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S1 Special Carr-Purcell-Meiboom-Gill Conditions in the Case
of Reversibly Bound Xe

S1.1 General Aspects and Sensitivity Considerations

Systems investigated with hyperpolarized, caged 129Xe are often characterized by a large chem-
ical shift difference, ∆ω ≈ 103 . . . 104 Hz, between the pool of free Xe (pool A) and bound Xe
(pool B). The solubility of Xe yields noble gas concentrations in Xe-saturated solutions that can
reach mM values. However, the solubility of Xe hosts is often much lower and together with the
fact that only a certain fraction of the binding sites is occupied with Xe, the fraction of the B
pool fB is less than 1 % in such systems. Whereas this imposes challenging conditions for di-
rect detection, this allows a significant simplification for the treatment of the effective spin-spin
relaxation rate, R2,eff, in the detected bulk pool.

We demonstrate that for 129Xe with its large chemical shift range the evolution can be strongly
dominated by the jumps in Larmor frequency and that the Carr-Purcell-Meiboom-Gill (CPMG)
experiment represents special conditions which simplify the commonly used Carver-Richards
solution significantly. In fact, eventually it does not matter if the phase coherence between spins
that transfers from pool B into the detected pool A is lost in B because of “classic” spin-spin re-
laxation or because of stochastic spin-spin dephasing due to a large chemical shift jump.

Xe systems with an interaction partner or host spin pool provide various conditions to study
the effective spin-spin relaxation rate, R2,eff. Independent from CPMG measurements, param-
eters of the exchange-connected spin pools can be determined by quantitative chemical ex-
change saturation transfer with hyperpolarized Xe (Hyper-CEST) analysis[1] based on the full
Hyper-CEST (FHC) solution[2]; whereas CPMG measurements observe the combined loss of
phase coherence from R2,eff in spin pool B and from frequency jumps between the spin pools,
the chemical exchange saturation transfer (CEST) effect represents an actively induced fast per-
turbation in spin pool B that allows to isolate the exchange rate and to estimate an upper limit
of the spin-spin relaxation rate in absence of any exchanging site, R2,0.

In general, analysis of both the Hyper-CEST effect and the exchange-induced relaxation
can be seen in the context of the intrinsic, classic spin-spin relaxation rate in each of the two
spin pools individually, R2,A and R2,B. Since in the relaxometry experiment in Figure 3a in the
manuscript, R2,eff approaches R2,A for zero host concentration (i.e., [host] = 0 µM), we observe
a function of the type f(x) = m · x + y0 with y0 denoting the y-intercept corresponding to R2,0.
We thus denote from here on and throughout both the manuscript and this ESI R2,0 = R2,A.
Whereas for the FHC solution it is critical that the exchange driven saturation transfer out of the
CEST pool is dominant[1], kBA � R2,B, the relaxometry data is insensitive to the intrinsic R2,B

according to Millet et al.[3] as long as |R2,0 − R2,B| � ∆ω(fA − fB); with fA/B denoting the frac-
tional size of spin pool A/B, respectively. The dominating ∆ω of∼ 104 Hz allows a generousR2,B.
Nonetheless, R2,B is diffcult to measure. To validate that this inequality is true for Xe, consider
the other extreme and suppose that |R2,0 − R2,B| ∼ O(104) s−1. Then, T2,B = 1/R2,B ∼ O(10−4).
Now consider a CEST experiment in which RF saturation pulses are applied typically for several
seconds. If the T2,B of bound Xe would be that short, then all magnetization must be gone long
before the RF saturation pulse would impact. The fact that even weak saturation pulses of 1.1 µT
(slow rotation of the magnetization with ω1 = 12.9 Hz), induce a CEST effect under comparable
sample conditions[1] means that the exchange must be dominant over intrinsicR2,B relaxation.
Therefore, R2,B is at maximum in the order of R2,0, greatly fulfilling Millet’s inequality above.
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The detection of the bulk pool via R2,eff is much more feasible than direct detection of the
host pool at low concentrations.

Figure S1: Direct 129Xe-NMR spectroscopy of [CrA] = 100µM in DMSO at different temperatures
(intensity of each spectrum was scaled to the same noise level; chemical shift given relative to
the resonance of free Xe in DMSO).

S1.2 Sensitivity Considerations

The host CrA-ma had been previously investigated in DMSO using the same SEOP setup and
NMR equipment [1]. To study the off rate, kBA, by line broadening at these small concentrations
of material we are using (fA � fB) with direct Xe NMR spectroscopy, then 1) only the peak of
bound Xe shows line boarding but is too small in signal intensity to obtain significant statistic
without extensive averaging, and 2) the easy detectable signal of free xenon (at 0 ppm) is not
line broaded by the exchange rate because of highly diluted material. The higher bulk pool
signal is thus not suitable to quantify the exchange. This is illustrated in Figure S1. The line
widths determined with the peakw command in Topspin ranged between 21.12 Hz (for 284 K)
and 19.53 Hz (for 303 K) and thus did not show any significant dependence on the exchange rate
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that was controlled through the temperature.
The detection of the bulk pool via R2,eff is much more feasible than direct detection of the

host pool at low concentrations. The following estimation illustrates that the detection limit for
this system should be in the low µM range:

At 310 K, the fit result gave R2,0 = (0.24 ± 0.04) s-1. Hence, the change in R2,eff caused by the
host should be at least 0.08 s-1. Given a transverse relaxivity of 23.2 s-1 mM-1, ca. 3.4 µM host
needs to be present.

At 295 K, the fit result gave R2,0 = (0.09 ± 0.01) s-1. Hence, the change in R2,eff caused by the
host should be at least 0.02 s-1. Given a transverse relaxivity of 10.9 s-1 mM-1, ca. 1.8 µM host
needs to be present.

These concentrations are ca. 100-fold lower than the above-mentioned example with direct
detection. Investigating the exchange effect with direct detection would then require (100)2 · 64
= 640 000 scans to obtain a reliable SNR and thus be beyond realistic experimental conditions.

S1.3 Exchange Parameter Nomenclature

Our work uses the exchange rates as in McConnell’s Bloch-equation modification[4], but we pre-
ferred to use k, than τ as done by McConnell. Specifically, we use the equivalents: kAB → 1/τA,
and kBA → 1/τB. Additionally, there is more exchange going on than dissociation from the
cage. A degenerate Xe-CrA-ma exchange also occurs [5, 6] (for CrA-ma in water it was mea-
sured to be about 5,600 M−1 s−1 for Xe[6]). However, we estimated the contribution of de-
generate Xe-CrA-ma exchange for our experimental condition in this study to be < 2 % out of
ca. 300 s−1 for CrA-ma in DMSO (Our maximum Xe concentration was 2,340 µM at 295 K ⇒
2.34 10−3 M · 5600 M−1 s−1 = 13.104 s−1; however, CrA-ma’s occupancy for Xe in water is ca.
29 %[7, 8], whereas CrA-ma’s occupancy for Xe in DMSO is ca. 6-9 %[1, 9, 7], i.e., ca. 3.5-fold
lower. This makes the degenerate Xe-CrA-ma exchange contribution accordingly less signifi-
cant: 13.104 s−1/3.5 = 3.7 s−1 which is by far smaller than our experimental precision in kBA),
and therefore, not included in the further treatment.

S1.4 Theoretical Considerations

The CPMG spin echo trains are typically analyzed with the Carver-Richards equation (Eq. 41 in
[10])

R2,eff
∼= R2,0 +

1

2τ
− 1

tCP
· sinh−1 F (S1)

(with 2τ being the lifetime between exchanges; tCP being the time between 180◦ RF pulses; and
F being a function of the fractional populations of the sites, Pa and Pb; the relative chemical
shift difference, ∆ω; tCP; 2τ ; thus: F(Pa, Pb,∆ω, tCP, 2τ)). This simplifies in the limit of large
chemical shift differences ∆ω (re-defining “slow” exchange) as done by Millet et al. [3] (Eq. 9
therein):

R2,eff
∼= R2,0 + fB · kex (S2)

The question remains, how “leaky” 180◦ RF pulses in the CPMG experiment introduce R2,eff

quantification-errors. Importantly, Baldwin has shown that such quantification-errors can ac-
cumulate seriously over the course of pulse repetition and suggests a correction term for that[11].
In the following, we show that this correction term vanishes for dominant ∆ω.
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S1.4.1 Baldwin’s Correction to the Carver-Richards Equation

In this section we will demonstrate that Baldwin’s correction term disappears. The notation as
used in Baldwins solution deviates slightly from the notation of spin pool A and spin pool B,
and uses G and E for ground and exited state, respectively. Specifically, our notation relates to
that used by Baldwin the following: kGE → kAB; kEG → kBA; fA → PG; fB → PE; R2,A → RG

2 , and
R2,B → RE

2 .
The important point is that the argument in the ln() term in eq. (50) of Ref. [11] is close

enough to 1. This is given for √
ν2

1C − 1 ≈ ν2 + 2 · pD · kAB (S3)

using our notation of kAB instead of kGE. Here, ν1C, ν2, and pD are functions of τCP, ∆ω, kAB, kBA,
R2,A, and R2,B. This approximation is given for pD · kAB → 0 and happens according to Baldwin
for fB < 1 %. In such cases, the large dominance of pool A causes kAB → 0. Such fB < 1 %
is easily achievable with hp Xe because small changes in the relaxation of the A pool can be
detected and require only a minute concentration of pool B. But in our case it is not only the
pool size ratio that helps to approach pD · kAB → 0 (we have kAB ≈ O(10−1) ). The dominant ∆ω
once more has an impact and the parameter pD that also becomes small. Its definition is given
in Baldwin’s Eq. 45

pD N = ν1S + (F a
1 + F b

1 ) sinh(τCPE1). (S4)

The a and b indices of F1 in Equation S4 were introduced by Baldwin and are different to our
pool label notation of “A” and “B”. With

ν1S = F0 sinh(τCPE0)− F2 sinh(τCPE2) (S5)

we determine the parameters for the amplitudes and arguments of these hyperbolic functions.
To do so, Baldwin defines four quantities, h1, . . . , h4, in Eq.s (12-13) that yield the (complex)
eigenvalues f00 and f11 (which themselves represent two characteristic frequencies of the ground
state and excited state). The first two relevant terms of these can be approximated as follows:

h1 = 2 ∆ω (R2,B −R2,0 + kBA − kAB) ≈ 2 ∆ω (R2,B −R2,A + kBA) ≈ O(104 102) = O(106) (S6)

h2 = (R2,B −R2,0 + kBA − kAB)2 + 4 kBA kAB −∆ω2 (S7)

≈ (R2,B −R2,0 + kBA)2 + 4 kBA kAB −∆ω2 ≈ −∆ω2 ≈ O(108) (S8)

Because ∆ω2 is by far the dominant term, these terms simplify significantly, even when com-
pared to the exchange rates. h1 and h2 are then used in the following two parameters:

h3 =
1√
2

√
+h2 +

√
h2

1 + h2
2 ≈

1√
2

√
−∆ω2 +

√
4 ∆ω2(R2,B −R2,0 + kBA)2 + ∆ω4 (S9)

≈ 1√
2

√
−∆ω2 + ∆ω2 = 0 (S10)

because the contribution from h2
2 ≈ O(1016) remains by far the dominant one in the argument

of the inner root operator compared to h2
1 ≈ O(1012). Again, it is critical that ∆ω is so large for a
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Xe system.

h4 =
1√
2

√
−h2 +

√
h2

1 + h2
2 ≈

1√
2

√
2 ∆ω2 = ∆ω ≈ O(104) (S11)

We see that these two quantities determine the difference in the effective relaxation rates of the
two pools (linked to the real part of f00 andf11) and the difference in the observed frequencies
(linked to the imaginary part of f00 and f11, see Eq. 15).

fR
11 − fR

00 = h3 ≈ 0 (S12)

f I
11 − f I

00 = h4 ≈ ∆ω (S13)

For the case of large chemical shift differences, the effective relaxation rate is practically the
same in both pools (since the exchange effect is dominant over the intrinsic relaxation rates)
and the ultimately observed frequency difference is simply ∆ω.

The terms h3 and h4 are used to define further quantities which we need for the hyperbolic
terms appearing in Baldwin’s correction. Two parameters are

N = h3 + i h4 ≈ i∆ω (S14)

N∗ = h3 − i h4 ≈ −i∆ω (S15)

and also N N∗ ≈ ∆ω2. These are used to define (Eq. 36)

F0 =
∆ω2 + h2

3

N N∗
≈ ∆ω2 + h2

3

N N∗
= 1 (S16)

F2 =
∆ω2 − h2

4

N N∗
≈ ∆ω2 −∆ω2

N N∗
= 0 (S17)

which still fulfills the general statement F0 − F2 = 1. Further definitions include (Eq. 41)

E0 = 2h3 ≈ 0 (S18)

E1 = h3 − i h4 ≈ −i∆ω (S19)

E2 = 2 i∆ω (S20)

These terms determine the argument of the sinh−1 which appear in pD and ν1S. We will now first
show that the hyperbolic terms in ν1S vanishes in the case of the Xe@CrA-ma system. Evaluation
of

ν1S = F0 sinh(τCPE0)− F2 sinh(τCPE2) ≈ 0 (S21)

needs to consider that F0 ≈ 1 and F2 ≈ 0 while the arguments in the hyperbolic functions
approach τCPE0 ≈ 0 and τCPE2 ≈ 2 i τCP ∆ω. Here, it is critical that E2 provides a complex
argument. We can therefore use sinh(2 i τCP ∆ω) ≈ i sin(2 τCP ∆ω), which is a finite term between
−i, . . . , i and F2 causes the second term to disappear. With sinh(0) = 0, we see that the first term
also vanishes.

Next, we have to show that the second term in

pD N = ν1S + (F a
1 + F b

1 ) sinh(τCPE1) (S22)
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will also disappear. We use once more that the hyperbel function contains an imaginary argu-
ment and thus

sinh(τCPE1) ≈ sinh(−i τCP ∆ω) = i sin(− τCP ∆ω) = −i sin( τCP ∆ω) (S23)

delivers a finite quantity. Its scaling factor F a
1 + F b

1 reads

F a
1 + F b

1 =
2 ∆ω2 − i h1

N N∗
≈ 2 ∆ω2 − i 2 ∆ω kBA

∆ω2
=

2(∆ω − i 2 kBA)

∆ω
≈ 2 (S24)

We note once more that this is an approximation where it is critical that the system is in “slow”
exchange with dominant ∆ω. We can therefore summarize

pD ≈ −
2 i

N
sin(τCP ∆ω) ≈ − 2 i

i∆ω
sin(τCP ∆ω) = O(10−4) (S25)

Thus we see that for pD · kAB → 0 is fulfilled in the Xe host systems studied herein not only
because exchange out of a dominant pool A is in general very infrequent but also because the
dominant chemical shift suppresses pD.

S1.5 Consistency with the General N-Site Exchange Description

A general description for experimental data from CPMG measurements has been introduced
recently by Koss et al. [12], includingN pools with variable size, and covering the full dispersion
range from slow to fast pulsing with applicability to the full range of exchange kinetics. Its eq.
29 yields the exchange contributions for N = 2 in slow exchange as

Figure S2: Plot of the sinc2 term in the generalized description of 2-site exchange by Koss et al.
[12] in the slow exchange limit. a) Overview, b) zoom into the range of ∆ω · τCP ≈ 102 for the
chemical shifts occurring in this study and echo times on the order of 10 ms.
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R2,ex =
pA · pB · k2

ex

[
1− sinc2(∆ω · τCP) + pB · kex ·∆R2,AB

]
kex + ∆R2,AB

(S26)

with pA, pB being the normalized fractional pool sizes (pA + pB = 1; their notation called popula-
tion) and ∆R2,AB being the difference in the intrinsic relaxation rates in both pools. The product
pA · pB can be approximated in our case by fB. The argument in the sinc2 term is on the order
of 102, such that the term itself is on the order of 10−4, as shown in Figure S2. The last term,
pB · kex ·∆R2,AB is also negligible because of the small pB and small ∆R2,AB whereas kex is not ex-
cessive. As the denominator also reduces to kex, the whole fraction simplifies to fB ·kex ≈ fB ·kBA

as used in the main manuscript.

S1.6 Insights from Saturation Transfer Experiments

A crucial aspect of our theoretical description are the simplifications that come with ∆ω being
the dominant item in all terms contributing to R2,eff. However, ∆ω is not necessarily known
a priori and can become inaccessible in direct 129Xe NMR spectra: for example, observing the
direct peak of pool B requires relative large concentrations, which in turn shortens T2,eff for sys-
tems with ∆ω ≈ 104 s−1 so dramatically that the signals suffer from significant line broadening
or effects of increasing coalescence when approaching the fast exchange regime. An indepen-
dent method such as Hyper-CEST is therefore the key to qualitatively verify the assumptions
which have been made. However, the end result will be independent of ∆ω and allow an accu-
rate quantification of the exchange rate or gas turnover.

We have shown previously that quantitaive analysis of the saturation transfer allows to derive
values for kBA and fB[1]. The observed signal loss is dominated by the actively driven CEST effect
for a system like CrA-ma in water or DMSO, and thus, by choosing proper saturation conditions,
T2,eff relaxation effects in pool B can be neglected for CEST. This can be seen from the theoretical
description for the driven depolarization (Ref. [2, 1]) and includes the transverse relaxation in
the CEST pool as follows (here, the only approximation used is that ∆ω is dominant compared
to all other rates; this can be confirmed retrospectively when investigating an uncharacterized
system):

λmax = fB · kBA ·
ω2

1

ω2
1 + kBA · (kBA +R2,B)

(S27)

Achieving a strong, narrow CEST response with no excessive saturation power will then give
important insights. Here, it is important to understand why λmax is sufficiently large and how
this is seen in the context of the entire CEST spectrum, i.e., the width of the response. The driven
depolarization should be efficient because of fB · kBA, i.e., a sufficiently large CEST pool and a
fast release of saturated magnetization into the detected bulk pool. A high saturation power, ω1,
helps to achieve the upper limit of λmax, namely fB ·kBA when ω2

1 becomes the dominant term[1,
9]. However, ω1, should not be excessive, as it causes detrimental line broadening. Overall, the
saturation power should be sufficient such that ω2

1 is comparable with k2
BA in the denominator.

In such cases, it ensures that saturation occurs fast enough compared with kBA, i.e., before many
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spins leave the CEST pool. Any further increase is problematic because the line width

Γ = 2

√
kBA +R2,0

kBA
ω2

1 + (kBA +R2,B)2 (S28)

increases linearly with ω1 for excessive saturation power. We have shown for the initial charac-
terization of CrA-ma in DMSO that a sharp CEST response could be achieved for B1= 1.1µT,
i.e., ω1 ≈ 12.9 Hz[1] at r.t. . Further tests showed that a saturation power of ca. 4µT gives
already 50 % of the maximum possible depolarization rate[9]. Hence, a characteristic rate of
ω1 ≈ O(102) s−1 is sufficient to drive the depolarization. At the same time, the observed CEST
line width at ∆ω = 166 ppm offset from pool A was not dominated by R2,B and thus the upper
limit for relaxation in the CEST pool must be R2,B ≤ O(102). This is also consistent with sim-
ulations of the CrA-ma system that used relaxation rates of R2,B ≤ 500 s−1.[2] We thus see that
∆ω � R2,B.

S1.7 Relaxation Dispersion Simulation

For isolating the exchange contribution, one typically needs to compare fast pulsing observa-
tions with slow pulsing results. The Swift-Connick treatment yields the extreme limit of the
latter case but line width analysis is often masked by other line broadening. Hence, the CPMG
method is used to eliminate other R2 effects and isolate the exchange contribution.

Figure S3: Simulation of relaxation dispersion with dominant but not yet excessive chemical
shift difference ∆ω (fix simulation parameters: total exchange rate kex = 300 s-1, chemical shift
difference ∆ω = 2000 Hz, fractional size of pool B fB = 0.001, and R2,A = R2,B = 0.2 s-1).

For slow exchange, we saw that the exchange contribution is given by fB · kex. Figure S3
illustrates that one aims for a large step size R2,ex. But this requires a) high kex or b) large fB

(best: both). Large fB requires a lot of material and some simplifications do not apply any more
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in this case. Large kex (which is particularly important if the B pool is very dilute) comes with the
risk that one approaches the fast exchange limit. Xe now offers large ∆ω such that even relative
high exchange rates are still in the “slow exchange regime”. Moreover, Xe has low R2 to start
with. This makes it possible to identify differences in the signal decay once the (small) B pool is
present. An exchange contribution of 0.1 s-1 is easier to identify in slow decaying echoes than
in fast decaying echoes. Figure S4 illustrates the normalized signal difference when comparing
two signal decays differing by Rex.

Figure S4: Signal difference for exponentially decaying signals with various initial decay con-
stants (fix simulation parameter: exchange-induced transverse relaxation rate Rex = 0.1 s−1).

To measure the fullRex, one needs to reach the plateau for high relaxation in the slow pulsing
limit. But this is challenging because fast decaying signals should be sampled with short echo
times, hence fast pulsing. Figure S5 illustrates that we benefit again from the large ∆ω because
it shifts the dispersion curves far to the right.

Once the ∆ω is just 10 times larger than the kex of 300 Hz, one remains in the plateau for
up to 200 Hz pulsing frequency. Any larger ∆ω makes it even easier to apply short echo times
but still measure the full exchange contribution. Another aspect is to which extend a small fB is
beneficial for this case or not. Technically, fB increases the step size for the maximum exchange
contribution to the relaxation as shown in Figure S6. Increasing fB would make it easier to
quantify the exchange contribution with higher accuracy, but we do not need this for Xe with the
convenient kex. A small fB together with large ∆ω simplifies handling of the intrinsic relaxations
according to the condition |R2,0 − R2,B| � ∆ω(fA − fB): Changing the fB mainly scales the
step size but does not shift the curve horizontally or changes the transition area such that one
might accidentally sample outside the plateau once the concentration of the B pool changes.
Increasing fB by a factor of x increases the step size accordingly. Taking ∆R = R2,eff − R2,0

for two different pool B magnitudes, fB,2 = x · fB,1 (the latter set to 0.001) one can investigate
the two functions ∆R for fB,1 and ∆R′ for fB,2. These can be compared as ∆R/(x∆R′) to see
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Figure S5: Simulation of relaxation dispersion with increasing chemical shift difference ∆ω (dia-
magnetic extreme limit: ∆ω > 10 Hz; fix simulation parameters: total exchange rate kex = 300 s-1,
and fractional size of pool B fB = 0.001).

Figure S6: Simulation of relaxation dispersion with a variable fractional size of pool B (fix sim-
ulation parameters: total exchange rate kex = 300 s-1, chemical shift difference ∆ω = 10 kHz, and
R2,A = R2,B = 0.2 s−1).
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if the larger fB,2 just causes a scaling of the R2 component that increases when approaching
the slow pulsing limit (moving from right to left in the dispersion plot). Figure S7 is the plot of
∆R/(x∆R′) to confirm this simple scaling over a large range of the plateau region.

Figure S7: Comparing the step sizes for dispersion curves from different fB conditions after
re-scaling and plotting them as ∆R/(x∆R′).

This plot means that increasing the fB 5-fold from 0.001 to 0.005 scales the plateau by a factor
of 5. For the transition and the fast pulsing limit towards slow relaxation, the scaling factor 5 is
not 100 % correct. Interestingly, it is off by another factor that eventually corresponds to the
difference of fB,2 and fB,1, hence ∆fB = |fB,2 − fB,1| = fB,1(x− 1). This is more a side note but it
shows that changing fB never gives the risk to shift the transition region of the dispersion curve.
A similar effect as for an increasing fB is also observed for an increase in kBA, at least between
100 and 1000 Hz as long as fB · kex is dominated by ∆ω. Considering eq. 4-7 used by Millet et al.,
we see that the increase in kex is dominated everywhere by ∆ω, except in the finalR2,ex equation.
Figure S8 illustrates simulations for increasing exchange rates over the full range from the slow
to the fast regime.

S2 Undersampled MR-Image Reconstruction

Radial sampling has the advantage that each readout line captures signal for the center of k-
space and can thus contribute to evaluating the signal decay. However, the numbers of projec-
tions, p, for Nyquist-Shannon artifact-free MR image reconstruction (p = matrix size ·π/2) is per
se larger than the number of readouts in Cartesian sampling. A larger matrix size thus increases
the minimum possible spin echo time and causes the effective echo time for an individual scan
to be less sharp defined.

In Figure S9, each 129Xe image shows the very first image of the image series stack of the very
same sample phantom (both compartments contained DMSO, but only the inner compartment
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Figure S8: Simulation of relaxation dispersion with a variable exchange rate (fix simulation
parameters: fractional size of pool B fB = 0.001, chemical shift difference ∆ω = 10 kHz).

additionally 50µM of CrA-ma). Additionally, the matrix size was varied. All scans were recorded
with Golden Angle-based (GA) radial sampling.

In contrast to conventional uniform radial k-space sampling, GA-based radial sampling ac-
quires projections in time which will never overlap with any of the prior acquired projections.
Thus, it does not contain any redundant k-space information. It’s irrational angle is given by
ϕGA = 180◦/γGA where γGA = (

√
5 + 1)/2 = 1.618034 . . . is known as the Golden Ratio or Golden

Section and solves the equation γ2
GA = γGA + 1 (thus; ϕGA = 111.246 . . .◦) [13]. The Golden

Ratio is achived as the ratio of adjacent Fibonacci numbers, F (k) = {1, 1, 2, 3, 5, . . .} with recur-
sive Fibonacci function F (k + 2) = F (k + 1) + F (k) [13]. Taking the GA-based approach adds
the following three advantages over uniform radial sampling into the system: 1) Each newly
added projection divides in k-space the largest azimuthal gap; 2) If the number of projections is
equal to a Fibonacci number, then only two different azimuthal gaps occour; 3) As the sampling
scheme is based upon a constant angle increment, a window that is temporally moving or “slid-
ing” by n·TR (repetition time) selects a constant sampling pattern that is rotated by a constant
increment of ϕ = n · ϕGA[13].

GA-based radial k-space sampling was proposed for 1H-MRI and is capable for dynamic
studies capturing fast signal changes [13]. In addition, quantitative mapping of T1, T2, and spin-
density has also been demonstrated for 1H-MRI with GA-based radial sampling [14, 15].

The reconstructed HP 129Xe MR images in Figure S9 were obtained with either of the follow-
ing three methods:

A) fully sampled data (according to Nyquist-Shannon: projections=matrix size·π/2) and con-
ventional NUFFT reconstruction;
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B) undersampled acquisition using only 8 projections and conventional NUFFT reconstruc-
tion;

C) same undersampling with 8 projections as for B), but using our proposed smoothed KWIC
(sKWIC) NUFFT reconstruction (details given in next section S2.2).

If T2,eff is too fast and the MR imaging method too slow, then mixed contrast arises in the
image and the quantification of any T2,eff contrast becomes less accurate. The effective signal
contrast in the area with the Xe binding partner has varied significantly during the time period
needed for full Nyquist-Shannon amount of data recording and only an averaged effect shows
up as image contrast.

When reconstructing the MR-image for the very first time point possible, the disadvantage
of conventional fully sampling (top row) became evident as mixed contrasts (red arrows in Fig-
ure S9), in particular for higher matrix sizes where the T2,eff-decay happens on a scale that is
faster than the total acquisition time of the MR image. These mixed contrasts impact T2,eff accu-
racy. For the MR images that were reconstructed from only 8 projection (middle row), the mixed
contrast is greatly minimized (red arrow), at the expense of streaking artifacts. These streaking
artifacts can be removed using the sKWIC filter (bottom row).

S2.1 k-Space Weighted Image Contrast (KWIC)-Filter Design

The k-space weighted image contrast (KWIC) filter is similar to the keyhole concept on Carte-
sian k-spaces, but with (at least) the following two differences:

1. KWIC is for radial k-space sampling;

2. KWIC cuts out parts of already taken data similar to a mask.

Therefore, similarly to the Cartesian keyhole concept, radial sampling with KWIC filter recon-
struction focuses on the center of k-space only, but in a much more flexible fashion being able to
further widen or narrow retrospectively the width of the “temporal MR reconstruction window”
on already taken data [13]. To add even more flexibility to the KWIC filter, the “diameter” of each
Nyquist ring can also be set/adapted to match either the Nyquist criterion or to be narrower for
oversampling or wider for undersampling, respectively.

The KWIC filter [13, 15, 14] makes heavy usage of GA-based radial sampling pattern. For
simplicity, the KWIC filter shown in Figure S10 is described only for the first frame, but the prin-
ciple applies also for the other frames. After 90◦ RF excitation, the intensity of the transverse
magnetization decays with the total transverse relaxation time, T2 (Figure S10; red curve; T2,eff

decay).
Following the data density in radial k-space sampling starting from the center of k-space

radially to the outer k-space, the data is oversampled at the k-space center, Nyquist sampled
at the Nyquist radius, and undersampled beyond the Nyquist ring in the outer k-space. Thus,
radial k-space sampling is highly non-uniform.

We wanted to take only a small number of projections for MR-image reconstruction to follow
the signal decay and contrast build-up in time as closely as possible by using – for the purpose
of simpler illustration – only the first 5 full projections (for real, we used 8 projections).

As this is highly undersampled regarding the matrix size of the MR-image, the reconstructed
image has streaking artifacts (compare Figure S9; middle row). To remove such streaking ar-
tifacts arising from undersampling, but to preserve the MR-image contrast contribution from
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Figure S9: Comparison of Nyquist sampled (top row), undersampled (8 projections) data with
conventional reconstruction (middle row), and undersampled (8 projections), but sKWIC re-
constructed data (bottom row) of Golden-Angle (GA) based radial sampling for different matrix
sizes (TE(322) = 10.82 ms; TE(962) = 12.27 ms; TE(1282) = 20.00 ms) on the very same sample
(field-of-view: 20×20 mm2). Only the inner compartment of the double phantom contained
50µM of CrA-ma. Note: of all images shown here, each is always only the first of the MR image
series stack that corresponds to the first possible reconstructed time point; thus, each image
represents the beginning of the T2,eff signal decay curve and should not yet show any darkening
in the MR signal because of the presence of CrA-ma. However, a contrast became more and
more apparent the larger the matrix size was when time consuming full Nyquist sampling was
used (top row; red arrows). Both undersampled methods (middle and bottom row) do show
correct contrast behavior in the presence of CrA.
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Figure S10: Illustration of KWIC-filter design for a matrix size of 96× 96.
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only these 5 projections, the KWIC filter defines Nyquist rings at which adjacent projections are
added to fill up the undersampled outer k-space, but their central part corresponding to the
center of k-space is cut-off (see KWIC mask: white = 0; black = 1; this corresponds to the projec-
tions no. 6, 7 and 8 in Figure S10d and Figure S10e). This procedure is continued by a second
Nyquist ring by which the k-space including the newly added projections starts to become again
undersampled and is filled up again, but now using projections 9, 10 and 11. This is repeated
until the required k-space is completely filled. By this procedure, no contrast will be added into
the reconstructed MR-image by adding projections from later time points, but also undersam-
pling artifacts will be removed. In total, the main signal and contrast of the first reconstructed
image is mainly given by the signal of the initial 5 projections 1 to 5.

For any later reconstructed frame, the center of the KWIC-filter, which keeps the projections
untouched, shifts until the asymmetric KWIC-filter becomes symmetric and slides as a recon-
struction window to later time points (Figure S10c).

S2.2 KWIC versus smoothed KWIC Reconstruction

Sharp edges in k-space (as generated from the Heaviside step function used in the conventional
KWIC filter) introduce Gibbs-ringing in MR images after Fourier-transformation. To reduce
these artifacts and therefore to further increase the SNR, we smoothed these sharp edges of the
Heaviside step function in a first approximation by linear smoothing (smoothed KWIC; sKWIC;
Figure S11).

The sKWIC filter was designed such that a linear function with a particular slope smoothed
the step of the conventional KWIC filter. We used the following slopes for each Nyquist ring
transition:

2nd Nyquist ring: readout points: 7 → slope: 1/7 = 0.143 per readout point.
3rd Nyquist ring: readout points: 5 → slope: 1/5 = 0.2 per readout point.
4th Nyquist ring: readout points: 7 → slope: 1/7 = 0.143 per readout point.
5th Nyquist ring: readout points: 12 → slope: 1/12 = 0.083 per readout point.
6th Nyquist ring: readout points: 17 → slope: 1/17 = 0.059 per readout point.

Critically, up to 20 % of noise in the reconstructed MR image could be reduced using the smoothed
KWIC filter approach (see color- and gray-scale difference image in Figure S11). The correct
functionality of the sliding reconstruction window is illustrated in Figure S12 for increasing echo
times. This Fig. also illustrates the impressive benefits of this approach for obtaining high spa-
tial resolution without loosing the ability to include high temporal resolution and the feature of
short overall acquisition times.
For relaxation time mapping, Figure S13 compares fitting results obtained from KWIC and sKWIC
reconstructed MR images (T2,eff, M0 and standard errors). The standard deviations are signifi-
cantly reduced with sKWIC.

S3 T2,eff Evaluation Procedure

For relaxivity mapping, a consistency check was performed with the two-compartment phan-
tom containing the same sample (DMSO) in both volumes. Fig. S14 shows that a homogeneous
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Figure S11: KWIC versus smoothed KWIC (linear function at the edges of Nyquist rings) recon-
struction with identical parameters (shown for frame 1 (left) and frame 213 (right)). To compare
its differences, the same data were either KWIC or sKWIC filter reconstructed and its corre-
sponding MR images were subtracted from each other; revealing over 20 % of reduced noise
when using sKWIC (bottom; either color map (top), or gray map (bottom)).

S18



Figure S12: sKWIC filter masks and reconstructed 129Xe MR images for different matrix sizes.
The asymmetric sKWIC filter was used to reconstruct the first frame at 40 ms of spin echo time.
As the filter slides along the time dimension for reconstructing images for larger TE, it grad-
ually changes its shape towards the symmetric shape as exemplary shown here for frame 100;
and echo times of 1 s, 2 s, and 3 s. Sample: DMSO in both compartments, only the inner com-
partment contained 50µM of CrA-ma additionally; T=295 K. At matrix sizes larger than 962 (at
field-of-view of 20×20 mm2), the glass capillaries started to become spatially resolved.
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Figure S13: KWIC versus smoothed KWIC reconstruction impact on the errors of T2,eff , and M0

quantification/fitting.

Figure S14: Consistency check with double-compartment phantom (no CrA-ma in either com-
partment); T = 303 K. The method yields a homogeneous T2,eff throughout both physically sep-
arated compartments. Due to the low noise level, all data can be included into the fitting pro-
cedure (field-of-view of 20×20 mm2).
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result for the decay constant and starting magnetization is obtained throughout the two vol-
umes.

In a second consistency check, we removed the inner NMR tube and studied a single solution
with 150 µM CrA-ma with different matrix sizes and RF pulse combinations. The results for T2,eff

are given in Tab. S1.
The T2,eff errors in Table S1 were derived by the following three procedures and were listed

in that order:

1. A pixel-wise T2,eff-fit was done throughout the image series and the standard deviation
of the T2,eff map values within a ROI were taken. This represents the scattering of the
individual T2,eff values (without considering the standard deviations from the individual
fits) and represents the largest uncertainty.

2. A new error is calculated from the individual standard errors of lsqcurvefit obtained by
Nlparci using the residual and the Jacobian of each pixel of the T2,eff map.

3. Standard error as in 2), but fitting only one signal decay obtained from the ROI averaged
signal along the time series (instead of fitting a signal decay for each individual pixel). This
yields the smallest errors.

We see from Table S1 that the transverse relaxation time was not significantly influenced by the
chosen combination of RF excitation/refocussing pulse shape both the Gauss/Gauss (G/G) or
Hermite/Mao (H/M), have comparable results. However, comparing the data in Tab. S1 for dif-
ferent matrix sizes gave the impression that the increased matrix size yields consistently lower
values for T2,eff. It is indeed possible that signal decay rates are systematically higher for larger
matrix sizes (though the values still agree within the error bars of the scattering within the T2,eff

map). A possible explanation is that images with larger matrix size, hence smaller pixels, are
more susceptible to diffusion effects: a certain fraction of spins leaves the encoded pixel dur-
ing the echo train and thus an enhanced signal loss is observed. This diffusion effect causes,
however, only a constant offset that does not affect the slope within a concentration series that
is studied with a fixed matrix size. The relaxivity r2 determined from the slope remains practi-
cally unaffected. Whereas this is convenient for the exchange dynamics parameters derived in
this study, the simple T2,eff determination should keep this effect in mind. Another side effect
of increased matrix size is that the minimum echo spacing is slightly increased (overall range
for all matrix sizes: 11 ms to 17 ms). While this technically represents a reduction in νCP, we do
not consider this as a real dispersion effect since a) our simulations showed that the conditions
for Xe should not show a dispersive behavior in this regime and b) it would only be a small shift
towards slow pulsing.

Along with these consistency checks we noticed that fitting the signal decay for individual
pixels has to be done with care when judging individual T2,eff values. The signal (and thus the
sign) of the reconstructed magnitude MR images was always positive in our case and because
of that, this offset can bias the T2,eff values obtained by fitting (see Figure S15). This is impor-
tant when evaluating the signal decay from a single pixel because the noise level is high: we
considered for fitting only the first data points that were outside one standard deviation (hori-
zontal blue dashed line) of the mean of the offset (horizontal blue solid line). We also considered
throwing out even more data by taking only the first data outside twice the standard deviation
of the mean of the offset (horizontal red dashed line), but this did not changed the obtained
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Table S1: Within error limits, the change in quantified transverse relaxation time was not im-
pacted by the RF excitation/refocussing pulse pair Gauss/Gauss (G/G) or Hermite/Mao (H/M).
Further explanation regarding the different error bars is given in the text.

matrix size RF pulse shape pair T2,eff / ms aqc. time / s
322 G/G 468± {50,20,3} ≈15
322 H/M 440± {30,10,3} ≈15
642 G/G 427± {100,40,4} ≈15
642 H/M 397± {80,30,3} ≈15

fit result for T2,eff (see histogram analysis in Figure S15b). We therefore kept the one standard
deviation criterion (blue) for the main manuscript.

Regarding image contrast, the best contrast between fast relaxing and slow relaxing species
is determined as follows: Between two neighboring compartments having fast (F) and slow (S)
T2,eff decay, we find the echo time for maximal contrast (assuming that both give about the same
signal intensity of offset : offsetF ≈ offsetS) by solving:

0 =
∂

∂t

[
{M0,S · e−t/T2,S} − {M0,F · e−t/T2,F}

]
t=TEMC,ana

The (spin echo-) time for maximum contrast found analytically is given by

TEMC,ana =
T2,S · T2,F

T2,S − T2,F
· ln
(
T2,S ·M0,F

T2,F ·M0,S

)
(S29)

S3.1 Acceleration of Data Collection and Reduced Xe Deliveries

For NMR studies working with hyperpolarized nuclei, one has to consider that these need to
be delivered into the sample. This takes time and is not necessarily easy to repeat for multiple
measurements. Thus, using the available magnetization as efficient as possible is an impor-
tant concern. Thus, subsampling techniques can save time and material. The corresponding
gold-standard Cartesian rapid acquisition with relaxation enhancement (RARE) measurement
for T2,eff mapping requires for each phase encoding step (which is proportional to the matrix
size of the image) a delivery of new, fresh hp Xe (given that no segmentation mode is used). Let
us consider a matrix size of 322: If each new spin echo is arranged as one line in k-space for
T2,eff measurement, then 32 deliveries of fresh, hp Xe are required. This results in ca. 992 s =
15.4 min in total acquisition time (using an echo time spacing of 400 ms per phase encoding
step; 50 echo images; Xe bubbling time of 10 s and a bubble collapse time of 1 s; thus, in sum
a repetition time of 31 s per phase encoding step). In contrast, a total acquisition time of less
than 31 s was required for the single-shot GA-based radial RARE measurement (in detail: Xe
bubbling time: 10 s; a bubble collapse time of 1 s; and continuous data recording time of 20 s).
This yields a ca. 32-fold acceleration in data acquisition. Similarly, the total acquisition time for
matrix sizes of 642/962/1282 using the same considerations would be ca. 33 min/50 min/66 min
for conventional Cartesian encoding. The proposed single-shot GA-based approach yields a 64-
fold/96-fold/128-fold acceleration, respectively.
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Figure S15: a) Green curve: conventional T2,eff fit (S(t) = M0 · e−t/T2,eff +offset) taking all data;
blue: our improved T2,eff fit that takes only the first data that is above the standard deviation
(horizontal blue dashed line) of the mean of offset (horizontal blue solid line); red: same as
blue, but taking even less data that are twice the standard deviation (horizontal red dashed line)
above mean of offset. b) Histogram comparing these three fit approaches on the same MR image
data set.

S4 Quantitative Saturation Transfer Results

To validate the exchange rate that was determined with Equation (4) in the main manuscript,
quantitative Hyper-CEST[1] was used for similar range of temperature (Figure S16). The abso-
lute chemical shift of free Xe in solution showed a plateau behavior; this is in excellent agree-
ment (for the temperature and ppm ranges used in our study), for approaching actually a max-
imum with temperature, which has been discussed in literature [16]. Also, a parabolic behavior
of the Xe solubility with temperature was also reported by Clever[17]. The concentration of dis-
solved Xe at different temperatures (Figure S16) was determined with help of Figure S1. The
known concentration of free Xe at T = 293 K was used as reference and set to 2,340µM[1]. At
different temperatures, the peak areas for free Xe was put in relation to this. The experimental
setup was as described previously[1].
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Chemical shift extremum of 129xe(aq) reveals details of hydrophobic solvation. Sci. Rep.,
8:7023, 2018.

[17] H. Lawrence Clever. Krypton, Xenon and Radon – Gas Solubilities. Pergamon, Oxford,
Chemistry Department, Emory University, Atlanta, GA, USA, 2 edition, 1979.

S26


	Special Carr-Purcell-Meiboom-Gill Conditions in the Case of Reversibly Bound Xe
	General Aspects and Sensitivity Considerations
	Sensitivity Considerations
	Exchange Parameter Nomenclature
	Theoretical Considerations
	Baldwin’s Correction to the Carver-Richards Equation

	Consistency with the General N-Site Exchange Description
	Insights from Saturation Transfer Experiments
	Relaxation Dispersion Simulation

	Undersampled MR-Image Reconstruction
	k-Space Weighted Image Contrast (KWIC)-Filter Design
	KWIC versus smoothed KWIC Reconstruction

	T2,eff Evaluation Procedure
	Acceleration of Data Collection and Reduced Xe Deliveries

	Quantitative Saturation Transfer Results

