Supporting Information for
$\mathrm{H}_{2} / \mathrm{CO}_{2}$ Separations in Multicomponent Metal-Adeninate MOFs with Multiple Chemically Distinct Pore Environments

Zachary M. Schulte ${ }^{\text {a }}$, Yeon Hye Kwon ${ }^{\text {a }}$, Yi Han ${ }^{\text {a }}$, Chong Liu, ${ }^{a}$ Lin Lib, Yahui Yang ${ }^{b}$, Austin Gamble Jarvi, ${ }^{\text {a }}$ Sunil Saxena, ${ }^{\text {a }}$ Götz Veser ${ }^{\text {b }}$, J. Karl Johnson ${ }^{\text {b }}$, and Nathaniel L. Rosi ${ }^{\text {a,b,c,d, },}$
${ }^{\text {a }}$ Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
${ }^{\mathrm{b}}$ Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
${ }^{c}$ U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, Pennsylvania 15236, United States
${ }^{\text {d }}$ Oak Ridge Institute for Science and Education, Pittsburgh, Pennsylvania 15236, United States

Contents:

1. General procedures S4
1.1 Materials S4
1.2 General characterization techniques S4
2. Material preparation and characterization S8
2.1 Synthesis and characterization of as-synthesized bMOF-200 S8
2.2 Solvent exchange procedures S15
2.3 Synthesis and characterization of bMOF-201 S20
3. Gas adsorption studies S25
3.1 Activation of MeOH-bMOF-200 S25
3.2 Gas adsorption isotherms S25
4. Computational methods S28
4.1 Computational methodology S30
4.2 Density functional theory (DFT) details. S31
5. Breakthrough experiments S32
5.1 Description of breakthrough experiments S32
5.2 Synthesis and characterization of reference MOFs S33
6. Membrane fabrication and gas separation studies S35
6.1 Fabrication of MeOH-bMOF-200 Membranes S35
6.2 Fabrication of bMOF-201 Membranes S35
6.3 Membrane Characterization S36
6.4 Experimental Setup S38
7. Crystallographic tables S41
7.1 Tables for as-synthesized bMOF-200 S41
7.2 Tables for MeOH-bMOF-200 S50
7.3 Tables for bMOF-201 S59

1. General procedures

1.1 Materials

$\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Zn}\left(\mathrm{COOCH}_{3}\right)_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 2.5 \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{Cu}(\mathrm{Cl})_{2} \quad$ (anhydrous), dimethylformamide (DMF), $70 \% \mathrm{HBF}_{4}$, and acetic acid were purchased from SigmaAldrich. Adenine and ZnCl_{2} (anhydrous) were purchased from Alfa-Aesar. Methanol was purchased from Fisher Scientific. 4-pyrazolecarboxylic acid (H_{2}-pyz) was purchased from Accela. NANOpure ${ }^{\circledR}$ (Thermo Scientific, $>18.2 \mathrm{M} \Omega \cdot \mathrm{cm}$) water was used in the synthesis of all MOFs. All purchased chemicals were used without further purification except where otherwise noted.

1.2 General characterization techniques

${ }^{1} \mathrm{H}$ nuclear magnetic resonance (NMR) spectra were obtained using a Bruker Advance 500 MHz spectrometer. Chemical shifts are in parts per million using the residual solvent peak (DMSO-d6, 2.5 ppm) as reference. To prepare MOF samples for NMR, approximately 1 mg of dried MOF sample was placed in a 1.5 mL Eppendorf centrifuge tube. One gram of DMSO-d6 was added, followed by $8 \mu \mathrm{~L}$ of DCI in $\mathrm{D}_{2} \mathrm{O}$ to digest the MOF crystals. Once the crystals were fully digested, the solution became slightly yellow. NOTE: If excess acid is used, the peak corresponding to 4-pyrazolecarboxylic acid shifts downfield and can overlap with the doublet corresponding to adenine causing erroneous integrations. To avoid this, we have found that using the minimum amount of acid to achieve a slightly yellow solution is ideal. Excess acid results in bright yellow solutions and peak overlap.

Attenuated total reflectance Fourier-transform infrared spectrometry (ATR-FT-IR)

 was conducted using a PerkinElmer Spectrum Two spectrometer with diamond/ZnSe ATR accessory. All spectra were collected using a LiTaO_{3} MIR detector over a range of 450 to $4000 \mathrm{~cm}^{-1}$. All spectra were processed using Spectrum 10 software.Powder X-ray diffraction (PXRD) patterns were collected using a Bruker AXS D8 Discover powder diffractometer at $40 \mathrm{kV}, 40 \mathrm{~mA}$ for $\mathrm{Cu} \mathrm{Ka},(\lambda=1.5406 \AA$) with a scan speed of $0.20 \mathrm{sec} /$ step from 3.0 to 40° at a step size of 0.02°. The data were analyzed using the EVA program from the Bruker Powder Analysis Software package. The simulated powder patterns were calculated using Mercury based on single crystal diffraction data of corresponding MOFs.
\mathbf{N}_{2} gas adsorption isotherms were collected on a Micromeritics 3-flex gas adsorption analyzer. All samples used with this instrument were activated under the specified conditions on a Micromeritics SmartVacPrep under vacuum and heat. $\mathbf{C O}_{\mathbf{2}}$ gas adsorption isotherms were collected on a Quantachrome Autosorb-1 instrument. For all experiments, approximately $20-50 \mathrm{mg}$ of washed and/or solvent-exchanged sample was added into a pre-weighed sample analysis tube. A liquid N_{2} bath was used for the N_{2} adsorption experiments at 77 K . A dry ice/acetone bath was used for the CO_{2} adsorption experiment at 195 K . Ultra-high purity grade N_{2} and CO_{2} gas cylinders (99.999 \%) were used in this study.

Thermogravimetric analyses (TGA) were performed using a TGA Q500 thermal analysis system. All TGA experiments were performed under a N_{2} atmosphere from about $20^{\circ} \mathrm{C}$ to $800^{\circ} \mathrm{C}$ at a rate of $1^{\circ} \mathrm{C} / \mathrm{min}$. Data were analyzed using the TA Universal Analysis software package.

X-ray photoelectron (XPS) spectra were obtained using an ESCALAB 250XI XPS with a monochromated, micro-focused AI Ka X-ray source (spot size $=600 \mu \mathrm{~m}$) before and after sputtering. Survey and high-resolution spectra were collected with a pass energy of 150 and 50 eV and a step size of 1.0 eV and 0.1 eV , respectively. The MOF samples also underwent an Ar ion sputtering (500 eV , 10 seconds) process to remove surface contaminants. Spectra were charge referenced to adventitious carbon (284.8 eV). Dry MOF samples were deposited onto p-doped (boron) silicon wafers (University Wafer, Boston, MA) that had been cleaned for ultra-high vacuum analysis.

Electron paramagnetic resonance (EPR) experiments were performed on a Bruker Elexsys E680 CW/FT X-band spectrometer using a Bruker ER4118X-MD5 resonator at 80 K. MOFs stored in DMF ($<1 \mathrm{mg}$) were aliquoted into a quartz sample tube of O.D. 4 mm , I.D. 3 mm . Continuous wave (CW)-EPR measurements were run with a center field of 3100 G , sweep width of 2000 G , modulation amplitude of 4 G , and a modulation frequency of 100 kHz for 1024 data points using a conversion time of 20.48 ms . All EPR simulations were performed using EasySpin software. ${ }^{1}$

Scanning electron microscopy (SEM) was conducted on a ZEISS Sigma500 VP operated at 1 kV and was used to determine the crystal morphology and thickness of bMOF-200 and bMOF-201 membranes. For cross-sectional observation of membranes, alumina-supported membranes were broken into pieces and samples were mounted on 90 degrees specimen mount.

Elemental microanalyses were performed by the University of Illinois UrbanaChampaign Microanalysis Laboratory with an Exeter Analytical CE440. Inductively coupled plasma optical emission spectroscopy (ICP-OES) was used for metal concentration determination.

2. Synthesis and Characterization of as-synthesized bMOF-200

2.1 Synthesis of as-synthesized bMOF-200

The following stock solutions were prepared in DMF: $\left.0.1 \mathrm{M} \mathrm{Zn(NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}, 0.1 \mathrm{M} \mathrm{ZnCl}{ }_{2}$ (anhydrous), $0.1 \mathrm{M} \mathrm{CuCl}_{2}$ (anhydrous), 0.05 M adenine, $0.1 \mathrm{M} \mathrm{H}_{2}-\mathrm{pyz}$, and 0.1 M acetic acid. Stock solutions of adenine were heated and sonicated until fully dissolved. The reagents were added to a reaction tube with one end flame-sealed in the following order: $\mathrm{CuCl}_{2}(200 \mu \mathrm{~L}), \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(300 \mu \mathrm{~L}), \mathrm{ZnCl}_{2}(300 \mu \mathrm{~L})$, adenine $(250 \mu \mathrm{~L}), \mathrm{H}_{2}$-pyz $(200 \mu \mathrm{~L})$, acetic acid $(200 \mu \mathrm{~L})$, and nanopure water $(275 \mu \mathrm{~L})$. The mixture became dark blue after addition of adenine, and then returned to a lighter shade of blue upon addition of water. The reaction vessel was then connected to a rubber hose with a stop cock adapter, frozen in liquid nitrogen for three minutes, then evacuated to approximately 100 mbar. The vessels were then flame sealed, allowed to thaw at room temperature, then placed in a $105^{\circ} \mathrm{C}$ oven for 48 hours. After cooling to room temperature, slightly yellow cubic crystals were collected with a Pasteur pipette, placed in a 20 mL glass scintillation vial and washed with fresh, dry DMF (3x, 10 mL). Upon washing, a color change was observed from slight yellow to green. After three days, the crystals were dried under a stream of N_{2} gas and further dried under vacuum using a Schlenk line for two hours. This product is notated as as-synthesized bMOF-200. Yield: 70\% Anal. Calcd. (\%): C, 32.15; H, 4.29; N, 20.45; Zn, 15.91; Cu, 7.73. Found: C, 32.12; H, 3.57; N, 19.72; Zn, 15.92; Cu, 7.26. Molecular Formula: $\mathrm{Zn}_{2} \mathrm{Cu}(4-\mathrm{pyz})_{2}(\mathrm{ad})(\mathrm{DMF}) \bullet(\mathrm{DMF})_{2},\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{pyz}=$ pyrazolate; ad = adeninate $)$. Chemical Formula: $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~N}_{12} \mathrm{O}_{10} \mathrm{Zn}_{2} \mathrm{Cu}$ FT-IR (4000-450cm ${ }^{-1}$): 3072 (br), 2930 (w), 2887 (br), 1674 (m), 1646 (s), 1622 (m), 1572 (m), 1537 (m), 1434 (m), 1413 (m), 1383 (m), 1281 (s), 1213 (m), 1092 (m), 1044 (m), 1005 (m), 798 (s).

Determination of Composition: Elemental analysis was used to determine the abundance of C, H, N, and Zn in a dried sample of as-synthesized bMOF-200. The data revealed a molecular formula of $\mathrm{Zn}_{2} \mathrm{Cu}(4-\mathrm{pyz})_{2}(\mathrm{ad})(\mathrm{DMF}) \bullet(\mathrm{DMF})_{2},\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ which closely matched the ratios of ligands, metals, and solvents observed in the refined crystal structure. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ was conducted to confirm the relative amounts of the organic components and any solvent within the framework (Figure S1). The resulting spectra yielded a 4-pyz : adenine ratio of approximately $2: 1$ and three DMF molecules, as well as some water. TGA analysis was then used to determine the mass percent of solvents (DMF and water) in the dried material by measuring the change in mass with increasing temperature (Figure S2). The solvent molecules (3 water and 3 DMF) account for approximately 33% of the total mass. The TGA plot shows a 33% weight loss by $250^{\circ} \mathrm{C}$, well above the boiling point of both compounds. We note that the small pore windows within bMOF-200 may inhibit solvent loss. All three characterization methods agree well with the determined molecular formula. XPS was used to determine the oxidation state of the Cu in a MeOH exchanged sample (vide infra) of bMOF-200 (Figure S3). The Cu spectrum was collected before and after a 10 second sputtering from an Ar ion beam to etch the surface of the crystals. Before any etching occurred, the Cu spectrum shows $\mathrm{Cu}(\mathrm{II})$ character as evidenced by a satellite peak centred at 943 eV . The loss of this satellite peak and a concurrent shift in the $2 p_{3 / 2}$ signal to lower binding energies in the post-etching spectrum indicate an increase in Cu (I) character, which suggests that surface oxidation occurs on bMOF-200 crystals, converting Cu (I) to Cu (II). We further investigated the Cu sites using EPR spectroscopy to gain insight into their coordination geometry (Figure S4). The spectrum for as-synthesized bMOF-200 yielded an $A_{\| l}$ value
of 144 which is within the range of values assigned to a square planar geometry. Finally, PXRD patterns showed a nearly identical match to the simulated powder pattern derived from the single crystal structure, indicating the phase purity of the compound (Figure S5).

Figure S1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of as-synthesized bMOF-200 after washing with DMF and drying on a Schlenk line for 1 hour. The peaks at 8.57 ppm corresponds to adenine protons. The broad peak at 8.114 ppm is assigned to 4 -pyz protons. The small peak at 8.147 ppm is due to a small amount of formate from the decomposition of DMF. Peaks at $7.95,2.89$, and 2.73 ppm correspond to DMF. The integration shows approximately three DMF molecules per adenine molecule.

Figure S2. TGA of as-synthesized bMOF-200. The black curve shows the recorded weight loss with increasing temperature and the red curve is the first derivative weight loss with respect to temperature. $\sim 33 \%$ of the sample weight is lost before $250^{\circ} \mathrm{C}$, which corresponds to 3 DMF and $3 \mathrm{H}_{2} \mathrm{O}$. Subsequent weight loss steps are ascribed to sample decomposition.

Figure S3. XPS of methanol-washed bMOF-200 before (red) and after (black) surface etching with an Ar^{+}beam. A slight shift in both $\mathrm{Cu} 2 p_{1 / 2}$ and $\mathrm{Cu} 2 \mathrm{p}_{3 / 2}$ peaks to lower binding energies and the loss of the satellite peak between 945 and 940 eV indicate the presence of more $\mathrm{Cu}(\mathrm{I})$ character after etching. Therefore, we attribute the $\mathrm{Cu}(\mathrm{II})$ character primarily to surface oxidation of the MOF crystals in air.

Figure S4. CW-EPR of as-synthesized bMOF-200 with respective g and A tensor values. The simulated curve (red) is a combination of two separate simulated components: a broad, featureless signal (blue) and a signal with hyperfine splitting (green).

Figure S5. PXRD patterns of simulated (black) and as-synthesized bMOF-200 (red). Simulated pattern was calculated from SC-XRD data.

2.2 Solvent exchange procedures

As-synthesized bMOF-200 crystals soaking in DMF were exchanged with 10 mL of dry methanol three times a day for three days. Then, the crystals were dried under a N_{2} stream until they became a free-flowing powder. The composition of the dried samples was determined using a variety of characterization. The exchanged samples will be hereafter notated as MeOH-bMOF-200. Anal. Calcd. (\%): C, 27.02; H, 3.33; N, 18.91; Zn, 19.62; Cu, 9.53. Found: C, 26.27; H, 1.56; N, 18.72; Zn, 19.30; Cu, 8.71. Molecular Formula: $\quad \mathrm{Zn}_{2} \mathrm{Cu}(4-\mathrm{pyz})_{2}(\mathrm{ad})(\mathrm{MeOH}) \quad \bullet \quad(\mathrm{MeOH}),\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$. Chemical Formula: $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{9} \mathrm{O}_{9} \mathrm{Zn}_{2} \mathrm{Cu}$ FT-IR (4000-450 cm^{-1}): 3304 (br), 2982 (w), 2829 (w), 1677 (m), 1620 (w), 1554 (m), 1539 (m), 1283 (s), 1216 (m), 1047 (m), 1025 (m), 1007 (s), 895 (w), 819 (m), 798 (s).

Determination of Composition. After conducting solvent exchange procedures of assynthesized bMOF-200 with MeOH, the molecular formula of MeOH-bMOF-200 was determined to be $\mathrm{Zn}_{2} \mathrm{Cu}(4-\mathrm{pyz})_{2}(\mathrm{ad})(\mathrm{MeOH}) \bullet(\mathrm{MeOH}),\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}$ by elemental analysis. ${ }^{1} \mathrm{H}-$ NMR of MeOH-bMOF-200 showed complete removal of DMF without any loss of organic ligands 4-pyz and ad (Figure S6). The presence of two MeOH molecules and several water molecules were also observed. TGA analysis revealed an approximate loss 11\% by mass by $230^{\circ} \mathrm{C}$ which correspond to three water molecules and one MeOH (calculated 12.9%) (Figure S7). The loss of the final MeOH molecule occurs at the small step between $230-280^{\circ} \mathrm{C}$ and accounts for an additional mass loss of $\sim 5 \%$ (calculated 4.8%). We attribute this step to the loss of coordinated methanol, the displacement of which requires temperatures above the normal boiling point at atmospheric pressure. A
coordinated MeOH is indeed resolved in the single crystal structure of the methanolexchanged crystal (see page S54). FT-IR spectroscopy was used to monitor the solvent exchange in bMOF-200 (Figure S8). The signals at 3304 (O-H stretch), 2829 (CH_{3} stretch), 1385 (C-H in-plane rocking) and $1025 \mathrm{~cm}^{-1}$ (C-O stretch) correspond to the presence of MeOH and only appear in the MeOH-bMOF-200 spectrum. Meanwhile, the signals at 2925 (CH_{3} stretch), 1646 (carbonyl stretch), and 1092 (C-O stretch) cm^{-1} indicate the presence of DMF are only present in the as-synthesized bMOF-200 spectrum, consistent with complete exchange of DMF with MeOH. PXRD confirmed the phase purity of MeOH-bMOF-200 (Figure S9).

Figure S6. NMR spectrum of MeOH-bMOF-200. The disappearance of peaks at 7.95, 2.89, and 2.73 ppm and the emergence of a peak at 3.15 ppm correspond to complete replacement of DMF with MeOH. The integration shows approximately two molecules of MeOH for each adenine.

Figure S7. TGA of MeOH-bMOF-200. $\sim 11 \%$ weight loss by $230{ }^{\circ} \mathrm{C}$ is attributed to uncoordinated MeOH and $\mathrm{H}_{2} \mathrm{O}$. Further loss of an additional 5% between $230^{\circ} \mathrm{C}$ and $287^{\circ} \mathrm{C}$ is attributed to the loss of coordinated MeOH. Further mass loss beyond $300^{\circ} \mathrm{C}$ is attributed to decomposition, consistent with the TGA collected on the as-synthesized MOF.

Figure S8. FT-IR spectra of MeOH-bMOF-200 (red) and as-synthesized bMOF-200 (black). The signals at 3304 ($\mathrm{O}-\mathrm{H}$ stretch), 2829 (CH_{3} stretch), 1385 (C-H in-plane rocking) and 1025 ($\mathrm{C}-\mathrm{O}$ stretch) cm^{-1} correspond to the presence of MeOH while the peaks at 2925 (CH_{3} stretch), 1646 (carbonyl stretch), and 1092 (C-O stretch) cm^{-1} indicate the presence of DMF.

Figure S9. PXRD pattern of simulated (black) and MeOH-bMOF-200 (red) (A). A peak at 42θ degrees becomes much more pronounced after solvent exchange with MeOH and matches a peak at the same position in the simulated PXRD pattern (B). The range between 3.8 and 4.22θ degrees in the simulated pattern in Figure S9B is multiplied by 100 to make this peak more apparent. This peak corresponds to the (200), which bisects the crystal along any of the equivalent faces and in which the coordinated DMF lies. The increase in intensity may result from replacing the coordinated DMF with MeOH .

2.3. Synthesis of bMOF-201

Unlike bMOF-200, bMOF-201 syntheses did not require the use of evacuated tubes to obtain a pure product. In a typical reaction, $0.125 \mathrm{mmol}(16.89 \mathrm{mg})$ adenine and 0.2 mmol (22.41 mg) H_{2}-pyz were added to a 20 mL scintillation vial followed by the addition of 0.02 mmol (0.4 mL) of $70 \% \mathrm{HBF}_{4}$. Then 4 mL of DMF were added to the mixture and the contents were dissolved using ultrasonication. Finally, $0.4 \mathrm{mmol}(87.8 \mathrm{mg})$ of zinc acetate hexahydrate was added to the ligand solution. The resulting mixture was then sonicated again until all solids were dissolved. The vial was then capped with a PTFE lined cap and placed in a $120^{\circ} \mathrm{C}$ oven for 16 hours. After removal from the oven, the resulting colourless cubic crystals were washed three times with 10 mL of fresh DMF. Solvent exchange with MeOH was performed on the DMF washed crystals by exchanging with dry $\mathrm{MeOH}(10 \mathrm{~mL})$ three times a day for three days. The crystals were then allowed to dry in air overnight and the resulting material was used for all characterization and analyses. Anal. Calcd. (\%): C, 22.40; H, 4.00; N, 16.28; Zn, 24.48. Found: C, 22.72; H, 2.65; N, 16.26; Zn, 23.30. Molecular Formula: $\mathrm{Zn}_{2.9}(\mathrm{pyz})_{2}($ Adenine $)\left(\mathrm{HCOO}^{-}\right)_{0.45}\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)_{0.35} \bullet(\mathrm{MeOH})_{0.3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}$. Chemical Formula: $\mathrm{C}_{14.45} \mathrm{H}_{30.7} \mathrm{~N}_{9} \mathrm{O}_{15.9} \mathrm{Zn}_{2.9}$.

Determination of Composition: The composition of bMOF-201 was determined by EA and yielded a molecular formula of $\mathrm{Zn}_{2.9}(\mathrm{pyz})_{2}($ Adenine $)\left(\mathrm{HCOO}^{-}\right)_{0.45}\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)_{0.35} \bullet$ $(\mathrm{MeOH})_{0.3},\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}$. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of bMOF-201 revealed the expected pyz : adenine ratio of $2: 1$, as well as the presence of acetate, formate, and MeOH and water molecules (Figure S10). The monocarboxylate species acetate and formate are generated in situ during the solvothermal synthesis from the dissolution of $\mathrm{Zn}\left(\mathrm{COOCH}_{3}\right)_{2}$
and the decomposition of DMF, respectively. These species coordinate to the Zn at the Zn -ad motifs. The resultant Zn content of 2.9 in the molecular formula was determined based on the amount of charge balancing species determined by NMR and the Zn amount determined from the ICP elemental analysis results. We note that a Zn content of 3 was expected for the molecular formula, but there may be some missing Zn defects that account for the observed slight discrepancy. TGA analysis of bMOF-201 revealed an initial loss of $\sim 11 \%$ below $150^{\circ} \mathrm{C}$ that corresponds to the MeOH and a portion of the water molecules within the framework (Figure S11). The remaining water molecules are removed near at higher temperatures $>290^{\circ} \mathrm{C}$. We postulate that the removal of some solvent molecules via thermal heating requires elevated temperatures due to the blocking of P2 by coordinated monocarboxylates. A weight loss of $\sim 5 \%$ at $200^{\circ} \mathrm{C}$ is attributed to loss of coordinated formate and acetate (calculated 5.3\%). Discrepancies between the elemental analysis, NMR, and TGA can be attributed to the hygroscopic nature of bMOF201. The PXRD pattern matches very well to the simulated PXRD pattern generated from the single crystal structure, indicating phase purity (Figure S12).

Figure S10. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of bMOF-201 after solvent exchange with MeOH and drying in air overnight. The signals due to adenine are at 8.57 ppm . The signal at 8.042 ppm corresponds to H_{2}-pyz protons. Charge-balancing coordinated ions formate and acetate are located at 8.14 ppm and 1.913 ppm , respectively. The signal at 3.15 ppm corresponds to MeOH . The integration shows approximately 0.45 formate, 0.35 acetate, and 0.3 MeOH molecules per adenine molecule.

Figure S11. TGA of bMOF-201. The black curve shows the recorded weight loss with increasing temperature and the red curve is the first derivative weight loss with respect to temperature. The loss of a portion of the uncoordinated water molecules ($\sim 11 \%$) and MeOH occurs before $100^{\circ} \mathrm{C}$. The weight loss between $200^{\circ} \mathrm{C}$ and $250^{\circ} \mathrm{C}$ is attributed to the removal of coordinated monocarboxylates formate or acetate, which is approximately 5% of the total mass. Subsequent weight losses are attributed to framework decomposition and release of any trapped solvent.

Figure S12. PXRD patterns of simulated (black) and synthesized bMOF-201 (red). Simulated pattern was calculated from SC-XRD data.

3. Gas adsorption studies

3.1 Activation of MeOH-bMOF-200

MeOH-bMOF-200 was activated on a Micromeritics SmartVacPrep instrument. Approximately 50 mg of sample was added to a pre-weighed sample tube, which was installed onto an instrument port. The sample was then heated at $60^{\circ} \mathrm{C}$ for 1 hour, $100^{\circ} \mathrm{C}$ for 2 hours, then finally at $150^{\circ} \mathrm{C}$ for 24 hours under vacuum. For each temperature ramp, the rate was maintained at $10^{\circ} \mathrm{C} / \mathrm{min}$. After cooling back to room temperature, the sample was weighed again, then installed onto a Micromeritics 3-Flex gas adsorption analyzer.

3.2 Gas adsorption isotherms

The N_{2} gas adsorption isotherm was collected on a Micromeritics 3-flex gas adsorption analyzer. The sample was activated at $150^{\circ} \mathrm{C}$ under 1.0 mmHg on a Micromeritics SmartVacPrep for 24 hours. A liquid N_{2} bath was used for the N_{2} adsorption experiments at 77 K. A Quantachrome Autosorb-1 instrument was used to activate the sample used for CO_{2} adsorption. The material was held at $150^{\circ} \mathrm{C}$ under 1.0 mmHg for 24 hours. The CO_{2} adsorption isotherm was collected on the same instrument using a dry ice/acetone bath at 195 K .

Figure S13. N_{2} adsorption isotherm of MeOH-bMOF-200 at 77 K after activation at $150^{\circ} \mathrm{C}$ under vacuum for 24 hrs . The calculated BET surface area was $1317 \mathrm{~m}^{2} \mathrm{~g}^{-1}$.

Figure S14. CO_{2} adsorption isotherm of MeOH-bMOF-200 collected at 195 K . The calculated BET surface area was $1741 \mathrm{~m}^{2} \mathrm{~g}^{-1}$.

4. Computational methods

4.1 Computational Methodology

Density Functional Theory (DFT) calculations were used to examine physisorption of H_{2} and CO_{2} inside the MOF and the diffusion barrier of H_{2} and CO_{2} through the two distinctive openings on the Zn -pyrazolate cage. The structure of the MOF was obtained through SCXRD. The base unit cell contains a total of 2448 atoms, which is computationally demanding, if not infeasible. Thus, we have generated a reduced unit cell with 888 atoms, by replacing some of the adenine ligands with their mirrored images. We believe this necessary simplification is valid, because one would expect stereochemistry at the substituted locations to play a minimum role in the adsorption and diffusion of linear molecules. In each physisorption calculation, we have placed one guest molecule inside the MOF and the entire structure was optimized with no geometric constraints. We have tested 15 unique initial placements in each set of H_{2} and CO_{2} physisorption calculations. The shortest distance between the adsorbate and the MOF at the optimized structure is reported in Table S1. The positioning of the CO_{2} with the largest binding energy with bMOF-200 is shown in Figure S15.

Table S1. Physisorption energies and bond distances for either CO_{2} or H_{2} in the periodic bMOF-200 in the reduced unit cell.

CO_{2}			H_{2}		
Physisorption energy (eV)	Bond length (\AA)	Atoms $\left(\mathrm{MOF}-\mathrm{CO}_{2}\right)$	Physisorption energy (eV)	Bond length $(\AA))$	Atoms $\left(\mathrm{MOF}-\mathrm{H}_{2}\right)$
-0.158	3.1762	$\mathrm{Cu}-\mathrm{O}$	-0.180	2.7587	$\mathrm{Cu}-\mathrm{H}$
-0.141	3.0727	$\mathrm{Cu}-\mathrm{O}$	-0.284	2.4542	$\mathrm{H}-\mathrm{H}$
-0.267	2.7073	$\mathrm{H}-\mathrm{O}$	-0.159	2.7646	$\mathrm{Cu}-\mathrm{H}$
-0.189	2.7755	$\mathrm{H}-\mathrm{O}$	-0.160	2.5529	$\mathrm{H}-\mathrm{H}$
-0.242	3.0794	$\mathrm{C}-\mathrm{O}$	-0.188	2.7997	$\mathrm{O}-\mathrm{H}$
-0.218	2.4798	$\mathrm{H}-\mathrm{O}$	-0.265	2.4696	$\mathrm{H}-\mathrm{H}$
-0.314	2.4330	$\mathrm{H}-\mathrm{O}$	-0.114	2.8810	$\mathrm{~N}-\mathrm{H}$
-0.153	3.0904	$\mathrm{C}-\mathrm{C}$	-0.162	2.4993	$\mathrm{O}-\mathrm{H}$
-0.233	2.5631	$\mathrm{H}-\mathrm{O}$	-0.171	2.5761	$\mathrm{H}-\mathrm{H}$
-0.237	2.8552	$\mathrm{H}-\mathrm{O}$	-0.169	2.4880	$\mathrm{O}-\mathrm{H}$
-0.219	2.6039	$\mathrm{H}-\mathrm{O}$	-0.251	2.4898	$\mathrm{H}-\mathrm{H}$
-0.258	3.0871	$\mathrm{O}-\mathrm{C}$	-0.176	2.7841	$\mathrm{O}-\mathrm{H}$
-0.199	2.6361	$\mathrm{H}-\mathrm{O}$	-0.160	2.4887	$\mathrm{O}-\mathrm{H}$
-0.249	3.1634	$\mathrm{Zn}-\mathrm{O}$	-0.186	2.8867	$\mathrm{Zn}-\mathrm{H}$
-0.249	2.7536	$\mathrm{H}-\mathrm{O}$	-0.160	2.4893	$\mathrm{O}-\mathrm{H}$

Figure S15. Periodic model of bMOF-200 showing the position of CO_{2} in P 3 , where it has its strongest binding energy as calculated from DFT. Primary amines are highlighted to emphasize their proximity to the adsorbed CO_{2} molecule. Black, maroon, blue, and pink spheres indicate $\mathrm{C}, \mathrm{O}, \mathrm{N}$, and H atoms, respectively. Red dashed lines highlight the pore boundaries of P3.

While the physisorption calculations were performed using the reduced unit cell, the diffusion barriers were predicted using a freestanding Zn -pyrazolate cage model. We have isolated the Zn -pyrazolate cage by terminating the dangling adeninate bonds with hydrogen atoms. This isolated cage retains both the square and triangular openings as
the cage inside the MOF. The difference in the neighboring $\mathrm{H}-\mathrm{H}$ distance in the triangular and square opening is roughly $0.05 \AA$, and $0.1 \AA$, respectively, between the isolated cage and the periodic MOF at the optimized structures. We have calculated the minimum energy path for H_{2} and CO_{2} to travel from the center of the isolated cage to a point far (~ 6 A) away from the cage through crossing each type of aperture. The reported distance in Figure 3 is the distance between the center of mass of the adsorbate and the imaginary plane at the aperture along the optimized diffusion path. The plane for the triangular opening is defined by the positions of the hydrogen atoms. The plane for the square opening is defined by the vectors of the dihedral hydrogen atoms and their center of mass.

4.2 Density Functional Theory (DFT) Details

The DFT calculations performed here are done using the CP2K code. ${ }^{2}$ The PBE functional was used to describe the exchange-correlations effects, and Grimme's D3 dispersion correction was included in order to describe van der Waals interactions inside the MOF. ${ }^{3,4}$ Atomic species were described using the DZVP-MOLOPT basis set in combination with Geodecker, Teter and Hutter pseudopotentials, with a planewave cutoff of 360 Ry and relative cutoff of 60 Ry. ${ }^{5}$ For the periodic system, the reduced unit cell has fixed angles of $\alpha=\beta=\gamma=60^{\circ}$, and the optimize unit cell length is $31.061 \AA$, which is in close agreements with the experimental value of $30.864 \AA$. The freestanding calculations were performed in a periodic $30 \times 30 \times 30 \AA^{3}$ cubic cell. The diffusion barrier of H_{2} and CO_{2} through the square and triangular openings on the freestanding Zn -pyrazolate cage was investigated using nudged elastic band method implemented in CP2K, and the force acting on any atom is below $0.077 \mathrm{eV} / \AA$ at the optimized geometry. ${ }^{6,7}$ The DFT functional
used in this study has a mean absolute deviation (MAD) of 0.076 eV when benchmarked against the data set (S22x5) for interaction energies of noncovalently bonded complexes. ${ }^{8,9}$ We believe the uncertainty in our calculated physisorption energy and diffusion barrier is similar in magnitude as the reported MAD. We do not expect systematic DFT errors, such as self-interaction, to be prominent for the weakly bound adsorbates investigated. ${ }^{10}$

5. Gas Breakthrough experiments

5.1 Breakthrough experiments

Breakthrough experiments were used to investigate the separation of H_{2} and CO_{2} by bMOF-200, HKUST-1, ZIF-8, and UiO-66. HKUST-1, ZIF-8, and UiO-66 were solventexchanged and dried following gas adsorption activation procedures reported in the literature for these materials (see section 5.2 below). bMOF-200 was solvent exchanged with MeOH , according to the preparation for gas adsorption studies and air dried prior to loading in the column (see Sections 2.2 and 3.1). MOF crystals were packed in a column with a diameter of 5 mm and a length of 50 mm and supported by quartz wool plugs on both ends of a quartz tube. Prior to the measurements the MOF-loaded column was activated in situ by continuous helium flow (20 sccm) at $150{ }^{\circ} \mathrm{C}$ (at $300^{\circ} \mathrm{C}$ for $\mathrm{ZIF}-8$) with a ramp rate of $5 \mathrm{~K} / \mathrm{min}$ for 12 hours. After activation, the column was cooled down to room temperature in helium flow. A mixture of 80 vol $\% \mathrm{H}_{2}$ and 20 vol $\% \mathrm{CO}_{2}$ was introduced to the column with a total flow rate of 5 sccm. The effluent gas was detected by mass spectrometry with a detection limit of 0.0008%. Any overshoot of H_{2} above $\mathrm{C} / \mathrm{C}_{0}=1.0$ in
the breakthrough experiments can be explained by the displacement of adsorbed H_{2} by CO_{2} via competitive adsorption.
5.2 Synthesis and characterization of reference MOFs

Synthesis of UiO-66

UiO-66 was synthesized following a literature procedure. ${ }^{11} \mathrm{~A}$ ratio of $\mathrm{H}_{2}-\mathrm{BDC}: \mathrm{Zr}$ of 2:1 was used and the synthesis was performed at $200^{\circ} \mathrm{C}$.

Synthesis of HKUST-1

HKUST-1 was synthesized following a literature procedure. ${ }^{12}$

Synthesis of ZIF-8

ZIF-8 was synthesized following a literature procedure. ${ }^{13}$

PXRD patterns were collected and compared to simulated patterns generated from the reported single crystal data in each respective reference (Figure S16). Gas adsorption isotherms for reference MOFs were collected on a Micromeritics 3-flex gas adsorption analyzer. All samples were activated under conditions specified in the cited literature on a Micromeritics SmartVacPrep under vacuum and heat. For all cases, approximately 50 mg of washed and/or solvent exchanged sample was added into a pre-weighed sample analysis tube. A liquid N_{2} bath was used for N_{2} adsorption experiments at 77 K . The BET surface areas for these synthesized MOFs are comparable to reported values (Table S2).

Figure S16. Experimental (red) and simulated PXRD patterns (black) of HKUST-1 (A), ZIF-8 (B), and UiO-66 (C).

Table S2. Experimental BET surface area values for HKUST-1, ZIF-8, and UiO-66 used in breakthrough experiments with corresponding literature values.

MOF	Experimental BET SA $\left(\mathbf{m}^{2} \mathbf{g}^{-1}\right)$	Reported BET SA $\left(\mathbf{m}^{2} \mathbf{g}^{-1}\right)$
HKUST-1	1419	1387
ZIF-8	1598	1630
UIO-66	1125	1212

6. Membrane fabrication and gas separation studies

6.1 Fabrication of bMOF-200 Membranes

bMOF-200 membranes were synthesized on a homemade $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ disk substrate via the secondary growth method. A 0.5 wt \% bMOF-200 crystal suspension was prepared in methanol. This suspension was used for dip coating the $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ disk substrate, using a 30 s contact time. The seeded substrates were then placed horizontally in a glass reaction vessel and solvothermally treated with bMOF-200 reaction components to form a bMOF200 layer. The molar composition of precursor solution for membrane synthesis was identical to that of bMOF-200 crystal synthesis precursor solution. Repeated solvothermal growth up to five coats was employed in this study in order to form well-intergrown membrane. The as-synthesized membrane was washed repeatedly with dry DMF (3X) and immersed in dry methanol for two days for solvent exchange. Three membranes were synthesized under identical condition in order to verify reproducibility.

6.2 Fabrication of bMOF-201 Membranes

A suspension of $0.5 \mathrm{wt} \%$ bMOF-201 crystals was prepared in dry methanol for generating a seed layer on a homemade $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ disk substrate. The seeded substrates prepared by dip coating method were immersed in precursor solution for bMOF-201. The molar composition of precursor solution was identical that used for bMOF-201 crystal synthesis except for the amount of added HBF_{4}. To avoid seed crystal dissolution from the substrate due to acidic condition, the amount of HBF_{4} was reduced by half. The reaction vessel was placed in a $120^{\circ} \mathrm{C}$ oil bath for 48 h . Repeated growth was not necessary for the bMOF201 membranes and well-intergrown membranes were successfully fabricated after
secondary growth. As-synthesized membranes were washed with dry DMF (3X) followed by solvent exchange with dry methanol. The solvent exchange procedure was identical to section 6.1. We confirmed the reproducibility by synthesizing three membranes under identical conditions from different batches.

6.3 Membrane Characterization

PXRD pattern of bMOF-200 membranes (Figure S17) and bMOF-201 membranes (Figure S18) showed a high degree of crystallinity with all matching peaks with powder XRD patterns of crystals. After repeated growth of bMOF-200 membrane, the measured thickness was $\sim 37.3 \pm 4.3 \mu \mathrm{~m}$, as determined from a cross-sectional view of membrane (Figures 5a and 5b). Rapid nucleation of bMOF-201 crystals facilitated formation of wellintergrown membranes after the secondary growth, resulting in thicker membrane with thickness of $\sim 62.7 \pm 3.2 \mu \mathrm{~m}$ (Figures $\mathbf{5 c}$ and $\mathbf{5 d}$). For both types of membranes, no visible cracks or defects were found on the surface. The $\mathrm{H}_{2} / \mathrm{CO}_{2}$ separation performances of bMOF-200 and bMOF-201 membranes are summarized in Table S1 and Table S2. The permeance of each membrane was measured for three consecutive days and both permeances and separation factor remained unchanged. The points for bMOF-200 and bMOF-201 reported in the Robeson plot (Figure 7) are the average values of the three different membranes listed in Tables S1 and Table S2.

Figure S17. PXRD pattern of as-synthesized bMOF-200 (black) and activated bMOF200 membrane prepared on $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ substrate (red). Asterisks indicate $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ diffraction lines.

Figure S18. PXRD pattern of bMOF-201 (black) and activated bMOF-201 membrane prepared on $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ substrate (red). Asterisks indicate $\alpha-\mathrm{Al}_{2} \mathrm{O}_{3}$ diffraction lines.

6.4 Experimental Setup for Permeation Studies

After the solvent exchange, the membranes were activated at 423 K for 24 hours in helium atmosphere before permeation measurement in order to remove any solvents molecules potentially remaining in the pore. For binary mixture permeation measurement, the membrane was sealed in a gas tight module with silicon o-rings. Membrane permeation behavior was investigated in Wicke-Kallenbach mode at a system pressure of 99 kPa for both feed and permeate side without pressure drop (Scheme S1). The feed containing a mixture of H_{2} and $\mathrm{CO}_{2}(50 / 50)$ was introduced to the membrane side with a total feed flow rate of $200 \mathrm{~mL} / \mathrm{min}$ and the composition was adjusted using mass flow controller. The compositions of feed, permeate, and retentate were analyzed by a gas chromatograph (Agilent-GC8860). N_{2} was introduced with volumetric flow rate of $50 \mathrm{~mL} / \mathrm{min}$ to the permeate side as a sweep gas. The permeance of component i was calculated using the equation as follows

$$
\bar{P}_{l}=\frac{J_{i}}{\Delta p_{i}}
$$

where \bar{P}_{l} is permeance $\left(\mathrm{mol} / \mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~Pa}\right), J_{i}$ is steady-state flux $\left(\mathrm{mol} / \mathrm{m}^{2} \cdot \mathrm{~s}\right)$, and Δp_{i} is transmembrane partial pressure drop. Permeability ($\mathrm{mol} \cdot \mathrm{m} / \mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~Pa}$) was calculated as permeance multiplied by thickness of the membrane. The separation factor $\left(\alpha_{i, j}\right)$ is defined as

$$
\alpha_{i, j}=\frac{y_{i} / y_{j}}{x_{i} / x_{j}}
$$

where y_{i} and y_{j} are mol fractions in permeate side, and x_{i} and x_{j} are molar composition in feed side for component i and j, respectively.

Scheme S1. Schematic diagram of binary mixture permeation system (A,B: target gas; MFC: mass flow controller; PI: pressure indicator).

Table S3. Separation performances of three bMOF-200 membranes for the equimolar binary mixture of $\mathrm{H}_{2} / \mathrm{CO}_{2}$ at $25^{\circ} \mathrm{C}$ and 1 bar. The first column lists the iteration of the tested membrane, where M1 was the first membrane tested.

	Thickness $(\mu \mathrm{m})$	Permeance $\left(\mathrm{mol} / \mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~Pa}\right)$		Permeability $\left(\mathrm{mol} \cdot \mathrm{m} / \mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~Pa}\right)$		Separation factor
M1		1.57×10^{-6}	1.24×10^{-7}	5.59×10^{-11}	4.40×10^{-12}	
M2	43.3	1.26×10^{-6}	1.00×10^{-7}	5.48×10^{-11}	4.35×10^{-12}	6.9
M3	33.2	1.64×10^{-6}	1.10×10^{-7}	5.47×10^{-11}	3.67×10^{-12}	9.8

Table S4. Separation performances of three bMOF-201 membranes for the equimolar binary mixture of $\mathrm{H}_{2} / \mathrm{CO}_{2}$ at $25^{\circ} \mathrm{C}$ and 1 bar. The first column lists the iteration of the tested membrane, where M4 was the first membrane tested.

	Thickness $(\mu \mathrm{m})$	Permeance $\left(\mathrm{mol} / \mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~Pa}\right)$		Permeability $\left(\mathrm{mol} \cdot \mathrm{m} / \mathrm{m}^{2} \cdot \mathrm{~s} \cdot \mathrm{~Pa}\right)$		Separation factor
M4		6.14×10^{-7}	2.17×10^{-8}	4.11×10^{-11}	1.45×10^{-12}	
M5	59.5	6.55×10^{-7}	2.28×10^{-8}	3.90×10^{-11}	1.36×10^{-12}	20.0
M6	61.5	6.19×10^{-7}	1.94×10^{-8}	3.81×10^{-11}	1.19×10^{-12}	24.4

7. Single Crystal X-Ray Diffraction and Crystallographic Tables

7.1 As-synthesized-bMOF-200

Single crystal X-ray diffraction data for bMOF-200 was collected on a Bruker X8 Prospector Ultra diffractometer equipped with an Apex II CCD detector and an I $\mu \mathrm{S}$ microfocus CuK- α X-ray source ($\lambda=1.54178 \AA$). A purple cubic crystal of dimensions 0.07 x $0.07 \times 0.07 \mathrm{~mm}^{3}$ was mounted on a goniometer using MiTeGen MicroMesh tips. Data was collected under N_{2} stream at 230 K and processed using the Bruker APEX II software package.

A cubic unit cell with dimensions $a=b=c=43.6231(6) \AA, a=\beta=y=90^{\circ}$, was derived from least squares refinement of 59240 reflections in range of $4.048^{\circ}<2 \theta<107.766^{\circ}$. Centrosymmetric space group $F m \overline{3} c$ was determined based on intensity statistics and systematic absences. The data were collected and integrated to $0.89 \AA$ by Bruker program SAINT. ${ }^{14}$ Empirical absorption correction was applied using program SADABS. ${ }^{14}$ The structure was solved with direct method using SHELXT and refined by full-matrix least-squares on F^{2} using SHELXL in Olex2. ${ }^{15-17}$ All the non-H atoms were refined anisotropically. All the H atoms were refined isotropically. Crystallographic data are summarized in Tables S5-S10.

Figure S19. Asymmetric unit of as-synthesized bMOF-200 with all non-H atoms represented by thermal ellipsoids drawn at 50\% probability level produced by ORTEP-3 ${ }^{18}$ (O, red; C, black; N, blue; Zn, green; Cu, gold; H, black spheres).

Table S5. Crystallographic data and structural refinement for as-synthesized bMOF200.

Identification code	as-synthesized bMOF-200
Empirical formula	$\mathrm{C}_{15.5} \mathrm{H}_{15} \mathrm{CuN}_{10} \mathrm{O}_{5} \mathrm{Zn}_{2}$
Formula weight	615.65
Temperature/K	230.01
Crystal system	cubic
Space group	Fm-3c
a/Å	43.6231(6)
b/Å	43.6231(6)
c/Å	43.6231(6)
$\alpha{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
$\gamma^{1}{ }^{\circ}$	90
Volume/ $/{ }^{3}$	83014(3)
Z	96
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.182
μ / mm^{-1}	2.625
$\mathrm{F}(000)$	29472.0
Crystal size/mm ${ }^{3}$	$0.07 \times 0.07 \times 0.07$
Radiation	CuK $(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	4.05 to 110.852
Index ranges	$-33 \leq h \leq 45,-45 \leq k \leq 44,-44 \leq 1 \leq 42$
Reflections collected	56571
Independent reflections	$2312\left[\mathrm{R}_{\text {int }}=0.0804, \mathrm{R}_{\text {sigma }}=0.0276\right]$
Data/restraints/parameters	2312/78/188
Goodness-of-fit on F^{2}	1.131
Final R indexes [l>=2 $\left.{ }^{\text {(}} \mathrm{l}\right)$]	$\mathrm{R}_{1}=0.0674, \mathrm{wR}_{2}=0.2129$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0746, \mathrm{wR}_{2}=0.2185$
Largest diff. peak/hole / e \AA^{-3}	2.89/-1.30

Table S6. Fractional atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for as-synthesized bMOF-200. U eq is defined as $1 / 3$ of the trace of the orthogonalized $U_{I J}$ tensor.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
Zn1	$2800.0(2)$	$4202.1(2)$	$3790.7(2)$	$20.7(4)$
Cu1	$2881.5(6)$	$4670.1(4)$	5000	$73.4(8)$
O1	$3167.5(11)$	$4151.1(12)$	$3545.0(11)$	$40.7(13)$
N1	$3657.6(12)$	$4201.7(12)$	$2634.8(12)$	$25.7(13)$
N2	$3818.3(12)$	$4045.6(13)$	$2853.5(12)$	$25.6(13)$
O2	$2933.1(12)$	$4470.9(13)$	$3231.8(13)$	$51.5(15)$
C3	$3393.1(15)$	$4230.7(15)$	$3066.8(16)$	$29.1(16)$
C2	$3654.0(16)$	$4062.8(16)$	$3111.7(16)$	$32.3(17)$
C1	$3402.1(15)$	$4310.4(16)$	$2762.8(15)$	$30.5(16)$
N4	$2893(3)$	$4692(2)$	$4613.9(14)$	$36(3)$
C5	$2882(3)$	$4434.3(16)$	$4415.6(19)$	$47(5)$
N3	$2862(3)$	$4543.4(16)$	$4109.6(16)$	$23.0(14)$
C9	$2860(2)$	$4868.8(16)$	$4118.7(16)$	$15.5(18)$
C6	$2879(3)$	$4960.8(17)$	$4430.4(19)$	$15.5(18)$
C4	$3146.0(16)$	$4292.2(16)$	$3292.7(17)$	$34.0(17)$
N8	$3280(4)$	$3850(4)$	5000	$115(5)$
O3	$2861(4)$	$4149(3)$	5000	$164(8)$
C10	$2964(6)$	$3906(6)$	5000	$118(7)$
C11	$3456(7)$	$4118(6)$	5000	$330(40)$
N6	$2843(3)$	$5387(3)$	$4019(2)$	$23.0(14)$
C8	$2839(3)$	$5097(2)$	$3911(3)$	$18(2)$
N7	$2820(2)$	$5048(4)$	$3613.1(19)$	$26(3)$
C7	$2865(3)$	$5449(3)$	$4322(3)$	$23(3)$
N5	$2879(4)$	$5224(3)$	$4524(3)$	$42(4)$
C12	$3428(12)$	$3567(5)$	5000	$290(30)$

Table S7. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for as-synthesized bMOF200. The anisotropic displacement factor exponent takes the form: $2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a^{*} b^{*} U_{12}+\ldots\right]$.

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	\mathbf{U}_{12}
Zn1	$19.9(6)$	$20.5(6)$	$21.7(6)$	$0.1(3)$	$1.6(3)$	$0.0(3)$
Cu1	$131(2)$	$34.6(12)$	$54.6(13)$	0	0	$-4.6(11)$
O1	$43(3)$	$45(3)$	$35(3)$	$5(2)$	$18(2)$	$7(2)$
N1	$22(3)$	$29(3)$	$26(3)$	$2(2)$	$3(2)$	$4(2)$
N2	$29(3)$	$26(3)$	$22(3)$	$7(2)$	$3(2)$	$6(2)$
O2	$31(3)$	$65(4)$	$58(4)$	$6(3)$	$13(3)$	$17(3)$
C3	$26(4)$	$29(4)$	$32(4)$	$-1(3)$	$8(3)$	$4(3)$
C2	$39(4)$	$36(4)$	$22(4)$	$6(3)$	$11(3)$	$5(3)$
C1	$25(4)$	$39(4)$	$28(4)$	$4(3)$	$0(3)$	$6(3)$
N4	$72(10)$	$21(3)$	$13(3)$	$7(2)$	$-4(4)$	$1(3)$
C5	$104(14)$	$22(3)$	$17(3)$	$6(2)$	$-8(4)$	$3(4)$
N3	$34(4)$	$20(3)$	$15(3)$	$3.3(15)$	$-5(3)$	$0(2)$
C9	$15(5)$	$20(3)$	$12(3)$	$4.1(15)$	$-1(3)$	$0(2)$
C6	$15(5)$	$20(3)$	$12(3)$	$4.1(15)$	$-1(3)$	$0(2)$
C4	$33(4)$	$32(4)$	$37(4)$	$-5(3)$	$9(3)$	$-4(3)$
N8	$98(13)$	$74(11)$	$172(17)$	0	0	$0(9)$
O3	$159(15)$	$30(7)$	$300(20)$	0	0	$24(8)$
C10	$112(18)$	$95(17)$	$150(20)$	0	0	$-9(13)$
C11	$130(30)$	$79(19)$	$770(120)$	0	0	$-2(18)$
N6	$34(4)$	$20(3)$	$15(3)$	$3.3(15)$	$-5(3)$	$0(2)$
C8	$22(6)$	$20(3)$	$13(2)$	$3.7(16)$	$-3(3)$	$-1(2)$
N7	$45(5)$	$18(8)$	$14(2)$	$4(2)$	$-6(3)$	$-1(5)$
C7	$37(7)$	$18(3)$	$15(3)$	$2.7(19)$	$-5(4)$	$0(4)$
N5	$93(11)$	$21(3)$	$13(3)$	$4.0(19)$	$-7(4)$	$1(3)$
C12	$670(90)$	$60(15)$	$120(20)$	0	0	$70(30)$

Table 8. Bond lengths for as-synthesized bMOF-200.

Atom	Atom	Length/A	Atom	Atom	Length/A
Zn 1	O 1	$1.941(5)$	N 4	C 5	1.4200
Zn 1	$\mathrm{~N} 1^{1}$	$1.983(5)$	N 4	C 6	1.4200
Zn 1	$\mathrm{~N}^{2}$	$2.023(5)$	C 5	N 3	1.4200
Zn 1	N 3	$2.055(7)$	N 3	C 9	1.4200
Cu 1	$\mathrm{Cu1}^{3}$	$2.878(4)$	C 9	C 6	1.4200
Cu 1	N 4	$1.688(6)$	C 9	C 8	$1.350(12)$
Cu 1	O 3	$2.274(13)$	C 6	N 5	$1.218(15)$
O 1	C 4	$1.265(9)$	N 8	C 10	$1.40(3)$
N 1	N 2	$1.366(8)$	N 8	C 11	$1.40(3)$
N 1	C 1	$1.334(9)$	N 8	C 12	$1.40(3)$
N 2	C 2	$1.337(8)$	O 3	C 10	$1.15(2)$
O 2	C 4	$1.241(9)$	N 6	C 8	$1.348(15)$
C 3	C 2	$1.367(10)$	N 6	C 7	$1.356(17)$
C 3	C 1	$1.372(10)$	C 8	N 7	$1.319(15)$
C 3	C 4	$1.485(9)$	C 7	N 5	$1.322(17)$

${ }^{1} 1 / 2-Z,+Y,+X ;{ }^{2}+Z,+X,+Y ;{ }^{3}+X, 1-Y,+Z$

Table S9. Bond angles for as-synthesized bMOF-200.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
O1	Zn1	$\mathrm{N} 1^{1}$	128.9(2)	N4	C5	N3	108.0
O1	Zn1	$\mathrm{N} 2^{2}$	96.5(2)	C5	N3	Zn1	113.7(4)
O1	Zn1	N3	110.4(3)	C5	N3	C9	108.0
N1 ${ }^{1}$	Zn1	N2 ${ }^{2}$	105.7(2)	C9	N3	Zn1	137.9(4)
N1 ${ }^{1}$	Zn1	N3	108.9(3)	N3	C9	C6	108.0
$\mathrm{N} 2^{2}$	Zn1	N3	102.3(3)	C8	C9	N3	136.0(7)
N4	Cu1	Cu1 ${ }^{3}$	86.7(3)	C8	C9	C6	116.0(7)
N4	Cu1	O3	93.3(3)	N4	C6	C9	108.0
O3	Cu1	Cu1 ${ }^{3}$	177.8(4)	N5	C6	N4	125.9(7)
C4	O1	Zn1	111.3(4)	N5	C6	C9	126.1(7)
N2	N1	Zn1 ${ }^{4}$	121.2(4)	O1	C4	C3	115.8(7)
C1	N1	Zn1 ${ }^{4}$	130.1(4)	O2	C4	O1	123.2(6)
C1	N1	N2	108.3(5)	O 2	C4	C3	121.0(7)
N1	N2	Zn1 ${ }^{5}$	128.2(4)	C10	N8	C11	113(2)
C2	N2	Zn1 ${ }^{5}$	124.9(4)	C12	N8	C10	128(3)
C2	N2	N1	106.6(5)	C12	N8	C11	119(3)
C2	C3	C1	104.5(6)	C10	O3	Cu1	154.7(18)
C2	C3	C4	127.3(7)	O3	C10	N8	123(2)
C1	C3	C4	128.1(6)	C8	N6	C7	122.0(11)
N2	C2	C3	110.8(6)	N6	C8	C9	117.1(10)
N1	C1	C3	109.8(6)	N7	C8	C9	123.1(10)
C5	N4	Cu1	124.2(6)	N7	C8	N6	119.8(11)
C5	N4	C6	108.0	N5	C7	N6	120.3(13)
C6	N4	Cu1	127.5(6)	C6	N5	C7	118.4(11)

${ }^{1} 1 / 2-Z,+Y,+X ;{ }^{2}+Z,+X,+Y ;{ }^{3}+X, 1-Y,+Z ;{ }^{4}+Z,+Y, 1 / 2-X ;{ }^{5}+Y,+Z,+X$

Table S10. Torsion angles for as-synthesized bMOF-200.

A	B	C	D	Angle ${ }^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
Zn1	O1	C4	O2	8.6(9)	N4	C6	N5	C7	180.0(11)
Zn1	O1	C4	C3	-171.0(5)	C5	N4	C6	C9	0.0
Zn1 ${ }^{1}$	N1	N2	Zn1 ${ }^{2}$	-0.4(7)	C5	N4	C6	N5	179.3(17)
Zn1 ${ }^{1}$	N1	N2	C2	-173.5(4)	C5	N3	C9	C6	0.0
$\mathrm{Zn} 1^{1}$	N1	C1	C3	173.6(5)	C5	N3	C9	C8	-178.6(13)
$\mathrm{Zn} 1^{2}$	N2	C2	C3	-174.3(5)	N3	C9	C6	N4	0.0
Zn1	N3	C9	C6	171.9(11)	N3	C9	C6	N5	-179.3(17)
Zn1	N3	C9	C8	-6.8(18)	N3	C9	C8	N6	179.3(9)
Cu1 ${ }^{3}$	Cu1	N4	C5	-176.6(7)	N3	C9	C8	N7	-1.5(19)
Cu1 ${ }^{3}$	Cu1	N4	C6	-4.3(8)	C9	C6	N5	C7	-1(2)
Cu1	N4	C5	N3	173.6(10)	C6	N4	C5	N3	0.0
Cu1	N4	C6	C9	-173.3(10)	C6	C9	C8	N6	0.8(13)
Cu1	N4	C6	N5	6.0(15)	C6	C9	C8	N7	179.9(9)
Cu1	O3	C10	N8	0.0	C4	C3	C2	N2	177.5(6)
N1	N2	C2	C3	-1.0(8)	C4	C3	C1	N1	-177.3(7)
N2	N1	C1	C3	0.7(8)	O3	Cu1	N4	C5	1.1 (9)
C2	C3	C1	N1	-1.2(8)	O3	Cu1	N4	C6	173.5(9)
C2	C3	C4	O1	-6.7(11)	C11	N8	C10	O3	0.0
C2	C3	C4	O 2	173.6(7)	N6	C7	N5	C6	2(2)
C1	N1	N2	Zn1 ${ }^{2}$	173.2(5)	C8	C9	C6	N4	178.9(10)
C1	N1	N2	C2	0.2(7)	C8	C9	C6	N5	-0.4(17)
C1	C3	C2	N2	1.4(8)	C8	N6	C7	N5	-1(2)
C1	C3	C4	O1	168.4(7)	C7	N6	C8	C9	0.0(17)
C1	C3	C4	O2	-11.2(12)	C7	N6	C8	N7	-179.2(12)
N4	C5	N3	Zn1	-174.1(8)	C12	N8	C10	O3	180.0
N4	C5	N3	C9	0.0					

${ }^{1}+Z,+Y, 1 / 2-X ;{ }^{2}+Y,+Z,+X ;{ }^{3}+X, 1-Y,+Z$

Table S11. Hydrogen atom coordinates $\left(\AA \times 10^{4}\right)$ and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for as-synthesized bMOF-200.

Atom	\boldsymbol{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{U (e q)}$
H2	3710.21	3971.85	3298.73	39
H1	3250.9	4424.61	2660.13	37
H5	2887.92	4227.62	4476.26	57
H10	2830.09	3737.91	5000	142
H11A	3454.03	4206.79	4796.1	489
H11B	3665.83	4074.19	5059.6	489
H11C	3366.53	4261.59	5144.3	489
H7A	2810.14	5202.35	3487.06	31
H7B	2818.03	4861.51	3542.64	31
H7	2871	5653.66	4389.58	28
H12A	3598.34	3572.52	5143.27	428
H12B	3504.9	3523.53	4795.82	428
H12C	3285.13	3408.3	5060.91	428

Table S12. Atomic occupancy for as-synthesized bMOF-200.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
N4	0.5	C5	0.5	H5	0.5
N3	0.5	C9	0.5	C6	0.25
H11A	0.5	H11B	0.5	H11C	0.5
N6	0.5	C8	0.5	N7	0.5
H7A	0.5	H7B	0.5	C7	0.5
H7	0.5	N5	0.5	H12A	0.5
H12B	0.5	H12C	0.5		

7.2 MeOH-bMOF-200

Single crystal X-ray diffraction data for MeOH-bMOF-200 was collected on a Bruker X8 Prospector Ultra diffractometer equipped with an Apex II CCD detector and an I μ S microfocus CuK- α X-ray source ($\lambda=1.54178 \AA$). A blue cubic crystal of dimensions $0.065 \mathrm{~mm}^{3}$ was mounted on a goniometer using MiTeGen MicroMesh tips. Data was collected under N_{2} stream at 150 K and processed using the Bruker APEX II software package.

A cubic unit cell with dimensions $a=b=c=43.571(5) A, \alpha=\beta=y=90^{\circ}$, was derived from least squares refinement of 59240 reflections in range of $4.048^{\circ}<2 \theta<107.766^{\circ}$. Centrosymmetric space group $F m \overline{3} c$ was determined based on intensity statistics and systematic absences. The data were collected and integrated to $0.89 \AA$ by Bruker program SAINT. ${ }^{14}$ Empirical absorption correction was applied using program SADABS. ${ }^{14}$ The structure was solved with direct method using SHELXT and refined by full-matrix least-squares on F^{2} using SHELXL in Olex2. ${ }^{15-17}$ All the non-H atoms were refined anisotropically. All the H atoms were refined isotropically. The asymmetric unit is shown in Figure S22. Crystallographic data are summarized in Tables S13-S20.

Figure S20. Asymmetric unit of MeOH-bMOF-200 with all non-H atoms represented by thermal ellipsoids drawn at 50% probability level produced by ORTEP-3 ${ }^{18}$ (O, red; C , black; N, blue; Zn, green; Cu, gold; H, black spheres). In this structure, one Cu and one coordinating methanol are shown displaced over two positions, though the overall occupancy is still 0.5 , which is consistent with the as-synthesized crystal structure.

Table S13. Crystal data and structure refinement for MeOH-bMOF-200.

Identification code	MeOH-bMOF-200
Empirical formula	$\mathrm{C}_{13.75} \mathrm{H}_{10.25} \mathrm{CuN}_{9} \mathrm{O}_{5.5} \mathrm{Zn}_{2.08}$
Formula weight	589.29
Temperature/K	150
Crystal system	cubic
Space group	Fm-3c
a/Å	43.571(5)
b/Å	43.571(5)
c/Å	43.571(5)
$\alpha /{ }^{\circ}$	90
$\beta{ }^{\circ}$	90
V^{\prime}	90
Volume/ \AA^{3}	82717(28)
Z	96
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.136
μ / mm^{-1}	2.675
F(000)	27960.0
Crystal size/mm ${ }^{3}$	$0.08 \times 0.08 \times 0.08$
Radiation	CuK ($\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	4.056 to 102.648
Index ranges	$-44 \leq h \leq 44,-44 \leq k \leq 44,-32 \leq 1 \leq 43$
Reflections collected	169200
Independent reflections	$1993\left[\mathrm{R}_{\text {int }}=0.0850, \mathrm{R}_{\text {sigma }}=0.0155\right]$
Data/restraints/parameters	1993/174/207
Goodness-of-fit on F^{2}	1.159
Final R indexes [l>=2 $\sigma(\mathrm{l})$]	$\mathrm{R}_{1}=0.0461, \mathrm{wR}_{2}=0.1415$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0505, \mathrm{wR}_{2}=0.1456$
Largest diff. peak/hole / e \AA^{-3}	0.80/-0.54

Table S14. Fractional Atomic Coordinates ($\times 104$) and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for MeOH-bMOF-200. Ueq is defined as $1 / 3$ of the trace of the orthogonalised UIJ tensor.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U (e q)}$
Zn1	$6202.0(2)$	$5797.0(2)$	$2798.8(2)$	$22.4(3)$
Cu1	5000	$4670.0(3)$	$2912.2(6)$	$71.6(6)$
O2	$6456.9(8)$	$5834.0(7)$	$3162.6(7)$	$38.1(9)$
N1	$7142.4(8)$	$5953.3(8)$	$3820.2(8)$	$22.5(9)$
O1	$6779.1(8)$	$5511.9(8)$	$2935.3(8)$	$46.3(10)$
N2	$7367.1(8)$	$5796.7(8)$	$3658.9(8)$	$23.7(9)$
C2	$6935.0(11)$	$5762.9(10)$	$3393.3(10)$	$26.9(11)$
C3	$6886.4(10)$	$5932.9(11)$	$3655.0(10)$	$28.8(12)$
C1	$7239.0(11)$	$5684.6(11)$	$3406.2(11)$	$29.4(12)$
C4	$6714.0(11)$	$5693.6(11)$	$3147.6(11)$	$31.4(12)$
N3	$5979(2)$	$4607.5(18)$	$2850(3)$	$30(2)$
C5	$5680(2)$	$4557(3)$	$2878(3)$	$39(2)$
N4	$5457(2)$	$4766.8(19)$	$2901(3)$	$52(2)$
C6	$5561.9(19)$	$5056.3(15)$	$2896.4(19)$	$42.3(18)$
C7	$5864(2)$	$5141.0(17)$	$2860(2)$	$28.3(16)$
C8	$6081(2)$	$4899.5(15)$	$2837.9(18)$	$22.9(17)$
N5	$6380.0(16)$	$4944(4)$	$2813.1(17)$	$28(5)$
N9	$5886(2)$	$5451.0(17)$	$2861(3)$	$26(2)$
C9	$5596(2)$	$5540(3)$	$2909(3)$	$39(2)$
N11	$5391(2)$	$5312.1(19)$	$2919(3)$	$50(2)$
Zn2	7500	5000	2500	$50.8(16)$
O4	$7194.7(18)$	5000	$2957(2)$	$82(3)$
Cu1A	5000	$5355.7(14)$	$3219(3)$	$78(3)$
O3	5000	$4141(4)$	$2974(8)$	$89(5)$
C10A	5000	$3853(5)$	$3030(30)$	$89(5)$
C10	5000	$6106(4)$	$3026(16)$	$89(5)$
O3A	5089.81	$5852(3)$	$3122(5)$	$89(5)$

Table S15. Anisotropic Displacement Parameters ($\AA 2 \times 103$) for MeOH-bMOF-200. The Anisotropic displacement factor exponent takes the form: $2 \pi 2\left[h 2 a^{*} 2 \mathrm{U} 11+2 h k a^{*} \mathrm{~b}^{*} \mathrm{U} 12+\ldots\right.$...

Atom	\mathbf{U}_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	\mathbf{U}_{12}
Zn1	$26.7(5)$	$19.7(4)$	$20.8(5)$	$0.4(2)$	$-3.1(2)$	$2.3(2)$
Cu1	$51.6(11)$	$29.6(10)$	$133.7(19)$	$-3.8(11)$	0	0
O2	$38(2)$	$41(2)$	$36(2)$	$-4.9(15)$	$-15.3(16)$	$7.0(17)$
N1	$20(2)$	$24(2)$	$23(2)$	$-4.1(17)$	$0.0(17)$	$5.1(16)$
O1	$51(2)$	$54(2)$	$34(2)$	$-14(2)$	$-13.0(18)$	$11.3(19)$
N2	$22(2)$	$24(2)$	$25(2)$	$-2.7(17)$	$0.0(18)$	$2.3(16)$
C2	$32(3)$	$25(3)$	$23(3)$	$-1(2)$	$-4(2)$	$4(2)$
C3	$20(3)$	$35(3)$	$31(3)$	$-4(2)$	$-3(2)$	$5(2)$
C1	$34(3)$	$34(3)$	$21(3)$	$-6(2)$	$1(2)$	$3(2)$
C4	$34(3)$	$29(3)$	$31(3)$	$2(2)$	$-6(2)$	$5(2)$
N3	$30(4)$	$20(3)$	$40(5)$	$-3(3)$	$-10(4)$	$-1(2)$
C5	$31(4)$	$20(4)$	$66(6)$	$3(4)$	$-10(4)$	$-2(2)$
N4	$29(4)$	$22(3)$	$105(6)$	$4(4)$	$-5(4)$	$-2(2)$
C6	$23(3)$	$21(3)$	$83(5)$	$2(3)$	$-7(3)$	$-0.3(18)$
C7	$22(3)$	$20(2)$	$43(4)$	$2(3)$	$-10(3)$	$1.0(17)$
C8	$27(3)$	$18(3)$	$23(4)$	$-2(3)$	$-11(3)$	$1.3(17)$
N5	$26(4)$	$18(15)$	$40(4)$	$-5(4)$	$10(3)$	$-5(4)$
N9	$17(3)$	$19(2)$	$40(5)$	$5(3)$	$-11(4)$	$2(2)$
C9	$18(4)$	$21(3)$	$79(6)$	$114)$	$-7(4)$	$11(2)$
N11	$20(3)$	$22(3)$	$107(6)$	$114)$	$-5(4)$	$-1(2)$
Zn2	$46(2)$	$61(4)$	$46(2)$	0	0	0
O4	$49(5)$	$66(6)$	$131(8)$	0	$-24(5)$	0
Cu1A	$22(3)$	$42(4)$	$169(9)$	$12(5)$	0	0
O3	$80(8)$	$36(5)$	$150(12)$	$-4(8)$	$-84(11)$	$11(7)$
C10A	$80(8)$	$36(5)$	$150(12)$	$-4(8)$	$-84(11)$	$11(7)$
C10	$80(8)$	$36(5)$	$150(12)$	$-4(8)$	$-84(11)$	$11(7)$
O3A	$80(8)$	$36(5)$	$150(12)$	$-4(8)$	$-84(11)$	$11(7)$

Table S16. Bond Lengths for MeOH-bMOF-200.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Zn1	O2	1.942(3)	C5	N4	1.338(7)
Zn1	N1 ${ }^{1}$	2.006(4)	N4	C6	1.342(7)
Zn1	N2 ${ }^{2}$	1.976(4)	C6	C7	1.376(14)
Zn1	N9	2.059(9)	C6	N11	1.345(7)
Cu1	Cu1 ${ }^{3}$	2.876(3)	C7	C8	1.419(11)
Cu1	N4	2.036(9)	C7	N9	1.354(7)
Cu1	Cu1A ${ }^{3}$	1.342(11)	C8	N5	1.320(12)
Cu1	O3	2.320(17)	N9	C9	1.340(7)
O2	C4	1.278(6)	C9	N11	1.338(7)
N1	N2	1.385(5)	N11	Cu1A	2.155(13)
N1	C3	1.330(6)	Zn2	O44	2.396(10)
O1	C4	1.250(6)	Zn2	O4 ${ }^{5}$	2.396(10)
N2	C1	1.328(6)	Zn2	O4 ${ }^{6}$	2.396(10)
C2	C3	1.376(6)	Zn2	O4	2.396(10)
C2	C1	1.369(7)	Cu1A	O3A	2.237(14)
C2	C4	1.471(7)	O3	C10A	1.28(3)
N3	C5	1.330(7)	C10	O3A	1.25(3)
N3	C8	1.349(7)			

${ }^{1}+Y, 1-Z, 1-X ;{ }^{2} 1-Z,+Y,-1 / 2+X ;{ }^{3} 1-X, 1-Y,+Z ;{ }^{4} 3 / 2-X, 1-Y, 1 / 2-Z ;{ }^{5} 1 / 2+Z,+Y, 1-X ;{ }^{6} 1-Z, 1-Y,-1 / 2+X$

Table S17. Bond Angles for MeOH-bMOF-200

Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle ${ }^{\circ}$
02	Zn1	$\mathrm{N} 1^{1}$	97.80(14)	C5	N4	Cu1	124.7(6)
O2	Zn1	N2 ${ }^{2}$	126.98(15)	C5	N4	C6	113.2(8)
02	Zn1	N9	109.6(4)	C6	N4	Cu1	121.9(7)
N11	Zn1	N9	103.3(2)	N4	C6	C7	125.4(7)
N2 ${ }^{2}$	Zn1	N11	106.73(15)	N4	C6	N11	126.1(8)
N2 ${ }^{2}$	Zn1	N9	109.3(4)	N11	C6	C7	108.5(7)
N4	Cu1	$\mathrm{Cu} 1^{3}$	78.0(3)	C6	C7	C8	116.6(7)
N4	Cu1	O3	102.0(3)	N9	C7	C6	109.6(8)
Cu1A ${ }^{3}$	Cu1	$\mathrm{Cu1}^{3}$	94.8(3)	N9	C7	C8	133.8(9)
Cu1A ${ }^{3}$	Cu1	N4	92.3(4)	N3	C8	C7	118.5(8)
Cu1A ${ }^{3}$	Cu1	O3	78.5(9)	N5	C8	N3	117.9(11)
O3	Cu1	$\mathrm{Cu1}{ }^{3}$	173.3(8)	N5	C8	C7	123.6(10)
C4	O2	Zn1	114.8(3)	C7	N9	Zn1	141.0(7)
N2	N1	Zn14	126.7(3)	C9	N9	Zn1	116.0(6)
C3	N1	Zn14	126.4(3)	C9	N9	C7	102.9(8)
C3	N1	N2	106.6(3)	N11	C9	N9	114.8(9)
N1	N2	Zn15	121.1(3)	C6	N11	Cu1A	123.8(7)
C1	N2	$\mathrm{Zn} 1^{5}$	130.9(3)	C9	N11	C6	104.1(8)
C1	N2	N1	107.8(3)	C9	N11	Cu1A	118.8(8)
C3	C2	C4	127.8(4)	O4 ${ }^{6}$	Zn2	O4 ${ }^{7}$	90.000(1)
C1	C2	C3	104.4(4)	O4	Zn2	04^{7}	180.0
C1	C2	C4	127.7(4)	O4 ${ }^{5}$	Zn2	O4 ${ }^{7}$	90.000(2)
N1	C3	C2	110.8(4)	O4 ${ }^{5}$	Zn2	04	90.0
N2	C1	C2	110.4(4)	O4 ${ }^{6}$	Zn2	O4 ${ }^{5}$	180.0(3)
O2	C4	C2	116.0(4)	O4 ${ }^{6}$	Zn2	04	90.004(2)
01	C4	02	122.7(4)	$\mathrm{Cu1}^{3}$	Cu1A	N11	52.3(4)
01	C4	C2	121.3(4)	Cu1 ${ }^{3}$	Cu1A	O3A	83.8(7)
C5	N3	C8	118.9(9)	C10A	O3	Cu1	177(7)
N3	C5	N4	127.3(9)	C10	O3A	Cu1A	150.1(9)

${ }^{1}+Y, 1-Z, 1-X ;{ }^{21-Z,+Y,-1 / 2+X ;}{ }^{31-X, 1-Y,+Z ; ~}{ }^{4} 1-Z,+X, 1-Y ;{ }^{51 / 2+Z,+Y, 1-X ;}{ }^{61-Z, 1-Y,-1 / 2+X ;}{ }^{7} 3 / 2-X, 1-Y, 1 / 2-Z$

Table S18. Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters ($\AA^{2} \times 10^{3}$) for MeOH-bMOF-200.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U (e q)}$
H3	6695.86	6023.47	3710.14	35
H1	7343.53	5566.69	3255.5	35
H5	5616.79	4348.21	2881.74	46
H5A	6511.09	4872.43	2632.43	34
H5B	6479.5	5162.88	2803.6	34
H9	5539.74	5749.79	2933.46	47
H10A	5000	3739.51	2831.35	134
H10B	5183.6	3799.01	3143.85	134
H10C	4816.3	3799.01	3143.85	134
H10D	5164.9	6256.63	3049.52	134
H10E	4945.9	6087.13	2808.22	134
H10F	4819.7	6172.33	3142.52	134

Table S19. Atomic Occupancy for MeOH-bMOF-200.

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
Cu1	0.8	N3	0.5	C5	0.5
H5	0.5	N4	0.5	C6	0.5
C7	0.5	C8	0.5	N5	0.5
H5A	0.5	H5B	0.5	N9	0.5
C9	0.5	H9	0.5	N11	0.5
Zn2	0.3334	O4	0.75	Cu1A	0.2
O3	0.125	C10A	0.125	H10A	0.125
H10B	0.125	H10C	0.125	C10	0.25
H10D	0.25	H10E	0.25	H10F	0.25
O3A	0.25				

Table S20. Solvent masks information for MeOH-bMOF-200.

Number	\mathbf{X}	\mathbf{Y}	\mathbf{Z}	Volume	Electron count	Content
1	0.000	0.000	0.000	2842.8	235.3	$?$
2	0.000	0.000	0.500	2842.8	235.3	$?$
3	0.000	0.500	0.000	2842.8	235.3	$?$
4	0.000	0.500	0.500	2842.8	235.3	$?$
5	0.250	0.250	0.250	2025.8	594.2	$?$
6	0.250	0.250	0.750	2025.8	608.7	$?$
7	0.250	0.750	0.250	2025.8	608.7	$?$
8	0.250	0.750	0.750	2025.8	594.2	$?$
9	0.500	0.000	0.500	2842.8	235.3	$?$
10	0.500	0.000	0.000	2842.8	235.3	$?$
11	0.500	0.500	0.500	2842.8	235.3	$?$
12	0.500	0.500	0.000	2842.8	235.3	$?$
13	0.750	0.250	0.250	2025.8	608.7	$?$
14	0.750	0.250	0.750	2025.8	594.2	$?$
15	0.750	0.750	0.250	2025.8	594.2	$?$
16	0.750	0.750	0.750	2025.8	608.7	$?$

7.3 bMOF-201

Single crystal X-ray diffraction data of bMOF-201 were collected on a Bruker X8 Prospector Ultra diffractometer equipped with an Apex II CCD detector and an I $\mu \mathrm{S}$ microfocus CuK- α X-ray source ($\lambda=1.54178 \AA$). A colorless cubic crystal of dimensions $0.065 \times 0.065 \times 0.065 \mathrm{~mm}^{3}$ was mounted on a goniometer using MiTeGen MicroMesh tips. Data were collected under N_{2} stream at 150 K and processed using the Bruker APEX II software package.

A cubic unit cell with dimensions $a=b=c=43.1097(5) \AA, \alpha=\beta=\gamma=90^{\circ}$, was derived from least squares refinement of 9745 reflections in range of $5.798^{\circ}<2 \theta<117.966^{\circ}$. Centrosymmetric space group $F m \overline{3} c$ was determined based on intensity statistics and systematic absences. The data were collected and integrated to $0.90 \AA$ by Bruker program SAINT. ${ }^{14}$ Empirical absorption correction was applied using program SADABS. ${ }^{14}$ The structure was solved with direct method using SHELXT and refined by full-matrix least-squares on F^{2} using SHELXL in Olex2. ${ }^{15-17}$ All the non-H atoms were refined anisotropically. All the H atoms were refined isotropically. Refinement details are included in the CIF. The asymmetric unit is shown in Figure S23. Crystallographic data are summarised in Tables S21-S29.

Figure S21. Asymmetric unit of bMOF-201 with all non-H atoms represented by thermal ellipsoids drawn at 50% probability level produced by ORTEP-3 ${ }^{18}$ (O , red; C, black; N , blue; Zn , green; H , black spheres).

Table S21. Crystallographic data and structural refinement for bMOF-201.

Identification code	bMOF-201
Empirical formula	$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{9} \mathrm{O}_{7} \mathrm{Zn}_{3}$
Formula weight	627.45
Temperature/K	150.0
Crystal system	cubic
Space group	Fm-3c
a/Å	43.1097(5)
b/Å	43.1097(5)
c / \AA A	43.1097(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	90
V^{\prime}	90
Volume/ $/{ }^{3}$	80117(3)
Z	96
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.248
μ / mm^{-1}	2.865
F(000)	29952.0
Crystal size/mm ${ }^{3}$	$0.65 \times 0.65 \times 0.65$
Radiation	CuKa ($\lambda=1.54178$)
2Θ range for data collection $/{ }^{\circ}$	4.1 to 117.928
Index ranges	$-47 \leq \mathrm{h} \leq 47,-47 \leq \mathrm{k} \leq 37,-47 \leq 1 \leq 43$
Reflections collected	79464
Independent reflections	$2535\left[\mathrm{R}_{\text {int }}=0.0507, \mathrm{R}_{\text {sigma }}=0.0132\right]$
Data/restraints/parameters	2535/33/178
Goodness-of-fit on F^{2}	1.110
Final R indexes [l>=2 $\left.{ }^{\text {(}} \mathrm{I}\right)$]	$\mathrm{R}_{1}=0.0814, \mathrm{wR}_{2}=0.2406$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0850, \mathrm{wR}_{2}=0.2445$
Largest diff. peak/hole / e \AA^{-3}	2.13/-1.48

Table S22. Fractional atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for bMOF-201. $U_{\text {eq }}$ is defined as $1 / 3$ of the trace of the orthogonalized $U_{I J}$ tensor.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{U (e q)}$
Zn1	$2800.1(2)$	$5786.6(2)$	$3817.8(2)$	$25.3(4)$
Zn2	$3257.5(7)$	$5389.9(5)$	5000	$88.0(9)$
O1	$3157.0(12)$	$5810.8(13)$	$3546.6(12)$	$38.5(13)$
O2	$2932.3(13)$	$5484.3(14)$	$3221.6(14)$	$45.6(14)$
O3	$3176(10)$	$5852(3)$	5000	$400(20)$
O4	$3370(13)$	$6318(5)$	5000	$460(30)$
O5	$3688(4)$	$5190(3)$	5000	$360(30)$
N1	$2800(2)$	5000	$3653(2)$	$43(2)$
N2	$2872.6(18)$	$5428.2(18)$	$4113(2)$	$58(2)$
N3	$3017(2)$	$5273(2)$	$4611(2)$	$73(3)$
N4	$3663.9(13)$	$5777.4(13)$	$2628.7(14)$	$28.5(14)$
N5	$3822.5(13)$	$5940.8(13)$	$2860.4(13)$	$25.9(13)$
C1	$2950(3)$	$5495(3)$	$4399(3)$	$82(4)$
C2	$2980(4)$	5000	$4482(3)$	$73(5)$
C3	$2884(4)$	$5136(3)$	$4177(4)$	$35(4)$
C4	$3396.7(15)$	$5740.8(16)$	$3064.7(18)$	$29.0(16)$
C5	$3656.6(17)$	$5923.6(16)$	$3117.6(17)$	$30.2(16)$
C6	$2849(3)$	$5096(3)$	$3958(4)$	$23(3)$
C7	$3411.8(17)$	$5655.2(17)$	$2756.4(16)$	$30.3(16)$
C8	$3141.9(18)$	$5669.8(18)$	$3293(2)$	$38(2)$
C9	$4040(6)$	$5182(14)$	5000	$410(40)$
C10	$3404(10)$	$6022(7)$	5000	$450(30)$

Table S23. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for bMOF-201. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{*} U_{11}+2 h k a * b^{*} U_{12}+\ldots\right]$.

Atom	\mathbf{U}_{11}	$\mathbf{U}_{\mathbf{2 2}}$	\mathbf{U}_{33}	\mathbf{U}_{23}	\mathbf{U}_{13}	$\mathbf{U}_{\mathbf{1 2}}$
Zn1	$24.8(6)$	$21.5(6)$	$29.7(6)$	$-2.8(4)$	$3.1(4)$	$-0.2(4)$
Zn2	$138(2)$	$63.8(14)$	$62.3(14)$	0	0	$-17.4(14)$
O1	$34(3)$	$49(3)$	$33(3)$	$-4(3)$	$13(2)$	$-4(2)$
O2	$36(3)$	$47(3)$	$54(4)$	$-12(3)$	$10(3)$	$-14(3)$
O3	$1010(80)$	$54(7)$	$134(16)$	0	0	$-97(16)$
O4	$1030(90)$	$96(12)$	$260(30)$	0	0	$-140(30)$
O5	$500(60)$	$450(60)$	$119(17)$	0	0	$310(50)$
N1	$32(5)$	$69(7)$	$27(5)$	0	$-5(4)$	0
N2	$55(5)$	$43(4)$	$76(6)$	$36(4)$	$18(4)$	$9(4)$
N3	$101(7)$	$58(5)$	$61(6)$	$31(5)$	$-3(5)$	$12(5)$
N4	$24(3)$	$27(3)$	$35(3)$	$-3(2)$	$3(2)$	$-5(2)$
N5	$27(3)$	$24(3)$	$27(3)$	$0(2)$	$0(3)$	$-3(2)$
C1	$83(8)$	$86(9)$	$77(9)$	$62(7)$	$15(7)$	$1(7)$
C2	$75(11)$	$116(16)$	$28(7)$	0	$-5(7)$	0
C3	$48(10)$	$20(6)$	$35(10)$	$8(7)$	$4(8)$	$-5(7)$
C4	$18(3)$	$25(4)$	$44(4)$	$-2(3)$	$6(3)$	$-6(3)$
C5	$34(4)$	$29(4)$	$27(4)$	$-5(3)$	$2(3)$	$2(3)$
C6	$39(8)$	$17(8)$	$14(7)$	$-6(5)$	$-6(6)$	$-1(5)$
C7	$27(4)$	$35(4)$	$30(4)$	$-4(3)$	$-4(3)$	$-3(3)$
C8	$31(4)$	$28(4)$	$54(5)$	$9(4)$	$18(4)$	$12(3)$
C9	$500(60)$	$480(90)$	$240(50)$	0	0	$150(70)$
C10	$1050(80)$	$83(11)$	$200(30)$	0	0	$-140(20)$

Table S24. Bond lengths for bMOF-201.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Zn1	O1	1.935(5)	N2	C6	1.584(15)
Zn1	N2	2.027(7)	N3	C1	1.358(13)
Zn1	N4 ${ }^{1}$	1.964(6)	N3	C2	1.312(11)
Zn1	N5 ${ }^{2}$	1.998(6)	N4	N5	1.400(8)
Zn2	O3	2.023(15)	N4	C7	1.327 (9)
Zn2	O5	2.046(17)	N5	C5	1.321 (9)
Zn2	N3	2.033(10)	C2	C3 ${ }^{4}$	1.50(2)
Zn2	N3 ${ }^{3}$	2.033(10)	C2	C3	1.50(2)
O1	C8	1.251(10)	C3	C3 ${ }^{4}$	1.18(3)
O2	C8	1.246(10)	C3	C6	0.973(19)
O3	C10	1.23(2)	C3	C64	1.387(19)
O4	C10	1.285(19)	C4	C5	1.389(10)
O5	C9	1.519(19)	C4	C7	1.381(10)
N1	C6	1.394(17)	C4	C8	1.508(10)
N2	C1	1.307(16)	C6	C64	0.83(2)
N2	C3	1.288(17)			

[^0]Table S25. Bond Angles for bMOF-201.

Atom	Atom	Atom	Angle(${ }^{\circ}$)	Atom	Atom	Atom	Angle(${ }^{\circ}$)
O1	Zn1	N2	107.3(3)	C3 ${ }^{6}$	C2	C3	46.3(14)
01	Zn1	N4 ${ }^{1}$	123.1(2)	N2	C3	C2	125.5(15)
O1	Zn1	N5 ${ }^{2}$	99.6(2)	N2	C3	C6 ${ }^{6}$	123.9(14)
N4 ${ }^{1}$	Zn1	N2	110.0(3)	C3 ${ }^{6}$	C3	N2	167.5(10)
N4 ${ }^{1}$	Zn1	N5 ${ }^{2}$	108.4(2)	C3 ${ }^{6}$	C3	C2	66.9(7)
N5 ${ }^{2}$	Zn1	N2	107.2(3)	C3 ${ }^{6}$	C3	C6 ${ }^{6}$	43.6(8)
O3	Zn2	O5	124.9(12)	C6	C3	N2	87.8(13)
O3	Zn2	N3	99.0(7)	C6 ${ }^{6}$	C3	C2	110.1(11)
O3	Zn2	N3 ${ }^{3}$	99.0(7)	C6	C3	C2	145.7(17)
N3	Zn2	O5	110.9(3)	C6	C3	C3 ${ }^{6}$	79.8(11)
N3 ${ }^{3}$	Zn2	O5	110.9(3)	C6	C3	C6 ${ }^{6}$	36.1(12)
N3 ${ }^{3}$	Zn2	N3	111.0(6)	C5	C4	C8	126.6(7)
C8	O1	Zn1	117.3(5)	C7	C4	C5	105.8(6)
C10	O3	Zn2	117(2)	C7	C4	C8	127.6(7)
C9	O5	Zn2	156(2)	N5	C5	C4	109.3(6)
C1	N2	Zn1	117.6(8)	$\mathrm{N} 1^{6}$	C6	N1	0.0(8)
C1	N2	C6	127.9(9)	N1 ${ }^{6}$	C6	N2	132.7(10)
C3	N2	Zn1	152.1(11)	N1	C6	N2	132.7(10)
C3	N2	C1	90.3(11)	C3 ${ }^{6}$	C6	N1 ${ }^{6}$	116.3(10)
C3	N2	C6	37.9(9)	C3 ${ }^{6}$	C6	N1	116.3(10)
C6	N2	Zn1	114.4(7)	C3	C6	N1	172.9(15)
C1	N3	Zn2	119.3(9)	C3	C6	N1 ${ }^{6}$	172.9(15)
C2	N3	Zn2	129.6(8)	C3 ${ }^{6}$	C6	N2	111.0(10)
C2	N3	C1	108.5(11)	C3	C6	N2	54.4(11)
N5	N4	Zn14	119.7(4)	C3	C6	C3 ${ }^{6}$	56.6(15)
C7	N4	Zn14	132.4(5)	C6 ${ }^{6}$	C6	N1 ${ }^{6}$	72.7(5)
C7	N4	N5	107.7(6)	C6 ${ }^{6}$	C6	N1	72.7(5)
N4	N5	Zn1 ${ }^{5}$	125.5(4)	C6 ${ }^{6}$	C6	N2	154.6(6)
C5	N5	Zn1 ${ }^{5}$	126.5(5)	C6 ${ }^{6}$	C6	C3 ${ }^{6}$	43.7(8)
C5	N5	N4	107.8(5)	C6 ${ }^{6}$	C6	C3	100.2(11)
N2	C1	N3	122.3(13)	N4	C7	C4	109.4(6)
N3	C2	N3 ${ }^{6}$	127.2(13)	O1	C8	C4	115.7(7)
N3	C2	C3 ${ }^{6}$	139.5(11)	O2	C8	O1	124.5(7)
N3 ${ }^{6}$	C2	C3	139.5(11)	O2	C8	C4	119.7(7)
N3	C2	C3	93.2(8)	O3	C10	O4	120(3)
N3 ${ }^{6}$	C2	C3 ${ }^{6}$	93.2(8)				

[^1]Table S26. Torsion angles for bMOF-201.

A	B	C	D	Angle(${ }^{\circ}$)	A	B	C	D	Angle(${ }^{\circ}$)
Zn1	01	C8	O2	-9.7(10)	C1	N2	C6	$\mathrm{N} 1^{1}$	-172.6(13)
Zn1	01	C8	C4	169.2(5)	C1	N2	C6	C3 ${ }^{1}$	7.5(18)
Zn1	N2	C1	N3	-176.9(9)	C1	N2	C6	C3	7.2(18)
Zn1	N2	C3	C2	176.8(12)	C1	N2	C6	C6 ${ }^{1}$	8(2)
Zn1	N2	C3	C31	5(5)	C1	N3	C2	N3 ${ }^{1}$	-178.9(14)
Zn1	N2	C3	C6	6(3)	C1	N3	C2	C3	0.0(14)
Zn1	N2	C3	C61	6(3)	C1	N3	C2	C3 ${ }^{1}$	-1(3)
Zn1	N2	C6	N1	3.1(17)	C2	N3	C1	N2	-2.3(17)
Zn1	N2	C6	N11	3.1(17)	C2	C3	C6	N2	-167(4)
Zn1	N2	C6	C3 ${ }^{1}$	-176.8(10)	C2	C3	C6	C3 ${ }^{1}$	13(3)
Zn1	N2	C6	C3	-177.1(14)	C2	C3	C6	C61	13(3)
Zn1	N2	C6	C6 ${ }^{1}$	-176.4(9)	C3	N2	C1	N3	3.1 (14)
$\mathrm{Zn} 1^{2}$	N4	N5	$\mathrm{Zn} 1^{3}$	-2.1(7)	C3	N2	C6	N1	-180(100)
$\mathrm{Zn} 1^{2}$	N4	N5	C5	173.7(5)	C3	N2	C6	$\mathrm{N} 1^{1}$	-180(100)
$\mathrm{Zn} 1^{2}$	N4	C7	C4	-174.0(5)	C3	N2	C6	C3 ${ }^{1}$	0.2(6)
Zn1 ${ }^{3}$	N5	C5	C4	178.2(5)	C3	N2	C6	C6 ${ }^{1}$	0.6(15)
Zn2	O3	C10	O4	180.0	C31	C2	C3	N2	-178.2(12)
Zn2	N3	C1	N2	161.4(8)	C31	C2	C3	C6 ${ }^{1}$	-5.9(15)
Zn2	N3	C2	N3 ${ }^{1}$	20(3)	C31	C2	C3	C6	-14(4)
Zn2	N3	C2	C3	-161.4(10)	C31	C3	C6	N2	179.7(7)
Zn2	N3	C2	C3 ${ }^{1}$	-162.0(17)	C3 ${ }^{1}$	C3	C6	C61	0.004(5)
N2	C3	C6	C31	-179.7(6)	C5	C4	C7	N4	-0.1(8)
N2	C3	C6	C61	-179.7(7)	C5	C4	C8	01	6.0(11)
N3 ${ }^{1}$	C2	C3	N2	-179.0(18)	C5	C4	C8	O2	-175.0(7)
N3	C2	C3	N2	2(2)	C6	N2	C1	N3	-1.3(18)
N3	C2	C3	C31	-179.5(12)	C6	N2	C3	C2	171(3)
N3 ${ }^{1}$	C2	C3	C3 ${ }^{1}$	-0.8(19)	C6	N2	C3	C3 ${ }^{1}$	-1(3)
N3	C2	C3	C6	166(3)	C6	N2	C3	C6 ${ }^{1}$	-0.2(5)
N3 ${ }^{1}$	C2	C3	C6 ${ }^{1}$	-7(3)	C61	C3	C6	N2	179.7(7)
N3	C2	C3	C6 ${ }^{1}$	174.6(13)	C61	C3	C6	C3 ${ }^{1}$	-0.004(11)
N3 ${ }^{1}$	C2	C3	C6	-15(5)	C7	N4	N5	$\mathrm{Zn} 1^{3}$	-178.3(5)
N4	N5	C5	C4	2.4(8)	C7	N4	N5	C5	-2.5(8)
N5	N4	C7	C4	1.5(8)	C7	C4	C5	N5	-1.5(8)
C1	N2	C3	C2	-3.3(18)	C7	C4	C8	01	-169.7(7)
C1	N2	C3	C3 ${ }^{1}$	-176(4)	C7	C4	C8	O2	9.3(12)
C1	N2	C3	C6 ${ }^{1}$	-174.5(16)	C8	C4	C5	N5	-178.0(7)
C1	N2	C3	C6	-174.3(14)	C8	C4	C7	N4	176.3(7)
C1	N2	C6	N1	-172.6(13)					

Table S27. Hydrogen atom coordinates $\left(\AA \times 10^{4}\right)$ and isotropic displacement parameters ($\AA^{2} \times 10^{3}$) for bMOF-201.

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	U(eq)
H5	$3620(6)$	5000	5000	535
H1A	2787.78	4817.69	3618.69	51
H1B	2623.55	5106.99	3594.66	51
H1	2958.57	5706.54	4459.73	98
H5A	3707.27	6020.91	3308.68	36
H7	3264.74	5528.55	2651.99	36
H9A	4110.79	4969.81	4957.78	610
H9B	4117.2	5248.37	5203.08	610
H9C	4118.88	5321.47	4839.13	610
H10	3606.35	5934.27	5000	534

Table S28. Atomic Occupancy for bMOF-201

Atom	Occupancy	Atom	Occupancy	Atom	Occupancy
H5	2	H1A	0.5	H1B	0.5
C3	0.5	C6	0.5	H9A	0.5
H9B	0.5	H9C	0.5		

Table S29. Solvent masks information for bMOF-201

Number	\mathbf{x}	\mathbf{y}	\mathbf{z}	Volume	Electron count	Content
1	-0.753	-0.960	-0.173	34730.4	3276.6	$?$
2	0.000	0.000	0.250	11.6	2.0	$?$
3	0.000	0.000	0.750	11.6	2.0	$?$
4	0.000	0.250	0.000	11.6	2.0	$?$
5	0.000	0.250	0.500	11.6	2.0	$?$
6	0.000	0.500	0.250	11.6	2.0	$?$
7	0.000	0.500	0.750	11.6	2.0	$?$
8	0.000	0.750	0.000	11.6	2.0	$?$
9	0.000	0.750	0.500	11.6	2.0	$?$
10	0.250	0.000	0.000	11.6	2.0	$?$
11	0.250	0.000	0.500	11.6	2.0	$?$
12	0.250	0.500	0.000	11.6	2.0	$?$
13	0.250	0.500	0.500	11.6	2.0	$?$
14	0.500	0.000	0.250	11.6	2.0	$?$
15	0.500	0.000	0.750	11.6	2.0	$?$
16	0.500	0.250	0.500	11.6	2.0	$?$
17	0.500	0.250	0.000	11.6	2.0	$?$
18	0.500	0.500	0.250	11.6	2.0	$?$
19	0.500	0.500	0.750	11.6	2.0	$?$
20	0.500	0.750	0.000	11.6	2.0	$?$
21	0.500	0.750	0.500	11.6	2.0	$?$
22	0.750	0.000	0.000	11.6	2.0	$?$
23	0.750	0.000	0.500	11.6	2.0	$?$
24	0.750	0.500	0.500	11.6	2.0	$?$
25	0.750	0.500	0.000	11.6	2.0	$?$

References

1. S. Stoll and A. Schweiger, J. Magn. Reson., 2006, 178, 42-55.
2. J. VandeVondele, M. Krack, F. Mohamed, M. Parrinello, T. Chassaing and J. Hutter, Comput. Phys. Commun., 2005, 167 (2), 103-128.
3. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77 (18), 38653868.
4. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132 (15), 154104.
5. J. VandeVondele and J. Hutter, J. Chem. Phys., 2007, 127, 114105.
6. G. Henkelman and H. Jónsson, J. Chem. Phys., 2000, 113, 9978.
7. G. Henkelman and H. Jónsson, J. Chem. Phys., 2000, 113, 9901.
8. J. Wellendorff, K. T. Lundgaard, A. Møgelhøj, V. Petzold, D. D. Landis, J. K. Nørskov, T. Bligaard and K. W. Jacobsen, Physical Review B, 2012, 85, 235149.
9. L. Gráfová, M. Pitoňák, J. Řezáč and P. Hobza, Journal of Chemical Theory and Computation, 2010, 6, 2365-2376.
10. L. Li, Y. Yang, M. H. Mohamed, S. Zhang, G. Veser, N. L. Rosi and J. K. Johnson, Organometallics, 2019, 38, 3453-3459.
11. G. C. Shearer, J. G. Vitillo, S. Bordiga, S. Svelle, U. Olsbye and K. P. Lillerud, Chem. Mater., 2016, 28, 7190-7193.
12. N. C. Jeong, B. Samanta, C. Y. Lee, O. K. Farha and J. T. Hupp, J. Am. Chem. Soc., 2012, 134, 51-54.
13. K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. Huang, F. J. Uribe-Romo, H. K. Chae, M. O’Keeffe and O. M. Yaghi, Proc. Natl. Acad. Sci., 2006, 103, 10186.
14. APEX2, SAINT, and SADABS; Bruker AXS Inc.: Madison WI, USA, 2014.
15. G.M. Sheldrick, Acta Crystallogr., 2015, A71, 3-8.
16. G.M. Sheldrick, Acta Crystallogr., 2015, C71, 3-8.
17. O. V. Dolomanov, L. J. Bourhis, R.J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.
18. M. N. Burnett and C. K. Johnson, ORTEP-III: Oak Ridge Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Oak Ridge National Laboratory Report ORNL-6895, 1996.

[^0]: ${ }^{1}+X,+Z, 1 / 2-Y ;{ }^{2} 1+Z,-1+X,+Y ;{ }^{3} 2-X,-Y,+Z ;{ }^{4}+X,-Y,+Z ;{ }^{5} 2-X,+Y,+Z ;{ }^{6}+X, 1 / 2-Z,+Y ;{ }^{7} 1+Y,+Z,-$ $1+X$

[^1]: ${ }^{1}+X,+Z, 1 / 2-Y ;{ }^{2} 1+Z,-1+X,+Y ;{ }^{3} 2-X,-Y,+Z ;{ }^{4}+X,-Y,+Z ;{ }^{5} 2-X,+Y,+Z ;{ }^{6}+X, 1 / 2-Z,+Y ;{ }^{7} 1+Y$, $+Z,-1+X$

