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1. Computational Details 

A notice should be given on calculations ∆G of reactions involving charged species in the gas 

phase. In this case, one needs to calculate molar Gibbs energies of naked cations or anions, which 

is only a hypothetical state of matter. It was suggested to use the formulae for the ideal gas as, for 

example, the Sackur-Tetrode equation.1,2 Indeed, ∆G computations treating charged gas-phase 

species as the ideal gas are ubiquitous and offer well acceptable accuracy, compared to 

experiment.3–6 Therefore, we used the IG approximation for gas-phase cations and anions in this 

work, while being inherently dissatisfied with such an approach. 

Except for the computations described in Section S1.1, we run all calculations on a simple 

workstation PC with an Intel Core i7-9700K CPU overclocked to 5 GHz (gaming-grade CPU), 48 

Gb of RAM, and an entry-level MSI GeForce GTX 1050 Ti GPU (latter was used for the 

computations in the DFTB+ program). Notably, two runs were performed most of the time 

simultaneously (on CPU and on GPU). 

 

1.1. Solid State and Gas-phase CaC2 

All solid-state density functional theory (DFT) calculations were performed using the 

CRYSTAL17 software.7 In CRYSTAL17, crystalline orbitals (CO) are approximated as a linear 

combination of Bloch sums of Gaussian type orbitals (GTOs). We used a triple-zeta valence basis 

set with polarization quality (pob-TZVP) optimized for solid-state calculations8 in combination 

with the geometrical counterpoise correction (gCP).9,10 We used the hybrid PBE0 functional11 with 

Grimme’s dispersion D3 correction, including three-body term and Becke-Johnson dumping 

function.12,13 
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Overlap thresholds for Coulomb and exchange integrals were tightened to 10-8, 10-8, 10-8, 10-8, 

and 10-16. Integration over the Brillouin zone was performed on the Monkhorst–Pack grid with the 

shrinking factor 6 corresponding to the primitive tetragonal cell with inversely scaling to the cell 

constants. We performed full optimization of cell parameters and atomic displacements. For the 

self-consistent calculations (SCF) the tolerance on total energy change was set to 10-10 Hartree.  

Gas-phase CaC2 calculations were performed on the same level of theory as for the solid-state 

(PBE0-D3/pob-TZVP-gCP). 

 

1.2. ∆Gsolv Computations with CSMs 

In all computations with CSMs applied, ∆Gsolv is the difference between single point (total) 

energies of gas-phase geometries with a CSM applied, and without. 

SMD and C-PCM computations were performed in ORCA 4.1.2. Tight SCF convergence criteria 

were set in all computations (the keyword TightSCF). A dense integration grid used for Kohn-

Sham energy computations (GRID6, NOFINALGRID). Fock matrices were recalculated in each 

Kohn-Sham SCF iteration. See a detailed description of SMD calculation parameters in the main 

text. C-PCM computations were performed at the PBE0/def2-TZVP level of theory.14 

Conventional COSMO15 computations were performed in the ORCA 3.0.3 package. In this case, 

we employed the BP86 functional16–18 and TZVP basis set19 (the recommended choice for 

COSMO-RS calculations).20 As long as the Resolution-of-the-Identity approximation (RI)21–27 was 

used, the auxiliary basis set TZVP/J 25 was employed. 

Additional computations were performed using the NWChem 7.0.0 package28 within the 

restricted Kohn-Sham formalism to investigate how the choice of the underlying level of theory 

affects solvation free energies computed with SMD. The 6-31+G** basis set29 from the NWChem 
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library was used. The M05-2X, M06-2X, and PBE0 were used to estimate ∆Gsolv as the difference 

between single point (total) energies of gas-phase geometries with SMD applied, and without. The 

results are given in Section  

 

1.3. Coarse pKa Computations 

We chose PBE0 functional and the diffuse ma-def2-TZVP basis set30 for calculations of pKa 

since deprotonated anions were modeled. The RI approximation was not used in this case. The 

convergence strategy “VerySlowConv” and tight convergence criteria (TightSCF) were used in 

the KS-SCF procedure. Fock matrices were recalculated in every KS-SCF iteration. A dense 

integration grid was used (GRID6, NOFINALGRID). Vibrational frequencies were computed 

numerically. The otherm program31 provided by the Duarte research group was used for the free 

energy computations. Free Gibbs energies were calculated within the ideal gas-quantum rotor-

harmonic oscillator model (IG-QRRHO)32 at T = 298.15 K and P = 1 atm; ∆Gsolv were computed 

with SMD (see the previous Subsection). 

 

1.4. Ca2+ Hydration 

Since we were unable to model systems with Ca2+ cations in the periodic CRYSTAL17 program, 

we had to use the ORCA program at the level of theory closely resembling that one used for the 

computations in CRYSTAL17. PBE0 functional was selected in conjunction with the def2-TZVP 

basis set.14 The RI approximation was used for both Coulomb and exchange terms;33,34 

accordingly, the def2/JK basis set35 was employed. The gCP empirical correction for the BSSE 

was used.9 Also, we used D3-correction for dispersion interactions with the Becke-Johnson 

damping function, and three-body terms included.12,13 The TightSCF, GRID6, and 
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NOFINALGRID options were set. Vibrational frequencies were computed numerically. Fock 

matrices were recalculated each 8-th KS-SCF iteration. See the “Ca2+ and HCC-Ca-OH” tab of 

the supporting .xslx table for the formulae used in the calculation of the Ca2+ Gibbs free energy. 

 

1.5. Mechanisms of C≡C2− and −C≡CH Protonation by DMSO 

This Subsection is relevant to the “Barriers” tab of the supporting .xslx table. For a rough 

estimation of free energy barriers of the protonation within the Born-Oppenheimer approximation, 

we selected the B97-3c method.36 It is a combination of a re-parameterized B9737 functional and 

empirical corrections.12 In B97-3c, a specially optimized triple- ζ basis set is used. We performed 

the B97-3c computations within the RI approximation and used the default auxiliary basis set 

(def2-mTZVP/J). 

To find the transition states of the proton transfer, first, relaxed potential surface scans were 

performed in which H+ migrated from the donor to acceptor atoms. Second, the highest energy 

structures from the scans were used for geometry optimization to transition states. All transition 

state structures exhibited a single imaginary mode corresponding to the proton vibration along the 

donor-acceptor line. The structures are included in the supporting PDF file in the XYZ format. 

Each .xyz file contains the value of the imaginary mode within it as a commentary line. 

The bulk solvent effects we accounted for with SMD. The ∆𝐺!"#$ values were computed for the 

stationary points and transition states, as described in Section S1.2. 
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1.6. DFTB Modeling of DMSO Solutions 

The integration of the equations of motion was done with the velocity Verlet algorithm and 

timestep of 0.5 fs. The Berendsen thermostat and barostat38 were used in the equilibration MD 

runs. The Nosé-Hoover chain thermostat (chain length equal to 3)39 was used for sapling runs and 

in the simulated annealing (SA). Except in the SA run, the target temperature of the thermostat 

was set to 300 K, while the external target pressure was set to 105 Pa. No constraints on cell vectors 

and angles were applied during the NPT runs. Initial velocities in the equilibration runs were set 

according to the Boltzmann distribution at 300 K. In the sampling runs, velocities from the last 

iteration of the equilibration runs were used as initial. 

During the equilibration runs, the coupling strength of the Berendsen thermostat, as well as that 

of the barostat, was controlled by setting the timescale parameter as equal to 100 fs. Simulated 

annealing was performed at the cell volume relaxed in the equilibration run (19.996 ✕ 19.996 ✕ 

19.996 Å, α = β = γ = 90°). The temperature profile for the SA is described in the main text; the 

coupling strength of the Nosé-Hoover chain thermostat was set to 10 THz. In the sampling run, 

the coupling strength of the Nosé-Hoover chain thermostat was 1 THz, and the coupling strength 

of the barostat was 1000 fs. 

The SCC convergence tolerance was equal to 10-6 Hartree; modified Broyden’s mixing scheme 

was used.40 The parameter α in the Ewald electrostatic summation was determined automatically 

by the DFTB+. The tolerance for the Ewald summation was 10-8 Hartree. The MAGMA library 

(ver. 2.5.0)41–45 was statically linked upon DFTB+ compilation to enable hybrid GPU-CPU 

computations. Orbital populations were assigned according to the Fermi function with the 

electronic temperature of 300 K; it should be noted that this low value of electronic temperature 
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led to integer populations in the insulating solution systems. Only Γ point was considered in 

electronic structure computations. 

Hydrogen atom interactions were damped with the parameter ζ equal to 4.05.46 Dispersion 

interactions were accounted for by the inclusion of the empirical corrections.12,47 

The models of Ca(C≡C) and HO-Ca-C≡CH in DMSO were constructed in the following way. 

As a model structure of liquid DMSO, we took a box obtained via a classic MD simulation with 

the OPLS forcefield,48 as provided at the “virtualchemistry.org” website.49 We put the ionic pairs 

Ca(C≡C) and HO-Ca-C≡CH (pre-optimized at the PBE0-D3/pob-TZVP-gCP level) in the centers 

of periodic vacuum cells (2 ✕ 2 ✕ 2 nm each, one molecule per cell). The cells were filled with 

DMSO molecules using the gmx solvate utility of the GROMACS program package 

(ver. 2018.1)50; for this, van der Waals radii provided by Bondi51 (for sp carbon only) and Batsanov 

(all other elements) were used.52 The so-obtained cell with the first ionic pair, Ca(C≡C), contained 

55 DMSO molecules. 54 DMSO molecules were included in the cell with the second ionic pair, 

HO-Ca-C≡CH. 

In the partially hydrolyzed acetylide system, i.e., in HO-Ca-C≡CH in DMSO, we took 

equitemporal snapshots in the sampling run at the first MD step and then at exactly 2.5, 5.0, 7.5, 

and 10.0 ps. For the [Ca2+][C22−] in DMSO, we took three snapshots in the simulated annealing 

run after the system cooled down to 300 K at 12, 14, and 16 ps. Also, in the [Ca2+][C22−] system, 

we took two snapshots in the equilibration run after the thermodynamic parameters and the 

coordination number of Ca2+ equilibrated, at 7 and 9 ps. 
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2. Modeling CaC2 Polymorphs and Clusters 

2.1. Relative Stability of CaC2 Polymorphs 

According to previous research,53–58 there are three co-existing phases of calcium carbide at 

room temperature: CaC2-I (I4/mmm); CaC2-II (C2/c); CaC2-III (C2/m). The proportion of three 

polymorphic forms depends on the reaction conditions.55 

Tetragonal phase CaC2-I is prevalent at room temperature, but its thermodynamic stability 

remains uncertain as the previous theoretical works provide inconsistent results. CaC2-I is stable 

according to earlier reports.57,59,60 However, Häussermann, et al. calculated phonon dispersion of 

the tetragonal calcium carbide; it demonstrated dynamical instability at the X point of the Brillouin 

zone.54 The authors considered two monoclinic phases (CaC2-II, CaC2-III) to be stable, with 

CaC2‑II being a low-temperature phase. In contrast, CaC2-III phase is metastable according to the 

experimental work by Knapp and Ruschewitz.55 

Doll, Jansen, et al. performed an extensive computational search for CaC2 polymorphs.58 Several 

new structures were predicted. CaC2-I was found as particularly stable at standard pressure, as well 

as two of newly predicted polymorphs. Here we considered CaC2-I, CaC2-II, and CaC2-III since 

these three phases are often observed in experimental studies. 

We performed phonon calculations for the three CaC2 modifications using appropriate supercells 

to consider multiple points of the Brillouin zone. Our computations indicate the dynamical stability 

of CaC2-I (no imaginary frequencies at the X point was found) and CaC2-II phases, while CaC2-

III has an imaginary frequency at Г point. Relative electronic and Gibbs free energies of the phases 

are listed in Table S1.  According to our calculations, CaC2-I is the most stable polymorph. CIF 

files enclosing the primitive cells are provided in the SI. 



 S10 

We found no imaginary frequencies in the optimized supercell of CaС2-I. Briefly, we used the 

Gaussian basis set pob-TZVP8 instead of the plane-wave BS, the hybrid PBE011 functional instead 

of its pure GGA counterpart, and included corrections for BSSE9,10 and dispersion interactions.12,13 

All computational parameters are given below. 

Authors of Ref. 54 profoundly point out possible anharmonicity of phonon vibrations in CaC2. 

As long as low-frequency modes in CaC2 may indeed have anharmonic nature, considering CaC2 

phonon modes in anharmonic approximation seems worthwhile in future studies, as well as 

assessing relative stability of CaC2 polymorphs with more sophisticated computational methods. 

Gibbs free energy of the solid CaC2 was averaged according to the Boltzmann distribution. The 

values of the Boltzmann weights Qi demonstrate the equilibrium fractions of the CaC2 polymorphs 

(see Table S1). CaC2-I, as the most stable phase, is the most abundant in the equilibrium 

distribution. 

 

Table S1. The relative electronic and Gibbs free energies of the CaC2 polymorphs. Gibbs free 

energies and Boltzmann weights correspond to 300 K and 1 atm. 

 ΔEel, kJ/mol ΔG (300 K), kJ/mol Qi (300 K) 

CaC2-I 0 0 0.89 

CaC2-II 3 7 0.11 

CaC2-III 11 14 0 (is a TS) 

 

2.2. Unfavorable Sublimation of CaC2(s.) to (CaC2)n Clusters 

We performed calculations of a set of (CaC2)n clusters with the number of formula units (n) 

ranging from 1 to 8 (see figures in the supporting .xslx table). All obtained clusters are dynamically 
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stable (no imaginary frequencies were observed). XYZ files with the cluster structures are 

provided in the supporting PDF file. 

The Gibbs free energy of the cluster formation from crystal are presented in Table S2. We averaged 

the Gibbs free energy of the solid CaC2 according to the Boltzmann distribution, as described 

above. Despite the energy of the cluster formation per formula unit decrease, the full energy 

increases significantly. Considering the fact that implicit solvation of molecules usually results in 

an exergonic effect of only 20-30 kcal/mol, we suggest crystal decomposition to the molecule 

CaC2 (n=1) is by far the most favorable process. 

 
Table S2. Free energies of degradation to clusters with a number of formula units z = 1-8. 

z Formula Name ΔGclust, kJ/mol ΔGclust/n, kJ/mol 

1 CaC2 CaC2_mol1_z1 777 777 

2 (CaC2)2 CaC2_mol2_z2 994 497 

2 (CaC2)2 CaC2_mol3_z2 988 494 

2 (CaC2)2 CaC2_mol4_z2 945 472 

3 (CaC2)3 CaC2_mol5_z3 1228 409 

4 (CaC2)4 CaC2_mol6_z4 1604 401 

4 (CaC2)4 CaC2_mol7_z4 1498 374 

5 (CaC2)5 CaC2_mol8_z5 1774 355 

6 (CaC2)6 CaC2_mol9_z6 1675 279 

6 (CaC2)6 CaC2_mol10_z6 1615 269 

6 (CaC2)6 CaC2_mol11_z6 2046 341 

8 (CaC2)8 CaC2_mol12_z8 1981 248 
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3. CaC2 Ionic Pair in Implicit (Continuum) Solvent 

An overly simplified way is to model the solvation or hydrolysis of CaC2(s.) with a continuum 

solvation model (CSM). We calculated ∆Gsolv of the acetylide species HC≡C-Ca-OH in DMSO 

with three CSMs, namely, COSMO,15 C-PCM,61 and SMD62 (see Table S3 and the supporting 

.xslx table). It should be noted that neither of the used CSMs was initially parameterized for Ca 

systems. The more realistic approach, described in the main text, demonstrates that the 

exergonicity of the solvation of HC≡C-Ca-OH can be underestimated by CSMs by order of 

magnitude. 

 

Table S3. ∆Gsolv of CaC2(g.) in DMSO according to conventional continuum solvation models. 

[Ca2+][C22−](g.) ⇌ [Ca2+][C22−](solv.) 

Method ∆Gsolv, kcal/mol 

SMD (M06-2X/6-31+G**) -19.1 

C-PCM (PBE0/ma-def2-TZVP) -25.2 

COSMO (RI-BP86/TZVP) -30.5 
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4. Comparing SMD results at different levels of theory 

We checked, if ∆Gsolv computed with SMD at the M06-2X/6-31+G** and PBE0/6-31+G** 

levels functionals are close to the results obtained at the M05-2X/6-31+G**, which was used in 

the original parameterization. ∆Gsolv were calculated as the difference in total energies with and 

without SMD applied; gas-phase geometries optimized at the PBE0-D3(BJ)/pob-TZVP-gCP level 

were used for single point energy evaluations. Evidently, using SMD at the M06-2X/6-31+G** 

level leads to a small deviation of 0.7 kcal/mol on a small test set of related species. On the 

contrary, using PBE0/6-31+G** ∆Gsolv estimations with SMD may lead to small but pronounced 

deviation of 1.7 kcal/mol, as shown in Table S4. 

 

Table S4. Comparison of different DFT methods in SMD computations. 

Molecule M05-2Xa M06-2Xa PBE0a 

[(DMSO)4Ca(C≡C)] (iso1) -32.1 -31.2 -29.8 

[(DMSO)4Ca(C≡CH)(OH)] (iso3) -25.8 -24.8 -23.4 

DMSO -10.1 -9.7 -9.4 

H2O -5.6 -5.5 -5.5 

RMSDb 0 0.7 1.7 

a The 6-31+G** basis set was used, see computational details in Section S1.2; 

b Root-mean-square deviation, relative to the SMD at the original M05-2X/6-31+G** level; 

All values are in kcal/mol. Corresponding full electronic energies are given in the supporting 
.xslx table. 
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5. Details of the MD runs 

In this Section, plots of thermodynamic parameters (G, T, P, V) and radial distribution functions 

are given. Note, that for consistency with the definitions of the thermodynamic parameters in 

DFTB+, the following equation for G was used: 

𝐺 = 𝑈 + 𝑃𝑉 − 𝑇𝑆%#%&'(")*&, 

I.e., only electronic entropy was included. 
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5.1. Equilibrating the [Ca2+][C22−]/DMSO system 

 

 

Figure S1. Thermodynamic parameters in the NPT simulation of [Ca2+][C22−] in DMSO. 

Berendsen thermostat and barostat were used. < 𝐺 > is the mean value calculated on the entire 

trajectory. 
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Figure S2. Radial distribution functions and evolution of selected interatomic distances in the 

equilibrating NPT simulation of [Ca2+][C22−] in DMSO. Berendsen thermostat and barostat were 

used. 
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5.2. Equilibrating the HC≡C-Ca-OH/DMSO system 

 

 

Figure S3. Thermodynamic parameters in the NPT simulation of HC≡C-Ca-OH in DMSO. 

Berendsen thermostat and barostat were used. < 𝐺 > is the mean value calculated on the entire 

trajectory. 
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Figure S4. Radial distribution functions and evolution of selected interatomic distances in the 

equilibrating NPT simulation of HC≡C-Ca-OH in DMSO. Berendsen thermostat and barostat 

were used. 
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5.3. Simulated annealing of the [Ca2+][C22−]/DMSO system 

 

Figure S5. Thermodynamic parameters in the simulated annealing of [Ca2+][C22−] in DMSO under 

NVT conditions. Berendsen thermostat and barostat were used. < 𝐺 > is the mean value calculated 

on the entire trajectory. 
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Figure S6. Radial distribution functions and evolution of selected interatomic distances in the 

simulated annealing of [Ca2+][C22−] in DMSO under NVT conditions. Berendsen thermostat and 

barostat were used. 
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5.4. Sampling the HC≡C-Ca-OH/DMSO system 

 

Figure S7. Thermodynamic parameters in the NPT simulation of HC≡C-Ca-OH in DMSO. Nosé-

Hoover chain thermostat and Berendsen barostat were used. < 𝐺 > is the mean value calculated 

on the entire trajectory. Note the removable discontinuity in the 𝐺(𝑡)	−	< 𝐺 > plot; this is the 

result of the forced simulation restart caused by a power outage. The simulation was restarted with 

the same atomic positions, velocities, and charges, but newly generated Nosé-Hoover chain 

variables. 



 S22 

 

Figure S8. Radial distribution functions and evolution of selected interatomic distances in the 

sampling NPT simulation of HC≡C-Ca-OH in DMSO. Nosé-Hoover chain thermostat and 

Berendsen barostat were used. 
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