1. Level of theory: PCM(Toluene)-B3PW91-D3, 6-31+G**(other atoms) level of theory. 2. Level of theory: PCM(Toluene)-B3PW91-D3/def2-SVP-RIFIT(Au), 6-					

31+G**(other atoms)// PCM(Toluene)-B3PW91-D3/LANL2DZ(Au), 6-31+G**(other atoms) level of theory

P-Cu/Au bonds

According to the topological indexes at the BCP, the interaction between the central phosphorus and the coinage metal (7b: Au; 9b: Cu) corresponds to donor-acceptor interactions between heavy atoms: the small density, the positive Laplacian, the G/ρ ratio close to unity and the negative H/ρ ratio are all consistent with this view.²²

Moreover, the **DI** for the P-Cu bond in **9b** is clearly inferior to the formal bond order (0.509 *vs* 1): again this is indicative of a dative bond. In the case of **9b** the **DI** for the P-Au bond is superior to the formal bond order (1.331 *vs* 1), whilst it is inferior for the P-P bonds (~0.87 vs 1). This suggests a significant amount of backdonation to the **BIPP** ligand.²³ Indeed, the crystal structure of **7b** reveals considerably elongated P-P bonds compared to the other κ^3 -P,N,N **BIPP** complexes (Table 2).

Cu-Cu interaction

The crystal structure of **9b** indicates the presence of cuprophilic interaction between the d¹⁰ Cu atoms (d_{Cu-Cu} < 3.29 Å).²⁴ The topological indexes computed at the Cu-Cu BCP are consistent with those obtained by Silvi. for a binuclear Cu amidinate complex with a Cu-Cu distance of 2.414 Å ($\rho = 0.040$ a.u.; $\nabla^2 \rho = 0.116$ a.u.; $H/\rho = -0.044$ a.u.; DI = 0.328). This is in line with a weakly covalent character for cuprophilic interactions.²⁵

²² Phosphorus is not considered as heavy according to QTAIM (< 4 atomic shells), but as highlighted by Sironi and Macchi: "properties shown by heavy atoms are *in pectore* recognizable also in early elements of the first three rows" (P. Macchi, D. M. Proserpio and A. Sironi, *J. Am. Chem. Soc.* **1998**, *120*, 13429-13435), which explains why the P-Cu and P-Au bonds display topological indexes corresponding heavy atoms.

²³ P. Macchi and A. Sironi, *Coord. Chem. Rev.* 2003, 238-239, 383-412.

²⁴ N. V. S. Harisomayajula, S. Makovetskyi and Y.-C. Tsai, Chem. Eur. J. 2019, 25, 8936-8954.

²⁵ a) B. S. Lim, A. Rahtu, J.-S. Park and R. G. Gordon, *Inorg. Chem.* **2003**, *42*, 7951-7958; b) C. Lepetit, P. Fau, K. Fajerwerg, M. L. Kahn and B. Silvi, *Coord. Chem. Rev.* **2017**, *345*, 150-181.

Natural Transition Orbitals for $\mathbf{9b}$ and \mathbf{D}^+

Natural transition orbitals²⁶ were computed for **9b** and D^+ are are displayed below (cutoff=0.06).

Figure S119. Natural Transition orbitals for 9b and D^+ (Color code: Copper atoms in yellow, Carbon atoms in gray and phosphorus atoms in orange. Hydrogen atoms are not displayed)

²⁶ R. L. Martin, J. Chem. Phys., 2003, 118, 4775-4777.

Sum of electronic and zero-point Energies = -4044.696706

Sum of electronic and thermal Enthalpies = -4044.649590

Sum of electronic and thermal Free Energies = -4044.779069

С	0.63247	4.24378	-0.68336
С	1.56981	5.13943	0.14083
Н	1.20874	5.21666	1.17046
н	1.61976	6.14515	-0.29229
Н	2.57969	4.72081	0.15833
С	1.20768	4.04825	-2.09409
Н	2.17690	3.54339	-2.03561
Н	1.34220	5.01358	-2.59585
Н	0.53107	3.43597	-2.69671
С	-0.76300	4.88313	-0.75492
Н	-1.45114	4.24073	-1.30961
н	-0.71541	5.85981	-1.25077
н	-1.16101	5.02233	0.25488
С	3.15985	0.81900	-0.21426
С	3.90754	0.07805	-1.14243
Н	3.53341	-0.86878	-1.51621
С	5.13314	0.55449	-1.60664
Н	5.69271	-0.03691	-2.32623
С	5.63516	1.77652	-1.16229
Н	6.58750	2.14684	-1.52960
С	4.89959	2.51386	-0.23099
Н	5.27946	3.46338	0.13619
С	3.68397	2.03698	0.24620
Н	3.11974	2.59963	0.98242
С	2.88295	-2.13255	1.01515
С	3.43221	-3.22575	0.34094
Н	3.01131	-3.55644	-0.60284
С	4.54241	-3.87825	0.87424
Н	4.97421	-4.72323	0.34625
С	5.10157	-3.44218	2.07544
Н	5.96783	-3.95196	2.48660
С	4.55636	-2.34484	2.74453
Н	4.99697	-1.99645	3.67357
С	3.45060	-1.68552	2.21607
Н	3.03652	-0.81671	2.72083
С	0.97177	-1.81521	-1.21867
С	0.92698	-0.92355	-2.29407
Н	1.21838	0.11040	-2.13808
С	0.50879	-1.36999	-3.54537
Н	0.46911	-0.67606	-4.37962
С	0.13866	-2.70250	-3.72178
Н	-0.19127	-3.04886	-4.69665
С	0.16838	-3.58952	-2.64404
Н	-0.14840	-4.61892	-2.77539
С	0.57109	-3.14616	-1.38904
Н	0.55238	-3.82157	-0.53886

32938 20532 56596 59007 19633 35227 38304
20532 56596 59007 19633 35227 38304
6596 69007 19633 35227 38304
69007 19633 35227 38304
19633 35227 38304
35227 38304
38304
51337
)4645
7076
34954
59655
70863
18273
28222
51872
30711
36946
'4948
8744
7568
2967
5493 I
6048
15784
4689
/4908
15146
2587
2418
22386
19873
0510
0317
)4464
)4464)9446
)4464 29446)3278
)4464 29446)3278)284
)4464 29446)3278 0284 0353
04464 09446 03278 0284 0353 7583

6b

Sum of electronic and zero-point Energies = -3592.377182

Sum of electronic and thermal Enthalpies = -3592.331955

Sum of electronic and thermal Free Energies = -3592.452805

1.05550	3.58072	0.38939
-0.18563	4.48330	0.45502
-0.92898	4.16283	-0.27962
0.08382	5.52655	0.25170
	1.05550 -0.18563 -0.92898 0.08382	1.055503.58072-0.185634.48330-0.928984.162830.083825.52655

Н	-0.64054	4.42676	I.44883
С	2.08758	4.02312	1.43690
Н	1.66374	3.93627	2.44196
Н	2.39277	5.06278	1.26907
Н	2.97339	3.38386	1.38217
С	1.67347	3.63924	-1.01561
Н	2.55035	2.98876	-1.07229
Н	1.97709	4.66328	-1.26354
Н	0.94388	3.30114	-1.75800
С	-2.19763	1.51104	-0.50061
С	-3.20999	2.22760	0.14771
Н	-3.46893	1.96566	1.16886
С	-3.85696	3.27742	-0.50261
Н	-4.63522	3.83124	0.01483
С	-3.50057	3.62417	-1.80663
Н	-4.00242	4.44443	-2.31093
C	-2.48269	2.91886	-2.45247
Н	-2.18591	3.19222	-3.46121
C	-1.83425	1.8/123	-1.80323
Н	-1.02204	1.33398	-2.28208
C	-3.46861	-1.20033	1.48126
Н	-4.24551	-0.52078	1.10558
	-2.93896	-0.66556	2.81/72
н	-2.1/383	-1.30559	3.23227
	-3./8866	-0.02000	3.33143
	-2.34113	0.33914	2.72437
с ц	4.05371	-2.00032	1.01000
	4 9 9 9 4 9	-2.76526	2 39081
Ц	-3.28609	-3 32574	1 92051
\hat{c}	-2 97705	-1 42040	-1 44742
н	-2 30913	-0.90088	-2 14464
Ċ	-4 36536	-0 78351	-1 56567
н	-5 08852	-1 27274	-0.90636
н	-4.72328	-0.90811	-2.59334
Н	-4.35680	0.28525	-1.34365
C	-3.01619	-2.90589	-1.80557
Ĥ	-2.06193	-3.40139	-1.61371
Н	-3.26440	-3.01966	-2.86613
Н	-3.77859	-3.43611	-1.22912
С	2.78530	0.13151	-0.48920
С	3.12062	0.22949	-1.84555
Н	2.42261	-0.11373	-2.59948
С	4.3253 I	0.81348	-2.23706
Н	4.56278	0.88717	-3.29478
С	5.20884	1.32085	-1.28508
Н	6.14225	1.78214	-1.59316
С	4.87180	1.24344	0.06794
Н	5.54114	1.64842	0.82168
С	3.67570	0.65129	0.46184
Н	3.40230	0.60102	1.51137
С	2.3603 I	-3.08173	0.72007
Н	1.91370	-4.08515	0.71840
С	2.50700	-2.59923	2.16403
Н	2.93959	-1.59677	2.19575
Н	3.17332	-3.27814	2.70610
Н	1.54992	-2.55789	2.68785
C	3./1900	-3.12672	0.01371
н	3.66399	-3.54429	-0.99462
н	4 .37//5	-3./5767	U.57476

Н	4.16578	-2.13119	-0.05062
С	1.23840	-2.53397	-1.94549
Н	2.27615	-2.31039	-2.22327
С	0.30238	-1.69677	-2.81405
Н	-0.71482	-2.08407	-2.75455
Н	0.61360	-1.74832	-3.86221
Н	0.28759	-0.64655	-2.50905
С	0.98518	-4.03168	-2.10710
Н	1.74556	-4.64007	-1.61115
Н	0.99029	-4.29294	-3.17040
Н	0.01041	-4.30918	-1.69371
Cl	0.58056	0.43007	3.37119
Ν	0.66406	2.22914	0.66865
Ν	-1.52244	0.44927	0.15492
Ν	1.55476	-0.41148	-0.03738
Р	-2.15049	-1.08440	0.18526
Р	-0.66872	-2.47516	0.88403
Р	1.14532	-2.00951	-0.17984
Ti	0.25844	0.66413	1.07331

$7\mathbf{b}$

Sum of electronic and zero-point Energies = -4188.120247

Sum of electronic and thermal Enthalpies = -4188.070874

Sum of electronic and thermal Free Energies = -4188.203467

-3.51003	0.14337	-0.25249
1.74164	-0.07332	-1.27749
1.26634	0.17221	-3.54033
3.39268	-0.12543	-1.10774
-1.29811	-0.01174	-0.82041
-5.79330	0.31462	0.29635
1.12841	-1.59583	-0.05787
-0.49789	-1.85863	0.04439
5.3856 I	-0.56721	0.19913
6.48138	-0.5883 I	0.17487
5.01978	-1.56649	0.44848
5.28212	-1.08277	-2.26107
4.94492	-2.09850	-2.03079
6.37479	-1.08813	-2.34859
4.85150	-0.78612	-3.22217
5.29694	1.31254	-1.47666
4.88502	1.63745	-2.43703
6.39103	1.35662	-1.52939
4.95487	2.00592	-0.70334
2.08270	-2.27867	0.74359
2.75974	-3.39825	0.24891
2.54297	-3.74205	-0.75733
3.70702	-4.05085	1.03598
4.22924	-4.91660	0.63873
3.98989	-3.59401	2.32513
4.72982	-4.10269	2.93547
3.32201	-2.47202	2.81873
3.54117	-2.10127	3.81612
2.37752	-1.81780	2.03125
1.85578	-0.94234	2.40486
	-3.51003 1.74164 1.26634 3.39268 -1.29811 -5.79330 1.12841 -0.49789 5.38561 6.48138 5.01978 5.28212 4.94492 6.37479 4.85150 5.29694 4.88502 6.39103 4.95487 2.08270 2.75974 2.54297 3.70702 4.22924 3.98989 4.72982 3.32201 3.54117 2.37752 1.85578	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

С	-0.99769	-2.40867	1.74316	
н	-0.52552	-1.65507	2.38615	
С	-0.42122	-3.78981	2.09120	
Ĥ	-0.90320	-4.57392	1.50019	
Н	-0.64223	-3.99526	3.14374	
H	0.65719	-3.86108	1.95544	
Ċ	-2 50862	-2 41 508	1 98866	
н	-3 02574	-1 54082	1 58270	
н	-2 69259	-2 44598	3 06688	
н	-2 96944	-3 30438	1 55206	
C	-1.04458	-3 15742	-1 15663	
Ĥ	-0.79081	-4.09552	-0.64519	
C	-2.54692	-3.13142	-1.45215	
Ĥ	-3 16876	-3 3 79	-0 55595	
н	-2 80715	-401512	-2 04337	
н	-2.81208	-2 25019	-2 04358	
Ċ	-0 23075	-3.06006	-2 44592	
н	-041455	-2 11501	-2 96523	
н	-0 52088	-3 87679	-3 442	
н	0.84271	-3 13214	-2 26147	
Ċ	4 82814	-011527	-115818	
Ĥ	5.06862	0.12138	0.98638	
N	1.24505	1.50893	-0.13935	
P	-0.33863	1.58559	0.33238	
C	2.21760	2.39415	0.40482	
C	2.40558	3.66720	-0.14275	
Ĥ	1.81179	3.96675	-1.00060	
С	3.37010	4.52485	0.38863	
Н	3.51219	5.50866	-0.04947	
С	4.15753	4.11766	1.46573	
Н	4.91032	4.78429	1.87558	
С	3.98261	2.83926	2.00251	
Н	4.60405	2.50522	2.82873	
С	3.02177	1.98253	1.47406	
Н	2.89622	0.97796	1.86204	
С	-0.44038	1.57346	2.17867	
Н	0.34210	0.84662	2.43568	
С	-0.05244	2.93664	2.76930	
Н	-0.8275 I	3.68444	2.58311	
Н	0.04610	2.82968	3.85449	
Н	0.89601	3.31404	2.38488	
С	-1.77589	1.08824	2.73520	
Н	-2.04755	0.10531	2.35449	
Н	-1.70694	1.02557	3.82620	
Н	-2.59407	1.76842	2.48905	
С	-1.08003	3.14331	-0.32215	
Н	-0.36534	3.88882	0.05656	
С	-2.47687	3.49262	0.18521	
Н	-2.52367	3.59932	1.27021	
Н	-2.78226	4.44705	-0.25565	
Н	-3.21356	2.73996	-0.11411	
С	-1.01637	3.12986	-1.85177	
Н	-1.78712	2.47326	-2.26703	
Н	-1.20012	4.14043	-2.22958	
Н	-0.04773	2.78893	-2.22616	

Sum of electronic and zero-point Energies = -4532.928638 Sum of electronic and thermal Enthalpies				
= -45	532.853953			1
Sum	of electro	nic and	thermal	Free
Ener	ries = -453	3 043670		1100
Liner	,105 100	0.010010		
Cu	0.41738	-1.08856	0.54229	
С	-1.11329	-3.21994	1.75916	
Ν	-1.12590	-2.22339	0.78155	
Р	-2.33394	-1.77961	-0.23343	
С	-0.63153	-2.88960	3.04019	
Н	-0.38144	-1.85046	3.23555	
Ν	-4.23628	0.52982	-2.56553	
Р	-2.37638	0.34944	0.18862	
С	-0.49071	-3.85533	4.03125	
Н	-0.09832	-3.56943	5.00347	
Р	-3.72922	1.33047	-1.27135	
С	-0.85907	-5.17982	3.78114	
Н	-0.75341	-5.93641	4.55273	
С	-1.36370	-5.51663	2.52409	
Н	-1.64991	-6.54348	2.31138	
С	-1.48199	-4.55525	1.52042	
Н	-1.82808	-4.84622	0.53414	
С	-3.93703	-2.56239	0.21866	
Н	-3.71010	-3.63126	0.31129	
С	-4.40151	-2.05629	1.58468	
Н	-3.62707	-2.17603	2.34752	
Н	-5.28381	-2.62309	1.90000	
Н	-4.67019	-0.99726	1.53960	
С	-4.98826	-2.36327	-0.87604	
Н	-5.07761	-1.31674	-1.18304	
Н	-5.96198	-2.70458	-0.50912	
Н	-4.75332	-2.93315	-1.77873	
С	-1.94653	-2.27203	-1.96443	
Н	-2.72296	-1.80465	-2.57925	
С	-1.99582	-3.79442	-2.11665	
Н	-1.20284	-4.26420	-1.52598	
Н	-1.82577	-4.05252	-3.16688	
Н	-2.95460	-4.22935	-1.82233	
С	-0.58192	-1.75106	-2.40103	
н	-0.49111	-0.66894	-2.26607	
н	-0.43629	-1.96125	-3.46423	
Н	0.22037	-2.23271	-1.83259	
C	-3.52789	0.17165	-3.68680	
C	-4.15237	-0./1345	-4.59958	
Н	-5.15565	-1.05/35	-4.36353	
C	-3.50675	-1.14170	-5./5345	
Н	-4.01862	-1.82640	-6.425/3	
	-2.21220	-0.70361	-6.05/54	
H C	-1./0968	-1.03951	-6.95962	
	-1.58340	0.17583	-5.17580	
	-0.3/34/	U.JZ/ØZ	-2.38426	
	-2.22320	0.00320 1 3730 1	-4.01047 2 2/212	
п С	-1.07743 20211	1.2/271	-3.34316	
с ц	-2.02314 1 87700	2.72712 7 57720	-1.00/30	
C	-1.02200	2.37207	-1.0030/ _0.3020[
	-2.070/0	2.02102	-0.30/73	

Н	-3.58064	4.33499	-0.12268
Н	-1.90324	4.60123	-0.62083
Н	-2.28864	3.28199	0.4883 I
С	-3.40022	3.67345	-2.81110
Н	-3.55852	3.00508	-3.66092
Н	-2.69326	4.45253	-3.11642
Н	-4.35240	4.15393	-2.57214
С	-5.30729	I.62848	-0.35263
Н	-5.72704	0.61372	-0.35711
С	-6.25163	2.53315	-1.14593
Н	-5.92722	3.57742	-1.09974
Н	-7.25723	2.48312	-0.71395
Н	-6.30915	2.22673	-2.19324
С	-5.16379	2.08140	1.09899
Н	-4.45011	I.46493	1.65228
Н	-6.13744	2.00641	1.59520
Н	-4.83886	3.12215	1.17058
Cu	-0.41738	1.08856	-0.54229
С	1.11329	3.21994	-1.75916
Ν	1.12590	2.22339	-0.78155
Р	2.33394	1.77961	0.23343
С	0.63153	2.88960	-3.04019
Н	0.38144	1.85046	-3.23555
Ν	4.23628	-0.52982	2.56553
Р	2.37638	-0.34944	-0.18862
С	0.49071	3.85533	-4.03125
Н	0.09832	3.56943	-5.00347
Р	3.72922	-1.33047	1.27135
С	0.85907	5.17982	-3.78114
Н	0.75341	5.9364 I	-4.55273
С	1.36370	5.51663	-2.52409
Н	1.64991	6.54348	-2.31138
С	1.48199	4.55525	-1.52042
Н	I.82808	4.84622	-0.53414
С	3.93703	2.56239	-0.21866
Н	3.71010	3.63126	-0.31129
С	4.40151	2.05629	-1.58468
Н	3.62707	2.17603	-2.34752
Н	5.28381	2.62309	-1.90000
Н	4.67019	0.99726	-1.53960
С	4.98826	2.36327	0.87604
Н	5.07761	1.31674	1.18304
Н	5.96198	2.70458	0.50912
Н	4.75332	2.93315	1.77873
С	1.94653	2.27203	1.96443
Н	2.72296	1.80465	2.57925
С	1.99582	3.79442	2.11665
Н	I.20284	4.26420	1.52598
Н	1.82577	4.05252	3.16688
Н	2.95460	4.22935	1.82233
С	0.58192	1.75106	2.40103
Н	0.49111	0.66894	2.26607
Н	0.43629	1.96125	3.46423
Н	-0.22037	2.23271	1.83259
С	3.52789	-0.17165	3.68680
С	4.15237	0.71345	4.59958
Н	5.15565	1.05735	4.36353
С	3.50675	1.14170	5.75345
Н	4.01862	I.82640	6.42573
С	2.21220	0.70361	6.05754

Н	1.70968	1.03951	6.95962
С	1.58340	-0.17583	5.17580
Н	0.57547	-0.52782	5.38456
С	2.22326	-0.60520	4.01649
Н	1.69945	-1.27291	3.34316
С	2.82514	-2.92912	1.60730
Н	1.82280	-2.57269	1.88567
С	2.64678	-3.83165	0.38795
Н	3.58064	-4.33499	0.12268
Н	1.90324	-4.60123	0.62083
Н	2.28864	-3.28199	-0.48831
С	3.40022	-3.67345	2.81110
Н	3.55852	-3.00508	3.66092
Н	2.69326	-4.45253	3.11642
Н	4.35240	-4.15393	2.57214
С	5.30729	-1.62848	0.35263
Н	5.72704	-0.61372	0.35711
С	6.25163	-2.53315	1.14593
Н	5.92722	-3.57742	1.09974
Н	7.25723	-2.48312	0.71395
Н	6.30915	-2.22673	2.19324
С	5.16379	-2.08140	-1.09899
Н	4.45011	-1.46493	-1.65228
Н	6.13744	-2.00641	-1.59520
Н	4.83886	-3.12215	-1.17058

A

Sum of electronic and zero-point Energies = -2516.475369

Sum of electronic and thermal Enthalpies = -2516.437513

Sum of electronic and thermal Free Energies = -2516.546550

С	-2.86999	1.51664	-1.72083
С	-4.22126	1.51034	-1.36126
Н	-4.54020	1.00905	-0.45279
С	-5.15832	2.14774	-2.17373
Н	-6.20685	2.14124	-1.89114
С	-4.75208	2.78794	-3.34412
Н	-5.48470	3.28173	-3.97559
С	-3.40321	2.79380	-3.70475
Н	-3.08360	3.29000	-4.61618
С	-2.46230	2.16209	-2.89614
Н	-1.41314	2.16297	-3.17999
С	-2.49973	-0.18057	0.61763
С	-2.59817	0.29533	1.93017
Н	-2.17097	1.25369	2.20454
С	-3.22143	-0.48136	2.90607
Н	-3.28187	-0.11286	3.92580
С	-3.75446	-1.72764	2.57624
Н	-4.22803	-2.33506	3.34200
С	-3.66770	-2.19929	1.26588
Н	-4.06521	-3.17556	1.00724
С	-3.03780	-1.43170	0.29163
Н	-2.92464	-1.81000	-0.72023
С	-0.11634	-2.86349	0.30147
С	-0.15794	-3.16053	I.66673

Н	0.25751	-2.46870	2.39182
С	-0.75264	-4.34259	2.10775
Н	-0.79247	-4.55941	3.17117
С	-1.30106	-5.23505	1.18885
Н	-1.77038	-6.15178	1.53397
С	-1.24961	-4.94711	-0.17719
Н	-1.67629	-5.63929	-0.89728
С	-0.66321	-3.76523	-0.61844
Н	-0.65439	-3.52170	-1.67752
С	2.25926	-1.75359	-0.90209
С	3.04136	-2.62727	-0.13626
Н	2.64153	-3.06522	0.77420
С	4.33444	-2.93779	-0.54693
Н	4.94240	-3.61186	0.04933
С	4.84427	-2.38809	-1.72548
Н	5.85407	-2.63071	-2.04371
С	4.06057	-1.52532	-2.48935
Н	4.45824	-1.08319	-3.39730
С	2.76888	-1.20389	-2.07892
Н	2.16886	-0.49992	-2.64634
С	-0.58366	1.98770	0.11521
С	0.76396	-0.19400	1.11482
Р	-0.52505	-0.55793	-1.98060
Р	-1.60438	0.74021	-0.67612
Р	0.60593	-1.29671	-0.30575
В	0.85845	1.41939	0.74483
Н	-0.40228	2.74978	-0.65087
Н	-1.20045	2.47495	0.87881
Н	-0.08205	-0.41447	1.77171
Н	1.67778	-0.50978	1.63270
С	2.11117	1.63145	-0.27029
С	3.40345	1.29960	0.17895
С	2.02210	2.11092	-1.58377
С	4.53249	I.42950	-0.62472
С	3.14400	2.25569	-2.40532

С	4.40766	1.91236	-1.92951
Н	3.52693	0.93134	1.19602
Н	1.05028	2.36427	-1.99848
Н	5.50991	1.15053	-0.23860
Н	3.02715	2.62985	-3.42009
Н	5.28342	2.01546	-2.56498
С	1.09007	2.25391	2.12384
С	1.72991	3.50578	2.10479
С	0.59994	1.82717	3.36982
С	l.86920	4.2886 l	3.25111
С	0.73476	2.59589	4.52876
С	1.37084	3.83611	4.47459
Н	2.13779	3.86987	1.16411
Н	0.09818	0.8646 I	3.44997
Н	2.37220	5.25130	3.19255
Н	0.34605	2.22483	5.47475
Н	I.48094	4.43906	5.37219

$P(CN)_2$

Sum of electronic and zero-point Energies = -527.023972

Sum of electronic and thermal Enthalpies = -527.018015

Sum of electronic and thermal Free Energies = -527.052011

Р	-0.00000	0.00000	0.98754
C	0.00000	1.31494	-0.20056
Ň	0.00000	2.26857	-0.88617
C	-0.00000	-1.31494	-0.20056
Ň	-0.00000	-2.26857	-0.88617

V. Crystallographic studies

Additional bond distances and angles

2b': Li-O = 1.904(6). **3a**: Ti-Cl1 = 2.3688(6), Ti-Cl2 = 2.3542(6), Cl1-Ti-N2 = 164.21(4), Cl2-Ti-P2 = 161.358(18), N1-Ti-O = 170.28(5). **3b**: Ti-Cl1 = 2.3119(5), Ti-Cl2 = 22.3384(5), Cl1-Ti-N1/2 = 110.74(4)/134.39(4), Cl2-Ti-N1/2 = 100.71(4)/92.39(4), Cl2-Ti-P2 = 164.981(19). 4a: Ti-O1 = 1.782(3), Ti-O2 = 1.770(3), O1-Ti-N1/2 = 124.02(13)/101.70(13), 02-Ti-N1/2 = 94.33(12)/101.70(13), 02-Ti-P2 = 164.15(9). 5a-1/5a-2 (labels are those of 5a-1): Zr1-Cl1 = 2.4367(6)/2.4475(5), Zr1-Cl2 = 2.3734(5)/2.3734(5), Zr1-Cl3 = 2.4584(5)/2.4577(5), Cl1-Zr1-N1 = 160.18(4)/157.88(4), $Cl_2-Zr_1-P_2 = 160.49(2)/161.13(2), Cl_3-Zr_1-N_2 = 164.23(4)/166.39(4).$ 5b: Zr-Cl1 = 2.4704(4), Zr-Cl2 = 2.3958(4), Zr-Cl3 = 2.4397(4), Cl1-Zr-N2 = 159.19(3), Cl2-Zr-P2 = 152.12(2), Cl3-Zr-N1 = 173.50(4), Cl3-Zr-N2 = 84.95(4). **6a-Py**: Ti-N3 = 1.685(5), Ti-Cl = 2.422(2), Cl-Ti-N1 = 93.70(14), Cl-Ti-N2 = 154.30(14), N1-Ti-N4 = 162.1(2), N3-Ti-P2 = 167.66(18), Ti-N3-C1 = 163.7(4). 6a: Ti-N3 = 1.6945(19), Ti-Cl = 2.3362(7), Cl-Ti-N1 = 117.41(6), Cl-Ti-N2 = 119.76(6), N3-Ti-P2 = 171.37(7), Ti-N3-C37 = 164.38(16).**6b-1/6b-2**: Ti-N3 = 1.6912(13)/1.7007(13), Ti-Cl = 2.3357(5)/2.3575(5), Cl-Ti-N1 = 123.85(4)/122.79(4), Cl-Ti-N2 = 112.84(4)/113.46(4), N3-Ti-P2 = 167.20(5)/167.63(5), Ti-N3-C1 = 174.81(12)/168.28(12). 7b (ⁱ: X, 3/2-Y, Z): Ti-N2 = 1.682(3), Ti-Cl1 = 2.3234(12), Au-Cl2 2.2934(10), Cl1-Ti-N1 = 120.20(7), Ti-N3-C1 = 169.7(3), P2-Ti-N2 = 167.55(13), Au-P2-Ti = 173.36(5), Cl2-Au-P2 = 176.43(4), $\Sigma \alpha(P2) = 327.51(8)$. **8b** (ⁱ: 1-X, 1-Y, 1-Z): $Ti-N3 = 1.688(3), Ti-Cl1 = 2.3541(9), Cu-Br = 2.3807(6), Cu-Br^{i} = 2.4472(6), Cl1-Ti-N1$ = 118.11(8), Cl1-Ti-N2 = 121.47 (8), Ti-N3-C25 = 174.7(3), P2-Ti-N3 = 164.42(10), Cu-P2-Ti = 172.66(4), Br-Cu-P2 = 135.78(3), Brⁱ-Cu-P2 = 122.43(3), $\Sigma \alpha$ (P2) = 333.31(8), $\Sigma \alpha(Cu) = 359.23(5)$. **9b**: (ⁱ 3/2-X, 3/2-Y, 1-Z): Cu-Cuⁱ = 2.5759(4), P2ⁱ-Cu-N1 = 165.25(5).

Crystal data and structure refinement for 2b'

Fig S120: Crystal structure of 2b'

Table S1: Crystal data and structure refinement for 2b'

Identification code	2b'
Empirical formula	$C_{28}H_{46}LiN_2OP_3$
Formula weight	526.52

Temperature/K	100.0
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	10.215(4)
b/Å	30.038(9)
c/Å	10.723(4)
α/°	90
β/°	116.107(12)
γ/°	90
Volume/Å ³	2954.5(18)
Z	4
$\rho_{calc}g/cm^3$	1.184
µ/mm ⁻¹	0.224
F(000)	1136.0
Crystal size/mm ³	0.34 × 0.33 × 0.2
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.87 to 55.094
Index ranges	$-13 \le h \le 13, -39 \le k \le 39, -13 \le 1 \le 13$
Reflections collected	48835
Independent reflections	$6783 [R_{int} = 0.0267, R_{sigma} = 0.0167]$
Data/restraints/parameters	6783/0/323
Goodness-of-fit on F ²	1.024
Final R indexes [I>=2σ (I)]	$R_1 = 0.0680, wR_2 = 0.1758$
Final R indexes [all data]	$R_1 = 0.0759, wR_2 = 0.1835$
Largest diff. peak/hole / e Å ⁻³	2.02/-1.18
CCDC	1985134

Special refinement details for 2b'

The tetrahydrofuran molecule is not located very precisely. This tetrahydrofuran molecule was isotropically refined on two positions with a set of constraints (EADP) applied on the isotropic temperature factors. The occupations factors of the two components of the disorder converged to approximately the same values than for the disordered isopropyl groups. In view of the inter and intra-molecular interactions between these groups, the occupation factors for both groups (tetrahydrofuran and isopropyl) were set to the same value (0.63:037).

Crystal data and structure refinement for **3a**

Fig S121: Crystal structure of 3a

Table S2	: Crystal	data and	structure	refinement f	for 3a
	•	_			

Identification code	3a
Internal reference	ad240717_0m
Empirical formula	$C_{40}H_{38}CI_2N_2OP_3Ti$
Formula weight	774.43
Temperature/K	115
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	10.1219(16)
b/Å	16.662(3)
c/Å	22.432(4)
α/°	90
β/°	99.270(3)
γ/°	90
Volume/ų	3733.8(10)
Z	4
$\rho_{calc}g/cm^3$	1.378
µ/mm ⁻¹	0.536
F(000)	1604.0
Crystal size/mm ³	0.3 × 0.25 × 0.22
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	[°] 4.754 to 54.988
Index ranges	$-13 \le h \le 12, -21 \le k \le 21, -29 \le 1 \le 28$
Reflections collected	47407
Independent reflections	8521 [$R_{int} = 0.0354$, $R_{sigma} = 0.0247$]
Data/restraints/parameters	8521/0/442
Goodness-of-fit on F ²	1.036
Final R indexes [I>=2σ (I)]	$R_1 = 0.0316$, $wR_2 = 0.0721$
Final R indexes [all data]	$R_1 = 0.0419$, w $R_2 = 0.0784$
Largest diff. peak/hole / e Å ⁻³	0.73/-0.54
CCDC	1985143

Crystal data and structure refinement for ${\bf 3b}$

Fig S122: Crystal structure of 3b

Table S3:	Crystal	data an	d structure	e refinement	for	3b
-----------	---------	---------	-------------	--------------	-----	----

Identification code	3b
Internal reference	mo_matrix_0m with mo_ad150318_0m.hkl
Empirical formula	$C_{24}H_{38}CI_2N_2P_3Ti$
Formula weight	566.27
Temperature/K	100
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	11.1686(13)
b/Å	15.390(2)
c/Å	16.608(2)
α/°	90
β/°	99.796(6)
γ/°	90
Volume/ų	2813.1(7)
Z	4
$\rho_{calc}g/cm^3$	1.337
µ/mm ⁻¹	0.680
F(000)	1188.0
Crystal size/mm ³	0.32 × 0.32 × 0.075
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	° 6.264 to 55.166
Index ranges	-14 ≤ h ≤ 14, -19 ≤ k ≤ 20, -17 ≤ l ≤ 21
Reflections collected	50555
Independent reflections	6479 [$R_{int} = 0.0306$, $R_{sigma} = 0.0195$]
Data/restraints/parameters	6479/0/297
Goodness-of-fit on F ²	1.086
Final R indexes [I>=2σ (I)]	$R_1 = 0.0295$, $wR_2 = 0.0624$
Final R indexes [all data]	$R_1 = 0.0395$, $wR_2 = 0.0685$
Largest diff. peak/hole / e Å-3	0.40/-0.28
CCDC	1985146

Fig S123: Crystal structure of 4a

Table S4: Crystal data and structure refinement for 4a

Identification code	4a
Internal reference	ad171017_0m_a
Empirical formula	$C_{77}H_{70}BCl_2N_2O_2P_3Ti$
Formula weight	1277.87
Temperature/K	115
Crystal system	triclinic
Space group	P-1
a/Å	11.7665(19)
b/Å	13.781(2)
c/Å	20.643(3)
α/°	82.299(4)
β/°	86.711(4)
γ/°	80.965(4)
Volume/Å ³	3273.8(9)
Z	2
$\rho_{calc}g/cm^3$	1.296
µ/mm⁻¹	0.335
F(000)	1336.0
Crystal size/mm ³	0.4 × 0.12 × 0.08
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	[°] 5.21 to 50.084
Index ranges	$-14 \le h \le 14$, $-16 \le k \le 15$, $-23 \le l \le 24$
Reflections collected	39257
Independent reflections	$11547 [R_{int} = 0.0776, R_{sigma} = 0.0943]$
Data/restraints/parameters	547/0/797
Goodness-of-fit on F ²	I.024
Final R indexes [I>=2σ (I)]	$R_1 = 0.0594$, $wR_2 = 0.1400$
Final R indexes [all data]	$R_1 = 0.1179, wR_2 = 0.1675$
Largest diff. peak/hole / e Å-3	1.34/-1.23
CCDC	1985140

Fig S124: Crystal structure of 5a

Identification code	5a
Empirical formula	$C_{147}H_{126}CI_{18}N_8P_{12}Zr_4$
Formula weight	3379.17
Temperature/K	100
Crystal system	triclinic
Space group	P-1
a/Å	11.8938(12)
b/Å	12.0699(11)
c/Å	27.548(3)
α/°	82.319(4)
β/°	80.357(5)
γ/°	70.217(4)
Volume/Å ³	3656.1(6)
Z	I
$\rho_{calc}g/cm^3$	1.535
µ/mm ⁻¹	0.791
F(000)	1710.0
Crystal size/mm ³	0.4 × 0.32 × 0.19
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/	[°] 5.916 to 55.078
Index ranges	$-15 \le h \le 15, -15 \le k \le 15, -35 \le l \le 35$
Reflections collected	106171
Independent reflections	$16785 [R_{int} = 0.0270, R_{sigma} = 0.0177]$
Data/restraints/parameters	16785/22/865
Goodness-of-fit on F ²	1.037
Final R indexes [I>=2σ (I)]	$R_1 = 0.0277, wR_2 = 0.0653$
Final R indexes [all data]	$R_1 = 0.0335$, $wR_2 = 0.0681$
Largest diff. peak/hole / e Å-3	1.05/-0.76
CCDC	1985141

Table S5: Crystal data and structure refinement for 5a

Crystal data and structure refinement for ${\bf 5b}$

Fig S125: Crystal structure of 5b

Table S6: Crystal data and structure refinement for 5b			
Identification code	5b		
Empirical formula	$C_{24}H_{38}CI_3N_2P_3Zr$		
Formula weight	645.04		
Temperature/K	100		
Crystal system	orthorhombic		
Space group	Pbca		
a/Å	16.4550(9)		
b/Å	16.2910(8)		
c/Å	22.0025(12)		
α/°	90		
β/°	90		
γ/°	90		
Volume/Å ³	5898.2(5)		
Z	8		
$\rho_{calc}g/cm^3$	1.453		
µ/mm ⁻¹	0.824		
F(000)	2656.0		
Crystal size/mm ³	0.26 × 0.156 × 0.124		
Radiation	ΜοΚα (λ = 0.71073)		
20 range for data collection/° 5.548 to 55.068			
Index ranges	$-21 \le h \le 21, -21 \le k \le 21, -28 \le l \le 28$		
Reflections collected	103469		
Independent reflections	$6784 [R_{int} = 0.0452, R_{sigma} = 0.0180]$		
Data/restraints/parameters	6784/0/306		
Goodness-of-fit on F ²	1.050		
Final R indexes [I>=2σ (I)]	$R_1 = 0.0220, wR_2 = 0.0503$		
Final R indexes [all data]	$R_1 = 0.0307, wR_2 = 0.0540$		
Largest diff. peak/hole / e Å $^{-3}$	0.39/-0.27		
CCDC	1985135		
Crystal data and structure refinement for **6a-Py**

Fig S126: Crystal structure of 6a-py

Table 51 Ci ystai data ai	iu su ucture remement for ou-py
Identification code	6а-ру
Internal reference	ad301017_0m_a
Empirical formula	C ₄₅ H ₄₄ CIN ₄ P ₃ Ti
Formula weight	817.10
Temperature/K	115.0
Crystal system	triclinic
Space group	P-1
a/Å	12.209(3)
b/Å	12.264(3)
c/Å	15.876(4)
α/°	97.041(6)
β/°	99.249(6)
γ/°	98.343(6)
Volume/ų	2295.2(9)
Z	2
$\rho_{calc}g/cm^3$	1.182
µ/mm⁻¹	0.383
F(000)	852.0
Crystal size/mm ³	0.25 × 0.075 × 0.025
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	5.818 to 50.11
Index ranges	$-14 \le h \le 14, -14 \le k \le 13, -18 \le l \le 18$
Reflections collected	25340
Independent reflections	8072 [$R_{int} = 0.1718$, $R_{sigma} = 0.2524$]
Data/restraints/parameters	8072/421/490
Goodness-of-fit on F ²	0.920
Final R indexes [I>=2σ (I)]	$R_1 = 0.0693, wR_2 = 0.1415$
Final R indexes [all data]	$R_1 = 0.1959, wR_2 = 0.1892$
Largest diff. peak/hole / e Å ⁻³	0.59/-0.73
CCDC	1985137

Table S7 Crystal data and structure refinement for 6a-py

Special refinement details for **6a-py**

The crystal was very poorly diffracting (crystal volume $< 50 \ 10^{-6} \ \text{mm}^3$). Due to the low $<I/\sigma>$ of 3.9, the measured data set was not of good quality. Nevertheless, the geometrical parameters of the molecule as well as the thermal ellipsoids seem correctly determined. At the end of the refinement, a region of approximately 400 Å³ presented a diffuse electronic density. But without being able to identify with certainty any solvent (several were used during the synthesis), we decided to apply a solvent mask in order to subtract from our data the contribution of this residual density (Spek, A.L., *Acta Cryst.* 2015, *C71*, 9-18), 146 e⁻ were then subtracted.

Crystal data and structure refinement for 6a

Fig S127: Crystal structure of 6a and superposition with compound C

Table S8: Crystal data and structure refinement for 6a

Identification code	6a
Internal reference	ad021117_0m
Empirical formula	C47H47CIN3P3Ti
Formula weight	830.13
Temperature/K	115
Crystal system	monoclinic
Space group	P2ı/c
a/Å	12.4622(7)
b/Å	22.1019(12)
c/Å	15.1862(5)

α/°	90
β/°	94.5670(10)
γ/°	90
Volume/ų	4169.6(4)
Z	4
$\rho_{calc}g/cm^3$	1.322
µ/mm ⁻¹	0.422
F(000)	1736.0
Crystal size/mm ³	0.25 × 0.1 × 0.1
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/ ^c	² 5.494 to 55
Index ranges	$-13 \le h \le 16, -28 \le k \le 28, -19 \le l \le 19$
Reflections collected	41349
Independent reflections	9558 [$R_{int} = 0.0440, R_{sigma} = 0.0425$]
Data/restraints/parameters	9558/0/452
Goodness-of-fit on F ²	1.028
Final R indexes [I>=2σ (I)]	$R_1 = 0.0458$, $wR_2 = 0.1056$
Final R indexes [all data]	$R_1 = 0.0651, wR_2 = 0.1157$
Largest diff. peak/hole / e Å ⁻³	1.20/-0.80
CCDC	1985145

Special refinement details for **6a**

A two components disordered toluene solvent molecule is present in the asymmetric unit. The disorder consists in a rotation of ca 30 deg between the two components. Two rigid groups, whose occupancy factors converged towards 0.64/0.36, where use for the modelling with the use of a global isotropic temperature factor.

Crystal data and structure refinement for 6b

Fig S128: Crystal structure of 6b-1/2 and superposition of both independent molecules (Ph rings truncated)

Table S9: Crystal data and structure refinement for 6bIdentification code6bInternal referencead290118_0m

Empirical formula	$C_{28}H_{47}CIN_3P_3T_i$
Formula weight	601.94
Temperature/K	115
Crystal system	monoclinic
Space group	P21/n
a/Å	19.7139(8)
b/Å	17.7743(9)
c/Å	20.2496(9)
α/°	90
β/°	112.4110(10)
γ/°	90
Volume/Å3	6559.6(5)
Z	8
ρcalcg/cm3	1.219
μ/mm-l	0.510
F(000)	2560.0
Crystal size/mm3	0.5 × 0.5 × 0.12
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.418 to 54.964
Index ranges	-25 ≤ h ≤ 22, -23 ≤ k ≤ 23, -26 ≤ l ≤ 26
Reflections collected	82653
Independent reflections	14979 [$R_{int} = 0.0283$, $R_{sigma} = 0.0230$]
Data/restraints/parameters	14979/0/671
Goodness-of-fit on F2	1.059
Final R indexes [I>=2σ (I)]	RI = 0.0300, wR2 = 0.0675
Final R indexes [all data]	$R_1 = 0.0437$, w $R_2 = 0.0759$
Largest diff. peak/hole / e Å ⁻³	0.43/-0.33
CCDC	1985136

Crystal data and structure refinement for 7b

Fig S129: Crystal structure of 7b

Table S10: Crystal data and structure refinement for 7bIdentification code7b

Empirical formula	C29H49AuCl4N3P3Ti
Formula weight	919.29
Temperature/K	100.0
Crystal system	orthorhombic
Space group	Pnma
a/Å	14.2921(8)
b/Å	13.7871(7)
c/Å	18.9179(10)
α/°	90
β/°	90
γ/°	90
Volume/Å ³	3727.7(3)
Z	4
$\rho_{calc}g/cm^3$	1.638
µ/mm ⁻¹	4.585
F(000)	1832.0
Crystal size/mm ³	0.4 × 0.33 × 0.11
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	5.7 to 55.166
Index ranges	$-18 \le h \le 18, -17 \le k \le 17, -24 \le l \le 24$
Reflections collected	65977
Independent reflections	4478 [$R_{int} = 0.0268$, $R_{sigma} = 0.0114$]
Data/restraints/parameters	4478/24/224
Goodness-of-fit on F ²	1.235
Final R indexes [I>=2σ (I)]	$R_1 = 0.0249, wR_2 = 0.0497$
Final R indexes [all data]	$R_1 = 0.0293$, $wR_2 = 0.0528$
Largest diff. peak/hole / e Å ⁻³	1.21/-1.33
CCDC	1985144

Special refinement details for **7b**

While the *tert*-butyl group is located on a symmetry plane and hence refined with a carbon multiplicity equal to 0.5, a set of restraints was applied: ISOR for the temperature factors and DFIX for the carbon-carbon distances.

Fig S130: Crystal structure of 8b

Table S11: Crystal data and structure refinement for 8b

Identification code	8b
Empirical formula	C58.28H98.56Br2Cl6.56Cu2N6P6Ti2
Formula weight	1684.42
Temperature/K	100.0
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	11.6149(6)
b/Å	16.6838(8)
c/Å	20.0416(9)
α/°	90
β/°	90.810(2)
γ/°	90
Volume/ų	3883.3(3)
Z	2
$\rho_{calc}g/cm^3$	1.441
µ/mm ⁻¹	2.155
F(000)	1728.0
Crystal size/mm ³	0.36 × 0.243 × 0.193
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	5.864 to 55.17
Index ranges	$-15 \le h \le 15, -21 \le k \le 21, -26 \le 1 \le 26$
Reflections collected	51118
Independent reflections	8943 [$R_{int} = 0.0391$, $R_{sigma} = 0.0324$]
Data/restraints/parameters	8943/0/432
Goodness-of-fit on F ²	1.062
Final R indexes [I>=2σ (I)]	$R_1 = 0.0428, wR_2 = 0.0939$
Final R indexes [all data]	$R_1 = 0.0672$, w $R_2 = 0.1094$
Largest diff. peak/hole / e Å ⁻³	1.23/-1.06
CCDC	1985142

Special refinement details for **8b**

One phenyl group was found disordered with occupations factors equal to 0.52:0.48 and was isotropically refined. One dichloromethane solvent molecule was also found disordered

with occupation factor converged to 0.5 and one other dichloromethane molecule was refined with an occupation factor converged to 0.14.

Crystal data and structure refinement for **9b**

Fig S131: Crystal structure of 9b

Identification code	9b
Empirical formula	$C_{48}H_{76}Cu_2N_4P_6$
Formula weight	1022.02
Temperature/K	99.99
Crystal system	monoclinic
Space group	C2/c
a/Å	31.2123(12)
b/Å	11.3573(4)
c/Å	16.6578(7)
α/°	90
β/°	111.6900(10)
γ/°	90
Volume/Å ³	5486.9(4)
Z	4
$\rho_{calc}g/cm^3$	1.237
µ/mm ⁻¹	0.984
F(000)	2160.0
Crystal size/mm ³	0.427 × 0.197 × 0.134
Radiation	ΜοΚα (λ = 0.71073)
2Θ range for data collection/°	6.09 to 55.18
Index ranges	$-40 \le h \le 40, -14 \le k \le 14, -21 \le 1 \le 21$
Reflections collected	31836
Independent reflections	$6346 [R_{int} = 0.0358, R_{sigma} = 0.0308]$
Data/restraints/parameters	6346/0/279
Goodness-of-fit on F ²	1.021
Final R indexes [I>=2σ (I)]	$R_1 = 0.0302$, w $R_2 = 0.0654$
Final R indexes [all data]	$R_1 = 0.0448$, w $R_2 = 0.0711$
Largest diff. peak/hole / e Å ⁻³	0.42/-0.30
CCDC	1985139

Table S12: Crystal data and structure refinement for 9b

Special refinement details for 9b

During the refinement, atoms of solvent were observed (recrystallisation solvents were pentane and tetrahydrofuran), but any attempt to modelize these disordered molecules were unsatisfactory and we decided to use the bypass procedure (Spek, A.L., *Acta Cryst.* **2015**, *C71*, 9-18).

Structural Trans Effect in octahedral BIPP complexes

Table S13. Structural *trans* effect in octahedral BIPP complexes.

Complex	3a	5a-1	5a-2	5b
$\Delta_{\rm N1P2}$	-	0.0850(7)	0.0843(7)	0.0439(6)
$\Delta_{\rm N2P2}$	0.0304(8)	0.0633(8)	0.0741(7)	0.0746(6)

values are expressed in Å.

This table compiles the values of Δ_{N1P2} and Δ_{N2P2} in **3a**, **5a** and **5b**. These parameters represent the difference between the M-Cl bond length of the Cl ligands *trans* to N1 (or N2) and that of the Cl ligand *trans* to P2. The positive value of Δ_{N1P2} and Δ_{N2P2} indicate that the iminophosphoranyl side arms exert a greater STE than the central P atom, which is especially visible in **5a** and **5b**.