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2 Predict-SNAr workflow 
The predict-SNAr workflow takes a reaction SMILES1 as input, identifies the nucleophile, substrate, 

product and leaving group and then sets up and performs all calculations of the mechanism and the 

descriptors (Figure S1). Temperature and solvent are also used throughout the calculations. The results 

are stored in a database for easy retrieval. predict-SNAr has been optimized for robustness and includes 

extensive error checks for the quantum chemical calculations. Below, a detailed description of the 

different steps will be given. 

 

Figure S1. Overview of predict-SNAr workflow 

2.1 Input preparation 
The literature data from the file “kinetic_data_v4.xlsx” was first pruned to remove entries for which 

either activation free energy, solvent or temperature was missing. (After the modelling was completed, 

some additional entries have been added in database, see section 5.)  

Solvent mixtures were processed to determine the “influential solvent” as the SMD solvent model (vide 

infra) can only handle single solvents. It is clear that solvent properties are not a simple linear 

interpolation between the properties of the constituent solvents. Determining which single solvent to 

substitute for a solvent mixture is somewhat arbitrary, but we used two principles to guide our 

reasoning: (1) preferential solvation and (2) activity.2 Preferential solvation means that ions will be 

preferentially solvated by the solvent to which they have the strongest interactions. More polar solvents 

should therefore have a larger influence in solvating ionic reactants than expected based on their molar 

fraction in comparison with less polar solvents. Activity coefficients will be higher for minority solvents, 

meaning that they will exert a higher “effective” mol fraction than the raw numbers indicate. By 

combining these two principles, we came up with the following rule of thumb for binary solvent 

mixtures: if the polar solvent has a mole fraction of at least 0.2, it will be used as the single solvent in the 

workflow, otherwise the less polar solvent will be used.  
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The input preparation process is documented in the Jupyter notebook “prepare_kinetic.ipynb” in the 

folder “prepare_kinetic_data”. The solvent is parsed with SolventPicker object, where the influential 

solvent is selected. The work to generate the solvent data is given in the Jupyter notebook 

“Solvents.ipynb” in the folder “solvents”. 

2.2 Input parsing and structure generation 
The input to the predict-SNAr workflow is the reaction SMILES, the reaction temperature in Kelvin and 

the solvent name. The solvent is converted to SMILES via the Open Parser for Systematic IUPAC 

nomenclature (OPSIN) tool (2.4.0).3,4 It is then checked against a list of solvents available in the 

Gaussian16 program. If an exact match cannot be found, the most similar solvent based on distance in 

the standardized three-dimensional space of dielectric constant (ε) and hydrogen bonding properties 

(Abraham’s AH and BH) is used.5 If the hydrogen bonding parameters are not available for the input 

solvent, the choice is based on just the dielectric constant. The same process is used for the xtb program, 

which has a much more limited selection of solvents. Note that xtb energies are only used in 

intermediate steps of the workflow and do not appear in the final output of the model. Therefore it does 

not matter significantly what solvent is chosen for xtb step, as long as the right structures are found and 

later optimized with Gaussian16. 

The reaction SMILES is parsed first by the ReactionSmilesParser object which identifies substrate, 

nucleophile, product and leaving group based on minimum common substructure matches (with some 

additional rules pertaining specifically to the SNAr reaction). If the leaving group is not specified, it is 

created. Intramolecular reactions are identified. Molecules which do not take part in the bond breaking 

and bond making events are sorted as agents and placed “above the arrow” in the reaction SMILES (in 

between the two “>>”). An AgentDetector object parses the agents to find acids and bases. The reactive 

atoms are also identified. 

The Smiles2XYZ object uses the output from the ReactionSmilesProcessor to construct 3D structures of 

all reactants and products using the RDKit.6 The conformer generation recipe of Deane and co-workers 

is used,7 with the ETKDG algorithm by Landrum and Riniker.8 Structures are optimized and ranked with 

the MMFF9,10 or UFF11 force fields, depending on atom availability, keeping only the lowest-energy 

conformer. Smiles2XYZ also constructs a reaction complex with the nucleophile situated at a distance of 

6 Å from the substrate to serve as a starting point for further calculations with xtb. Smiles2XYZ further 

identifies the atoms of the reactive ring and if the nucleophile and transition state would be candidates 

for implicit/explicit solvation modelling (Section 2.3.5). The criterion for explicit solvation is that the 

nucleophilic atom should be a negatively charged and of the second or third row of the periodic table. 

The rationale is that these small anions should be more localized and harder for the implicit solvation 

models to treat. Smiles2XYZ  also detects the following cases which are of interest in the further 

modelling: 

1. Azide nucleophiles 

2. Ortho nitro groups on the substrate 

3. Non-conjugated nucleophilic atoms (adjacent to sp3-hybridized atom) 

2.3 Mechanistic calculations 

2.3.1 Quantum chemistry 
DFT calculations used Gaussian 16 Rev C.01.12 Geometry optimizations employed the ωB97X-D 

functional13 with the 6-31+G(d)14,15 basis set as this functional has shown good performance for SNAr 

reactions.16 All stationary points were confirmed with frequency calculations. Thermal contributions to 

the free energies were corrected for low-frequency modes with Grimme’s quasi-harmonic scheme17 

https://gaussian.com/scrf/
https://xtb-docs.readthedocs.io/en/latest/gbsa.html
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using GoodVibes 3.0.118,19 at the reaction temperature. Final energies were obtained by combining 

single-point energies with ωB97X-D/6-311+G(d,p)20 with the thermal free energies at the ωB97X-D/6-

31+G(d) level. Solvent effects were accounted for by the SMD solvation model.21 GFN2-xTB22 calculations 

were performed with the xtb 6.2 software.23 Solvent effects with xtb were treated with the GBSA 

solvation model. To better model anions, xtb calculations employed an electronic temperature (2000–

7000 K) to simulate the effect of diffuse basis functions (Section 2.3.6). Solvation of anionic nucleophiles 

are generally treated poorly by continuum models, especially in polar solvents. To correct our solvation 

energies, we used an automatized approximate version of the cluster-continuum model of Pliego and 

Riveros (Section 2.3.5).24,25. For all structures, we performed conformational sampling with CREST (2.8)26 

and xtb. The resulting conformers were ranked according to their electronic energy with ωB97X-D/6-

31+G(d) and only the lowest energy conformer was selected for further optimization. 

2.3.2 Transition state calculations 
We first checked whether we could locate a stable σ complex to assess whether the reaction was 

concerted or stepwise. If the σ complex was stable, we scanned each reactive bond separately using xtb, 

starting from the σ complex, to find the TSs for addition and elimination. If the σ complex was not stable, 

we performed a concerted scan of the reactive bonds using generalized internal coordinates (GICs) to 

located the concerted TS, scanning from the reactive complex to the product complex. Single point DFT 

calculations with ωB97X-D/6-31+G(d) along the scan coordinate identified the approximate location of 

the TS, which was conformationally sampled with frozen reaction core and subsequently fully optimized 

with DFT. TS conformations were sampled with atom position constraints on the aromatic core and bond 

constraints for the reactive bonds. The reactions involving aliphatic alkoxides as leaving groups had 

unrealistically large activation energies owing to proton-transfer being involved in the rate-determining 

step. Our workflow treats this proton transfer as going from the nitrogen to the oxygen in a concerted 

manner, while in reality it would occur by two separate proton transfers involving the solvent.27 Owing 

to the inadequacy of our model, we use the barrier from the addition step as rate-determining in the 

later machine learning, in accordance with the literature.28 Proper treatment of these types of 

mechanisms will be the topic of a future study. 

Reactant and product complexes were optimized with GFN2-xTB at a C–Nu distance corresponding to 

the sum of the vdW radii of the two reactive atoms. The distance to the ortho carbons were also frozen 

at distances determined from the C–Nu and C–ortho C distances together with the Pythagorean 

theorem. For intermediate optimizations, the xtb optimization and CREST conformational search used 

frozen C–LG and C–Nu bond lengths which were taken from the GFN2-xTB geometries of the substrate 

and the product, respectively. For finding transition states, the GFN2-xTB energy profile was analysed 

with respect to peaks higher than 0.01 kcal/mol, which were identified as candidate transition states. A 

bond order criterion discarded peaks for which the bond order of any of the reactive bonds changed by 

less than 0.05 Å. If no peak could be identified, the workflow moved on to the next stage, except in the 

case of the second step of a stepwise mechanism, where the first geometry on the bond scan was taken 

as a TS guess. The rationale was that the barrier could be very small and the peak had probably been 

missed by the bond scan procedure. The peaks were sorted with respect to energy and an attempt to 

locate the TS from the geometry of the first peak was attempted. If a TS could not be found, the program 

proceeded to the next peak in the list. In the special case where concerted bond breaking and proton 

transfer could occur in the second step of a stepwise mechanism, a GIC scan was conducted to find 

additional guess transition states of this type if no other TS could be found. Transition states were 

validated by projecting the normalized Cartesian coordinate displacements from Gaussian16 of the TS 

mode onto the reactive bonds. Any TS candidate with a projected displacement below 0.13 units were 

rejected. TS structures were optimized by DFT after the initial CREST conformational search as described 
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above. First, the geometry was optimized with the reactive bonds frozen, and then a full TS optimization 

was conducted.  

For molecules including iodine, we used an effective core potential (ECP). The solution was to combine 

the def2-SVPD and def2-TZVPD basis sets29,30 and their associated ECPs together with the 6-31+G(d) and 

6-311+G(d,p) basis sets for the rest of the atoms, for double and triple zeta basis set calculations, 

respectively. Generation of the basis set dictionaries is documented in the Jupyter notebook 

“create_pickle_files.ipynb” in the directory “basis sets”. 

2.3.3 Use of additional constraints for xtb optimizations 
We used some additional constraints for xtb calculations to avoid complications were xtb would favour 

geometries that would be very high in energy at the DFT level or lead to discontinuities in bond scans. 

These constraints were lifted for the final DFT optimization and do not impact the final geometries that 

are used to calculate the reaction barriers and the descriptors. 

We found that the combination of ortho nitro groups on the substrate together with amine nucleophiles 

could cause problems with xtb optimizations using an electronic temperature. During optimizations and 

conformational sampling of intermediates and transition states, spurious proton transfer could happen 

from the amine to the nitro group. Therefore, we froze the N–H bonds for this type of calculations to 

prevent the spurious transfer.  

Azide nucleophiles tended to bend at the GFN2-xTB level in intermediates and transition states, which 

could cause problems with discontinuities in the DFT single point calculations along the GFN2-xTB bond 

scans. We therefore imposed two constraints for these cases (Figure S2): 

1. The N–N–N angle is frozen to 180 degrees (between atoms 15, 16 and 17 in the figure) 

2. The Lg–C–N–N dihedral angle is frozen at 180 degrees (between atoms 10, 3, 17 and 16 in the 

figure). 

 

Figure S2. Constraints for azides used in xtb optimizations and conformational samplings. Angle constraint of 180 degrees for 
the angle 15-16-17 and a dihedral angle constraint of 180 degrees for 10-3-17-16. 

For bond scans, we also implemented an additional set of constraints. For scans, for the first step of a 

step-wise mechanism, we implemented constraints for negatively charged oxygen nucleophiles which 

were connected to saturated atoms. Due to lack of diffuse functions, the O–C bond is artificially short 

with GFN2-xTB due to negative hyperconjugation effects to relieve the instability of the negative charge 

on the oxygen atom. We therefore froze the C–O distance during the scan to the value calculated with 

DFT for the isolated nucleophile.  
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For all the GIC bond scans, we also froze the difference of the distances between the nucleophilic atom 

and the ortho carbons of the substrate to ensure a symmetric approach of the nucleophile. For the bond 

scans from the intermediate with xtb, we instead scanned the Nu–ortho C distances together with the 

C–Nu distance.  

2.3.4 Calculation monitor 
The calculation monitor handles common errors and issues that occur during electronic structure 

calculations and geometry optimizations. 

Displacement of negative frequencies for geometry optimizations 

If a minimum structure is optimized and the frequency calculation shows one or more negative 

frequency, the structure was displaced along the corresponding normal mode and the optimization 

restarted. For the workflow, one such preoptimization was done. 

Dissociation check 

The calculation monitor checked for dissociation of bonds in the optimization of the intermediate. 

Dissociation was judged to have occurred if the bond orders of either the C–Nu or C–Lg bond decrease 

below 0.3. The calculation was then aborted and the workflow proceeded to calculate a concerted 

mechanism. 

Adaptive keyword changes in response to SCF errors and coordinate system errors 

Common convergence errors are captured and appropriate Gaussian keywords are inserted to try to 

remedy the situation. One example is the error "Convergence failure -- run terminated" for which the 

keyword “scf=xqc” is used. Coordinate system errors are also addressed, e.g., “RedCar failed” which is 

addressed with a series of Gaussian IOps: "1/59=10", "1/59=14", "1/59=4", "1/59=40" and "1/59=44". 

Also more obscure and non-reproducible errors such as “Internal input file was deleted!” are handled by 

simply restarting the calculation. 

2.3.5 Explicit solvation 
Explicit solvation is handled via the cluster-continuum model of Rivero and Pliegos.25 We targeted the 

energy that is missed by the implicit solvation model, which can be corrected by using explicit solvent 

molecules. We denote the free energy in solvent according the full cluster-continuum model with n 

explicit solvent molecules as ΔGsolv,n(solute), while that using the implicit model is ΔGsolv(solute). The 

correction to the implicit model is then given by 

Δ𝐺𝑠𝑜𝑙𝑣,𝑛(𝑠𝑜𝑙𝑢𝑡𝑒) − Δ𝐺𝑠𝑜𝑙𝑣(𝑠𝑜𝑙𝑢𝑡𝑒) = Δ𝐺𝑠𝑜𝑙𝑣(𝑐𝑙𝑢𝑠𝑡𝑒𝑟) − Δ𝐺𝑠𝑜𝑙𝑣(𝑠𝑜𝑙𝑢𝑡𝑒) − 𝑛Δ𝐺𝑠𝑜𝑙𝑣(𝑠𝑜𝑙𝑣𝑒𝑛𝑡) Equation 1 

where ΔGsolv(cluster) is the free energy of the cluster, ΔGsolv(solute) the free energy of the solute and 

ΔGsolv(solvent) is the free energy of the solvent (with the appropriate standard state), using the implicit 

solvation model. The number of solvent molecules, n, is determined by a variational principle, where the 

n which gives the largest correction is the most appropriate. This variational principle stems from two 

competing factors. The first factor is the stabilizing effect due to specific interactions between the 

explicit solvent molecules and the solute, which are not captured fully by the implicit solvation model. 

The second factor is the destabilizing effect of bringing solvent molecules from the bulk solvent to form 

the cluster, which corresponds to an entropic loss. 

We have implemented an approximate version of the cluster-continuum model that uses a combination 

of GFN2-xTB and DFT to select the optimal number of solvent molecules (Figure S3). The final correction 

term is then calculated with full DFT.  
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Figure S3. Sketch of automated cluster generation process. 

The first step of the procedure is to generate a cluster geometry. We start by placing solvent molecules 

around the solute at a distance of 4 Å at the geometries given in Table S1.  

Table S1. Geometry of initial placement of solvent molecules. 

n Geometry 

1 Point 
2 Line 
3 Equilateral triangle 
4 Tetrahedron 
5 Trigonal bipyramid 
6 Octahedron 

The cluster is the optimized with a small force constant (0.0005) pulling the solvent molecule towards 

the closest atom in the molecule, to form a crude guess for the cluster geometry. The pulling step is 

followed by two rounds of CREST conformational searches in the non-covalent interactions (NCI) mode. 

The conformers generated in the second run are ranked with DFT, and cluster free energy is constructed 

from the DFT single-point energy together with the free-energy contributions from GFN2-xTB. The 

energy of the solvent and solute are calculated in the corresponding manner, and the solvent correction 

term is calculated from Equation 1. Solvent molecules are added iteratively until the solvent correction 

terms decreases in magnitude according to the variational principle. A cut off of 2.0 kcal/mol is used to 

decide whether to go ahead with the final DFT cluster optimization. Special treatment is done for 

hydroxide in water, where GFN2-xTB optimization gives a delocalized structure where the proton is 

shared equally between two O atoms ( 

Figure S4). In this case, the O–H bond lengths are frozen for all steps. For transition states, the aromatic 

core and the reactive atoms are frozen. For the final DFT optimization of the cluster at the optimized 

number of solvent molecules, all constraints are released. For transition states, this means a full TS 

optimization for the cluster. The final solvent correction at the DFT level is then again calculated 

according to Equation 1. 

https://xtb-docs.readthedocs.io/en/latest/crestxmpl.html#sampling-of-noncovalent-complexes-and-aggregates-nci-mode
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Figure S4. Hydroxide with one explicit water molecule optimized with GFN2-xTB  

2.3.6 Use of electronic temperature in xtb calculations 
The xtb program uses a standard electronic temperature of 300 K. We found that a higher electronic 

temperature could serve as a substitute for diffuse functions for the GFN2-xTB method, which lacks them 

by default. The rationale is that electrons of the approaching anionic nucleophile could partly delocalize 

into the π* orbitals of the aromatic ring. However, if the delocalization becomes too strong, complete 

charge transfer is the result. It is therefore necessary to regulate the electronic temperature carefully to 

keep in the window where the lack of diffuse functions is remedied, while the problems of charge 

transfer don’t become too apparent. We found that a good starting guess could be based on the energy 

gap between the HOMO energy of the nucleophile and the LUMO energy of the substrate. The following 

rules were used to set the initial electronic temperature, which could later be changed for some steps. 

HOMO-LUMO gap (eV) Electronic temperature (K) 

(−∞) – (−0.5) 4000 
(−0.5) – (+∞) 7000 

After the initial setting based on the separated reactants, the following rules were used, which reflect 

that the HOMO-LUMO gap of the reaction complex is different than for the separated reactants.  

HOMO-LUMO gap (eV) Electronic temperature (K) 

(−∞) – (+2.0) 4000 
(+2.0) – (+∞) 7000 

Bond scans and conformational scans are examples were the workflow will recheck the HOMO-LUMO 

gap and adjust the electronic temperature. For bond scans with neutral nucleophiles, the following 

ranges are used. 

HOMO-LUMO gap (eV) Electronic temperature (K) 

(−∞) – (+1.0) 2000 
(+1.0) – (+2.0) 4000 
(+2.0) – (+∞) 7000 

2.4 Feature generation 
The solvent-accessible surface area and the Pint dispersion descriptor were calculated with an in-house 

development version of the morfeus software.31 The SASA calculation used the algorithm by Shrake and 

Rupley32 with the vdW atomic radii taken from the CRC Handbook.33 Pint was calculated on a surface 

constructed from the atomic radii of Rahm and co-workers34 and with the D3 dispersion coefficients.35 

Electronic structure features were calculated based on B3LYP/6-31+G(d) calculations with the SMD 

solvation model. The local electron attachment energy36 and the average local ionization energy37  as 

well as the surface electrostatic potential were calculated with the HS95 program (version 190510).38 

The Is,min and Es,min values were taken as the lowest values on the atomic surface, regardless if there was 

a stationary point associated with the atom in HS95. The five solvent PCA components compiled by 

Diorazio et al. were used as solvent features.5  DDEC6 charges and bond orders were calculated with 



 

9 
 

Chargemol (3.5)39,40 The electrostatic potential at the nuclei (VN) was calculated with Gaussian 16 using 

the keyword prop=potential. The global nucleophilicity parameter N was calculated as the negative of 

the ionization potential of the substrate in solution.41 The global electrophilicity parameter ω was 

calculated as 

𝜔 =
𝜇2

2𝜂
 Equation S2 

where η is the chemical hardness given by  

𝜂 = 𝐼𝑃 − 𝐸𝐴 Equation S3 

Here, IP and EA are the vertical ionization potential and electron affinity, respectively, and μ is the 

chemical potential,42 given by 

𝜇 = −
𝐼𝑃 + 𝐸𝐴

2
 Equation S4 

The local electrophilicity descriptor was calculated as 

𝑙𝜔 = −
𝜇

 𝜂
𝑓 +

1

2
(
𝜇

𝜂
)
2

𝑓2 Equation S5 

where f is the quadratic Fukui function, and f2 is the dual descriptor.43 The local nucleophilicity descriptor 

was calculated as 

𝑙𝑁 = 𝑓− Equation S6 

where f− is the Fukui function for electrophilic attack. The quadratic Fukui function was calculated as 

𝑞−+𝑞+ 

2
 Equation S7 

where q− is the charge of the atom in the anion, and q+ is the charge of the atom in the cation. The dual 

descriptor was calculated as 

𝑓2 = 𝑓+ + 𝑓− Equation S8 

where f+ is the Fukui function for nucleophilic attack. The Fukui functions for nucleophilic and 

electrophilic attack were in turn calculated as 

𝑓+ = 𝑞 − 𝑞+ Equation S9 

and 

𝑓− = 𝑞− − 𝑞 Equation S10 

where q is the charge of the neutral molecule. We used atomic Hirshfeld charges44 that were calculated 

with Gaussian 16 using the population=hirshfeld keyword. 

Morgan fingerprints were calculated with the RDKit (2020.03.1.0)6 as count vectors and length 1024 bits. 

Reaction difference fingerprints were obtained by subtracting the summed fingerprints of the reactants 

from the summed fingerprints of the products. Using bits instead of counts, or using a length of 512 or 

2048 instead 1024 did not change the results significantly (Table S5).  

Reactions were atom-mapped using Biovia Pipeline Pilot 2018 (18.1.0.1604),45 and erroneous mappings 

were corrected by hand using ChemFinder (19.0.0.22) and ChemDraw (19.0.0.22). CGRs were generated 
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with CGRtools (4.0.18)46,47  and were aromatized and standardized. ISIDA descriptors were then obtained 

with CIMtools (4.0.2)48 and Fragmentor 2017. Sequence features were generated with the following 

keywords: “fragment_type=3”, “min_length=2”, “cgr_dynbonds=1”, “doallways=True”, 

“useformalcharge=True” and “max_length=6” or “max_length=8” was used. Atom features were 

generated with the following keywords: “fragment_type=6”, “min_length=2”, “cgr_dynbonds=1”, 

“useformalcharge=True” and “max_length=4” or “max_length=8” was used. The generation of the 

descriptors is documented in the Jupyter notebook “cgr_tools.ipynb” in the folder 

“cgr_isida_descriptors”. One-hot encoded (OHE) features were created using the full data set prior to 

the train-test split. The encoding was based on the identity of the substrate, nucleophile, product, 

leaving group and solvent, as given by their InChIKeys. The BERT reaction fingerprints49 (of fixed length 

256 bits) were generated with the rxnfp (0.0.1) package.50 For prediction, we used the pre-trained model 

(“bert_pretrained”), and for making reaction maps we used the fine-tuned model (“bert_ft”). The 

generation of the BERT fingerprints is documented in the Jupyter notebook “rxnfp.ipynb” in the folder 

“bert_rxnfp”. The structural feature sets as well as the OHE feature set was amended with the PC1–PC5 

solvent descriptors. 

2.5 Running the workflow 
The workflow is designed as a Python package predict_snar, version 0.1.0, that can be installed with 

“pip install .”. The Python package requirements are specified in the “setup.py” file and listed in Table 

S2.  

Table S2. Python packages required to run the predict-SNAr workflow. 

Requirement Used version Description 

ase 3.18.0 Atomic simulation environment.51 Handling of structure information. 

cclib 1.6.2 Parsing of quantum-chemical chemistry output.52 Documentation. 
joblib 0.13.2 Parallelization of calculations. Documentation. 
mendeleev 0.4.5 Periodic table information such as covalent radii and vdW radii. Documentation. 
numpy 1.16.4 Array manipulation and mathematical calculations. Documentation. 
goodvibes 3.0.1 Corrections to quantum-chemical free energies. Documentation. 
scipy 1.3.2 Constants and unit conversion. Distance calculations. Peak finding.  
steriplus 0.3.0 Calculation of Pint and SASAr descriptors. Available in the near future as morfeus. 

The workflow is designed for running on a Linux cluster. Required software is listed in Table S3. 

Table S3. Software required to run the predict-SNAr workflow. 

Software Description 

Gaussian16 Quantum-chemistry. Commercial license.  
HS95 Electronic descriptors. Needs permission from Tore Brinck 
Chargemol Charge and bond order descriptors. Install from here. 
interface_script A Python script to handle communication between xtb and Gaussian (included) 
xtb Semi-empirical quantum chemistry. Install from here. 
CREST Conformational sampling. Install from here. 

The workflow has been tested with the versions of software noted in Section 2.3. A configuration file 

called “.ps_config” must be placed in the user home folder with desired default options and directories 

to software. Java must also be available in the environment to run the packaged OPSIN tool. 

[DFT] 

solvation_model = smd 

sp_solvation_model = smd 

nosymm = True 

 

https://wiki.fysik.dtu.dk/ase/
https://cclib.github.io/
https://joblib.readthedocs.io/en/latest/index.html
https://mendeleev.readthedocs.io/en/stable/
https://numpy.org/doc/stable/
https://github.com/bobbypaton/GoodVibes
https://sourceforge.net/projects/ddec/files/
https://github.com/grimme-lab/xtb
https://github.com/grimme-lab/crest
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[DIRECTORIES] 

xtb = /projects/cp/programs/xtb/default # Path to xtb executable 

crest = /projects/cp/programs/crest/default # Path to crest executable 

chargemol = /projects/cp/programs/chargemol/default # Path to chargemol executable 

hs95 = /projects/cp/programs/hs95/default # Path to hs95 executable 

interface_script = /projects/cp/programs/scripts/predict-snar/interface-g16-xtb # Path to 
interface script executable 

crest_scratch = /dev/shm/ksrf385 # Scratch directory for CREST program 

gaussian_scratch = /scratch/ksrf385 # Scratch directory for Gaussian program 

atomic_densities = /projects/cp/programs/chargemol/default/atomic_densities/ # Directory to 
atomic densities used by the chargemol program. 

A config file must be created in the directory before running the workflow. This is done by running the 

script ps_create_config. For instructions on its use, run ps_create_config --help. 

The workflow is invoked with the command 

python -m  predict_snar -p <n_cpus> -m <mem in GB> ‘<reaction SMILES>' 

where the argument “-p” specifies the number of CPUs to use and “-m” the amount of available memory 

in GB. An example job script is included in the supporting information with the article. Two example 

outputs from the workflow are also given. 

3 Machine learning 
The machine learning is reproduced in the Jupyter notebooks listed in Table S4. 

Table S4. Jupyter notebooks used for machine learning. 

Notebook file  Description 

“train_test_split.ipynb” Data pre-processing, feature generation, train-test split. 
“modelling.ipynb” Model selection 
“testing.ipynb” Validation on external test set. Dataset visualization. Feature importances. Learning curves. 

3.1 Model selection 
For the model building, we used the Python machine learning package scikit-learn (0.22.1).53 Data was 

handled by the pandas (1.0.3) data analysis and manipulation package.54 Plots were generated with 

matplotlib (3.1.0)55 and seaborn (0.9.0).56 We first processed the dataset in accordance with the 

description in Section 5.1 and put the reactions through the workflow(Section 2). We then split the 

dataset randomly into a training set (80%) and a test set (20%) and proceeded with model selection on 

the training set. As the first step in the model selection, we choose between different variations of the 

DFT activation energies, seeing that the best performer was with full cluster-continuum solvent 

treatment of both nucleophile and TS, using the Grimme quasi-harmonic correction for the free energies 

(Figure S5). We investigated correlation between the features using the Pearson57 correlation matrix and 

the variance inflation factors.58 We confirmed the initial feasibility of modelling using linear regression 

and inspecting the normal probability plot (Q-Q plot) of the residuals, with reassuring result. 
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(a) Cluster-continuum solvation of nucleophile and TS 

 
(b) Cluster-continuum solvation of nucleophile  

 
(c) No cluster-continuum solvation 

 
Figure S5. Correlation between DFT-computed activation free energy and experimental activation free energies with cluster-
continuum solvation of (a) nucleophile and TS, (b) only nucleophile and (c) no molecules. y: ΔG‡

Exp (kcal/mol), ŷ: ΔG‡
DFT (kcal/mol) 

We used the bias-corrected bootstrap cross-validation (BBC-CV) method for model selection, with the 

goal to avoid doing nested cross-validation. BBC-CV is a more economical alternative to nested cross-

validation that allows unbiased comparison between different families of algorithms.59 It can also 

estimate the selection bias for choosing the best estimator based on the cross-validation scores. 

Empirical studies have found this estimate to give slightly worse scores as compared to the final 

evaluation on an external test set.60 For methods where hyperparameter tuning was done via grid search, 

all resulting models were  grouped within a family (e.g., random forest, SVR etc.), and BBC-CV was used 

to estimate the bias due to overfitting on the cross-validation procedure within this family.61 This bias 

was then subtracted from the score of the best model in the family before the scores of each family were 
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compared. Hyperparameter tuning was done using grid search, with the GridSearchCV object in scikit-

learn, picking the model with the best performance within each family of models. All models were 

evaluated on the same 10 cross-validation folds, which were generated at the beginning of the BBC-CV 

procedure. To create interaction features and polynomial features for linear models, we used the 

PolynomialFeatures object in scikit-learn with order to second order. Standardization was applied to 

numeric features, and excluded categorical or count features such as fingerprints. 

The full results showed that the GPRM3/2 was the strongest contender on the MAE score and we therefore 

chose it as our final model to be evaluated on the external test set (Table S5). A selection of methods , 

used in Figure 6 of the manuscript, are given on the same scale in Figure S6. All models from Figure 6 in 

the manuscript on the same scale.. 

 

Figure S6. All models from Figure 6 in the manuscript on the same scale. 

Table S5. Results for machine learning models. Uncertainty intervals are given as one standard error of the mean. Abbreviations 
explained in Section 3.1.1. Best method for each score marked in bold. 

Method Feature set R2 (kcal/mol) MAE (kcal/mol) RMSE (kcal/mol) 

Baseline     

DFT  – 0.09 2.93 3.73 
DFT linear fit – 0.63−0.03

+0.03 1.74−0.08
+0.07 2.36−0.16

+0.15 
Mean – – 2.84−0.13

+0.13 3.90−0.25
+0.24 

Median – – 2.81−0.13
+0.13 3.93−0.24

+0.24 

Machine learning models     

Linear regression Full 0.79−0.03
+0.03 1.20−0.06

+0.06 1.77−0.14
+0.13 

KNN Full 0.74−0.03
+0.04 1.37−0.07

+0.07 1.95−0.12
+0.08 

Bayesian ridge Full 0.77−0.03
+0.03 1.24−0.07

+0.06 1.83−0.14
+0.14 

 PF2 0.69−0.06
+0.09 1.23−0.10

+0.08 2.16−0.26
+0.24 

PLS Full 0.79−0.02
+0.03 1.25−0.06

+0.06 1.79−0.13
+0.13 

 PF2 0.84−0.02
+0.03 0.98−0.05

+0.05 1.54−0.12
+0.12 

ARD Full 0.79−0.02
+0.03 1.21−0.06

+0.06 1.76−0.11
+0.11 

 PF2 0.85−0.02
+0.03 0.89−0.05

+0.05 1.46−0.13
+0.14 

Random forest Full 0.84−0.02
+0.02 0.98−0.06

+0.05 1.53−0.10
+0.11 

Gradient boosting Full 0.84−0.02
+0.03 1.00−0.06

+0.06 1.57−0.13
+0.12 

SVR Full 0.85−0.02
+0.02 0.81−0.06

+0.06 1.48−0.15
+0.15 

GPR M 3/2 Full 𝟎. 𝟖𝟕−𝟎.𝟎𝟐
±𝟎.𝟎𝟐 𝟎. 𝟖𝟎−𝟎.𝟎𝟔

+𝟎.𝟎𝟔 1.41−0.14
+0.14 

GPR M 5/2 Full 𝟎. 𝟖𝟕−𝟎.𝟎𝟐
+𝟎.𝟎𝟑 0.81−0.06

+0.05 1.40−0.13
+0.14 
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GPR RQ Full 𝟎. 𝟖𝟕−𝟎.𝟎𝟐
+𝟎.𝟎𝟑 0.83−0.06

+0.05 1.41−0.13
+0.13 

GPR RBF Full 𝟎. 𝟖𝟕−𝟎.𝟎𝟐
+𝟎.𝟎𝟐 0.83−0.05

+0.05 1.40−0.14
+0.14 

Reduced feature sets     

GPR M 3/2 Small 0.84−0.02
+0.03 0.88−0.06

+0.06 1.53−0.14
+0.15 

 No TS 0.86−0.02
+0.02 0.86−0.05

+0.05 1.44−0.12
+0.14 

 Only TS 0.83−0.03
+0.03 1.03−0.06

+0.06 1.68−0.13
+0.14 

 Surface 0.80−0.03
+0.03 1.10−0.07

+0.07 1.76−0.14
+0.15 

 Traditional 0.81−0.03
+0.04 1.00−0.06

+0.06 1.68−0.15
+0.16 

Structural information     

GPR M 3/2 OHE 0.62−0.04
+0.04 1.58−0.09

+0.09 2.39−0.23
+0.23 

 Morgan1 0.68−0.03
+0.03 1.55−0.08

+0.08 2.20−0.13
+0.12 

 Morgan2 0.74−0.03
+0.03 1.34−0.07

+0.07 1.94−0.15
+0.17 

 Morgan3 0.80−0.03
+0.03 1.09−0.06

+0.06 1.72−0.19
+0.24 

 Morgan4 0.79−0.03
+0.03 1.13−0.07

+0.07 1.76−0.18
+0.22 

 Morgan5 0.79−0.03
+0.03 1.15−0.07

+0.07 1.81−0,19
+0.23 

 Morgan6 0.78−0.03
+0.03 1.19−0.07

+0.07 1.81−0.18
+0.23 

 ISIDA atom 4 0.71−0.03
+0.04 1.34−0.08

+0.08 2.09−0.12
+0.13 

 ISIDA atom 8 0.52−0.06
+0.06 1.64−0.10

+0.09 2.66−0.29
+0.29 

 ISIDA seq 6 0.74−0.03
+0.04 1.37−0.06

+0.07 1.96−0.10
+0.10 

 ISIDA seq 8 0.69−0.03
+0.04 1.39−0.08

+0.08 2.15−0.15
+0.14 

 
BERT pre-
trained 

0.85−0.02
+0.02 1.03−0.05

+0.05 1.51−0.10
+0.10 

 BERT fine-tuned 0.77−0.03
+0.03 1.29−0.06

+0.06 1.82−0.09
+0.10 

Structural + physical organic      

GPR M 3/2 Full + Morgan 3 0.86−0.02
+0.03 0.87−0.06

+0.05 1.43−0.13
+0.12 

GPR M 3/2 
Full + BERT pre-
trained 

𝟎. 𝟖𝟕−𝟎.𝟎𝟐
+𝟎.𝟎𝟑 0.86−0.05

+0.05 𝟏. 𝟑𝟒−𝟎.𝟏𝟐
+𝟎.𝟏𝟏 

3.1.1 Models tested 
Support vector regression (SVR).62 We used the RBF kernel and features were standardized. A grid search 

was carried out to optimize the values of the kernel coefficient γ and the regularization parameter C, 

both with the same range of values (0.001000, 0.004642, 0.02154, 0.1000, 0.4642, 2.154, 10.00, 46.42, 

215.4, 1000).  

Random forest regression (RF).63 The number of trees (10, 20, 100, 200) and maximum tree depth (5, 10, 

15, 20, None) were optimized. 

Gradient boosting regression (GB).64 We used 1000 boosting stages and early stopping with a threshold 

of 10 iterations without improvement. A grid search optimized the learning rate (0.001, 0.01, 0.1) and 

maximum depth of each individual tree estimator (1, 2, 3, 4, 5). 

Gaussian Process Regression (GPR).65 We scaled both the features and the target using the 

TransformedTargetRegressor in scikit-learn. We tried the radial basis function (RBF), rational quadratic 

(RQ) and Matern 3/2 and 5/2 (M 3/2, M 5/2) kernels. The final composite kernel was created by 

multiplying with a constant kernel and adding a white kernel to model the noise. An introduction to 

Gaussian Process Regression in the context of chemistry has been given by Segall and co-workers.66 

Bayesian ridge regression (BRR).67 This Bayesian version of ridge regression tunes the regularization 

parameter automatically from the data. 

Automatic Relevance Determination (ARD).68 ARD produces a more sparse solution than BRR as is 

suitable when a large number of features are used. 
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Partial Least Squares (PLS).69 A linear method that can handle multicollinearity and a large number of 

features compared to samples. We used a grid search between 1 and 15 to select the number of 

components. 

K-nearest neighbours regression (KNN).70 Serves as a non-parametric baseline method. 

Dummy regression models. We used the mean and the median of the training set for future prediction 

as reasonable baseline models. These models were implemented with DummyRegressor in scikit-learn. 

3.2 Dataset visualization 
The full feature set Xfull was decomposed with Principal components analysis (PCA)71 and the two 

components with highest explained variance were used for the visualization. For the PLS + UMAP plots, 

we first used PLS for supervised dimensionality reduction. The number of components were chosen 

based on the R2 score, using the one-standard error rule to select the model with fewest dimension with 

a score within one standard error of the best-scoring model overall. This approach led to a model with 5 

components. The Xfull feature space was transformed into this five-dimensional latent space of the PLS 

model, and further reduced to two dimension with the Uniform Manifold Approximation and Projection 

(UMAP) method,72 using the UMAP python package,73 with standard settings, except the keyword 

min_dist=0.3, and n_neighbors=10. UMAP is a non-linear dimensionality reduction technique that is 

frequently used for visualization of high-dimensional data. A reaction map (Figure S7) was generate with 

the tmap package (1.0.4)74,75 and visualized with faerun (0.3.10).76,77 The Jupyter notebook 

“reaction_map.ipynb” in the folder “reaction_map” gives the details of how this map was generated. An 

interactive version of the reaction map is given in the file “index.html”. 

 

Figure S7. Reaction map generated with XBERT, tmap and faerun. Annotations of nucleophile and leaving group types has been 
done manually. 

3.3 Feature importances 
Before assessing the feature importances, we checked the variance inflation factors (Figure S8–Figure 

S10) and Pearson correlation matrices (Figure S11–Figure S13) to assess the extent of collinearity among 

the features in Xfull and XnoTS and Xsmall. Variance influence factors are a measure of collinearity for each 

feature, with a value of 1 indicating no collinearity and values above 5–10 considered problematic.58 It 

is clear that Xfull and XnoTS have large problems with collinearity, especially in comparison with Xsmall. We 

therefore decided to cluster the features with SciPy (1.2.1)78 based on the Spearman rank correlation,79 



 

16 
 

using the Ward linkage and the distance criterion (following a recipe from the scikit-learn 

documentation). The threshold for clustering was selected manually to reduce the number of highly 

correlated features while retaining a clear chemical  interpretation of each cluster (Figure S14–Figure 

S16). We computed the permutation importances version of feature importances with the GPRM3/2 

model together with the permutation_importances function from scikit-learn. We used 10 repeats, and 

the MAE score and the stability of the feature ranking was assessed by running 10 bootstrap samples 

with BootstrapOutOfBag in mlxtend.80 

 

 

Figure S8. VIFs for Xfull. A value above 10 is indicative of high collinearity with other features. Note log scale.  

https://scikit-learn.org/stable/auto_examples/inspection/plot_permutation_importance_multicollinear.html#sphx-glr-auto-examples-inspection-plot-permutation-importance-multicollinear-py
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Figure S9. VIFs for XnoTS. A value above 10 is indicative of high collinearity with other features. Note log scale.  

 

Figure S10. VIFs for Xsmall. A value above 10 is indicative of high collinearity with other features. Note log scale.  
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Figure S11. Pearson correlation matrix for Xfull.  

 

Figure S12. Pearson correlation matrix for XnoTS. 
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Figure S13. Pearson correlation matrix for Xsmall. 

 

Figure S14. Feature clustering dendrogram for Xfull. 
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Figure S15. Feature clustering dendrogram for XnoTS. 

 

Figure S16. Feature clustering dendrogram for Xsmall. 

3.4 Learning curves 
Learning curves were calculated with the learning_curve function in scikit-learn with splits of 10%, 20%, 

30%, 40%, 50%, 60%, 70%, 80%, 90% and 100% of the data using 10-fold cross-validation. To assess how 

much data is needed to accurately predict the DFT activation energy, we used XnoTS as the feature set. 

3.5 Analysis of reactions with large errors 
Reactions with absolute residuals larger than 2.0 kcal/mol for the training and test sets with the GPRM3/2 

model are given in Table S6 and Table S7, respectively. 

Table S6. Reactions with error larger than 2.0 kcal/mol in the training set. 

Reaction Residual error (kcal/mol) 
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−5.00 

 

−2.90 

 

5.10 

 

4.23 

 

−2.25 

 

−3.50 

 

5.52 

 

2.27 

 

4.41 

 

−2.41 

 

−2.58 

 

Table S7. Reactions with error larger than 2.0 kcal/mol in the test set. 

Reaction Residual error (kcal/mol) 



 

22 
 

 

−2.11 

 

−2.22 

 

−2.50 

 

2.06 

 

−2.48 

 

−2.39 

 

−2.52 

 

2.27 

3.6 Dependence on number of heavy atoms 
We checked the dependence of the model error on the number of heavy atoms to see if more complex 

molecules would display larger error, but could see no such trend (Figure S17).  

(a)  (b) 
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Figure S17. (a) Distribution of number of heavy atoms in the data set. (b) Mean absolute error for test set depending on the 
number of heavy atoms. 

3.7 Y-randomization 
We further tested for overfitting by y-randomization, in which the link between the feature vectors in X 

and the experimental activation free energies in the response vector y is broken by randomizing the y 

vector (Table S8).81 The R2 for GPRM1.5 is lowered from 0.86 to −0.05, indicating complete lack of learning 

when y is randomized. This is strong evidence that the models are not just learning noise but are finding 

a real signal in the feature data. We performed the y-randomization using the permutation_test_score 

function in scikit-learn with 10 permutations and 10-fold cross-validation for each permutation, as 

recommended in the literature.82 

Table S8. Results of y-randomization with GPRM1.5 on Xfull for the training set.  

 R2 MAE (kcal/mol) RMSE (kcal/mol) 

True score 0.86 0.79 1.35 
y-randomized score −0.05 2.87 3.88 

4 Regio- and chemoselectivity validation 
We used a reaction dataset from the patent literature, collected by Landrum and co-workers.83 The 

dataset (“dataSetB.csv”) comprised 50,000 reactions that were first classified with the NameRxn (3.1.9)84 

tool and then filtered according to reaction classes that include SNAr reactions according the SNAr 

“concept” provided by NextMove (Table S9). Reactions with transition metals were excluded as they 

would likely go via the Buchwald-Hartwig reaction. The dataset was further filtered manually to remove 

reactions which apparently did not go via the SNAr mechanism (e.g., SN2 reactions). Reactions including 

boronic acids or phosphine ligands (presumed to occur via Buchwald-Hartwig) were also removed. 

Furthermore, some reactions also included the product among the starting material and were removed.  

Table S9. Reaction types including in the SNAr concept used to filter out SNAr reactions from the patent data.  

Code Reaction name 

1.3.1 Bromo Buchwald-Hartwig amination 
1.3.2 Chloro Buchwald-Hartwig amination 
1.3.3 Iodo Buchwald-Hartwig amination 
1.3.4 Triflyloxy Buchwald-Hartwig amination 
1.3.5 Chan-Lam arylamine coupling 
1.3.6 Bromo N-arylation 
1.3.7 Chloro N-arylation 
1.3.8 Fluoro N-arylation 
1.3.9 Iodo N-arylation 
1.3.10 Triflyloxy N-arylation 
1.3.11 Chichibabin amination 
1.3.12 Mesyl N-arylation 
1.3.13 Mesyloxy N-arylation 
1.3.14 Tosyloxy N-arylation 
1.7.11 SNAr ether synthesis 
9.7.96 Sandmeyer bromination 
9.7.97 Sandmeyer chlorination 
9.7.98 Sandmeyer fluorination 
9.7.99 Sandmeyer iodination 
1.1.2 Menshutkin reaction 
1.8.5 Thioether synthesis 
9.7.106 Fluoro to azido 
9.7.166 Formyl to cyano 
9.7.39 Chloro to amino 
9.7.44 Chloro to hydroxy 
9.7.64 Fluoro to amino 
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The pruned set of reactions comprised 4353 SNAr reactions, of which 1209 had alternative reactive sites 

with halogens on the reactive ring, leading to questions relating to regio- and chemoselectivity (Figure 

S18). These reactions were sorted according to the molecular weight of the product, and all possible 

reactions relating to regio- and chemoselectivity of the reactive ring were generated for the 100 

reactions with lowest product molecular weight. Sorting on molecular weight was done to allow a quickly 

calculated validation test. 

 

Figure S18. Two examples of reactions with regio- and chemoselectivity questions. 

The protonation state of the nucleophile was not included in the patent data, and needed to be set. We 

used the following set of rules: 

1. –OH or –SH nucleophile: Deprotonate 

2. Aromatic –NH nucleophile part of diazole or triazole ring: 

a. If strong base present (pKa > 10): Deprotonate 

b. Else: The reactive tautomer is where the nucleophilic atom doesn’t have an H 

3. Aromatic –NH nucleophile not part of diazole or triazole ring: Deprotonate 

4. Non-aromatic -NH: 

a. If strong base present: Deprotonate 

b. Else: Neutral –NH acts as nucleophile. 

For a negatively charged nucleophile, the leaving group was also considered to be negatively charged. 

As reaction solvent and temperature was not available in the dataset, we used a set of standard reaction 

conditions: acetonitrile for neutral reactions and methanol for ionic reactions and a reaction 

temperature of 298 K. This is expected to introduce some noise in the predictions. Solvents are 

sometimes included in the reaction SMILES in the dataset, but it is not always clear what is the reaction 

solvent and what was used for, e.g., work-up. 

For analysis of the results, we constructed the reaction feature matrix Xfull for the validation reactions 

and used the previously trained GPRM3/2 model for prediction. The isomer corresponding to the reaction 

with the lowest activation energy was considered as the predicted major product. For comparison, we 

also used the DFT activation energies. 

The validation work is documented in the notebooks listed in Table S10. The validation database is given 

in the folder “validation_2020_07_04”. 

Table S10. Jupyter notebooks used for validation work under the folder “validation_dataset”. 

Notebook file  Description 

“validation_data.ipynb” Generation of the 100 reactions. 
“prediction.ipynb” Prediction with ML method and DFT vs. experiment. 

5 Experimental dataset 

5.1 Description of the modelling data 
An extensive literature search was performed to identify intermolecular nucleophilic aromatic 

substitution reactions with associated second-order kinetic data with a focus on reactions where the 
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initial nucleophilic attack is rate-limiting. The reaction dataset was extracted from 37 references 

spanning the years 1950–2019.  Kinetic data is not curated by the standard reaction databases, and thus 

manual extraction and curation was required. In total 518 data points were extracted (the full dataset), 

and 446 where used in the model building (the modelling dataset). The reason for this smaller number 

is that 48 of the data points were found after the modelling was finished, 15 had missing data which 

prevented them from being used, 6 failed in the transition state calculations, two were carried out in a 

solvent (tetramethylsilane) for which we did not have solvent features, and one was removed due to a 

mismatch in the reaction SMILES during the modelling process. The whole data set (518 points) covers 

88 different nucleophiles, 121 different substrates and 41 different solvents. The experimental 

temperature range is 273–468 K and log k, the base-10 logarithm of the second-order rate constant, 

spans −15.9  to −3.59. Rate constants were converted to activation energies at the temperature in 

question using the Eyring equation 

Δ𝐺‡ = −𝑅𝑇 ln
𝑘ℎ

𝑘𝑏𝑇
 Equation S11 

where R is the gas constant, T is the reaction temperature, k is the second-order rate constant, h is the 

Planck constant, kb is the Boltzmann constant and using a standard state of 1 M. Of the reactions 

reported, 284 have one set of reaction conditions and 70 reactions have more than one set of reaction 

conditions reported. The partial dataset (446 reactions) used for modelling is described in the main 

article. A record of this database is given in the files “SNAR_reaction_dataset_SI.csv” and 

“SNAR_reaction_dataset_SI.xlsx”. Each dataset record includes the following information: canonicalized 

SMILES of the reaction, reactants and products, second-order rate constants, activation free energy, 

temperature, solvent, literature source information and flag on its use in the model building process. A 

full listing of the column names and a corresponding description is given in Table S11. 

Table S11. Definitions of columns in full reaction dataset. 

Column Description 

Entry Unique identification number of reaction 
Exp_Rate_Constant k1 (M-1s-1) Experimental second-order rate constant reported in M-1s-1 
Substrate SMILES Canonicalized SMILES of substrate 
Nucleophile SMILES Canonicalized SMILES of nucleophile 
Product SMILES Canonicalized SMILES of product 
Reaction SMILES Canonicalized SMILES of reaction 
Temp (K) Reaction temperature in Kelvin 
Activation Free Energy (kcalmol-1) Activation Free energy in kcalmol-1 calculated using the 

experimental rate constant and the Eyring equation 
Reference Journal reference for experimental data 
Year Year of reference 
Title Title of reference 
Authors Authors of reference 
DOI Reference digital object identifier 
Book_Page Page from referenced book where experimental data is extracted 

from 
Table Table in reference the experimental data is extracted from 
Nucleophile Name of nucleophile 
Leaving group Name of leaving group 
Solvent Solvent for reaction reported. 
logk Base-10 logarithm of second-order rate-constant. 
Entry IDs of duplicates Entry identifiers for duplicate reactions without considerations for 

reaction conditions. 
Only four examples with identical reaction conditions: 223 and 468, 
27 and 109, 140 and 490, 220 and 469. 

Model Flag “modelled”: Used in the machine learning model. 443 unique 
reactions with 3 additional replicates. 
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“not modelled”: Reactions that were extracted and added to the 
data set after model building was completed. 
“failed”: Reactions that failed the predict-SNAr workflow due to TS 
finding problems (not finding or finding wrong TS) leading to no 
barrier, very low barrier, or very high barrier. 
“removed”: Reactions that were removed for other reasons. 
“missing data”: Reactions that lack activation energies, 
temperature or solvent. 

5.2 Distribution of activation free energies 
The distribution of activation free energies in the modelling dataset is given in Figure S19. 

 

Figure S19. Distribution of activation free energies in the modelling dataset. 

5.3 Most common substrates and nucleophiles 
The most common substrates and nucleophiles in the modelling dataset are given in Figure S20 and 

Figure S21.  

 

 

Figure S20. Most common substrates in the dataset with frequency indicated. 
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Figure S21. Most common nucleophiles with frequency indicated. 

5.4 Replicated reactions 
The reactions replicated in the full dataset are given in Table S12, of which the one carried out in TMS is 

not included in the modelling dataset as solvent features are lacking for the TMS solvent. 

Table S12. Replicated reactions in the full dataset. 

Reaction Solvent Temperature (K) ΔG‡ (kcal/mol) 

 

Acetonitrile 298 13.91, 14.46 

 

Ethanol 298 19.80, 19.90 

 

HMPT 298 17.29, 18.92 

 

TMS 298 21.18a, 21.10a 

a Not included in the modelling dataset as we don’t have solvent features for TMS. 

5.5 Conditions 
Conditions are here defined in terms of both solvent and temperature. Figure S22 and Table S13 give the 

number of reactions with more than one condition in the modelled dataset (446 reactions). 
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Figure S22. Number of reactions with more than one condition in the modelling dataset. 

Table S13. Number of reactions with more than one condition in the modelling dataset. 

No. conditions 2 3 4 5 6 8 9 

Counts 49 5 1 1 1 4 1 

5.6 Reaction temperatures 
The distribution of reactions at different reaction temperatures for the modelling dataset are given in 

Figure S23 and Table S14. Correlation analysis confirmed that exclusion of reaction temperature was 

warranted (R: 0.64, ρ: 0.54 τ: 0.43) as it could possibly artificially inflate the performance of the model 

(Figure S24). Reactions with higher barriers are often run at higher temperatures to be measured in 

reasonable time. 

 

Figure S23. Distribution of reaction with temperature in the modelling dataset. Note log scale. 

Table S14. Reactions with a certain temperature in the modelling dataset. 

Temperature 298 323 293 303 273 363 432.6 468.4 432.5 353 344 

Counts 288 59 58 16 13 4 1 1 1 1 1 
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Figure S24. Experimental activation energy as a function of reaction temperature.  

5.7 Solvent distribution 
The distribution of reaction solvents depending on nucleophile charge and atom type are given in Figure 

S25. The solvents are given as their SMILES strings. While reactions with neutral nitrogen nucleophiles 

are carried out in a variety of different solvents, anionic oxygen nucleophiles are only used in water or 

methanol.  

 

Figure S25. Distribution of reaction solvent depending on nucleophile charge and atom type. 

6 Workflow database 
The database holding the calculations from the predict-SNAr workflow is a Python shelve database which 

operates as a dictionary with keys and values. Each key is a unique identifier, holding a dictionary of the 

calculation results which are described in Table S15. The database is housed in the folder 

“machine_learning/2019-12-15” under the name “db”. It can be loaded with the following Python code: 

https://docs.python.org/3/library/shelve.html
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import shelve 
d = shelve.open(“db”) 

The workflow dataset includes a number of duplicate reactions that need to be removed before 

modelling (see the notebooks referenced in Section 2). 

Table S15. Keys for the workflow dataset dictionary. 

Key Description of values Datatype 

'solvent' Solvent SMILES string String 
'clustering_energies' Energy correction from explicit solvent 

model (a.u.) 
See table below 

'agent' Flag for agent (acid/base) Bool/None 
'temperature' Temperature (K) Float 
'n_cpus' Number of CPUs Integer 
'run_time' Run time (seconds) Float 
'end_time' End time (YYYY-MM-DD HH:MM:SS) String 
'flat_PES' Flag for flat PES where intermediate is 

found but not elimination TS 
Bool 

'intramolecular' Flag for intramolecular reaction Bool 
'concerted' Flag for concerted reaction Bool 
'descriptors' Descriptors See table below. 
'reactive_atoms' Reactive atoms Dictionary, keys: string, values: integer 
'symbols' Chemical symbols Dictionary, keys: string, values: list of 

strings 
'geometries' Geometries (Å) Dictionary, keys: string, values: list of 

floats 
'entropy_corr_qh_truhlar' Entropy terms with Truhlar quasi-

harmonic correction (a.u.) 
Dictionary, keys: string, values: float 

'entropy_corr_qh_grimme' Entropy terms with Grimme quasi-
harmonic correction (a.u.) 

Dictionary, keys: string, values: float 

'entropy_corr' Entropy terms (a.u.) Dictionary, keys: string, values: float 
'enthalpy_corr' Enthalpy terms (a.u.) Dictionary, keys: string, values: float 
'free_energies_qh_truhlar' Free energies with Truhlar quasi-

harmonic correction (a.u.) 
Dictionary, keys: string, values: float 

'free_energies_qh_grimme' Free energies with Grimme quasi-
harmonic correction (a.u.) 

Dictionary, keys: string, values: float 

'free_energies' Free energies (a.u.) Dictionary, keys: string, values: float 
'enthalpies' Enthalpies (a.u.) Dictionary, keys: string, values: float 
'electronic_energies' Electronic energies (a.u.) Dictionary, keys: string, values: float 
'inchi_key' InChIKey Dictionary, keys: string, values: string 
'inchi' InChI  Dictionary, keys: string, values: string 
'smiles' SMILES  String 

The keys used in the sub-dictionaries are described in Table S16. 

Table S16. Keys for sub-dictionaries in the workflow dataset. 

Key Description 

“substrate” Substrate 
“nucleophile” Nucleophile 
“product” Product 
“leaving_group” Leaving group or leaving atom 
“ts” Transition state 
“agent” Agent. Not implemented. 
“reaction” Related to the reaction, e.g., reaction SMILES 
“reaction_orig” Related to the reaction as originally input, e.g., reaction SMILES 
“solvent” Solvent 

The keys for the descriptor sub-dictionary are given in Table S17. 
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Table S17. Keys for the descriptor sub-dictionary. 

Key Description Value 

'epn' Electrostatic potential at nuclei (VN, a.u.) Dictionary, keys: integer, values: float 
'hirshfeld' Hirshfeld atomic charge Dictionary, keys: integer, values: float 
'hirshfeld_plus' Hirshfeld atomic charge for cation Dictionary, keys: integer, values: float 
'hirshfeld_minus' Hirshfeld atomic charge for anion Dictionary, keys: integer, values: float 
'ddec6_charge' DDEC6 charge (q) Dictionary, keys: integer, values: float 
'ddec6_bo' DDEC6 bond order (BO) Dictionary, keys: tuple of integers, 

values: float 
'v_av' Atom surface average of the electrostatic potential 

(V̅s, kcal/mol) 
Dictionary, keys: integer, values: float 

'vs_max' Atom surface maximum of the electrostatic 
potential (kcal/mol). 

Dictionary, keys: integer, values: float 

'vs_min' Atom surface minimum of the electrostatic 
potential (kcal/mol). 

Dictionary, keys: integer, values: float 

'es_min_b3lyp' Atomic surface minimum of the local electron 
attachment  with the B3LYP functional (Es,min, eV). 

Dictionary, keys: integer, values: float 

'es_min_blyp' Atomic surface minimum of the local electron 
attachment with the BLYP functional (eV). 

Dictionary, keys: integer, values: float 

'is_min' Atomic surface minimum of the the average local 
ionization energy (Is,min, eV). 

Dictionary, keys: integer, values: float 

'sasa' Solvent accessible surface area (Å2) Dictionary, keys: integer, values: float 
'sasa_ratio' Ratio of available solvent accessible surface area 

(SASAr) 
Dictionary, keys: integer, values: float 

'ip' Ionization potential (eV) Float 
'ea' Ionization potential (eV) Float 
'atom_p_int' Atomic dispersion potentials (kcal0.5 mol−0.5) Dictionary, keys: integer, values: float 
'atom_p_int_area' Atomic dispersion potentials multiplied by atomic 

area (kcal0.5 mol−0.5 Å2) 
Dictionary, keys: integer, values: float 

'p_int' Average dispersion potential of entire molecule 
(kcal0.5 mol−0.5) 

Float 

'p_int_area' Average dispersion potential of entire molecule 
multiplied by its area (kcal0.5 mol−0.5 Å2) 

Float 

The subdictionary “clustering_energies” contains the solvent corrections from explicit solvation and are 

explained in Table S18. It uses the keys 'xtb' and 'dft'. 

Table S18. Keys for the clustering energies sub-dictionary 

Key Description 

'clustering_energy' Solvation model correction (a.u.) 
'clustering_energy_qh_grimme' Solvation model correction with Grimme correction (a.u.) 
'clustering_energy_qh_truhlar' Solvation model correction with Truhlar correction (a.u.) 

7 Analysis package 
A Python package, analyze_snar, was written for extraction of data from the workflow database as well 

as machine learning routines and statistical functions. It is included with the manuscript and can be 

installed with “pip install .”. 
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