
Supporting Information:

Regio-selectivity prediction with a

machine-learned reaction representation and

on-the-fly quantum mechanical descriptors

Yanfei Guan, Connor W. Coley, Haoyang Wu, Duminda Ranasinghe, Esther

Heid, Thomas J. Struble, Lagnajit Pattanaik, William H. Green,∗ and Klavs F.

Jensen∗

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge,

Massachusetts 02139, United States

E-mail: whgreen@mit.edu; kfjensen@mit.edu

S-1

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2020



Contents

S1 Additional Materials and Methods S-3

S1.1 Code and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-3

S1.2 Data curation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-4

S1.2.1 Regio-selective reactions curation from Pistachio database . . . . . . S-4

S1.2.2 3, 003 electrophilic aromatic substitution reactions . . . . . . . . . . . S-4

S1.2.3 130k training molecules for the multitask constrained model for chem-

ically meaningful descriptors predictions . . . . . . . . . . . . . . . . S-8

S1.2.4 Three classes of general selective reactions . . . . . . . . . . . . . . . S-13

S1.3 Machine learning model architecture . . . . . . . . . . . . . . . . . . . . . . S-19

S1.3.1 GNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-19

S1.3.2 QM-GNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-21

S1.3.3 QM model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-23

S1.3.4 ml-QM-GNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-23

S1.3.5 multi-task constrained model to predict chemically meaningful descrip-

tors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-23

S1.3.6 Fingerprint baseline model . . . . . . . . . . . . . . . . . . . . . . . . S-25

S1.4 Training process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-25

S1.4.1 Cross validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-25

S1.4.2 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . S-26

S2 Additional results S-29

S2.1 Cross validation statistics for regio-selectivity predictions . . . . . . . . . . . S-29

S2.2 Latent space analysis for the QM-GNN and GNN model . . . . . . . . . . S-30

S2.3 QM descriptors prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . S-33

S2.4 Fingerprint random forest model for selectivity prediction . . . . . . . . . . . S-36

S2.5 Model modification for yield predictions . . . . . . . . . . . . . . . . . . . . S-37

S-2



S2.5.1 Yield prediction as a binary classification problem . . . . . . . . . . . S-37

S2.5.2 Yield prediction as a regression problem . . . . . . . . . . . . . . . . S-39

S2.6 Raw prediction accuracy for cross-validation . . . . . . . . . . . . . . . . . . S-41

S2.6.1 Raw cross-validation prediction accuracy for Figure 3A . . . . . . . . S-41

S2.6.2 Raw cross-validation prediction accuracy for Figure 7A . . . . . . . . S-42

References S-46

S1 Additional Materials and Methods

S1.1 Code and Data

Machine learning models for reactivity predictions used in this work can be found on the

GitHub, https://github.com/yanfeiguan/reactivity_predictions_substitution. The

workflow for the QM descriptors high-throughput calculations is also make available on

the GitHub https://github.com/yanfeiguan/QM_descriptors_calculation. The model

used to learn and predict atomic/bond QM descriptors can be found at https://github.

com/yanfeiguan/chemprop-atom-bond. We also provide a more convenient and easier ac-

cess to the QM descriptors predicting model through PyPI https://pypi.org/project/

qmdesc/. All data used to implement the quantum mechanical descriptor predicting model

are accessible through figshare https://doi.org/10.6084/m9.figshare.12818702.v1. We

are not able to share reactivity data curated from the Pistachio database, but we provide

scripts for data curation. Users with Pistachio license is able to reproduce all reactivity data

with the scripts. As a demonstration of our work, we are allowed to share overlapped reac-

tions that can also be found in the USPTO public database (in another word, the USPTO

reactions those can be found in our dataset). That part of data is accessible through the

github repo.
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S1.2 Data curation

S1.2.1 Regio-selective reactions curation from Pistachio database

All selective reactions used in this work were selected from Pistachio databaseS1 trough

template extracting. First, reactions were selected from Pistachio database that only contain

organic neutral reactants (i.e. C, H, O, N, P, S, F, Cl, Br, I, B). Reaction templates

were extracted from the selected reactions using RDChiral,S2 which were then reapplied to

enumerate possible products and identify reactions that are site- or regioselective.

Figure S1: Selective reactions curation from Pistachio database through template applying

S1.2.2 3, 003 electrophilic aromatic substitution reactions

3, 003 Electrophilic aromatic substitution(EAS) reactions are composed of Nitration and

Halogenation reactions.

Table S1: Description of all reactions included in the 3, 003 EAS reactions

SMILES of other reactants description Num. Examples

O=C1CCC(=O)N1Br Bromination 981

O=[N+]([O-])O Nitration 791

Continued on next page
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Table S1 – continued from previous page

SMILES of other reactants description Num. Examples

BrBr Bromination 611

O=C1CCC(=O)N1I Iodination 368

O=C1CCC(=O)N1Cl Chlorination 340

II Iodination 99

ClCl Chlorination 18

NC(=O)CCC(=O)NBr Bromination 14

ClI Iodination 9

O=c1[nH]c(=O)n(Br)c(=O)n1Br Bromination 8

NC(=O)CCC(=O)NI Iodination 8

COc1cc(Br)cnc1N1CCN(C)CC1 Bromination 6

BrCCBr Bromination 4

ClCCl Chlorination 4

CC(=O)NBr Bromination 2

C#Cc1cccc(F)c1 Fluorination 2

Cn1ncc(Cl)c1-c1csc(C=O)c1 Chlorination 2

O=c1n(Cl)c(=O)n(Cl)c(=O)n1Cl Chlorination 2

NC(=O)CCC(=O)NCl Chlorination 2

FF Fluorination 2

C=CCOC(=O)Nc1ccc(F)c(C(=O)OC)c1 Fluorination 1

CCCCOCl Chlorination 1

Cc1ccc2c(N3CCNCC3)cc(Cl)cc2n1 Chlorination 1

Cc1cc(O)c(Br)cc1C Bromination 1

Fc1cc(I)c2c(c1)CCN2 Fluorination 1

ClN1CCOCC1 Chlorination 1

Continued on next page
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Table S1 – continued from previous page

SMILES of other reactants description Num. Examples

Clc1ccc(I)cc1Cl Chlorination 1

Clc1cn2cc(Cl)c(Cl)cc2n1 Chlorination 1

CCNC(=O)NC(=O)CCl Chlorination 1

Brc1cc(Br)c(Br)s1 Bromination 1

Oc1cc(F)cc(F)c1Br Fluorination 1

Fc1ccc2[nH]ccc2c1 Fluorination 1

O=C(Cl)c1cccc(Cl)c1 Chlorination 1

O=[N+]([O-])c1cc(O)c(Cl)cc1F Chlorination 1

O=C1Nc2ccc(F)cc2[C@]12C[C@H]2c1ccc2cn[nH]c2c1 Fluorination 1

O=C(OO)c1cccc(Cl)c1 Chlorination 1

O=C(O)c1n[nH]cc1Cl Chlorination 1

O=C(O)c1cc2ccc(Br)cc2[nH]1 Bromination 1

O=C(O)CCCc1ccc(F)cc1 Fluorination 1

O=C(Cl)c1ccccc1F Fluorination 1

O=C(Cl)c1cccc(Br)c1 Bromination 1

Fc1ccc2c(c1)CCNC2 Fluorination 1

Nc1ccc(F)cc1 Fluorination 1

Nc1cc(Br)cc(Br)c1 Bromination 1

NNc1ccc(F)cc1 Fluorination 1

NCc1ccc(Br)cc1F Bromination 1

Oc1cc(F)c(F)cc1Br Fluorination 1

Fc1ccccc1CCI Fluorination 1

Fc1ccccc1-c1cc(Cl)ncc1Br Fluorination 1

ICCI Iodination 1
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3, 003 EAS reactions contain 2, 663 aromatic substrate. Statics about pairwise similarity

and molecular weight distribution are given below.

Figure S2: Pairwise Tanimoto similarity distribution between each pair of aromatic reactants
in the 3, 003 EAS reactions

Figure S3: Molecular weight distributions of aromatic reactants in the 3, 003 EAS reactions
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S1.2.3 130k training molecules for the multitask constrained model for chemi-

cally meaningful descriptors predictions

Training molecules used to develop the multitask constrained model for QM descriptors

predictions are curated from ChEMBL and Pistachio. Neutral molecules with molecular

weight lower than 500 were selected as follows: 1) For the ChEMBL database, 80k molecules

containing C, H, O, N, P, S, F, Cl ,Br, I were randomly selected; 2) for the pistachio database,

100k common reactants, reagents, and solvents that were found in more hant tree reaction

records were selected. Due to their abundance in Pistachio dataset, Si and B atom were

also included during data extraction, while alkali metal and trainsition metal compounds

were discarded considering the complexity and accuracy of the downstreaming computations.

Compounds involved in the 3, 003 EAS reactions were then removed. Chemically meaningful

descriptors we considered in this work are described below:

The first atomic descriptor we considered is the atomic charge. In the present work, the

Hirshfeld partial chargeS3 was chosen as it has a small dependency on basis sets, and are

able to reproduce the electrostatic potential, which are important to reactivity and molecular

properties.S4

Nucleophilicity and electrophilicity play crucial roles in chemical reactivity and many

other molecular properties. Condensed Fukui function,S5 or Fukui indices, by definition,

reflects the tendency of each atom towards loosing or accepting an electron, and have been

widely used to indicate the neucleophilicity and electrophilicity of single atom. The Fukui

indices indicating electrophilicity for atom i, f−i , in a given N -electron molecule can be

reasonably approximated by the finite-differences method:S6

f−i = qi(N + 1) − qi(N) (1)

where qi(N + 1) and qi(N) are the partial charge of atom i for the corresponding (N + 1)-

and (N)-electron systems with the optimized N -electron molecular geometry. Similarly, the
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Fukui indices indicating nucleophilicity, f+
i , can be obtained as:

f+
i = qi(N) − qi(N − 1) (2)

where qi(N − 1) is the partial charge of atom i for the corresponding (N − 1)-electron

systems with the optimized N -electron molecular geometry. We note an extra benefit of

using Hirshfeld partial charges here that such so-called ”stockholders” charge partitioning

technique ensures non-negative Fukui indices within the finite-difference approximation.S7

Another atomic descriptor we take into consideration is the NMR chemical shift, which

indicates the local atomic environment by encoding information about attached or adjacent

atoms in the neighborhood and has lead to extensive QSAR/QSPR studies.S8 In the present

work, the NMR chemical shift will be presented as shielding constants and calculated using

the Gauge-Independent Atomic Orbital (GIAO) method.S9

Bond descriptors considered in the present work are bond length and bond orders. A

summary of descriptors used in this work are provided in Table S2:

Table S2: Chemically meaningful descriptors used in this work

symbol description type tools
p atomic charge float Gaussian16
f+ nucleophilic Fukui indices float [0, 1] Gaussian16
f− electrophilic Fukui indices float [0, 1] Gaussian16
sc NMR schielding constants float Gaussian16
bo bond order float NBO 6.0
bl bond length float GFN2-xtb

A workflow was developed using Python to automatically calculate those descriptors in

a high-throughput way. The workflow is illustrated in Figure S7
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Figure S4: Automated workflow for generating QM descriptors from a given SMILES string.
The workflow starts by sampling conformers from SMILES strings using the RDKit li-
brary,S10 and the Merck Molecular Force Field (MMFF94s).S11 The lowest-lying conformer
was then optimized under GFN2-xtb level of theory.S12 The optimized structure with N,
N-1, and N+1 electrons were then sent for DFT calculations under b3lyp/def2svp level of
theory. Chemically meaningful descriptors were then obtained through population analysis.

A variety of convergence checks were performed to ensure the optimization converted

to a correct structure, including checks for imaginary frequencies and ensuring that the

molecule did not further converge into other species, by checking the covalent bond defined

in the SMILES string not breaking after optimization. During QM calculations about 30%

molecules were discarded due to imaginary frequencies and timing out (14, 400 CPU seconds).

Finally, we obtained 136, 219 molecules, including 4, 340, 300 quantities for each atomic de-

scriptors (2, 345, 711 heavy atoms and 1, 994, 589 H atoms), and 4, 463, 203 bond descriptors.

All descriptors calculated are available on figshare. Statistics about those training molecules

are given below:
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Figure S5: Number of molecules for each type of element in 136k training molecules

Figure S6: Molecular weight distribution for 136k training molecules
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Figure S7: Normalized distribution for each type of descriptors and atoms
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S1.2.4 Three classes of general selective reactions

General selective reactions involving a pair of approaching atoms were selected from the

Pistachio database using the same method as depicted in Figure S1, which are further divided

into three groups depending on a rough mechanism. Sub-classes involved in each reaction

group are given in Table S3–S5.

Table S3: Sub-classes for class 1 reactions: aromatic C-H functionalization

reaction type Num. Examples

Bromination 3338

Nitration 1513

Iodination 1156

Chlorination 904

Vilsmeier-Haack reaction 373

Fluorination 44

Sulfonation 22

Friedel-Crafts acylation 16

Nitrosylation 10

Chichibabin amination 2

Table S4: Sub-classes for class 2 reactions: aromatic C-X substitution

reaction type Num. Examples

Chloro N-arylation 2731

Fluoro N-arylation 1687

SNAr ether synthesis 1555

Continued on next page
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Table S4 – continued from previous page

reaction type Num. Examples

Bromo N-arylation 370

Thioether synthesis 330

Chloro to amino 110

Fluoro to amino 48

Iodo N-arylation 42

Chloro to hydrazino 30

Chloro to hydroxy 24

Fluoro to hydrazino 15

Fluoro to sulfanyl 10

Fluoro to cyano 10

Fluoro to azido 10

Sulfinic acid + fluoride reaction 9

Bromo to mesyl 9

Chloro to thiocyanato 7

Bromo to amino 6

Sulfinic acid + bromide reaction 4

Chloro to cyano 3

Bromo to hydrazino 3

Chloro to sulfanyl 3

Decarboxylative coupling 3

Sulfinic acid + iodide reaction 3

Fluoro to hydroxy 3

Iodo to mesyl 3

Iodo to thiocyanato 3

Continued on next page
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Table S4 – continued from previous page

reaction type Num. Examples

Sulfinic acid + chloride reaction 2

Bromo to cyano 2

Bromo N-alkylation 2

S-Thioester synthesis 1

Fluoro Gabriel alkylation 1

Fluoro N-alkylation 1

Chloro to azido 1

Bromo to thiocyanato 1

Hydroxy to chloro 1

Bromo to hydroxy 1

Iodo to hydrazino 1

Table S5: Sub-classes for class 3 reactions: other selective reactions

reaction type Num. Examples

Carboxylic acid + amine condensation 1022

Bromo N-alkylation 694

Williamson ether synthesis 630

Amide Schotten-Baumann 497

Chloro N-arylation 451

Aldehyde reductive amination 311

Fluoro N-arylation 304

Sulfonamide Schotten-Baumann 275

Continued on next page
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Table S5 – continued from previous page

reaction type Num. Examples

O-TBS protection 170

Ester Schotten-Baumann 167

Sulfonic ester Schotten-Baumann 142

Chloro N-alkylation 142

Lithium Bouveault aldehyde synthesis 118

Aldol condensation 113

Formaldehyde reductive amination 111

N-Boc protection 111

Indole + ketone condensation 110

Iodo N-alkylation 83

Thioether synthesis 80

Wohl-Ziegler bromination 78

Ketone reductive amination 74

Weinreb bromo coupling 65

Bromo N-arylation 63

O-Ac protection 62

N-acetylation 61

SNAr ether synthesis 55

Grignard Bouveault aldehyde synthesis 53

Mitsunobu aryl ether synthesis 47

Wurtz-Fittig coupling 37

Esterification 36

Carboxylic ester + amine reaction 35

Ketone reductive imination 32

Continued on next page
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Table S5 – continued from previous page

reaction type Num. Examples

Hydroxy to methoxy 31

Bromination 28

Bromo aldehyde Barbier reaction 27

Alcohol + amine condensation 26

Iodo aldehyde Barbier reaction 25

Carboxylic anhydride + amine reaction 24

Iodo N-methylation 24

Cyanoalkane alkylation 23

O-TIPS protection 22

Bromo ketone Barbier reaction 22

Mesyloxy N-alkylation 21

O-MOM protection 17

Tosyloxy N-alkylation 16

Weinreb iodo coupling 16

Iodo ketone Barbier reaction 14

Formic acid + amine condensation 13

Iodo N-arylation 13

N-TFA protection 10

Oxo to thioxo 9

N-Fmoc protection 9

Bouveault aldehyde synthesis 9

Eschweiler-Clarke methylation 9

Amination 7

Sulfanyl to sulfinyl 7

Continued on next page
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Table S5 – continued from previous page

reaction type Num. Examples

Triflyloxy N-arylation 6

Tertiary amine oxidation 5

Steglich esterification 4

Hydroxy to triflyloxy 4

Carboxy ester to carbamoyl 4

Oxo to hydroxyimino 4

Bromo Grignard reaction 4

Alkylimino-de-oxo-bisubsitution 2

Aldehyde reductive imination 2

Chloro Gabriel alkylation 2

Mesyl N-arylation 2

O-TMS protection 2

Regitz diazo transfer 2

Nitration 2

Iodination 2

Fischer-Speier esterification 2

Imidazolecarbonyl to amide 2

Horner-Wadsworth-Emmons reaction 1

Wittig olefination 1

Methyl esterification 1

Weinreb ketone synthesis 1

Chlorination 1

Vilsmeier-Haack reaction 1

Sulfonic acid + amine reaction 1

Continued on next page
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Table S5 – continued from previous page

reaction type Num. Examples

Ethyl esterification 1

Tosyloxy Kolbe nitrile synthesis 1

Ether synthesis 1

Sulfinic acid + iodide reaction 1

Chloro Grignard reaction 1

Decarboxylative coupling 1

S1.3 Machine learning model architecture

S1.3.1 GNN

The GNN model is derived from the Weisfeiler-Lehman (WL) graph kernel.S13 The ar-

chitecture is designed to embed the computations inherent in WL graph kernel to learn

isomorphism invariant representation of atoms. The atom representation is computed by

iteratively augmenting the representation of adjacent atoms. Specifically, each atom v is

initialized with a feature vector fv indicating its atomic number, degree of connectivity, ex-

plicit and implicit valence, and aromaticity. Each bond (u, v) is associated with a feature

vector fuv indicating its bond type and ring status. In the t iteration, we updated atom

representations from f t−1
v to f t

v as follows:

f t
v = ReLU(U1(V1f

t−1
v �

∑
u∈N(v)

ReLU(U2(W1f
t−1
u �W2fuv)))) (3)

where ReLU is the rectified linear unit, � indicates the concatenation operation, and

Ui, Vi,Wi are learned matrices. After L iteration, the final local atom representation are

computed as
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cv = V1f
L
v ⊗

∑
u∈N(v)

W1f
L
u (4)

where ⊗ indicates element-wise multiplication. The atom embedding cv only encodes

local structural patterns, namely atoms and bonds accessible within L steps from atom v.

To capture distant information (e.g. information between two disconnected atoms), the local

atom embedding cv will then pass through an attention layer. Through attention layer, we

calculate the attention score of atom v upon atom z. The “global” atom representation c̃v

of atom v is calculated as the weighted sum of all reactant atoms where the weight for atom

pair (v, z), αvz, comes from the attention module:

αvz = σ(Q1ReLU(P1(cv + cz) + P2bvz) (5)

where σ indicates the sigmoid activation function, Pi, Qi are learned matrices. The

“global” atom representation c̃v is then calculated as:

c̃v =
∑
z

αvzcz (6)

The final atomic representation for atom v, ĉv, including both local chemical environment

and global information are then calculated as:

ĉv = ReLU(M(c̃v + cv)) (7)

where M is the learned matrix. The final reaction representation is then calculated

through a sum-pooling layer, which sum over the atomic representation of the approaching

atoms (a and b in Figure S9). The reaction representation go through a feed forward neural

network (FFNN) to give the final scores.

s = τ(O(ĉa + ĉb)) (8)
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where O is the learned matrix, and τ is the final activation function, which is a softmax

across major/minor reactions (e.g. the four reactions in Figure S9) for a selectivity prediction

task, or a sigmoid for the yield binary classification problem.

Figure S8: Major and minor reactions for a given selective reactions

S1.3.2 QM-GNN

Atomic descriptors including atomic charges, Fukui indices, and NMR shielding constants, as

well as bond descriptors including bond length and bond order were used as input to the QM-

GNN model. First, atomic descriptors are normalized into [0, 1] by min-max normalization.

Due to the drastic difference in the scale for NMR shielding constants for different elements,

the NMR shielding constant is normalized based on each element type. In the QM-GNN

model, each bond (u, v) is featurized into fuv through expanding the continuous bond length

and bond order via radial basis function (RBF):

euv = [exp(−(buv − (µ+ δk))2

δ
)]k∈[0,1,2,...n] (9)

where buv is the continuous descriptors (i.e. bond length or bond order). euv indicates

the corresponding expanded continuous vecto. n is number of basis functions, which is also

the size of euv. µ, δ, and n are thus pre-parameters for the RBF expansions, which are chosen

such that the range of the input features are encoded by the centers of these functions. For
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example for bond length that ranges from 0.5 to 2.5, µ, δ, n are chosen to be 0.5, 0.05, 40,

respectively, which expand the bond length into a vector of size 40 with an interval of 0.05�A

starting from 0.5�A. The initial bond vector fuv is then calculated as:

fuv = ebluv � ebouv (10)

where ebluv and ebouv are expanded continuous vector for bond length and bond order,

respectively.

The learned atomic representation is then obtained through the same WLN encoder and

global attention mechanism as in the GNN model. Atomic descriptors including atomic

charge, Fukui indices, and NMR shielding constants are then expanded through RBF ex-

pansion and concatenated to the learned atomic representation ĉv to give the final atomic

representation ĉQM−GNN
v

ĉQM−GNN
v = ĉv � apuv � af+uv � af−uv � ascuv (11)

where apuv, a
f+
uv , a

f−
uv , a

sc
uv are RBF expanded continuous vector for atomic charge p, nu-

cleophilic Fukui index f+, electrophilic Fukui index f−, and NMR shielding constant sc,

respectively. Which then go through Equation 8 to give the final prediction.

µ, δ, n for all the six descriptors are given below:

Table S6: Pre-parameters of RBF expansion for chemically meaningful descriptors

descriptor µ δ n
p 0.2 0.05 10
f− 0 0.02 10
f+ 0 0.03 10
sc 0.2 0.08 10
bo 0.5 0.1 25
bl 0.5 0.05 40
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S1.3.3 QM model

In the QM model, only QM calculated descriptors were used to predict the selectivity. For

the example reaction given below:

Figure S9: Example of using only QM descriptors to predict the reactivity

QM descriptors used as inputs are atomic descriptors p, f+, f−, sc for the highlighted

atoms and the connected H atom, as well as bond descriptors bl, bo for the corresponding

C-H bond. All descriptors are expanded through RBF and concatenated to a single vector

of size 185, which is then used as input for a FFNN with three hidden layers (500, 250, and

125 neurons, respectively).

S1.3.4 ml-QM-GNN

The architecture of ml-QM-GNN model is exactly the same as QM-GNN model. The

only difference lies in that the QM calculated descriptors are replaced by the ML predicted

descriptors.

S1.3.5 multi-task constrained model to predict chemically meaningful descrip-

tors

The multi-task constrained model for the descriptors prediction is composed of two parts:

1) the directed message-passing neural network (D-MPNN) derived from ChemProp.S14 and

2) the multi-task read-out layers.

The D-MPNN encodes a molecular graph into atom representations and bond represen-

tations, which has been illustrated in very detail in the literature. We refer the reader toS14

for details about the mathematical intuition and justification of the D-MPNN encoder.

The learned atomic/bond representation were then converted into the corresponding
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descriptors through a multi-task readout layer. For unconstrained properties, e.g. NMR

shielding constants, bond order, and bond length, a simple FFNN is used to calculate the

descriptor from the feature vector. For the constrained descriptors, such as atomic charges

and Fukui indices, we first use a FFNN to calculate the uncorrected descriptors qi as:

qi = FFNN(ĉi) (12)

where ĉi is the corresponding atomic/bond feature vector. The final corrected descriptor

subject to the constraint can then be calculated as:

âi = FFNN(ĉi) (13)

wi =
exp(uâi)∑
i exp(uâi)

(14)

qfinali = qi +
wi(Q−

∑
i qi)∑

iwi

(15)

where Q is the constraint applied on the descriptor such that:

∑
i

qfinali = Q (16)

The loss function for each single task optimized the mean absolute error of predicted

properties for all atoms or bonds in the molecule. A total loss was then calculated as the

weighted sum of each single loss, that brought all losses to approximately the same scale.

LOSS = lossp + lossf+ + lossf− + 1e− 5losssc + lossbl + lossbo (17)

where loss is the mean squred error (MSE) loss.
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S1.3.6 Fingerprint baseline model

Morgan reaction fingerprint with 1024 bits and a radius of 2 was used to encode the reaction.

The reaction fingerprint fpreaction is defined as below:

fpreaction = fpproduct − fpreactants (18)

fpproduct, fpreactants are fingerprints for products and reactants, which are binary vectors

with size of 1024. Therefore, the fpreaction is a vector of size 1024 with elements (−1, 0, 1).

The reaction fingerprint is then used as input for a FFNN with three hidden layers (500,

250, and 125 neurons, respectively) to give the final prediction.

S1.4 Training process

S1.4.1 Cross validation

For selectivity predictions, softmax cross-entropy across major/minor reactions for each set

of reactants was selected as the loss function. For the yield binary classification, the sigmoid

cross-entropy was selected as the loss function. For the chemically meaningful descriptors

prediction, the weighted MSE was selected as loss function.

The 10-fold cross-validation with donwsampling training for the selectivity prediction is

performed by first randomly splitting the whole data set into 10 subset. Then the model is

trained and evaluated for 10 times. During each iteration, one subset is picked as testing

set, and a validating set with the same size as testing set as well as a training set with

the corresponding size are randomly sampled from the remaining data. In that way, we

guarantee the same testing and validating set for training sets with different sizes.
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Figure S10: Cross validation used to evaluate models on different size of training sets in the
present work. 5-fold cross validation is shown for simplicity

The scaffold-splitting of dataset is based on the Murcko scaffold of the aromatic com-

pounds,S15 which derives scaffolds of molecule by removing side chains. The whole dataset

is splitted into training, validint, and testing set in a ratio of 80 : 10 : 10 using the greedy

bin-packing algorithm.

For the 10-fold cross-validation and scaffold splitting experiment, the model was trained

for maximum 50 epochs. Early stop based on the loss function on the validating set is

employed to prevent over-fitting. The learning rate scheduler was used through out all

models. For the selectivity and yield prediction, a reducing learning rate with the decay

rate of 0.95 for each epoch was selected. For the multi-task constrained model, a SINEXP

learning rate scheduler as defined in the literatureS16 was selected.

S1.4.2 Hyperparameter tuning

The most appropriate method for the hyperparameter tuning in this case should be the nested

cross validation. However, due to the exponential growth in the computational resources

required for multiple models, datasets, and training size, we herein use a simplified nested

cross-validation (Figure S10).

The hyperparameters are determined through the conventional cross validation method

using an example dataset, the EAS regio-selectivity dataset with 1000 training points. The

average selectivity accuracy on the validating set is used as the metric.

For GNN, QM-GNN, and ml-QM-GNN, hidden size for the WLN encoder and global
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attention layer were determined to be 50. Steps of message passing in the WLN encoder was

determined to be 4 (Figure S11).

Figure S11: GNN Hyper-parameter tuning for GNN, QM-GNN, and ml-QM-GNN
through 10-fold cross validation on the EAS regio-selectivity dataset with 1000 training
points. We optimize one hyperparameter at each time and fix other parameters. a) tune the
steps of message passing in the graph network. Hidden size is fixed at 50, and learning rate
is 0.001. b) tune the size of hidden vectors in the graph network. Steps of message passing
is fixed at 4, learning rate is 0.001. c) tune the learning rate. Hidden size is fixed at 50, and
steps of message passing is fixed at 4.

.

For the QM model, a trapezoid shaped neural network is used. The number of layers

and the size of the first layer was determined to be 4 and 500, respectively (Figure S12).

Figure S12: Hyper-parameter tuning for QM model through 10-fold cross validation on the
EAS regio-selectivity dataset with 1000 training points. We optimize one hyperparameter
at each time and fix other parameters. a) tune the first layer size. Number of layer is fixed
at 4, and learning rate is 0.001. b) tune the number of layers. Size of the first layer is fixed
at 500, and learning rate is 0.001. c) tune the learning rate. Number of layers and size of
the first layer is fixed at 4 and 500, respectively.

.

For the fingerprint model, we use a trapezoid shaped neural network as well. Hyperpa-
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rameters including number of layers, Morgan fingerprint radius, size of the fingerprint, and

learning rate were tuned using the method discussed above (Figure S13).

Figure S13: Hyper-parameter tuning for FP-baseline model through 10-fold cross vali-
dation on the EAS regio-selectivity dataset with 1000 training points. We optimize one
hyperparameter at each time and fix other parameters. a) tune the fingerprint size. Number
of layers and fingerprint radius are fixed at 3 and 2, respectively. b) tune the number of NN
layers. Fingerprint size and radius are fixed at 2048 and 2. c) tune the fingerprint radius.
Neural network layers and fingerprint size are fixed at 3 and 2048. d) tune the learning rate.

.
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S2 Additional results

S2.1 Cross validation statistics for regio-selectivity predictions

Figure S14: Additional results for the 10-fold cross validation in Figure 3A. a) Error bar
shows the 95% confidence interval through the bootstrap method. b) Box plot for regio-
selectivity prediction accuracy for each fold. c) Strip plot showing the regio-selectivity pre-
dicting accuracy for each fold. Each point stands for the accuracy on the testing set for that
fold.

.
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Figure S14 demonstrates: 1) Using a tiny training set, it is significant that QM-GNN, ml-

QM-GNN, and QM outperforms the GNN model; 2) When we turn to the larger training

set end, we are also confident to say that QM-GNN, ml-QM-GNN, and GNN model

perform better than the QM model.

Similar statistics for three classes of regio-selectivity reactions are provided in Figure S15

Figure S15: Additional results for the 10-fold cross validation in Figure 7A. First row: Error
bar shows the 95% confidence interval through the bootstrap method. Second row: Box
plot for regio-selectivity prediction accuracy for each fold. Third row: Strip plot showing
the regio-selectivity predicting accuracy for each fold. Each point stands for the accuracy
on the testing set for that fold. Left: Class 1 aromatic CH functionalization. Middle: Class
2 aromatic CX substitution. Right: Class 3 other selective reactions.

.

S2.2 Latent space analysis for the QM-GNN and GNN model

When using a relatively small part of data to train the model (e.g. 500 reactions), the

GNN model incorrectly predicts the major reacting site for 521 reactions during the cross-

validation, while the QM-GNN model corrects 220 of those making use of chemically mean-
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ingful descriptors. Among those corrected reactions, we take the iodination reaction of com-

pound 1 as an example (Figure S17). The selected reaction has five potential outcomes,

with 2 as the reported major product and 3 as the GNN model’s incorrect prediction. The

output from the second-to-last layer of the NN in Figure2 was extracted from both models

as latent vectors to represent a learned 100-dimensional representation of these two potential

reactions (“major” and “minor”).

We calculate the Euclidean distance between those two latent vectors and compare it

with distances between the major reaction and its neighboring reactions in the training set.

Intuitively, for an unseen selective reaction, if the minor reaction is closer to the major

reaction than any of its neighbors in the training set, it will be hard to distinguish the

two possible outcomes. Here, the distance between the major/minor reactions are similar

for the two models (10.7 vs 7.1). However, the neighborhood of the major reaction in the

QM-GNN model is far more dense than that in the GNN model (Figure S17A). The top 3

nearest neighbors of the major/minor reactions in the latent space of two models are shown

in Figure S17B. For the selected example, the GNN model, using solely 2D molecular graph

information, fails to distinguish the major reaction from the minor reaction. The model has

never seen a similar substrate in the training set, and so the major and minor outcomes are

significantly closer in feature space to each other (a distance of 10.7) than to any examples

in the training set (distances of ≥ 77) . On the other hand, after incorporating the QM

chemically meaningful descriptors to supplement 2D molecular representations, we find that

there are several training set examples with distances smaller than the distance between the

major and minor outcomes (2.3-3.0 are shown versus 7.1). The distribution of distances looks

drastically different than the GNN model in both density (cf. Figure S17A) and diversity (cf.

structures shown in Figure S17B), suggesting the model is now looking beyond the molecular

structure. We then perform a statistic analysis on such trends by counting the number of

training points that are closer to the major site than the minor site for each reaction in

the testing set (Figure S17C). The distribution supports the trends found for the example
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Figure S16: Enhancement of using QM calculated chemically meaningful descriptors is illus-
trated on an example of iodination reaction. (a) Distribution of distances between the major
reaction (leading to 2) and reactions from the training set. The grey dash line indicates the
distance between the major reaction and minor reaction (leading to 3). (b) Aromatic sub-
strates from the top 3 nearest neighboring reactions in the training set. Blue dots indicate
the major and minor reacting sites. Numbers next to the major/minor site are the predicted
score for the selectivity. For each major/minor site, three closest neighbors are given, with
the red dot indicating the reacting site. Numbers below the nearest neighbors are the dis-
tance to the major or minor reacting site of the example reaction. (c) Distribution of number
of reactions in the training set that is closer to the major reaction than any of the minor
reactions for a given selective reaction in the testing set (0 is omitted for clarity).
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reaction. The above discussion indicates that the QM-GNN model is capable of capturing

the underlying chemical intuitions and learn the fundamental physicochemical rules.

S2.3 QM descriptors prediction

Error distributions for the descriptor prediction are given below.

Figure S17: Error distribution on the testing set for the multi-task constrained model.

The correlation of the multi-task prediction shown in Figure 6 varies significantly accord-

ing to the target, as can be found through MAEscaled in Table S7. Fukui indices are more

difficult to learn than others. This is not surprising as the computation of Fukui indices in-

volves an open shell electron structure calculation using the corresponding relaxed structure

of the closed-shell species, which introduces larger uncertainty.

We further compared our multi-task constrained model with an atomic fingerprint model

developed by Heid et al.S17 (Table S7) as the baseline. In the baseline model, a local fin-

gerprint encoding the local atomic environment such as atoms connected through bonds,

angles, and dihedral angles were proposed, which then go through a neural network to give
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Table S7: Model and task comparison on the chemically meaningful descriptor predictions

Properties
This work Heid et al.S17

MAE MAEscaled
a MAE

partial charge 3.0e-3 2.5e-3 4.0e-3
Fukui index+ 5.2e-3 5.8e-3 9.6e-3
Fukui index− 5.0e-3 5.9e-3 9.3e-3
shielding const 1.6 2.9e-4 2.3
bond order 4.9e-3 1.9e-3 6.2e-3
bond length 1.8e-3 1.0e-3 2.1e-3

a Scaled MAE as the testing set is scaled to 0-1 by the min-max scaler according to the
training set.

the predicted descriptor. Our GNN model outperforms the baseline model across all six

targets, especially for Fukui indices. The trend suggests that our model is better capturing

delocalized information and thus excels at predicting properties that depend more on global

features of the molecule such as the Fukui indices.

For reactants involved in the 3, 003 EAS reactions, we predict QM descriptors using the

multi-task model and compare the result with the QM calculations.
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Figure S18: Correlation between QM calculated and ML predicted descriptors for reactants
involved in the 3, 003 EAS reactions
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Figure S19: Error distribution for QM calculated and ML predicted descriptors for reactants
involved in the 3, 003 EAS reactions

S2.4 Fingerprint random forest model for selectivity prediction

A random forest classifier is trained and evaluated on the tree classes of regio-selectivity

reactions. Model hyperparameters are tuned through cross-validation on the 1000 EAS

reactions, using random grid search.
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Figure S20: Average cross validation predicting accuracy of random forest classifer model
using reaction fingerprint as input to predict the plausibility of each reacting site. The error
bar stands for the stand error of the mean of the cross validation.

S2.5 Model modification for yield predictions

S2.5.1 Yield prediction as a binary classification problem

The ml-QM-GNN model is modified to predict yield for the three general types of sub-

stitution reactions studied in this work. Reactions in our dataset are mined from various

patent documents so that the recorded yields were not obtained through high-throughput

experiments or at consistent conditions. Therefore the yield recorded might be impacted

by various effects beyond the actual reactivity (e.g., concentrations, temperature, and reac-

tion times). To account for the fact that the prediction problem is underspecified, but to

still attempt to predict the inherent reactivity of reactants, we re-frame quantitative yield

prediction into a binary classification problem.S18

The yield scale of 0%-100% for reactions studied in the previous sections was divided

into three groups. The high reactivity group contains reactions with a yield higher than

70% to guarantee the reaction to have at least a medium reactivity as its inherent property.

The low reactivity group is composed of reactions with yields lower than 20%. Reactions

with yields between 20% and 70% are discarded due to ambiguity in the actual reactivity.

Under such classification, the dataset is dominated by the high-reactivity reactions. To avoid
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model biasing toward the high-reactivity end, the low-reactivity group is then augmented by

including their minor reactions, which is based on the presumption that the minor reaction

of a low-reactivity reaction should also be low-reactive. Subsequently, 8, 567 class (1), 9, 364

class (2), and 7, 226 class (3) reactions containing about 50/50 low/high-reactivity reactions

were selected to evaluate the prediction of absolute reactivity (more details are provided in

the SI S1.2.5).

Table S8: Model comparison on the task of classifying reactions into low- or high-yielding.

task metric ml-QM-GNN GNN FP-baseline

class 1
AUC-ROCa 0.92 0.91 0.86

accuracy (%)b 85.6 ± 0.3 83.8 ± 0.3 78.2 ± 0.4

class 2
AUC-ROC 0.89 0.88 0.86

accuracy (%) 82.3 ± 0.4 80.9 ± 0.5 78.5 ± 0.5

class 3
AUC-ROC 0.87 0.86 0.85

accuracy (%) 79.4 ± 0.2 78.3 ± 0.4 77.3 ± 0.6
a area under receiver operating characteristic curve

b ± shows the standard error of accuracy for each fold of cross-validation

ml-QM-GNN, GNN, and the FP-based model discussed above were then trained on

those three datasets to discriminate whether a reaction is high reactive. The performance

comparison for 10-fold cross validation are shown in Table S8. Two metrics are employed to

evaluate model performance. Since our discriminative model generates a probability of being

high reactive for a given reaction, the performance was first quantified using the area under

receiver operating characteristic curve (AUC-ROC). This curve plots the true positive rate

(TPR) versus the false positive rate (FPR) as the classifier tolerance is adjusted. The area

under the curve thus represents a quantitative measure of the model performance, which

ranges from 0.5 (random guessing) to 1.0 (perfect prediction). The AUCs for three groups

of reactions through cross validation are 0.92, 0.89, and 0.87, respectively, using ml-QM-

GNN. In addition to the ROC curve, we also calculated the prediction accuracy at the

tolerance determined by the Kolmogorov-Smirnov (KS) method as a more straightforward

assessment. The success rates of predicting the correct reactivity class for the three groups

of reactions are then calculated to be 85.6%, 82.2%, and 79.5%, respectively. Both the ROC
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and predicting accuracy indicate that the ml-QM-GNN model is reliable in predicting the

absolute reactivity for a given reaction and provides a measurable improvement over the

GNN and FP-baseline models.

S2.5.2 Yield prediction as a regression problem

We further demonstrate the fusion ML/QM model on the absolute reactivity (yield) predic-

tions by framing the problem as a regression task. Since the yield regression task has been

demonstrated extremely challenging using text-mined reactions.S19 Therefore, we turn to

the C-N cross coupling reaction dataset of Doyle and coworkers,S20 obtained through high-

throughput experimentation. That dataset should be in higher quality than the patent data.

The data set include all possible combinations of 15 reactants, four ligands, three bases, and

23 isoxazole additives in a total of 4140 reactions. We tested the ml-QM-GNN model on

the 70/30 random splitting and 4 out-of-sample splitting with respect to the the the isoxa-

zole additives. For both random splitting and out-of-sample splitting, our non-expert guided

model achieves comparable performance to the expert-guided descriptors, but requires much

less time. For detailed description of the dataset and splitting method, see ref.S20,S21
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Figure S21: Prediction of yields using high-throughput experimentation data. (a) C-N cross
coupling reactions by Doyle and co-workers.S20 (b) Correlation between predicted yield and
experimental yield on the 70/30 random splitting. (c)-(f) Correlation between predicted yield
and experimental yield on the out-of-sample splitting with respect to isoxazole additives.

Table S9: Model comparison on the yield regression task

R2 random 70/30 OOS 1 OOS 2 OOS 3 OOS 4

Doylea 0.92 0.80 0.77 0.64 0.54
Gloriusb 0.93 0.85 0.71 0.64 0.18
ml-QM-GNN 0.90 0.77 0.81 0.69 0.29

a Feature engineering model using expert-guided descriptorsS20
b Molecular fingerprint based modelS21
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S2.6 Raw prediction accuracy for cross-validation

S2.6.1 Raw cross-validation prediction accuracy for Figure 3A

Table S10: Raw prediction accuracy data for QM-GNN cross validation

fold 200 300 500 1000 2000 all
fold1 87.0 89.1 89.7 89.4 90.9 91.5
fold2 89.7 90.3 89.1 92.1 93.0 93.6
fold3 85.8 85.2 85.8 87.3 86.7 89.4
fold4 86.4 88.5 88.5 88.8 92.1 90.0
fold5 82.7 86.1 87.6 88.5 90.9 90.3
fold6 86.4 88.5 86.1 87.6 90.0 89.7
fold7 87.9 89.1 89.7 90.0 91.5 90.6
fold8 87.6 86.1 87.6 89.1 90.3 90.6
fold9 87.6 90.0 89.1 91.8 93.1 93.4
fold10 87.0 87.9 88.5 89.7 90.3 93.6

Table S11: Raw prediction accuracy data for ml-QM-GNN cross validation

fold 200 300 500 1000 2000 all
fold1 87.6 89.1 90.3 90.9 90.3 90.0
fold2 92.4 91.5 91.2 90.6 90.9 92.1
fold3 87.3 86.4 86.1 86.7 89.4 89.4
fold4 87.9 87.9 88.5 88.2 90.9 93.1
fold5 85.8 86.4 86.1 89.7 87.3 88.2
fold6 88.5 86.7 87.0 88.2 90.0 89.1
fold7 89.1 87.9 90.0 88.8 91.2 90.3
fold8 85.2 86.7 88.5 89.1 87.3 91.2
fold9 90.9 88.8 90.3 92.1 93.1 91.8
fold10 86.7 87.9 90.0 90.0 92.1 92.7
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Table S12: Raw prediction accuracy data for GNN cross validation

fold 200 300 500 1000 2000 all
fold1 78.1 76.0 82.6 84.4 88.0 88.9
fold2 76.9 82.9 88.9 91.3 91.0 91.9
fold3 79.3 81.7 84.7 86.8 89.8 91.6
fold4 82.6 79.6 82.0 86.8 87.7 89.5
fold5 83.2 83.2 86.5 88.9 91.0 89.5
fold6 76.0 81.4 84.4 85.9 90.1 91.0
fold7 73.3 81.4 82.3 85.6 87.1 86.8
fold8 76.9 79.3 82.3 87.1 89.8 90.4
fold9 75.4 76.6 83.8 90.1 88.0 91.9
fold10 76.0 77.8 86.2 85.3 87.1 88.9

Table S13: Raw prediction accuracy data for QM cross validation

fold 200 300 500 1000 2000 all
fold1 86.7 86.4 87.0 87.9 87.0 88.8
fold2 87.0 84.5 88.8 89.4 88.2 87.9
fold3 82.7 83.0 83.6 84.5 82.7 83.3
fold4 87.9 87.3 87.6 87.9 88.2 88.5
fold5 83.9 83.0 83.9 83.9 86.1 85.8
fold6 83.3 83.3 84.5 86.4 83.9 85.5
fold7 87.3 85.5 86.7 86.7 88.5 88.5
fold8 87.0 87.0 86.7 86.7 86.7 88.5
fold9 90.0 89.7 89.4 90.3 90.0 91.2
fold10 84.2 85.8 86.4 84.8 86.1 86.1

S2.6.2 Raw cross-validation prediction accuracy for Figure 7A
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