Copper-catalyzed asymmetric oxime propargylation: enables the synthesis of the gliovirin tetrahydro-1,2-oxazine core

Nicholas G.W. Cowper, Matthew J. Hess, Katie M. Chan, and Sarah E. Reisman*

The Warren and Katharine Schlinger Laboratory of Chemistry and Chemical Engineering

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

SUPPORTING INFORMATION

TABLE OF CONTENTSPage1. General Methods and MaterialsS22. Synthetic ProceduresS43. Single Crystal X-ray Diffraction DataS254. ¹H and ¹³C NMR Spectral DataS36

1. General Methods and Materials

Unless otherwise stated, reactions were performed under a nitrogen atmosphere using freshly dried solvents. Tetrahydrofuran (THF), methylene chloride CH₂Cl₂), acetonitrile (MeCN), dimethylformamide (DMF), benzene (PhH), diethyl ether (Et₂O) and toluene (PhMe) were dried by passing through activated alumina columns. Unless otherwise stated, chemicals and reagents were used as received. Triethylamine (Et_3N) was distilled over calcium hydride prior to use. All reactions were monitored by thin-layer chromatography using EMD/Merck silica gel 60 F254 pre- coated plates (0.25 mm) and were visualized by UV, p-anisaldehyde, vanillian, CAM or KMnO₄ staining. Flash column chromatography was performed either as described by Still et al. (W. C. Still, M. Kahn, A. Mitra, J. Org. Chem. 1978, 43, 2923.) using silica gel (partical size 0.032-0.063) purchased from Silicycle. Optical rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance III HD with Prodigy Cryoprobe (at 400MHz and 101 MHz, respectively), Varian 400 MR (at 400 MHz and 101 MHz, respectively), or a Varian Inova 500 (at 500 MHz and 126 MHz, respectively), and are reported relative to internal CHCl₃ (¹H, δ = 7.26), or DMSO (¹H, δ = 2.50), and CDCl₃ (¹³C, δ = 77.0), or DMSO (¹³C, $\delta = 40.0$). Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier abbreviations are as follows: s =singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad, app = apparent. IR spectra were recorded on a Thermo Fisher Nicolet iS5 FTIR spectrometer and are reported in frequency of absorption (cm.⁻¹). HRMS were acquired using an Agilent 6200 Series TOF with an Agilent G1978A multimode source in electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), or mixed (MM) ionization mode. Analytical chiral SFC was performed with a Mettler SFC supercritical CO2analytical chromatography system (CO2= 1450 psi, column temperature = 40 °C) with Chiralcel AD-H, OD-H, AS-H, OB-H, and OJ-H columns (4.6 mm x 25 cm). Low-temperature X-ray diffraction data (φ-and ω-scans) were collected on a Bruker AXS D8 VENTURE KAPPA diffractometer coupled to a PHOTON 100 CMOS detector with Cu-K α radiation ($\lambda = 1.54178$ Å) from an I μ S micro-source.

2. Synthetic Procedures

Preparation of ethyl ester SI-2

Charge a round bottom flask with glyoxylic acid monohydrate (SI-1, 20.0 g, 217 mmol 1.00 equiv), hydroxylamine hydrochloride (15.3 g, 220 mmol, 1.01 equiv), pTSA•H₂O (3.12 g, 16 mmol, 7.6 mol%) and ethanol (260 mL). Fit with a Socklett extractor charged with activated 4Å molecular sieves and a reflux condenser. Heat the mixture at 120°C for 9 hours. Cool reaction to room temperature. Concentrate in vacuo then dilute oil in Et₂O (400 mL) and NaHCO_{3(sat)} (240 mL). Separate organic layer and wash organics with NH₄Cl_(sat) (100mL) followed by pH=7 buffer (100 mL). Test aqueous layer for product and re-extract with Et₂O(150 mL), if necessary. Wash combined organics with brine (100 mL). Dry over Na₂SO₄, filter, and concentrate *in vacuo* to give clean SI-2 (20.9 g, 174 mmol, 82% yield) as a pale yellow oil. Physical and spectral properties were consistent with literature values. (Mower, M. P.; Blackmond, D. G. *J. Am. Chem. Soc.* 2015, *137* (6), 2386–2391.)

Preparation of phenethyl ester SI-3

Combine glyoxylic acid monohydrate (SI-1, 3.00g, 32.59mmol, 1.0 equiv), hydroxylamine•HCl (2.29g, 32.92, 1.01 equiv), *p*-toluenesulfonic acid monohydrate (930.2mg, 4.89mmol 0.15 equiv) and phenethyl alcohol (11.7mL, 11.9g, 3.0 equiv) in toluene (10 mL). Heat mixture with a Dean-Stark trap to 50 °C and ramp to 120 °C over 80 min. Reflux overnight. Cool to ambient temperature, add EtOAc (100 mL). Wash organics layers with NaHCO_{3(aq)} (100mL), then NH₄Cl (20 mL), then pH=7 buffer (20 mL) and finally

brine (40mL). Dry organics over Na₂SO₄. Purify by flash chromatography (silica, 300 g, $20 \rightarrow 40\%$ EtOAc/Hexanes) to yield SI-3 (2.92g, 15.1 mmol, 46% yield) as a pale liquid.

¹**H NMR** (400 MHz, CDCl₃) δ 10.88 (s, 1H), 7.55 (d, J = 1.7 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.27 – 7.17 (m,

3H), 4.45 (td, *J* = 7.2, 1.6 Hz, 2H), 3.06 – 2.94 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 162.44, 141.47, 137.10, 128.87, 128.59, 126.75, 66.15, 34.77.

FTIR (AT-IR) 3322.11, 3028.17, 2359.63, 1721.19, 1622.35, 1497.30, 1453.99, 1306.73, 1257.07, 1193.59, 1009.49, 917.54, 744.20, 697.56, 667.93 cm⁻¹

HRMS (TOF, ES+) calc'd for C₁₀H₁₁NO₃ [M+H]⁺ 194.0812, found 194.0819(ppm=-3.76)

Preparation of silylated oxime 12a

Combine **SI-2** (31.18g, 266 mmol), imidazole (55.76g, 819 mmol) and TBSCl (61.80g, 410 mmol) in DMF (210 mL). Stir at ambient temperature for 72h. Pour mixture into 6:1 DI:brine (2.1 L). Extract with Et2O (1.5L). Wash organic layer with brine (300 mL). Dry over Na₂SO₄, filter and concentrate in vacuo to yield crude product. Purify by flash chromatography (silica, 3.5-4.5% Et₂O/Hexanes) to provide **12a** (47.8 g, 207 mmol, 78% yield) as a clear oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.59 (d, *J* = 1.5 Hz, 1H), 4.27 (qd, *J* = 7.1, 1.4 Hz, 2H), 1.31 (td, *J* = 7.1, 1.5 Hz, 3H), 0.92 (d, *J* = 1.9 Hz, 9H), 0.21 (d, *J* = 1.7 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 162.41, 146.20, 61.42, 25.91, 18.18, 14.22, -5.23.

FTIR (AT-IR) 2931.13, 2858.75, 1748.31, 1724.71, 1596.54, 1472.39, 1370.02, 1315.12, 1258.21, 1189.18, 1034.56, 967.56, 835.8, 785.55, 690.19, 667.95 cm⁻¹

HRMS (TOF, ES+) calc'd for C₂₀H₂₁NO₃Si [M+H]⁺ 232.1363, found 232.1365 (ppm=-0.66)

Preparation of silvlated oxime 12b

Take up **SI-3** (566.5 mg, 2.93 mmol, 1.0 equiv) in DMF (5 mL). Add imidazole (618.2 mg, 9.08 mmol, 1.5 equiv) and TBSCl (663.2 mg, 4.40 mmol, 3.1 equiv) and stir at ambient temperature for 24h. Dilute in 6:1 DI H₂O:brine (26 mL) and extract with Et₂O (19 mL). Wash organic layer with brine (3.5 mL). Dry over Na₂SO₄, filter, and concentrate to yield the crude product. Purify by flash chromatography (silica, $3\rightarrow 5\%$ EtOAc/Hexanes) to yield pure **12b** (795.1 mg, 2.59 mmol, 88% yield)

¹**H** NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 1.2 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.26 – 7.19 (m, 3H), 4.42 (td, J = 6.9, 1.3 Hz, 2H), 2.98 (t, J = 6.9 Hz, 2H), 0.97 (d, J = 1.7 Hz, 9H), 0.25 (d, J = 1.7 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 162.24, 145.88, 137.57, 129.05, 128.52, 126.67, 65.78, 35.01, 25.89, 18.14, -5.28.

FTIR (AT-IR) 2930.10, 2857.88, 1746.89, 1724.23, 1595.23, 1471.85, 1314.23, 1252.38, 1182.26, 1012.32, 974.59, 834.85, 784.87, 748.45, 697.31 cm⁻¹

HRMS (TOF, ES+) calc'd for C₁₆H₂₅NO₃Si [M+H]⁺ 308.1676, found 308.1676 (ppm=0.15)

Synthesis of neopenylboronate 13b

Adapted from: OL, 2011, p.4020; Org Syn. 1981, 60,41.

To freshly activated Mg⁰ (6.11g, 251.3mmol, 1.01 equiv), add HgCl₂ (115mg, 0.425 mmol, 0.2 mol%) and suspend in Et₂O (50 mL). Propargyl bromide (29.79g, 250 mmol, 1.0 equiv) in PhMe (80 wt%, 27.8mL) was further diluted with additional Et₂O (170 mL). A small amount of the propargyl bromide solution (10 mL) was added to the suspension of Mg⁰. Initiation was achieved through gentle heating of the resulting mixture. Cool in a salt/ice bath and add the remaining propargyl bromide solution as a slow, steady stream. After addition is complete, stir at ambient temperature for 1h. Cannulate the resulting Grignard solution, over 45 minute period, into a solution of freshly distilled trimethyl borate (26.0g, 27.9mL, 250 mmol, 1.0 equiv) in Et₂O (250 mL) cooled to -78 °C. After completion of Grignard addition, allow mixture to warm to ambient temperature. Cool the suspension once more to 0 °C and cannulate 3M HCl_(aq) (250 mL, 3 equiv) dropwise into over 3h. Stir mixture until solids disappear, approximately 1h, and a further 20 minutes at ambient temperature. Separate the organic layer and wash the aqueous layer with Et₂O (3×150 mL); dry the combined organics over MgSO₄. Decant dried organics into a 2L round bottom flask and wash the remaining solids with dry Et₂O (100 mL). Concentrate solution under reduced pressure until the 500mL remain and backfill with argon. Add anhydrous MgSO₄ (250g, 2.08 mol, 8.31 equiv) and neopentyl glycol (26.04g, 250 mmol, 1.0 equiv). Rinse down solids with Et₂O (50 mL) and stir under argon with an overhead stirrer for 40h. Filter off solids using a large swivel frit. Take the caked solids and rinse with Et₂O (4×100 mL) through a packed sand filter. Recombine organic and remove solvent through a vacuum transfer. Add pentanes (400mL) to the remaining residue and cool to 0 °C. Filter off precipitated solids with a large swivel frit and remove pentane through a vacuum transfer. The remaining yellow oil is purified by kugelrohr distillation (90 °C/ 5.0 Torr \rightarrow 110 °C/1.0 Torr) to yield **13b** (12.61g, 83.0 mmol, 32% yield) as a clear oil.

¹H NMR (400 MHz, CDCl₃) δ 4.82 (t, J = 7.0 Hz, 1H), 4.61 (d, J = 7.0 Hz, 2H), 3.66 (s, 4H), 0.98 (s, 6H).
¹³C NMR (126 MHz, CDCl₃) δ 217.90, 72.47, 69.77, 31.84, 21.82.

¹¹**B** NMR (128 MHz, CDCl₃) δ 26.48.

FTIR (AT-IR) 2961.46, 2886.72, 1934.21, 1477.56, 1414.40, 1377.85, 1327.80, 1256.69, 1224.66, 1181.98, 1129.78, 812.31, 681.34, 667.05 cm⁻¹

Small-scale enantioselective preparation of 11b

In a N₂-filled glovebox, dilute Cu(*S*-BTFMGarphos)(MeCN)₂BF₄ (28 mg, 0.020 mmol, 0.10 equiv) with THF (0.5 mL). Add **12b** (61.5 mg, 0.200 mmol) followed by **13b** (60.8 mg, 0.40 mmol, 2.0 equiv, 2 equiv) directly to the solution. Seal solution under N₂ and stir at ambient temperature for 16h. Dilute with EtOAc (2 mL) and diethanolamine (80 μ L) and stir 15 minutes. Dilute with DI H₂O (3.0 mL) and extract with EtOAc (3×4.0 mL). Dry organics over Na₂SO₄, filter and concentrate *in vacuo* to yield crude product. ¹H NMR yields with dimethyl terephthalate (10 mol%) as a standard. Purification by flash chromatography. (silica, 2.5%Et₂O/ 10%CH₂Cl₂/10%PhMe/Hexanes) to yield **11b** (60.4 mg, 0.174 mmol, 87% yield) as a clear oil. The enantiomeric excess was determined to be 96% by chiral SFC analysis (AD, 2.5 mL/min, 1% IPA in CO₂, $\lambda = 254$ nm): t_R(minor) = 6.148 min, t_R(major) = 5.116 min.

¹H NMR (400 MHz, CDCl₃): δ 7.33 – 7.28 (m, 2H), 7.24 (ddt, J = 7.6, 1.2, 0.6 Hz, 4H), 4.47 – 4.30 (m, 3H), 3.63 (t, J = 6.4 Hz, 1H), 2.98 (t, J = 7.1 Hz, 3H), 2.53 (tdd, J = 16.8, 6.4, 2.6 Hz, 2H), 2.04 – 1.93 (m, 1H), 0.89 (d, J = 0.5 Hz, 11H), 0.11 (d, J = 3.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.71, 137.73, 129.01, 128.64, 126.73, 79.34, 70.98, 65.68, 63.94, 35.19, 26.28, 19.41, 18.07, -5.38, -5.43.

FTIR (AT-IR) 3309.43, 2928.68, 2856.23, 1739.08, 1497.68, 1471.5, 1389, 1345.74, 1279.25, 1248.5, 1178.39, 1055.21, 974.31, 900.14, 833.73, 780.66, 747.8, 698.5, 644.51 cm⁻¹

HRMS (TOF, ES+) calc'd for C₁₉H₂₉NO₃Si [M+H]⁺ 348.1989, found 348.1998 (ppm=-2.45)

 $[\alpha]_D^{23}$ –16.3 (c = 1.0, CHCl₃).

rac-11b

reak	Veritime	ecitme type		Alea	nergit	Area		
#	[min]		[min]	[mAU*s]	[mAU]	8		
1	5.116	VV	0.3203	2889.85913	135.78705	48.4120		
2	6.148	vv	0.4361	3079.43994	100.88213	51.5880		

11b

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %		
1	4.913	VB	0.3876	2.05818e4	780.59052	97.8145		
2	6.682	MM	0.5361	459.86694	14.29552	2.1855		

Gram-scale enantioselective preparation of 11a

Stir Cu(MeCN)₄BF₄ (135.9 mg, 0.432 mmol, 0.10 equiv) and *S*-BTFMGarphos (512.6 mg, 0.432 mmol, 0.10 equiv) in MeCN (4.0 mL) for 10 minutes before concentrating *in vacuo* to a yield a white powder. Dilute freshly prepared Cu(*S*-BTFMGarphos)(MeCN)₂BF₄ (0.432 mmol, 0.10 equiv) in THF (21.6 mL), add **12a** (1.00 g, 4.322 mmol, 1.0 equiv) and **13b** (295 mg, 1.944 mmol, 2.0 equiv). Stir at ambient temperature for 16h. Dilute with EtOAc (40 mL) and diethanolamine (3.2 mL) and stir 15 minutes. Dilute with DI H₂O (120 mL) and extract with EtOAc (3×150 mL). Dry organics over Na₂SO₄, filter and concentrate *in vacuo* to yield crude product. ¹H NMR yields with dimethyl terephthalate (10 mol%) as a standard. Purification by flash chromatography (silica, 2.5%Et₂O/10%CH₂Cl₂/10%PhMe/Hexanes) provided both **11a** (1.01 g, 3.76 mmol, 87% yield) and recovered ligand (450 mg, 88% recovery) Note: Any product fractions contaminated with ligand were concentrated and triturated with cold pentanes, before an azeotrope with PhMe. The enantiomeric excess was determined after benzoylation to be 95% by chiral SFC analysis.

¹**H NMR** (400 MHz, CDCl₃) δ 5.58 (s, 1H), 4.22 (q, *J* = 7.1 Hz, 2H), 3.60 (t, *J* = 6.4 Hz, 1H), 2.55 (dt, *J* = 6.4, 3.0 Hz, 2H), 2.00 (t, *J* = 2.7 Hz, 1H), 1.27 (td, *J* = 7.1, 0.7 Hz, 3H), 0.86 (d, *J* = 1.0 Hz, 9H), 0.08 (s, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.77, 79.37, 70.86, 63.89, 61.25, 26.21, 19.37, 18.01, 14.34, -5.43, -5.49.
FTIR (AT-IR) 3313.49, 2929.08, 2856.83, 2361.12, 2340.34, 1738.61, 1472.12, 1370.05, 1342.99, 1248.41, 1215.41, 1186.14, 1054.34, 904.00, 834.61, 780.54, 667.96 cm⁻¹

HRMS (TOF, ES+) calc'd for C₁₃H₂₅NO₃Si [M+H]⁺ 272.1676, found 272.1674 (ppm=0.91) $[\alpha]_{D}^{23} - 18.0^{\circ} (c = 1.0, \text{CHCl}_{3}).$

Preparation of N-benzyl 14

To a solution of **11a** (3.99 g, 14.70 mmol, 1.0 equiv) in MeCN (14.7 mL) add DIPEA (5.13 mL, 3.80 g, 29.40 mmol, 2.0 equiv) and benzoyl chloride (2.99 mL, 3.62 g, 25.73 mmol, 1.75 equiv) at ambient temperature and stir 30 minutes. Heat mixture to 40 °C stirring vigorously for 7 hours. Dilute in Et₂O (140 mL) and wash organics with with pH=7 phosphate buffer (30 mL), then brine (30 mL). Dry organic layer with Na₂SO₄, filter through celite, and concentrate. Purify by flash chromatography (florisil, 20% Et₂O/Hexanes) to yield **14** (5.5g, 14.65 mmol, >95% yield) as pale white crystals.

SFC analysis (IC, 5% *i*-PrOH in CO₂) peak 1(major): 6.748 min; peak 2(minor): 8.324 min; 95% ee

¹**H NMR** (400 MHz, CDCl₃) δ 7.76 – 7.65 (m, 2H), 7.53 – 7.35 (m, 3H), 4.65 (dd, *J* = 10.5, 4.5 Hz, 1H), 4.21 (qdd, *J* = 10.7, 7.0, 3.6 Hz, 2H), 2.97 (ddd, *J* = 17.4, 10.6, 2.7 Hz, 1H), 2.89 – 2.70 (m, 1H), 2.14 (t, *J* = 2.7 Hz, 1H), 1.30 (t, *J* = 7.1 Hz, 3H), 0.95 (s, 9H), 0.30 (s, 3H), 0.21 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 173.13, 168.28, 134.61, 131.05, 128.59, 128.48, 80.35, 71.70, 63.97, 62.11, 26.18, 18.58, 14.31, -4.31, -4.51.

FTIR (AT-IR) 3310.03, 2929.56, 2857.22, 2359.18, 1744.02, 1694.62, 1472.02, 1446.93, 1390.26, 1362.25, 1289.85, 1250.00, 1226.16, 1186.10, 1072.43, 1017.66, 964.62, 920.36, 831.69, 809.32, 783.13, 748.13, 703.47, 674.24, 654.39 cm⁻¹

HRMS (TOF, ES+) calc'd for C₂₀H₃₀NO₄Si [M+H]⁺ 376.1939, found 376.1934

 $[\alpha]_D^{23}$ -89.9° (*c*=1.0, CHCl₃)

14

Racemic preparation of 11a

Suspend dry Zn⁰ (14.13 g, 224.74 mmol, 2.6 equiv) in THF (400 mL). Add 1,2-dibromoethane (0.37 mL, 812 mg, 4.32 mmol, 5 mol %) and TMSCI (0.55 mL, 469 mg, 4.32 mmol, 5 mol %), stir at room temperature for 45 min. Add a solution of propargyl bromide, 80%wt in PhMe, (0.20 mL, 1.80 mmol, 2 mol %). Heat gently until initiation is observed. Add the remainder of propargyl bromide, 80 wt% in PhMe, (23.9 mL, 214.57 mmol, 2.58 equiv) dropwise. With addition complete, stir 30 min at ambient temperature vigorously, until zinc is no longer consumed. Cannulate fresh organozinc into a solution of **12a** (20.00 g, 86.44 mmol, 1.0 equiv) in THF (400 mL) chilled to 0 °C, over a three hour period. Upon disappearance of starting material quench with NaHCO_{3(sat)} (200 mL). Filter off salts through a sand pad. Wash salts $Et_2O(3\times 200 \text{ mL})$. Wash combined organics with 1:1 DI H₂O:brine then brine. Dry over Na₂SO₄, filter and concentrate in vacuo to yield crude product. Purification by flash chromatography (silica 500g, 5% EtOAc/Hexanes) yields *rac*-**11a** (15.1g, 55.6 mmol, 64% yield) as a pale yellow oil. Trace allene **SI-5** was also isolated for characterization.

CO2Et¹H NMR (400 MHz, CDCl₃) δ 5.60 (d, J = 9.5 Hz, 1H), 4.24 (q, J = 7.1 Hz, 2H), 3.79 –TBSO3.46 (m, 1H), 2.57 (dt, J = 6.4, 2.8 Hz, 2H), 2.02 (t, J = 2.7 Hz, 1H), 1.29 (t, J = 7.1 Hz,rac-11a3H), 0.89 (s, 9H), 0.11 (d, J = 1.2 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 171.77, 79.37, 70.86, 63.89, 61.25, 26.21, 19.37, 18.01, 14.34, -5.43, -5.49. FTIR (AT-IR) 3313.49, 2929.08, 2856.83, 2361.12, 2340.34, 1738.61, 1472.12, 1370.05, 1342.99, 1248.41, 1215.41, 1186.14, 1054.34, 904.00, 834.61, 780.54, 667.96 cm⁻¹

HRMS (TOF, ES+) calc'd for C₁₃H₂₆NO₃ [M+H]⁺ 272.1676, found 272.1673(ppm=-1.28)

CO₂Et ¹**H NMR** (400 MHz, CDCl₃) δ 5.48 (d, J = 10.6 Hz, 1H), 5.12 (q, J = 6.8 Hz, 1H), 4.80 (dd, J = 6.7, 2.5 Hz, 2H), 4.18 (qd, J = 7.1, 0.9 Hz, 2H), 3.98 (ddt, J = 9.8, 7.0, 2.3 Hz, **SI-5** 1H), 1.23 (t, J = 7.1 Hz, 3H), 0.84 (d, J = 1.1 Hz, 9H), 0.05 (d, J = 1.0 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 209.30, 171.64, 85.51, 77.47, 64.67, 64.64, 61.08, 26.19, 26.15, 26.13, 17.96, 14.34, 14.30, -5.49, -5.53, -5.57. **FTIR** (AT-IR) 2929.12, 2856.96, 1957.66, 1741.62, 1472.28, 1390.00, 1368.67, 1301.88, 1247.48, 1183.61, 1043.73, 832.33, 779.68, 666.29 cm⁻¹

HRMS (TOF, ES+) calc'd for $C_{11}H_{25}NO_{3Si}$ [M+H]⁺ 272.1676, found 272.1686 (ppm=3.67)

Preparation of N-acetyl alkyne SI-5

Add pyridine (1.48 mL, 1.46 g, 18.42 mmol, 5.0 equiv) and DMAP (450 mg, 3.83 mmol, 0.96 equiv) to solution of *rac*-11a (1.04 g, 3.83 mmol, 1.0 equiv) in THF (60 mL). Add acetyl chloride (1.31 mL, 1.45 g, 18.42 mmol, 5.0 equiv) and stir vigorously at ambient temperature for 18h. Dilute in Et₂O (50 mL) and wash with pH=7 phosphate buffer (50mL) then brine (50 mL). Dry organic phase over Na₂SO₄, filter and concentrate gave **SI-6** (1.18 g, 3.76 mmol, 98% yield) as a pale-yellow oil with no further purification necessary.

¹H NMR (400 MHz, CDCl₃) δ 4.56 (t, *J* = 7.5 Hz, 1H), 4.21 (q, *J* = 7.1 Hz, 2H), 3.01 – 2.83 (m, 2H), 2.16 (s, 3H), 2.02 (t, *J* = 2.7 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 3H), 0.96 (s, 9H), 0.29 (s, 3H), 0.24 (s, 3H).
¹³C NMR (126 MHz, CDCl₃) δ 176.42, 168.14, 80.35, 70.42, 63.61, 61.72, 25.80, 21.52, 18.68, 17.93, 14.08, -4.51, -4.76.

FTIR (AT-IR) 3282.17, 2930.95, 2858.52, 2361.30, 1742.64, 1674.63, 1472.78, 1463.68, 1367.92, 1253.56, 1185.00, 1080.68, 1018.10, 983.77, 965.14, 938.25, 833.87, 784.10, 667.99 cm⁻¹ **HRMS** (TOF, ES+) calc'd for C₁₅H₂₇NO₄Si [M+H]⁺ 314.1782, found 314.1780 (ppm=0.67)

Preparation of N-benzyl cyclohexadiene 15a

Solvate Mes-HG-II (692 mg, 1.103 mmol, 7.5 mol%) stored in the glovebox in benzene (55 mL). Maintain an Ar atmosphere. Add distilled and degassed 1,5-cyclooctadiene (18.0 mL, 15.90 g, 147.0 mmol, 10 equiv), stir five minutes. Concurrently, both a solution of *rac-14* (5.50 g, 14.70 mmol, 1.0 equiv) in benzene (360 mL) and a solution of Mes-HG-II (461 mg, 0.735 mmol, 5 mol%) in benzene (10.6 mL) were added by syringe pumps over 12h. Stir at room temperature for 2h. Concentrate the crude reaction onto celite (50 g) overnight. Purify by flash chromatography (silica 150 g, 10 \rightarrow 20% Et₂O/Hexanes). Concentrate to an oil and dilute in cold MeCN (50 mL). Filter off precipitate with celite and wash the celite pad twice with cold MeCN (50 mL). Concentrate to yield **15a** (6.09 g, 14.2 mmol, 96% yield) a beige oil.

¹**H NMR** (400 MHz, CDCl₃) δ 7.56 (dt, *J* = 6.8, 1.5 Hz, 2H), 7.45 – 7.37 (m, 1H), 7.37 (s, 2H), 5.79 (dd, *J* = 9.5, 4.3 Hz, 1H), 5.70 – 5.54 (m, 2H), 4.45 (dd, *J* = 10.1, 4.4 Hz, 1H), 4.32 – 4.13 (m, 3H), 2.85 (dd, *J* = 14.2, 10.1 Hz, 1H), 2.60 (d, *J* = 14.1 Hz, 1H), 2.15 – 2.09 (m, 4H), 1.33 (t, *J* = 7.1 Hz, 4H), 0.92 (s, 10H), 0.29 (s, 3H), 0.13 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.80, 169.47, 134.72, 131.16, 130.60, 129.83, 128.26, 127.25, 126.70, 124.77, 64.74, 61.74, 33.61, 26.19, 22.55, 22.19, 18.87, 14.29, -3.86, -4.52.

FTIR (AT-IR) 2929.77, 2857.11, 2359.5, 2340.28, 1742.71, 1653.06, 1471.97, 1447.06, 1249.13, 1183.09, 1019.33, 969.71, 919.13, 826.95, 783.52, 735.42, 700.25, 667.9 cm⁻¹

HRMS (TOF, ES+) calc'd for C₂₄H₃₅NO₄Si [M+H]⁺ 430.2408, found 430.2395 (ppm=3.05)

Preparation of N-acetyl cyclohexadiene 15b

Solvate Mes-HG-II (176.7 mg, 0.282 mmol, 7.5 mol%) stored in the glovebox in benzene (14 mL). Maintain an Ar atmosphere. Add distilled and degassed 1,5-cyclooctadiene (4.62 mL, 4.07g, 37.64 mmol, 10 equiv), stirring vigorously (700 rpm). Concurrently, both a solution of **SI-6** (1.18g, 3.76mmol, 1 equiv) in benzene (90 mL) and a solution of Mes-HG-II (117.8 mg, 0.188 mmol, 5 mol%) in benzene (3.5 mL) were added by syringe pumps over 10h. Stir at room temperature for 3h. Concentrate the crude reaction onto celite overnight. Purify by flash chromatography (silica, $7.5 \rightarrow 10\%$ EtOAc/Hexanes). Add P(CH₂CH₂OH)₃ (1.16g, 20 equiv) to product-containing fractions along with silica and was sonicate until the combined solution is clear. Filter the solution was then and concentrate to yield **15b** (991mg, 2.70 mmol, 72% yield) a clear oil.

¹**H NMR** (500 MHz, CDCl₃) δ 5.81 (d, J = 1.3 Hz, 2H), 5.58 (d, J = 4.5 Hz, 1H), 4.47 (s, 1H), 4.26 – 4.08 (m, 2H), 2.78 (ddd, J = 14.2, 10.3, 0.9 Hz, 1H), 2.65 (dd, J = 14.4, 4.8 Hz, 1H), 2.10 – 2.04 (m, 7H), 1.27 (t, J = 7.1 Hz, 3H), 0.94 (s, 9H), 0.26 (s, 3H), 0.18 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 175.10, 169.64, 131.84, 127.11, 126.84, 123.88, 64.01, 61.53, 33.64, 25.97, 22.52, 22.24, 21.62, 18.07, 14.22, -4.53.

FTIR (AT-IR) 2930.65, 2857.62, 2359.56, 2340.27, 1742.48, 1667.8, 1367.59, 1252.92, 1031.68, 832.83, 783.93, 667.92 cm⁻¹

HRMS (TOF, ES+) calc'd for $C_{19}H_{33}NO_4Si [M+H]^+$ 368.2252, found 368.2253 (ppm=-0.38)

Preparation of N-benzyl THO enone 8a

Add MeSO₃H (0.23mL, 325mg, 3.49 mmol, 0.5 equiv) to **15a** (3.00 g, 6.98 mmol, 1.00 equiv) under argon in wet MeCN (350 mL) and begin cool to -35 °C. Sparge reaction with O₂ and add Cu(TMEDA)₂(BF4)₂ (0.0349 mmol, 0.05 equiv) as a solution in MeCN (1 mL). [Note: Cu(TMEDA)₂(BF4)₂ made by dissolving Cu(BF₄)₂•xH₂O (20 wt% Cu) (111 mg, 0.349 mmol, 0.05 equiv) and TMEDA (0.10 mL, 81 mg, 0.10 equiv) in MeCN(1 mL)]. Continue cooling to -45 °C. Stop O₂ sparge after 10 minutes at -45 °C. Slowly allow reaction return to room temperature. Add acetic anhydride (3.84 mL, 4.16 g, 40.48 mmol, 6.0 equiv), stir 1 minute then add pyridine (0.54 mL, 534 mg, 6.75 mmol, 1 equiv) allow to stir under air overnight. Dilute with EtOAc (350 mL) wash with an aqueous solution (357 mL) composed of EDTA pH=9 buffer (7 mL), DI H₂O (175mL) and brine (175mL). Wash organic with additional brine (50 mL). Extract combined aqueous layer with EtOAc (2x100mL). Dry combined organic layers over Na₂SO₄, filter and concentrate. Purify by flash chromatography (silica 215 g, 40% EtOAc/Hexanes) to yield **8a** and *anti*-**8a** as an overall 5.2:1 dr mixture (1.512g, 4.59 mmol, 69% yield).

1H), 2.51 (d, *J* = 16.7 Hz, 1H), 2.30 (td, *J* = 16.5, 15.9, 5.0 Hz, 1H), 2.13 (d, *J* = 23.1 Hz, 1H), 1.97 – 1.80 (m, 1H), 1.29 (t, *J* = 7.2 Hz, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 196.87, 170.20, 168.39, 153.52, 132.54, 131.83, 128.94, 128.27, 127.95, 78.86, 77.52, 62.33, 35.05, 31.33, 29.87, 26.33, 14.33.

FTIR (AT-IR) 2979.74, 2359.59, 1738.00, 1667.46, 1600.60, 1578.10, 1447.41, 1387.71, 1364.39, 1316.29, 1254.3, 1197.39, 1139.88, 1077.16, 1027.25, 975.89, 899.81, 871.89, 789.33, 758.51, 706.03, 617.25 cm⁻¹

HRMS (TOF, ES+) calc'd for $C_{18}H_{19}NO_5$ [M+H]⁺ 330.1336, found 330.1337 (ppm=-0.31)

1H), 2.33 – 2.14 (m, 1H), 1.89 (ddd, *J* = 9.7, 8.0, 5.0 Hz, 2H), 1.35 – 1.29 (m, 3H).

¹**H** NMR (500 MHz, CDCl₃) δ 7.82 – 7.77 (m, 2H), 7.52 – 7.46 (m, 1H), 7.45 – 7.39 (m, 2H), 6.01 – 5.96 (m, 1H), 4.98 (dd, *J* = 9.6, 7.5 Hz, 1H), 4.81 – 4.68 (m, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 3.10 – 2.95 (m, 2H), 2.49 (dddd, *J* = 17.2, 4.4, 2.9, 1.2 Hz, 1H), 2.31 – 2.19 (m, 1H), 1.97 – 1.80 (m, 2H), 1.31 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 196.64, 170.15, 168.93, 157.09, 132.65, 131.60, 129.22, 128.10, 127.77, 80.96, 62.26, 58.14, 35.41, 30.86, 27.55, 14.28.

FTIR (AT-IR) 2359.53, 2340.23, 1729.8, 1637.97, 1577.29, 1448.88, 1394.9, 1300.99, 1245.96, 1199.42, 1098.44, 1008.47, 981.15, 962.42, 904.15, 844.43, 790.7, 736.73, 707.82, 667.97, 635.45 cm⁻¹

HRMS (TOF, ES+) calc'd for C₁₈H₁₉NO₅ [M+H]⁺ 330.1336, found 330.1334 (ppm=0.60)

Preparation of N-acetyl THO enone 8b

$$\begin{array}{c} \textbf{CO}_{2}\textbf{Et} \\ \textbf{AcN}_{OTBS} \\ \textbf{15b} \end{array} \overset{1. \text{ MeSO}_{3}\text{H};}{\textbf{2. Cu(TMEDA)}_{2}(\text{BF}_{4})_{2} (2.5 \text{ mol}\%), \text{O}_{2}} \\ \textbf{MeCN}, \text{rt; then } -45^{\circ}\text{C to rt} \\ \textbf{(62\% yield, 13:1 dr)} \\ \textbf{MeCN}, \textbf{13:1 dr} \\ \textbf{MeCN} \\ \textbf{MeCN}, \textbf{13:1 dr} \\ \textbf{MeCN} \\ \textbf{MeCN}, \textbf{13:1 dr} \\ \textbf{MeCN} \\$$

Add MeSO₃H (18 µL, 26.1 mg, 0.272 mmol, 0.5 equiv) in MeCN (0.5 mL) to **15b** (200 mg, 0.544 mmol, 1.0 equiv) under argon in wet MeCN (26 mL) and begin cool to -35 °C. Sparge reaction with O₂ and add Cu(TMEDA)₂(BF4)₂ (0.00.136 mmol, 0.05 equiv) as a solution in MeCN (0.5 mL). Note: Cu(TMEDA)₂(BF4)₂ made by dissolving Cu(BF₄)₂•xH₂O (20 wt% Cu) (4.3 mg, 0.0.0136 mmol, 0.05 equiv) and TMEDA (4 µL, 3.2 mg, 0.0272 mmol, 0.10 equiv) in MeCN (0.5 mL). Continue cooling to -45 °C. Stop O₂ sparge after 10 minutes but continue stirring at -45 °C for 2h. Slowly allow reaction return to room temperature. Add acetic anhydride (0.16 mL, 168 mg, 1.632 mmol, 3.0 equiv), stir 1 minute then add pyridine (44 µL, 43 mg, 0.544 mmol, 1 equiv) allow to stir under air overnight. Dilute with EtOAc (20 mL) wash with an aqueous solution (35 mL) composed of EDTA pH=9 buffer (10 mL), DI H₂O (5mL) and brine (5 mL). Extract combined aqueous with EOAc (10 mL) Wash combined organics with additional brine (20 mL). Dry combined organic layers over Na₂SO₄, filter and concentrate. Purify crude material by flash chromatography on silica with 100% Et₂O then 75% to 100%EtOAc/Hexanes. Recovered 90 mg (0.337 mmol, 62% yield) of **8b** as a mixture of diastereomers (13:1 dr).

¹**H NMR** (600 MHz, CDCl₃) δ 6.01 (q, *J* = 1.5 Hz, 1H), 5.41 (dd, *J* = 7.2, 1.4 Hz, 1H), 4.68 (dd, *J* = 10.7, 5.1 Hz, 1H), 4.27 – 4.15 (m, 2H), 3.11 (ddt, *J* = 15.7, 1.5, 0.7 Hz, 1H), 2.84 (dddd, *J* = 15.7, 7.2, 2.5, 1.6 Hz, 1H), 2.63 – 2.55 (m, 1H), 2.41 – 2.33 (m, 2H), 2.25 (s, 3H), 1.98 (dddd, *J* = 16.2, 14.1, 9.0, 3.3 Hz, 1H), 1.26 (td, *J* = 7.1, 1.0 Hz, 4H).

¹³C NMR (126 MHz, CDCl₃) δ 196.79, 171.44, 168.28, 153.41, 127.93, 78.79, 62.19, 53.60, 35.02, 31.50, 26.38, 20.30, 14.26.

FTIR (AT-IR) 2931.38, 2360.54, 1737.83, 1668.55, 1402.03, 1368.95, 1314.81, 1256.65, 1198.38, 1026.43, 975.46, 945.41, 900.55, 725.65 cm⁻¹

HRMS (TOF, ES+) calc'd for C₁₃H₁₇NO₅ [M+H]⁺ 268.1179, found 268.1180 (ppm=-0.19)

Preparation of epoxy ketone 17

Substrate **8a** (726.8mg, 2.207 mmol, 1 equiv) was dissolved in THF (37 mL) and pH=7 phosphate buffer (11 mL), reaction is kept dark, cooled to 0 °C. Cannulate suspension of $CrCl_3 \cdot 3THF$ (33mg, 0.088 mmol, 0.04 equiv) and NaHCO₃ (556 mg, 6.620 mmol, 3.0 equiv) in THF (74 mL) and H₂O (33 mL) dropwise. After 75 minutes, reaction is complete. Add 0.20M sodium thiosulfate and pH=7 phosphate buffer, Extract with CH₂Cl₂ three times (note: an emulsion forms, allow to settle). Wash organic layer with brine. Dry organics over Na₂SO₄ filter and concentrate. Separate crude material on florisil (35g) with a gradient 20– 50% EtOAc in Hexanes to provide **17** (540.7 mg, 1.56 mmol, 71% yield) as a white solid

¹**H NMR** (500 MHz, CDCl₃) δ 7.74 (d, *J* = 7.6 Hz, 2H), 7.55 – 7.49 (m, 1H), 7.48 – 7.40 (m, 2H), 5.68 (s, 1H), 4.36 (s, 1H), 3.30 (s, 1H), 2.62 (dd, *J* = 13.5, 6.1 Hz, 1H), 2.36 (dt, *J* = 17.3, 5.2 Hz, 1H), 2.22 (dd, *J* = 20.4, 15.0 Hz, 2H), 2.11 (d, *J* = 15.4 Hz, 1H), 1.79 (s, 1H), 1.28 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 202.53, 170.07, 168.33, 131.70, 128.81, 128.17, 78.81, 62.40, 60.80, 60.30, 55.39, 31.71, 30.86, 22.01, 14.29.

FTIR(AT-IR) 2979.80, 2359.60, 1716.02, 1656.84, 1578.52, 1447.13, 1389.33, 1366.88, 1309.09, 1257.56, 1178.77, 1092.65, 1026.42, 974.69, 920.18, 870.32, 788.06, 748.64, 707.41 cm⁻¹ **HRMS** (TOF, ES+) calc'd for C₁₈H₁₉NO₆ [M+H]⁺ 346.1285, found 346.1291 (ppm=–1.69)

Preparation of epoxy enone 17

To a solution of substrate 17 (1.688 g, 4.89 mmol, 1.0 equiv) in DMSO(0.15M, 32.5 mL) add 1,4benzoquinone (660 mg, 6.11 mmol, 1.25 equiv), Pd(MeCN)₄(BF)₄ (325.7 mg, 0.733 mmol, 0.15 equiv), and PIDA(394 mg, 1.22 mmol, 0.25 equiv). Heat to 50 °C, stir 96h. Cool to ambient temperature. Add 75 mL NaHCO₃(aq), extract 4x175 mL EtOAc. Wash organic layer with 40 mL brine. Dry organic layer with Na₂SO₄, filter. Purify flash and concentrate. by chromatography (silica 175 g, 15%EtOAc/40%CH₂Cl₂/Hexanes) to vield **18** (1.12g, 3.26 mmol, 67% vield).

¹**H NMR** (400 MHz, CDCl₃) δ 7.79 – 7.69 (m, 2H), 7.58 – 7.50 (m, 1H), 7.49 – 7.41 (m, 2H), 6.30 (s, 1H), 6.08 (dt, *J* = 10.6, 1.4 Hz, 1H), 5.65 (s, 1H), 4.72 (s, 1H), 4.34 – 4.12 (m, 3H), 3.53 (t, *J* = 1.6 Hz, 1H), 2.70 (dd, *J* = 13.9, 6.2 Hz, 1H), 2.28 (d, *J* = 14.0 Hz, 1H), 1.27 (t, *J* = 7.1 Hz, 4H).

¹³**C NMR** (101 MHz, CDCl₃) δ 192.45, 170.22, 168.04, 136.07, 132.22, 131.90, 130.64, 128.71, 128.27, 76.11, 62.50, 60.42, 59.24, 55.60, 29.61, 14.19.

FTIR (AT-IR) 2982.21, 1737.29, 1690.76, 1661.42, 1600.80, 1579.13, 1447.34, 1390.80, 1365.58, 1334.93, 1306.37, 1266.83, 1226.57, 1187.35, 1026.36, 947.14, 910.44, 859.39, 826.78, 780.45, 729.61, 708.37, 647.95 cm⁻¹

HRMS (TOF, ES+) calc'd for C₁₈H₁₇NO₆ [M+H]⁺ 344.1129, found 344.1127 (ppm=0.48)

To chill a solution of **18** (1.1207g, 3.26 mmol, 1 equiv) in wet dioxane (13 mL dioxane, 0.1mL DI H₂O) to 0 °C. Add NaOCl (12.5 wt% in H₂O) (3.62mL, 4.37g (243 mg NaOCl), 2.25 equiv) Stir 5h at 0 °C. Dilute

in 1:1 brine/DI H_2O (65 mL). Extract with EtOAc 3x75mL. Dry organics over Na_2SO_4 . Filter and concentrate. Take up crude in benzene, concentrate; take up again in hexanes and re-concentrate. Yields **19** (1.09g, 93% yield) as a white foam. [Note: **19** was not amenable to chromatographic purification due to instability and was used with no further purification.]

¹**H NMR** (400 MHz, CDCl₃) δ 7.78 – 7.69 (m, 2H), 7.56 – 7.49 (m, 1H), 7.49 – 7.40 (m, 2H), 5.53 (s, 0H), 4.74 (s, 1H), 3.43 (d, *J* = 1.8 Hz, 1H), 3.40 (s, 1H), 3.39 – 3.33 (m, 1H), 2.63 (dd, *J* = 14.0, 6.1 Hz, 1H), 2.11 (dd, *J* = 14.1, 1.8 Hz, 1H), 1.28 (t, *J* = 7.1 Hz, 4H).

¹³C NMR (101 MHz, CDCl₃) δ 197.03, 170.44, 167.70, 132.10, 131.96, 128.50, 128.32, 75.09, 63.75, 62.60, 61.63, 56.77, 55.37, 54.25, 31.10, 14.14.

FTIR (AT-IR) 1736.36, 1707.34, 1666.01, 1447.25, 1368.08, 1303.87, 1226.04, 1185.33, 1022.17, 947.87, 912.99, 868.45, 788.53, 708.45 cm⁻¹

HRMS (TOF, ES+) calc'd for C₁₈H₁₇NO₇ [M+H]⁺ 360.1078, found 360.1078 (ppm=-0.06)

Preparation of Wharton products 20a and 20b

Cool to solution of benzoic acid (6.8 mg, 0.057 mmol, 0.20 equiv) in EtOAc (2mL) to 10 °C. Concurrently, add solutions of NH₂NH₂ (8.9 mg, 8.7µL, 0.278 mmol) in EtOAc (5 mL) and **19** (100 mg, 0.278 mmol) in EtOAc (5 mL) dropwise via syringes to the cooled reaction flask over 30 minutes. Rinse substrate syringe with EtOAc (1 mL). Bring reaction to ambient temperature and stir five minutes before adding triethylamine (1 mL). Filter through a neutralized florisil plug and rinse plug with (5% NEt₃/EtOAc). Purification of that crude mixture by flash chromatography (florisil 5.0g, 5% NEt₃/50%EtOAc/Hexanes) to yield a 3:2 mixture

of **20a** and **20b** (31.4mg, 0.091mmol, 33% yield) which were carried forward as a mixture. **20b** could be isolated cleanly for characterization by flash chromatography (40%EtOAc/Hexanes).

FTIR (AT-IR) 3457.65, 2981.45, 2359.53, 2340.24, 1739.24, 1652.54, 1576.29, 1447.92, 1394.23, 1317.61, 1274.82, 1267.49, 1230.14, 1189.56, 1028.04, 954.06, 867.43, 809.44, 788.73, 763.78, 749.59, 708.28, 667.92 cm⁻¹

HRMS (TOF, ES+) alc'd for C₁₈H₁₉NO₆ [M+H]⁺ 346.1285, found 346.1282 (ppm=0.91)

Preparation of silylated allylic alcohol 21

Cool solution of **20a** and **20b** (31.6 mg, 0.0915 mmol) to -5 °C. Add triethylamine (93mg, 128 µL, 0.915 mmol, 10 equiv) followed by TBSOTf (48.4 mg, 42 µL, 0.183 mmol, 2.0 equiv). Warm to 10 °C and stir 25 minutes. Add additional triethylamine (44 mg, 60 µL, 0.430 mmol, 4.7 equiv) followed by TBSOTf (23 mg, 20 µL, 0.087 mmol, 0.95 equiv). Quench excess TBSOTf with *i*-PrOH (25 µL) and stir at ambient temperature for 5 minutes. Concentrate crude reaction and purify by flash chromatography (florisil 3.6g, 2% NEt₃/5 \rightarrow 15%EtOAc/Hexanes) provides **21** (9.6mg, 0.0209 mmol, 38% yield).

¹**H** NMR (400 MHz, CDCl₃) δ 7.78 – 7.68 (m, 2H), 7.48 (d, J = 1.6 Hz, 1H), 7.44 – 7.38 (m, 2H), 6.04 (dd, J = 10.0, 3.6, 1.3 Hz, 1H), 5.77 (ddd, J = 10.0, 4.1, 1.1 Hz, 1H), 5.46 (s, 1H), 4.23 (d, J = 5.7 Hz, 2H), 4.16 (s, 1H), 4.08 (d, J = 3.8 Hz, 1H), 3.24 (dt, J = 3.6, 1.0 Hz, 1H), 2.45 (dd, J = 13.8, 5.1 Hz, 2H), 1.29 (t, J = 7.1 Hz, 3H), 0.78 (s, 9H), -0.10 (d, J = 34.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 169.81, 169.07, 134.70, 132.72, 131.30, 128.61, 128.04, 124.94, 84.87, 66.65, 61.89, 58.77, 52.47, 30.67, 29.69, 25.75, 18.04, 14.19, -4.88, -4.92.

FTIR (AT-IR) 2954.10, 2928.42, 2856.26, 2361.06, 2340.36, 1739.52, 1652.91, 1471.97, 1447.94, 1389.33, 1315.95, 1253.02, 1226.52, 1188.91, 1094.5, 1027.62, 915.93, 878.84, 837.35, 814.81, 778.37, 746.41, 706.37, 668.03, 654.57, 648.90, 632.41, 617.5, 608.61 cm⁻¹

HRMS (TOF, ES+) calc'd for C₂₄H₃₃NO₆Si [M+H]⁺ 460.2150, found 460.2146 (ppm=0.85)

Preparation of N-H THO derivative 22

To a stirred suspension of Cp₂Zr(H)Cl (12.4 mg, 0.0320 mmol, 1.5 equiv) in THF (0.15 mL) add **21** (14.7 mg, 0.0320 mmol, 1.0 equiv) in a steady stream as a solution in THF (1.75 mL). Rinse substrate syringe with THF (3×0.15 mL) Stir at ambient temperature for 10 minutes. Quench reaction with the rapid addition of a pH=7 phosphate buffer (0.50 mL). Extract aqueous four times with EtOAc. Dry organics over Na₂SO₄. Filter and concentrate, purify crude product by flash chromatography (florisil 1.50 g, 10–60% EtOAc/Hexanes, +10% EtOAc/10 mL eluent). Concentrate and re–concentrate from dry toluene to yield **22** as a white solid (9.0 mg, 0.0253 mmol, 79% yield).

 6.0, 2.8, 1.0 Hz, 1H), 3.21 (dt, J = 4.0, 1.2 Hz, 1H), 2.57 (dd, J = 13.4, 5.9 Hz, 1H), 2.12 (dt, J = 13.4, 2.3 Hz, 1H), 1.29 (t, J = 7.1 Hz, 3H), 0.89 (s, 9H), 0.09 (d, J = 8.4 Hz, 6H).

¹³C NMR (126 MHz, CDCl₃) δ 171.70, 133.48, 125.45, 81.96, 67.70, 61.78, 59.88, 59.68, 53.79, 31.59, 26.08, 18.43, 14.41, -4.34.

FTIR (AT-IR) 2928.00, 2855.59, 2361.23, 2339.00, 1734.81, 1472.07, 1462.93, 1388.10, 1251.36, 1225.94, 1180.11, 1082.99, 1026.99, 1005.17, 931.05, 859.36, 836.96, 776.80, 739.28, 667.95 cm⁻¹ **HRMS** (TOF, ES+) calc'd for C₁₇H₂₉NO₅Si [M+H]⁺ 356.1888, found 356.1891 (ppm=-0.91)

Derivatization of 18 for X-ray crystallography

Cool **18** (140 mg, 0.408mg, 1.0 equiv) and CeCl₃•7H₂O (304mg, 0.816 mmol, 2.0 equiv) in MeOH (6.7 mL) to -20 °C. Add a solution of NaBH₄ (30.9 mg, 0.816 mmol, 2.0 equiv) and stir for 30 minutes before raising the temperature to 0 °C. Add NaHCO_{3(aq)} (9 mL). Extract with EtOAc four times. Wash combined organics with brine. Dry over Na₂SO₄, filter, and concentrate. Purification by flash chromatography (fine silica, 20% PhMe/40% Acetone/Hexanes) provided **SI-7** (63.3 mg, 0.183 mmol, 45% yield) and some mixed fractions which were subsequently purified on normal phase prep-HPLC (45% EtOAc/Hexanes) to provide additional **SI-7** (27.0mg, 0.078 mmol, 19% yield) and **SI-8** (38.4 mg, 0.111 mmol, 27% yield).

HO,
$$NBz$$

 HO , NBz
 HO , NZ
 HO , NZ

2.53 (m, 1H), 2.24 (d, *J* = 13.7 Hz, 1H), 2.08 (s, 1H), 1.64 (s, 1H), 1.29 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 170.09, 168.74, 133.50, 131.72, 128.88, 128.16, 119.84, 76.90, 65.00, 62.29, 62.01, 56.89, 55.35, 30.65, 14.31.

FTIR (AT-IR) 3515.22, 2359.36, 2340.32, 1713.29, 1651.27, 1448.14, 1400.82, 1371.84, 1300.75, 1271.34, 1237.79, 1198.4, 1086.26, 1044.77, 1015.91, 974.42, 917.96, 850.56, 808.77, 791.48, 707.66, 668.00, 627.70 cm⁻¹

HRMS (TOF, ES+) calc'd for C₁₈H₁₉NO₆ [M+H]⁺ 346.1285, found 346.1281 (ppm=1.20)

HO HO H CO_2Et HO HC CO_2Et HO HC HCO_2Et HO HCO_2ET H

FTIR (AT-IR) 3506.46, 2925.60, 2359.53, 2340.3, 1733.94, 1653.54, 1578.26, 1447.05, 1367.84, 1298.39, 1233.21, 1189.33, 1025.82, 905.79, 867.34, 831.29, 790.72, 768.16, 730.21, 706.66, 667.91 cm⁻¹ **HRMS** (TOF, ES+) calc'd for C₁₈H₁₉NO₆ [M+H]⁺ 346.1285, found 346.1275 (ppm=1.20)

3. Single Crystal X-ray Diffraction Data

Determination of enantiomeric series – desilylated S-hydroxylamine (p16469_b)

Crystal was obtained in analogy to **14** with 2-Br-benzoyl chloride. Material was recrystallized from CHCl₃/hexanes. Layer diffusion between 1:1 CHCl₃/Hexanes and Hexanes yielded X-ray quality crystals of a desilylated hydroxylamine.

Table 1. Crystal data and structure refinement for final p16469_b.

Identification code	p16469_b	
Empirical formula	C14 H14 Br N O4	
Formula weight	340.17	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P12 ₁ 1	
Unit cell dimensions	a = 8.6346(7) Å	$\alpha = 90^{\circ}$.
	b = 5.6380(5) Å	$\beta = 103.728(3)^{\circ}$
	c = 15.6510(13) Å	$\gamma = 90^{\circ}$
Volume	740.15(11) Å ³	
Z	2	
Density (calculated)	1.410 Mg/m^3	
Absorption coefficient 0	2.788 mm ⁻¹	
F(000)	344	
Crystal size	$0.23 \times 0.15 \times 0.07 \text{ mm}^3$	
Theta range for data collection	2.428 to 45.369°	
Index ranges	-16<=h<=17, -11<=k<=11, -31<=l<=31	
Reflections collected	68030	
Independent reflections	12256 [R(int) = 0.0378]	
Completeness to theta = 25.000°	99.7 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.747 and 0.716	
Refinement method	Full-matrix least-squares on F2	
Data / restraints / parameters	12256/1/183	
Goodness-of-fit on F2	0.989	
Final R indices [I>2sigma(I)]	R1 = 0.0241, $wR2 = 0.0526$	
R indices (all data)	R1 = 0.0305, WR2 = 0.0541	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.526 and -0.838 e.Å ⁻³	
-		

Table 2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å 2×10³) for final p16469_b. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U _{eq}
Br1	0.15673(2)	0.20544(3)	0.66433(2)	0.02070(3)
01	0.86808(9)	0.26712(16)	0.92479(6)	0.01991(14)

O2	0.80569(9)	0.56641(15)	0.82777(6)	0.01865(13)
O3	0.54192(7)	0.19604(14)	0.73103(4)	0.01256(9)
O4	0.492	0.0738	0.7396	0.019
N1	0.43360(9)	0.76829(12)	0.77810(5)	0.01514(11)
C1	0.50418(9)	0.38290(13)	0.78093(5)	0.00968(10)
C2	0.77148(10)	0.39468(16)	0.87841(6)	0.01261(12)
C3	0.59223(10)	0.38553(15)	0.87231(5)	0.00991(11)
C4	0.5623	0.5331	0.9	0.012
C5	0.55204(9)	0.17365(15)	0.92407(5)	0.01207(13)
C6	0.5754	0.025	0.8959	0.014
C7	0.6205	0.1778	0.9845	0.014
C8	0.38480(10)	0.17397(16)	0.92825(6)	0.01385(14)
C9	0.24845(11)	0.1758(2)	0.93395(7)	0.01919(18)
C10	0.1407	0.1773	0.9384	0.023
C11	0.43888(10)	0.58063(14)	0.73832(5)	0.00977(11)
C12	0.37367(10)	0.56879(15)	0.64074(5)	0.01081(11)
C13	0.25012(11)	0.42021(17)	0.59858(6)	0.01398(13)
C14	0.18903(13)	0.4296(2)	0.50811(7)	0.01944(17)

Table 3. Bond lengths [Å] and angles [°] for final p16469_b

Br1–C8	1.8892(9)
01–C1	1.2052(12)
O2C1	1.3282(11)
O2-C13	1.4559(13)
O3–H3	0.8400
O3–N1	1.3953(10)
04–C6	1.2340(11)
NI-C2	1.4518(11)
NI = C0	1.531/(11) 1.5289(12)
C1 = C2 C2 = H2	1.5200(12)
$C_2 - C_3$	1.0000 1.5287(11)
C3-H3A	0.9900
C3–H3B	0.9900
C3–C4	1.4610(11)
C4–C5	1.2017(12)
С5-Н5	0.9500
C6–C7	1.4986(11)
С7–С8	1.3932(13)
C7–C12	1.3987(12)
C8–C9	1.3899(14)
C9–H9	0.9500
C9-C10	1.3905(15)
C10-H10	0.9500
C10-C11 C11 H11	1.3838(10)
	0.9500
C11–C12	1.3931(13)
С12-Н12	0.9500
C13-H13A	0.9900
C13-H13B	0.9900
C13-C14	1.5054(17)
C14–H14A	0.9800
C14–H14B	0.9800
C14–H14C	0.9800
<u>C1-O2-C13</u>	115 36(8)
01 02 015	112.20(0)

N1O3H3	109.5
O3-N1-C2	114.95(6)
C6-N1-O3	118 17(7)
C6-N1-C2	122.50(7)
01-C1-02	122.00(7) 125.05(9)
01 - 01 - 02	123.03(9) 124.29(9)
01-01-02	124.20(0)
02-01-02	110.65(8)
NI-C2-C1	110.34(7)
N1C2H2	107.8
N1-C2-C3	112.48(7)
С1-С2-Н2	107.8
C3-C2-C1	110.31(7)
С3-С2-Н2	107.8
C2–C3–H3A	109.2
C2–C3–H3B	109.2
H_{3A} $-C_{3}$ $-H_{3B}$	107.9
C_{1}	111 95(7)
$C_{4} = C_{5} = C_{2}$	100.2
C4 - C3 - H3A	109.2
C4-C3-H3B	109.2
05-04-03	178.30(10)
C4–C5–H5	180.0
O4-C6-N1	121.28(8)
O4–C6–C7	120.17(8)
N1-C6-C7	118.55(7)
C8–C7–C6	124.73(7)
C8–C7–C12	118.27(8)
C12-C7-C6	116 78(8)
C7-C8-Br1	120 35(6)
$C_{9} C_{8} Br^{1}$	120.33(0) 118 14(7)
$C_{0} C_{0} C_{7}$	121 40(0)
$C_{2}^{0} = C_{2}^{0} = C_{1}^{0}$	121.49(9)
Co-C9-H9	120.4
	119.29(10)
C10-C9-H9	120.4
С9-С10-Н10	119.8
C11–C10–C9	120.33(9)
C11-C10-H10	119.8
C10-C11-H11	120.1
C10-C11-C12	119.88(9)
C12-C11-H11	120.1
C7-C12-H12	119.6
C11-C12-C7	120 70(9)
$C_{11} - C_{12} - H_{12}$	119.6
$O_2 C_{12} H_{13}$	110.3
$O_2 = C_{12} = H_{12}$	110.3
02-013-014	110.5
02-013-014	107.04(9)
HI3A-CI3-HI3B	108.6
C14–C13–H13A	110.3
C14-C13-H13B	110.3
C13-C14-H14A	109.5
C13-C14-H14B	109.5
C13-C14-H14C	109.5
H14A-C14-H14B	109.5
H14A - C14 - H14C	109.5
	107.0

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²) for final p16469_b. The anisotropic displacement factor exponent takes the form: $-2p^{2}[h^{2} a^{*2}U^{11} + ... + 2 h k a^{*} b^{*}U^{12}]$

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br1	0.01666(4)	0.02574(5)	0.01784(4)	0.00477(4)	0.00036(3)	-0.01092(4)

01	0.0128(2)	0.0248(4)	0.0218(3)	0.0102(3)	0.0035(2)	0.0027(2)
O2	0.0128(2)	0.0203(3)	0.0226(3)	0.0095(3)	0.0035(2)	-0.0029(2)
O3	0.0179(2)	0.0080(2)	0.0122(2)	-0.0020(2)	0.00421(17)	0.0012(2)
O4	0.0234(3)	0.0083(2)	0.0131(2)	-0.00124(19)	0.0030(2)	0.0014(2)
N1	0.0128(2)	0.0076(2)	0.0080(2)	-0.00085(18)	0.00111(19)	0.00054(19)
C1	0.0118(3)	0.0137(3)	0.0119(3)	0.0014(2)	0.0019(2)	-0.0021(2)
C2	0.0109(3)	0.0099(3)	0.0084(3)	0.0002(2)	0.0013(2)	-0.0013(2)
C3	0.0123(3)	0.0127(4)	0.0108(3)	0.0025(2)	0.0019(2)	-0.0012(2)
C4	0.0139(3)	0.0153(4)	0.0119(3)	0.0031(2)	0.0024(2)	-0.0019(2)
C5	0.0148(3)	0.0245(5)	0.0180(3)	0.0066(3)	0.0035(3)	-0.0002(3)
C6	0.0115(3)	0.0083(3)	0.0095(3)	0.0004(2)	0.0023(2)	0.0000(2)
C7	0.0129(3)	0.0101(3)	0.0092(3)	0.0010(2)	0.0023(2)	-0.0001(2)
C8	0.0126(3)	0.0166(3)	0.0114(3)	0.0020(3)	0.0003(2)	-0.0022(3)
C9	0.0164(4)	0.0268(5)	0.0123(3)	0.0014(3)	-0.0022(3)	-0.0031(3)
C10	0.0211(4)	0.0267(5)	0.0104(3)	0.0041(3)	0.0004(3)	0.0014(3)
C11	0.0262(4)	0.0187(5)	0.0120(3)	0.0044(3)	0.0058(3)	-0.0009(3)
C12	0.0216(3)	0.0122(4)	0.0122(3)	0.0016(2)	0.0048(2)	-0.0025(3)
C13	0.0139(4)	0.0264(5)	0.0263(5)	0.0092(4)	0.0048(3)	-0.0038(3)
C14	0.0238(5)	0.0323(6)	0.0394(7)	0.0178(5)	0.0113(5)	-0.0040(4)

Conformational preferences of bicyclic tetrahydro-1,2–oxazine – epoxy allylic alcohol (a16027_a)

X-ray quality crystals of **SI-8** obtained layer diffusion between 1:1 CHCl₃/hexanes and hexanes.

Table 1. Crystal data and structure refinement for a16027_a.cif.

Identification code	a16027_a	
Empirical formula	C18 H19 N O6	
Formula weight	345.34	
Temperature	99.99 K	
Wavelength	0.71073 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 9.4539(6) Å	$\Box = 114.437(3)^{\circ}.$
	b = 9.8703(7) Å	$\Box = 105.326(3)^{\circ}.$
	c = 10.6887(7) Å	$\Box = 102.469(3)^{\circ}.$

Volume	813.45(10) Å ³
Ζ	2
Density (calculated)	1.410 Mg/m ³
Absorption coefficient	0.107 mm ⁻¹
F(000)	364
Crystal size	0.8 x 0.45 x 0.35 mm3
Theta range for data collection	2.281 to 37.744°.
Index ranges	-15<=h<=16, -16<=k<=16, -18<=l<=18
Reflections collected	65383
Independent reflections	8412 [R(int) = 0.0252]
Completeness to theta = 26.000°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmissio n	0.7474 and 0.7156
Refinement method	Full-matrix least-squares on F2
Data / restraints / parameters	8412 / 0 / 228
Goodness-of-fit on F2	1.043
Final R indices [I>2sigma(I)]	R1 = 0.0343, $wR2 = 0.1005$
R indices (all data)	R1 = 0.0395, $wR2 = 0.1046$
Extinction coefficient	n/a
Largest diff. peak and hole	0.555 and -0.205 e.Å ⁻³

Table 2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×

10^{3}) for a16027	∕_a. U _{(ee}	₁₎ is de	efined a	s one	third o	of the t	trace o	f the	orthogonalized	U _{ij}	tensor.
----------	--------------	-----------------------	---------------------	----------	-------	---------	----------	---------	-------	----------------	-----------------	---------

	Х	у	Z	U(eq)
O(1)	6873(1)	5237(1)	993(1)	23(1)
O(2)	4078(1)	7342(1)	4849(1)	21(1)
O(3)	1513(1)	4450(1)	837(1)	21(1)
O(4)	6198(1)	8195(1)	2623(1)	12(1)
O(5)	10068(1)	8470(1)	3357(1)	20(1)
O(6)	5780(1)	4128(1)	2137(1)	17(1)
N(1)	7672(1)	8243(1)	3435(1)	13(1)
C(1)	6678(1)	5329(1)	2092(1)	14(1)
C(2)	7469(1)	6856(1)	3630(1)	14(1)
C(3)	6542(1)	6982(1)	4627(1)	17(1)
C(4)	5059(1)	7241(1)	4009(1)	14(1)
C(5)	3483(1)	6000(1)	3339(1)	17(1)
C(6)	2082(1)	5930(1)	2205(1)	18(1)
C(7)	2411(1)	7354(1)	1984(1)	18(1)
C(8)	3827(1)	8515(1)	2614(1)	17(1)
C(9)	5306(1)	8516(1)	3564(1)	14(1)
C(10)	8946(1)	8903(1)	3200(1)	14(1)
C(11)	8956(1)	10245(1)	2885(1)	15(1)
C(12)	9779(1)	10449(1)	2025(1)	20(1)
C(13)	9905(1)	11734(1)	1767(1)	26(1)
C(14)	9229(1)	12823(1)	2380(1)	27(1)
C(15)	8441(1)	12645(1)	3270(1)	23(1)
C(16)	8295(1)	11352(1)	3517(1)	17(1)
C(17)	4949(1)	2613(1)	725(1)	22(1)
C(18)	4116(1)	1415(1)	1064(1)	27(1)

Table 3. Bond lengths [Å] and angles [°] for a16027_a

$\overline{O(1)}$ - $C(1)$	1 2069(7)	
0(1) 0(1)	1.2009(7)	
O(2)-C(4)	1.4424(7)	

O(2)-C(5)	1.4510(7)
O(3)-H(3)	0.8400
O(3)-C(6)	1.4277(8)
O(4)-N(1)	1.4127(6)
O(4)-C(9)	1.4561(6)
O(5)-C(10)	1.2234(7)
O(6)-C(1)	1.3270(7)
O(6)-C(17)	1.4591(7)
N(1)-C(2)	1.4480(7)
N(1)-C(10)	1.3767(7)
C(1)-C(2)	1.5316(7)
C(2)-H(2)	1.0000
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(3)-C(4)	1.5075(8)
C(4)-C(5)	1.4682(8)
C(4)-C(9)	1.5140(8)
C(5)-H(5)	1.0000
C(5)-C(6)	1.5068(9)
C(6)-H(6)	1.0000
C(6)-C(7)	1.5011(8)
C(7)-H(7)	0.9500
C(7)-C(8)	1.3347(8)
C(8)-H(8)	0.9500
C(8)-C(9)	1.4944(8)
C(9)-H(9)	1.0000
C(10)-C(11)	1.4945(8)
C(11)-C(12)	1.3977(8)
C(11)-C(16)	1.3956(8)
C(12)-H(12)	0.9500
C(12)-C(13)	1.3932(10)
C(13)-H(13)	0.9500
C(13)-C(14) C(14) H(14)	1.3882(12)
C(14)- $H(14)C(14)$ $C(15)$	0.9300
C(14)-C(15) C(15) U(15)	1.3930(10)
$C(15)-\Gamma(15)$	1 3928(8)
C(16)-H(16)	0.9500
C(17)-H(17A)	0.9900
C(17)-H(17R)	0.9900
C(17)- $C(18)$	1.5017(10)
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
e(10) II(10e)	0.9000
C(4)-O(2)-C(5)	60.99(3)
C(6)-O(3)-H(3)	109.5
N(1)-O(4)-C(9)	109.45(4)
C(1)-O(6)-C(17)	116.14(5)
O(4)-N(1)-C(2)	110.53(4)
C(10)-N(1)-O(4)	116.60(4)
C(10)-N(1)-C(2)	122.41(4)
O(1)-C(1)-O(6)	124.83(5)
O(1)-C(1)-C(2)	123.79(5)
O(6)-C(1)-C(2)	111.38(4)
N(1)-C(2)-C(1)	109.45(4)
N(1)-C(2)-H(2)	108.5
N(1)-C(2)-C(3)	107.27(4)
C(1)-C(2)-H(2)	108.5
C(1)-C(2)-C(3)	114.37(4)
C(3)-C(2)-H(2)	108.5

C(2)-C(3)-H(3A)	109.6
C(2)-C(3)-H(3B)	109.6
H(3A)-C(3)-H(3B)	108.1
C(4)-C(3)-C(2)	110.42(4)
C(4)-C(3)-H(3A)	109.6
C(4)-C(3)-H(3B)	109.6
O(2) - C(4) - C(5)	59.80(4)
O(2) - C(4) - C(9) C(2) - C(4) - C(9)	114.11(5)
C(5) - C(4) - C(9)	114.10(4) 122.07(5)
C(5) - C(4) - C(5)	122.07(3) 110.51(5)
O(2)-C(5)-C(4)	59 22(3)
O(2)-C(5)-H(5)	115 7
O(2)- $C(5)$ - $C(6)$	115 76(5)
C(4)-C(5)-H(5)	115.7
C(4)-C(5)-C(6)	122.52(5)
C(6)-C(5)-H(5)	115.7
O(3)-C(6)-C(5)	109.05(5)
O(3)-C(6)-H(6)	107.2
O(3)-C(6)-C(7)	112.48(5)
C(5)-C(6)-H(6)	107.2
C(7)-C(6)-C(5)	113.46(5)
C(7)-C(6)-H(6)	107.2
C(6)-C(7)-H(7)	117.8
C(8)-C(7)-C(6)	124.41(5)
C(8)-C(7)-H(7)	117.8
C(7)-C(8)-H(8)	117.9
C(7)- $C(8)$ - $C(9)$	124.22(5)
C(9)-C(8)-H(8) O(4) C(0) C(4)	117.9
O(4)-C(9)-C(4)	108.30(4) 104.16(4)
O(4)-C(9)-H(9)	109.8
C(4)-C(9)-H(9)	109.8
C(8)-C(9)-C(4)	114.81(4)
C(8)-C(9)-H(9)	109.8
O(5)-C(10)-N(1)	120.20(5)
O(5)-C(10)-C(11)	122.11(5)
N(1)-C(10)-C(11)	117.49(4)
C(12)-C(11)-C(10)	117.52(5)
C(16)-C(11)-C(10)	122.35(5)
C(16)-C(11)-C(12)	119.92(5)
C(11)-C(12)-H(12)	120.0
C(13)-C(12)-C(11)	120.05(6)
C(13)-C(12)-H(12)	120.0
C(12)-C(13)-H(13)	120.0
C(14)- $C(13)$ - $C(12)C(14)$ $C(12)$ $H(12)$	119.93(6)
C(14)-C(15)-H(15) C(13)-C(14)-H(14)	120.0
C(13)-C(14)-C(15)	120 18(6)
C(15)-C(14)-H(14)	119.9
C(14)-C(15)-H(15)	119.9
C(16)-C(15)-C(14)	120.11(6)
C(16)-C(15)-H(15)	119.9
С(11)-С(16)-Н(16)	120.1
C(15)-C(16)-C(11)	119.79(5)
C(15)-C(16)-H(16)	120.1
O(6)-C(17)-H(17A)	110.4
O(6)-C(17)-H(17B)	110.4
O(6)-C(17)-C(18)	106.77(5)
H(17A)-C(17)-H(17B)	108.6
C(18)-C(17)-H(17A)	110.4

C(18)-C(17)-H(17B)	110.4	
C(17)-C(18)-H(18A)	109.5	
C(17)-C(18)-H(18B)	109.5	
C(17)-C(18)-H(18C)	109.5	
H(18A)-C(18)-H(18B)	109.5	
H(18A)-C(18)-H(18C)	109.5	
H(18B)-C(18)-H(18C)	109.5	

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (Å²x 10³) for a16027_a. The anisotropic displacement factor exponent takes the form: -2p2[h2 a*2U11 + ... + 2 h k a* b* U12]

	U ¹¹	U^{22}	U ³³	U ²³	U ¹³	U ¹²
O(1)	34(1)	20(1)	18(1)	9(1)	16(1)	9(1)
O(2)	23(1)	22(1)	17(1)	6(1)	14(1)	4(1)
O(3)	19(1)	17(1)	21(1)	8(1)	7(1)	0(1)
O(4)	9(1)	14(1)	14(1)	6(1)	6(1)	5(1)
O(5)	15(1)	29(1)	24(1)	15(1)	10(1)	13(1)
O(6)	23(1)	12(1)	15(1)	7(1)	6(1)	5(1)
N(1)	10(1)	14(1)	16(1)	8(1)	5(1)	4(1)
C(1)	18(1)	13(1)	15(1)	8(1)	7(1)	8(1)
C(2)	14(1)	15(1)	13(1)	7(1)	5(1)	5(1)
C(3)	18(1)	19(1)	11(1)	7(1)	5(1)	5(1)
C(4)	16(1)	14(1)	12(1)	5(1)	8(1)	4(1)
C(5)	18(1)	15(1)	16(1)	8(1)	10(1)	3(1)
C(6)	14(1)	16(1)	22(1)	9(1)	10(1)	3(1)
C(7)	13(1)	18(1)	27(1)	12(1)	11(1)	7(1)
C(8)	14(1)	14(1)	26(1)	11(1)	11(1)	7(1)
C(9)	13(1)	12(1)	16(1)	5(1)	9(1)	4(1)
C(10)	11(1)	17(1)	13(1)	7(1)	6(1)	5(1)
C(11)	10(1)	18(1)	15(1)	9(1)	5(1)	3(1)
C(12)	14(1)	28(1)	20(1)	13(1)	8(1)	4(1)
C(13)	17(1)	34(1)	27(1)	21(1)	8(1)	2(1)
C(14)	19(1)	27(1)	34(1)	23(1)	6(1)	1(1)
C(15)	17(1)	19(1)	31(1)	16(1)	7(1)	4(1)
C(16)	13(1)	17(1)	21(1)	10(1)	7(1)	4(1)
C(17)	30(1)	13(1)	17(1)	5(1)	6(1)	6(1)
C(18)	23(1)	18(1)	28(1)	11(1)	3(1)	0(1)

4.

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for a16027_a.

	Х	у	Z	U(eq)
H(3)	2000	4558	310	31
H(2)	8535	6899	4164	17
H(3A)	6262	5987	4680	20
H(3B)	7208	7887	5655	20
H(5)	3460	4949	3261	20
H(6)	1229	5920	2593	21

H(7) 1553 7434 1352 22

H(8)	3900	9397	2448	20
H(9)	5908	9597	4480	17
H(12)	10252	9711	1616	24
H(13)	10453	11866	1172	31
H(14)	9304	13692	2194	32
H(15)	8003	13407	3708	27
H(16)	7748	11224	4113	20
H(17A)	5707	2261	308	27
H(17B)	4178	2734	-14	27
H(18A)	3545	373	142	40
H(18B)	3366	1775	1470	40
H(18C)	4892	1313	1801	40

_

Table 6. Torsion angles [°] for a16027_a.

 O(1)-C(1)-C(2)-N(1)	32.43(7)
O(1)-C(1)-C(2)-C(3)	152.80(6)
O(2)-C(4)-C(5)-C(6)	102.72(6)
O(2)-C(4)-C(9)-O(4)	-175.31(4)
O(2)-C(4)-C(9)-C(8)	-59.41(6)
O(2)-C(5)-C(6)-O(3)	-172.59(4)
O(2)-C(5)-C(6)-C(7)	61.20(6)
O(3)-C(6)-C(7)-C(8)	-118.76(6)
O(4)-N(1)-C(2)-C(1)	59.09(5)
O(4)-N(1)-C(2)-C(3)	-65.52(5)
O(4)-N(1)-C(10)-O(5)	-151.78(5)
O(4)-N(1)-C(10)-C(11)	33.40(6)
O(5)-C(10)-C(11)-C(12)	33.04(8)
O(5)-C(10)-C(11)-C(16)	-141.58(6)
O(6)-C(1)-C(2)-N(1)	-148.56(4)
O(6)-C(1)-C(2)-C(3)	-28.19(6)
N(1)-O(4)-C(9)-C(4)	-60.15(5)
N(1)-O(4)-C(9)-C(8)	177.21(4)
N(1)-C(2)-C(3)-C(4)	52.05(5)
N(1)-C(10)-C(11)-C(12)	-152.25(5)
N(1)-C(10)-C(11)-C(16)	33.14(7)
C(1)-O(6)-C(17)-C(18)	175.96(5)
C(1)-C(2)-C(3)-C(4)	-69.52(6)
C(2)-N(1)-C(10)-O(5)	-10.28(8)
C(2)-N(1)-C(10)-C(11)	174.90(4)
C(2)-C(3)-C(4)-O(2)	178.71(4)
C(2)-C(3)-C(4)-C(5)	110.02(5)
C(2)-C(3)-C(4)-C(9)	-46.69(6)
C(3)-C(4)-C(5)-O(2)	102.16(5)
C(3)-C(4)-C(5)-C(6)	-155.13(5)
C(3)-C(4)-C(9)-O(4)	49.71(6)
C(3)-C(4)-C(9)-C(8)	165.61(4)
C(4)-O(2)-C(5)-C(6)	-114.03(5)
C(4)-C(5)-C(6)-O(3)	118.90(5)
C(4)-C(5)-C(6)-C(7)	-7.31(8)
C(5)-O(2)-C(4)-C(3)	-114.02(5)
C(5)-O(2)-C(4)-C(9)	111.34(5)
C(5)-C(4)-C(9)-O(4)	-107.64(5)
C(5)-C(4)-C(9)-C(8)	8.26(7)
C(5)-C(6)-C(7)-C(8)	5.62(8)
C(6)-C(7)-C(8)-C(9)	3.49(9)
-------------------------	------------
C(7)-C(8)-C(9)-O(4)	107.72(6)
C(7)-C(8)-C(9)-C(4)	-10.54(8)
C(9)-O(4)-N(1)-C(2)	71.68(5)
C(9)-O(4)-N(1)-C(10)	-142.45(4)
C(9)-C(4)-C(5)-O(2)	-102.33(5)
C(9)-C(4)-C(5)-C(6)	0.39(8)
C(10)-N(1)-C(2)-C(1)	-84.44(6)
C(10)-N(1)-C(2)-C(3)	150.94(5)
C(10)-C(11)-C(12)-C(13)	-176.34(5)
C(10)-C(11)-C(16)-C(15)	175.33(5)
C(11)-C(12)-C(13)-C(14)	0.77(9)
C(12)-C(11)-C(16)-C(15)	0.83(8)
C(12)-C(13)-C(14)-C(15)	0.80(10)
C(13)-C(14)-C(15)-C(16)	-1.55(10)
C(14)-C(15)-C(16)-C(11)	0.73(9)
C(16)-C(11)-C(12)-C(13)	-1.59(8)
C(17)-O(6)-C(1)-O(1)	-1.75(8)
C(17)-O(6)-C(1)-C(2)	179.25(5)

Symmetry transformations used to generate equivalent atoms:

4. ¹H and ¹³C NMR Spectral Data

S42

I			
		Parameter	Value
I	1	Data File Name	/ Volumes/ data/ nc-7-Ac-Et-Diene-cle/ PROTON01.fid
I	2	Title	PROTON01
I	3	Origin	Varian
I	4	Spectrometer	inova
I	5	Solvent	cdcl3
I	6	Temperature	25.0
I	7	Pulse Sequence	s2pul
I	8	Experiment	1D
I	9	Probe	autox7991
I	10	Number of Scans	8
I	11	Receiver Gain	32
I	12	Relaxation Delay	1.0000
I	13	Pulse Width	5.8000
I	14	Acquisition Date	2018-06-30T20:17:52
I	15	Spectrometer Frequency	499.64
I	16	Spectral Width	8000.0
I	17	Lowest Frequency	-1029.7
I	18	Nucleus	1H
	19	Acquired Size	24000
	20	Spectral Size	65536

9.5

9.0

8.5

8.0

Parameter	V	alue	1	0	\sim	H CO₂Et		I			-1
Data File Name	/ Volumes/ data-1/ nc-7-o>	-cyc-Ac/ PROTON01.fid/ fid				 NAc					1
Title	PROTON01) INAC					1
Origin	Varian				H						1
Spectrometer	inova										-1
Solvent	cdcl3										
Temperature	25.0										-1
Pulse Sequence	szpul										-
Experiment	ID										L1
Probe	autox7991										1
1 Deseiver Cain	8										Ē.
Receiver Gain	30										-1
2 Relaxation Delay	1.0000										-
3 Pulse Width	5.8000										_1
4 Acquisition Date	2018-06-21121:46:28		1								T_1
5 Spectrometer Frequency	499.64								I		ŀ
6 Spectral Width	8000.0										-1
/ Lowest Frequency	-1015.2		1								ŀ
8 Nucleus	1H										L1
9 Acquired Size	24000										1
0 Spectral Size	65536					D (qq)	F (ddd	a) 1(s)			-
			_			4.20	2.83	224			-1
											-
			A (q)	B (da	l) C (m)	E (ddt) G	(m) J (m)	K (t)		-9
			6 00	5 4(4 67		3 10 2	56 1 1 98	1 25		5
			0.00	J	4.07		5.10 2				
											−8
								H (m)			-
								236			-7
								2.50			1
											t t
									l li		-6
											-
											LE
											دا
											F
											-4
											-3
											-
											-2
			1								
				1			.]				1
									1		
					Å		l lu	al Milliana	1		
۰					/`	/" \	/\/\/	//```__\///``\	السما المسار	h	-^
			н	н	н	HT-1	H_ H	ਸ ਸਿੰਸ ਸ	н		Ē.
			2-	ģ	-9	- 2	0 0 0	စ်ပုံပုံ	-9		
			3.8	1.0	3.8	5.	0.00 0.00		3.0		-
		1 1 1					1 I I I I			1	· · ·
	0 - 0 0			- -					1 5 1 4	0 5	00 05

S68

Parameter State 1 Des final bases //Mataset office/SERTER/SERTER <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>F13(</th></td<>															F13(
1 De 19 Marie Marine de 2017 2018 (1) 3 Objet de 19 Marie Marie de 2017 2018 (1) 3 Objet de 19 Marie Marie de 2017 2018 (1) 3 Objet de 19 Marie Marie de 2018 (1) 3 Presentante 2018 3 Presentante 2018 3 Presentante 2018 3 Avanda for de 2018 (1) 1 Avanda for de 2018 (1) 3 Avanda for de 2018 (1) 4 Avanda for de 2018 (1)	Parameter	Value			"O H	0.5									-
1 Proc 1 Proc Provide State Processor 1 Proc Provide State Procesor 1 Proc Provide State Processor<	1 Data File Nomo	/Volumes/ nmr/ no-E 107 (17 25/1/54		/		O ₂ Et									
1 отор починат водано поли 1 отор починат водано поли 1 отор починат вода 1 отор		nc-5-197-f17-35 1 fid													+12
Statem CODE Control State <		Bruker BioSpin GmbH		ل ا											
 Introduction Data Support Introduction Data Support Production Data Support Productin Data Support Productin Data Support	Solvent	CDCI3													ŀ
	Temperature	294.9													
Inversion 2002000000000000000000000000000000000	Pulse Sequence	zapa30			5163										-11
Instance Total	Probe	7122623 0045 (CPP BBO 400S1 BB-H&	E-D-05 Z)												
Instantion Column 720 Headwork Column 720 Headwork Column 720 Headwork Column 720 Acquality Date 720 A	Number of Scans	1024													F
Instruction Design 2: 2000 1 2: 000 1 1	Beceiver Gain	72.0													
1 A las Wanton The 10000 DE 20000 DE 2016 12 575 058 0 3 coparator Data 2016 12 575 058 0 3 coparator Data 2010 0 3 co	0 Relaxation Delay	2.0000								0	ō.				+10
2 4 constant Lines 1 3931 : 3 0 constant Predminer 1 2931 : 3 0 constant Predminer 1 2932 : 3 0	1 Pulse Width	10.0000								2	<u>v</u>				
Approximate Data is 2010 - 2010 3028 3 point of the mark is an interview of the ma	2 Acquisition Time	1 3631								5	ч г л				F
4 geteratives Prequency 1002 3 6 covert Prequency 2003 5 6 covert Prequency 2003 7 8 covert State 30 7 8 covert State 30 7 9 covert State 30 7 9 decide Reference 100 10 decide Reference 100	3 Acquisition Date	2016-12-15T16:36:28								Ļ					
3 general fragment viewerse 2 kelower viewerse 2 kelower viewerse 2 kelower viewerse 2 kelower viewerse 3 general fragment view	4 Spectrometer Frequency	100.62								ſ					
• • • • • • • • • • • • • • • •	5 Spectral Width	24038.5									, ,				
7 Nucleus (117) 8 Acquired Bran 32778 9 Acquired Bran 32778 9 Acquired Bran 32778 9 Acquired Bran 32778 9 Acquired Bran 1277 19 Acq	6 Lowest Frequency	-1932.3								i					F
1 Arogane Stee 300 9 operate Stee 6556 9 operate Stee 6556 9 operate Stee 6556 9 operate Stee 6556 9 operate Stee 6556 10 1125 10 1200 10 1125 10 1200 10 1125 10 1200 10 1125 10 1200 10 1125 10 1200 10 1125 10 1200 10 10 120 10 10 10 100 10 100 10 100 10 10 100 10 10 100 10 10 100 10 100 10 10 100 10 1	7 Nucleus	130													
9 Sporter Store 0 Stor	8 Acquired Size	32768													
0 Australia Businesse 0 Australia Businesse	9 Spectral Size	65536													
01 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 Absolute Beference														F
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$															
															ŀ
01- 0 01 02 02 09 02 08 06 001 011 021 021 021 021 021 021 021 021															
															-600
01- 0 01 02 02 09 02 09 02 08 00 001 0113 															
01- 0 01 02 02 09 02 08 06 001 011 021 081 091 021 081 002 012 01- 0 01 02 02 08 06 001 011 021 081 091 021 081 091 021 081 091 021 081 002 012 01- 0 01 02 02 08 06 001 011 021 081 091 011 012 0034 01- 0 01 02 02 08 06 001 011 021 081 091 010 011 012 0034 01- 0 0 0 0 0 0 0 0 012 000 001 000 000 000															-
01- 0 01 02 02 08 06 001 011 01 021 081 01 -4.76 [24]															
															100
				ŦŢ											Ļ
				ά, θ											
				31,331			[O]								-400
				©0								<u>^</u>	Ŧ		
				0 [0 [81	2			č		[27		L
				-i % % -i			.9	93				4	2		
				21 11 21 13			97	×.			-	ĺ	7.7	e	-300
				1/5				ŝ			20		1.	4	100
											8		\sum	;	
		[9]					L.	P.					ſ		
		Ξ.,		7						_					200
		97 23		<u>୍ର</u>		Ξ				4					200
		5.6		98 a.		[]		5.		85					
		16		32.33)3				<u> </u>					
				710		5.0		8		Ϋ́					
						×,		<u></u>		- Yr - I					
				i i l 🖩 🛛			4	10		ii I					
															Γ
	היה אינה האמונו שלי שלי היה היה היה היה היה היה היה היה היה ה	الاستحداثه وحاد بلجنا المطبيا المراجع ومارض والبالاتك ومراز كراران الانتقال	רוננה מנהי איניה ברוג. רוננה מנהי איניה ברוג	אי מגע גער אינאראיון איז אוויא אין אינאינע אי	ومراقبته متناعد أنتريه وارتارية والألبان	الالمتيرينا أرد وليتريج المراجع ومر	تمسطين وتوريها ا	Minilan Autor an	أستحر ومرد ويروز فأأوأ	است الاليتينين	د او آدادی میں م		الاسمير الس	ماليات مليهاي إن أرا	"TV
	A NAME AND A DAMA AND A	ALA I A TA T	, A A A A A A A A A A A A A A A A A A A	ער און איז	ANNAL TANAN TANANG TANA TANA TANA TANA TANA T	MERVEL & SHALL MARKED & A MULLING .		, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 199		INNW IN MARY I	N a aite du a se the Al	, Andlin a Mark a (M arka), Ma rka (Marka), and an	View fit Altraut (A M		<u>"</u> -U
710 700 IYO IXO I7O IBO ISO IZO IZO IZO ITO IOD YO XO 7O BO SO ZO ZO ZO TO O _1O			150 1			· · · · ·	· · · ·			1	·			· ·	
	210 200 19				110 101	~ ~~ ~~		CO E C	10	~ ~	~ ^ ^	10	~	10	

Parameter	Value		, O H , CO₂Et					1		-3200
Data File Name	/ Volumes/ nmrdata/ ncowper/ nmr/ nc-5-	198-f9-14-h/ 1/ fid								_
? Title	nc-5-198-f9-14-h.1.fid		U L NH							2000
8 Origin	Bruker BioSpin GmbH						I			-3000
Solvent	CDCI3		<u>-</u> H							-
Temperature	294.9		OTBS				-1500			-2800
Puise Sequence	Zg30 Z122622, 0045 (CPP PPO 40051 PP US									2000
Number of Scans	16	xr-D-03 Z)					-			T T
Beceiver Gain	197.4									-2600
0 Relaxation Delay	1.0000						-1000			
1 Pulse Width	11.7000			11						
2 Acquisition Time	4.0894						-			-2400
3 Acquisition Date	2016-12-19T02:26:37									
4 Spectrometer Frequency	400.13				i i / N A	11	-500			
5 Spectral Width	8012.8					WW				-2200
6 Lowest Frequency	-1545.3						-			-
7 Nucleus	1H			, /₩ ^v ₩// /	WVWV L	Λ]				2000
8 Acquired Size	32768				Uhm		<u>└</u> ⊢0			-2000
9 Spectral Size	65536						I			-
20 Absolute Reference				× م ا	1 2 1 1	10 20	`			L1800
				4.5 4	+.2 $+.1$	4.0 5.5	1			1000
				G(m)	i 1 (ppm)				F
										-1600
				4.24						1000
			P (d)							Ē.
			B (d)	E (ddd)		J (at)				-1400
			6.06	4.13		2.12	C	89		_
										1.0.0
		A	(s) C (dddd)	D (ddd)	H (dt) I	(dd)	K (t)		M (d)	-1200
		6	.41 5.82	3.90	3.21 2	2.57	1.29		0.09	-
										1000
										-1000
				F (at)					I	-
				4.15						28000
										0000
										F
							1			-6000
										1
										-4000
										-2000
				1						
			λ m m	MLMA A	Λ	DMA AA	ΛM			
		×			н			/~	~~H	~0
			0 m 8	5000		N 0	 9	1 7	Ť	-
			0.1.0	2.1 1.0 1.0	1.0	1.1	3.2		5.2	
				, v – – – – – – – – – – – – – – – – – – –		·· -	···			∠00
	85 80 75	706	5 60 55 50	45 40 2	5 3 0	25 20	15 10	י ח	5 00 -	0.5
9 3 9 11										

