Electronic Supplementary Information (ESI)

Biomimetic hydrogen-bonding cascade for chemical activation: telling a nucleophile from a base

Hyunchang Park and Dongwhan Lee^*

Department of Chemistry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea

Experimental Section

General Considerations. All reagents were obtained from commercial suppliers and used as received unless otherwise noted. The solvents DCM and THF were saturated with nitrogen and purified by passage through activated Al_2O_3 columns under nitrogen (Innovative Technology SPS PureSolv MD4). The solvent DMF was saturated with argon and purified by passage through activated Al_2O_3 columns under argon (Pure Process Technology GC-SPS-8). HPLC-grade H_2O was used for reactivity studies. The compounds 4-methylbenzo[c][1,2,5]thiadiazole,¹ benzo[c][1,2,5]thiadiazole-4-carbaldehyde,² 4-bromo-7-methylbenzo[c][1,2,5]thiadiazole,³ 4-bromo-7-(bromomethyl)benzo[c][1,2,5]thiadiazole,² 4-bromo-7-(hydroxymethyl)benzo[c]thiadiazole,⁴ 2-hydroxy-6-(methoxymethoxy)benzaldehyde,⁵ and N-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)acetamide⁶ were prepared according to literature procedures or their slight modifications. All air-sensitive manipulations were carried out under nitrogen atmosphere by standard Schlenk-line techniques.

Physical Measurements. ¹H NMR, ¹³C NMR, 2D-COSY NMR, and 2D-ROESY NMR spectra were recorded on a Varian/Oxford As-500 (500 MHz) spectrophotometer, a JeolJNM-LA400 (400 MHz) spectrometer, an AVANCE 600 (600 MHz) spectrometer, and a 850 MHz Avance III HD Bruker NMR equipped with a TCI Cryoprobe. Variable-temperature ¹H NMR spectra were recorded on a JeolJNM-LA400 (400 MHz) spectrometer. Chemical shifts were reported versus tetramethylsilane, and referenced to the residual solvent peaks.⁷ High-resolution ESI-MS spectra were obtained on a ESI-Q-TOF mass spectrometer (Compact, Bruker Daltonics Inc.,Bremen Germany). FT-IR spectra were recorded on a PerkinElmer Spectrum Two FT-IR Spectrometer. UV–vis spectra were recorded on an Agilent 8453 UV–vis spectrophotometer with ChemStation software. HPLC-MS analyses were performed on a Shimadzu Prominence LC-20A equipped with a SPD-20A UV detector, a Shim-pack GIS-ODS column (5 μ m, size = 250 × 4.6 mm), and Labsolution software. Fluorescence

¹ R. Agneeswari, V. Tamilavan, M. Song and M. H. Hyun, J. Mater. Chem. C., 2014, **2**, 8515–8524.

² R. Jonas, H. Prücher and H. Wurziger, Eur. J. Med. Chem., 1993, 28, 141–148.

³ Y. Liu, M. Prashad and O. Repič, *J. Heterocyclic Chem.*, 2003, **40**, 713–716.

⁴ S. Haid, M. Marszalek, A. Mishra, M. Wielopolski, J. Teuscher, J. Moser, R. Humphry-Baker, S. M. Zakeeruddin, M. Grätzel and P. Bäuerle, *Adv. Funct. Mater.*, 2012, **22**, 1291–1302.

⁵ B. Metcalf, C. Chuang, K. Dufu, M. P. Patel, A. Silva-Garcia, C. Johnson, Q. Lu, J. R. Partridge, L. Patskovska, Y. Patskovsky, S. C. Almo, M. P. Jacobson, L. Hua, Q. Xu, S. L. Gwaltney, C. Yee, J. Harris, B. P. Morgan, J. James,

D. Xu, A. Hutchaleelaha, K. Paulvannan, D. Oksenberg and Z. Li, ACS. Med. Chem. Lett., 2017, 8, 321–326

⁶ T. Ohmura, T. Awano and M. Suginome, *Chem. Lett.*, 2009, **38**, 664–665

⁷ G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176–2179.

spectra were recorded on a Photon Technology International (PTI) QM-400 spectrofluorometer with FelixGX software.

Job Plot Ananlysis of the Reaction Stoichiometry between 1 and Cyanide Ion. Solution samples of 1 and NaCN were prepared separately in DMSO (66.7 μ M each), and mixed in various volume ratios (1 only, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1, and NaCN only) to maintain a constant overall concentration of the combined components. The absorbance at $\lambda = 410$ nm was measured and plotted.

HPLC-MS Analysis of the Cyanohydrin Adduct of 1. A solution sample of 1 (0.333 mM) and NaCN (25 equiv) was prepared in DMSO (1.5 mL). A 5 μ L aliquot was taken by the autosampler, and subjected to HPLC-MS analysis (MeCN-H₂O (9:1, v/v) containing 0.1% TFA as eluent). The MS spectrum at $t_{\rm R} = 3.60$ min was recorded. Control studies with untreated 1 (0.333 mM in DMSO) produced a chromatogram at $t_{\rm R} = 4.25$ min, which was confirmed by MS analysis.

Determination of the Rate Constant for the Reaction of 1 with Cyanide. Solution samples of 1 (40.0 μ M) in DMSO–MeCN (1:1, v/v) were prepared, and treated with NaCN (10, 20, and 30 equiv) at 288 K with stirring (1200 rpm). After adding NaCN, changes in the absorbance at $\lambda = 400$ nm were recorded per 1 s. The experimental data points were fitted to the theoretical *pseudo*-first-order kinetic model to determine the rate constant, k'. The second-order rate constant was estimated by plotting k' vs [CN⁻]₀, and obtaining a linear fit. Scheme S1. Synthetic route to 2.

(2,3-Diaminophenyl)methanol (5). To a stirred EtOH (150 mL) suspension of benzo[c][1,2,5]thiadiazole-4-carbaldehyde² (1.36 g, 8.28 mmol) was added CoCl₂·6 H₂O (356 mg, 1.50 mmol). The mixture was cooled to 0 °C, and NaBH₄ (3.14 g, 83.0 mmol) was added portionwise. The reaction mixture was warmed to r.t., stirred for 3 h, and quenched by adding water (150 mL). Insoluble material was removed by filtration, and the filtrate was extracted into EtOAc (200 mL × 3). The combined extracts were dried over anhyd MgSO₄, filtered, and concentrated under reduced pressure. Flash column chromatography on SiO₂ (hexane:EtOAc:MeOH = 5:5:1, v/v) furnished **5** as a pale yellow solid (416 mg, 3.01 mmol, yield = 36%). ¹H NMR (500 MHz, DMSO-d₆, 298 K): δ 6.47 (d, J = 7.5 Hz, 1H), 6.41 (d, J = 7.4 Hz, 1H), 6.35 (t, J = 7.5 Hz, 1H), 4.91 (t, J = 5.4 Hz, 1H), 4.42 (s, 2H), 4.36 (d, J = 5.4 Hz, 2H), 4.33 (s, 2H). ¹³C NMR (125 MHz, DMSO-d₆, 298 K): δ 134.9, 132.9, 125.6, 117.3, 116.5, 114.1, 61.9. FT-IR (ATR, cm⁻¹): 3397, 3325, 3192, 3032, 2917, 2873, 1615, 1476, 1393, 1297, 1256, 1209, 1174, 1131, 1000, 916, 875, 780, 732, 691. HRMS (ESI) calcd for C₇H₁₀N₂O [M + H]⁺ 139.0866, found 139.0868.

(2-(4-Ethylphenyl)-1H-benzo[d]imidazol-7-yl)methanol (7). To a stirred solution of 5 (78.9 mg, 0.571 mmol) in EtOH (25 mL) was added 4-ethylbenzaldehyde (0.20 mL, 1.5 mmol). The solution was stirred for 10 min at 60 °C, and treated with an aq solution (0.7 mL) of Na₂S₂O₅ (90.8 mg, 0.478 mmol). The reaction mixture was heated at reflux for 12 h, cooled to r.t., and concentrated under reduced pressure. The crude mixture was diluted with EtOAc (100 mL), washed with water (100 mL), and extracted into EtOAc (100 mL × 2). The combined extracts were dried over anhyd MgSO₄, filtered, and concentrated under reduced pressure. Flash column chromatography on SiO₂ (hexane:EtOAc = 9:1 to 1:2, v/v) furnished 7 as a white solid (110 mg, 0.436 mmol, yield = 76%). ¹H NMR (400 MHz, DMSO-*d*₆, 343 K): δ 12.46 (s, 1H), 8.13 (d, *J* = 7.9 Hz, 2H), 7.47 (d, *J* = 7.0 Hz, 1H), 7.38 (d, *J* = 7.9 Hz, 2H), 7.24 (d, *J* = 7.2 Hz, 1H), 7.17 (t, *J* = 7.6 Hz, 1H), 4.95 (s, 2H), 2.70 (q, *J* = 7.5 Hz, 2H), 1.25 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆, 343 K): δ 150.9, 145.3, 127.8, 127.6, 126.4, 121.4, 119.5, 59.4, 27.7, 14.8.⁸ FT-IR (ATR, cm⁻¹): 3054, 2960, 2930, 2859, 2817, 1744, 1718, 1622, 1502, 1481, 1433, 1373, 1318, 1292, 1269, 1237, 1162, 1112, 1059, 1016, 951, 839, 794, 744, 725, 697. HRMS (ESI) calcd for C₁₆H₁₆N₂O [M + H]⁺ 253.1335, found 253.1334.

2-(4-Ethylphenyl)-1H-benzo[d]imidazole-7-carbaldehyde (2). To a stirred solution of 7 (123 mg, 0.487 mmol) in MeCN–CH₂Cl₂ (4:1, v/v, 25 mL) was added MnO₂ (88% active, 510 mg, 5.16 mmol). The reaction mixture was stirred at r.t. for 4 h, diluted with CH₂Cl₂ (50 mL), and filtered through a bed of Celite. The filtrate was washed with a sat'd aq solution of NaHCO₃ (100 mL), and the residual organic fraction was extracted into CH₂Cl₂ (100 mL \times 2). The combined

 $^{^{8}\,}$ The resonances of four aromatic carbons were not found due to tautomerization.

extracts were dried over anhyd MgSO₄, filtered, and concentrated under reduced pressure. Flash column chromatography on SiO₂ (hexane:EtOAc = 9:1 to 3:1, v/v) furnished **2** as a white solid (91.8 mg, 0.367 mmol, yield = 75%). ¹H NMR (500 MHz, CDCl₃, 298 K): δ 10.99 (s, 1H), 10.10 (s, 1H), 8.05 (d, J = 7.9 Hz, 1H), 8.02 (d, J = 7.9 Hz, 2H), 7.68 (d, J = 7.4 Hz, 1H), 7.39 (t, J = 7.7 Hz, 1H), 7.34 (d, J = 7.8 Hz, 2H), 2.71 (q, J = 7.6 Hz, 2H), 1.27 (t, J = 7.7 Hz, 3H). ¹³C NMR (125 MHz, CDCl₃, 298 K): δ 192.7, 153.9, 147.5, 145.2, 133.0, 128.7, 128.4, 127.0, 126.7, 126.4, 122.3, 121.2, 28.9, 15.3. FT-IR (ATR, cm⁻¹): 3327, 3054, 2964, 2929, 2847, 2806, 2730, 1681, 1611, 1600, 1542, 1493, 1458, 1426, 1384, 1360, 1318, 1293, 1273, 1221, 1163, 1088, 1061, 1048, 1020, 966, 948, 882, 859, 831, 790, 736. HRMS (ESI) calcd for C₁₆H₁₄N₂O [M + H]⁺ 251.1179, found 251.1180.

Scheme S2. Synthetic routes to 3 and 4.

2-(7-(Hydroxymethyl)-1H-benzo[*d*]imidazol-2-yl)phenol (8). To a stirred solution of **5** (204 mg, 1.48 mmol) in EtOH (60 mL) was added salicylaldehyde (0.39 mL, 3.7 mmol). The solution was stirred for 10 min at 60 °C, and treated with an aq solution (2.0 mL) of Na₂S₂O₅ (235 mg, 1.24 mmol). The reaction mixture was heated at reflux for 12 h, cooled to r.t., and concentrated under reduced pressure. The crude mixture was diluted with EtOAc (100 mL), washed with water (100 mL), and extracted into EtOAc (100 mL × 2). The combined extracts were dried over anhyd MgSO₄, filtered, and concentrated under reduced pressure. Flash column chromatography on SiO₂ (hexane:EtOAc = 9:1 to 1:2, v/v) furnished **8** as a pale yellow solid (295 mg, 1.23 mmol, yield = 83%). ¹H NMR (500 MHz, CD₃OD, 298 K): δ 7.92 (d, *J* = 7.8 Hz, 1H), 7.48 (d, *J* = 7.8 Hz, 1H), 7.32–7.21 (m, 3H), 6.99 (d, *J* = 8.3 Hz, 1H), 6.94 (t, *J* = 7.5 Hz, 1H), 5.01 (s, 2H). ¹³C NMR (125 MHz, CD₃OD, 298 K): δ 159.5, 153.0, 132.7, 132.5, 129.7, 128.3, 127.1, 124.1, 124.0, 122.1, 120.3, 118.2, 114.3, 61.6. FT-IR (ATR, cm⁻¹): 3356, 3183, 3130, 3068, 1630, 1598, 1538, 1487, 1420, 1403, 1322, 1257, 1167, 1134, 1069, 1034, 998, 969, 902, 872, 830, 795, 748, 691. HRMS (ESI) calcd for C₁₄H₁₂N₂O₂ [M + H]⁺ 241.0972, found 241.0972.

2-(7-(Hydroxymethyl)-1H-benzo[d]imidazol-2-yl)-3-(methoxymethoxy)phenol (9). To a stirred solution of 5 (77.3 mg, 0.559 mmol) in EtOH (21 mL) was added 2-hydroxy-6-(methoxymethoxy)benzaldehyde⁵ (257 mg, 1.41 mmol). The solution was stirred for 10 min at 60 °C, and treated with an aq solution (0.8 mL) of $Na_2S_2O_5$ (89.3 mg, 0.470 mmol). The reaction mixture was heated at reflux for 12 h, cooled to r.t., and concentrated under reduced pressure. The crude mixture was diluted with EtOAc (100 mL), washed with water (100 mL), and extracted into EtOAc (100 mL × 2). The combined extracts were dried over anhyd MgSO₄, filtered, and concentrated under reduced pressure. Flash column chromatography on SiO₂ (hexane:EtOAc = 9:1 to 1:1, v/v) furnished **9** as a yellow solid (129 mg, 0.430 mmol, yield = 77%). ¹H NMR (500 MHz, CD₃OD, 298 K): δ 7.57 (dd, J = 6.1, 3.1 Hz, 1H), 7.31–7.14 (m, 3H), 6.76 (d, J = 8.4 Hz, 1H), 6.68 (d, J = 8.3 Hz, 1H), 5.47 (s, 2H), 5.04 (s, 2H), 3.53 (s, 3H). ¹³C NMR (125 MHz, CD₃OD, 298 K): δ 161.8, 157.1, 151.3, 132.3, 129.5, 123.9, 121.6, 114.2, 112.2, 105.5, 104.1, 96.0, 62.2, 56.9.⁹ FT-IR (ATR, cm⁻¹): 3456, 3421, 3065, 3005, 2864, 2830, 1622, 1593, 1524, 1478, 1445, 1404, 1380, 1318, 1277, 1238, 1202, 1151, 1091, 1072, 1034, 934, 920, 872, 843, 786, 737, 712, 657. HRMS (ESI) calcd for C₁₆H₁₆N₂O₄ [M + H]⁺ 301.1183, found 301.1185.

2-(2-Hydroxyphenyl)-1H-benzo[*d*]imidazole-7-carbaldehyde (3). To a stirred solution of **8** (74.6 mg, 0.310 mmol) in MeCN–CH₂Cl₂ (4:1, v/v, 15 mL) was added MnO₂ (88% active, 324 mg, 3.28 mmol). The reaction mixture was stirred at r.t. for 7 h, diluted with CH₂Cl₂ (50 mL), and filtered through a bed of Celite. The filtrate was washed with a sat'd aq solution of NaHCO₃ (100 mL), and the residual organic fraction was extracted into CH₂Cl₂ (100 mL × 2). The combined extracts were dried over anhyd MgSO₄, filtered, and concentrated under reduced pressure. Flash column chromatography on SiO₂ (hexane:EtOAc = 9:1 to 4:1, v/v) furnished **3** as a white solid (44.7 mg, 0.188 mmol, yield = 61%). ¹H NMR (500 MHz, CD₃OD, 298 K): δ 10.30 (s, 1H), 8.22–8.16 (m, 1H), 7.99 (d, J = 8.2 Hz, 1H), 7.86 (d, J = 7.7 Hz, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.40 (t, J = 7.7 Hz, 1H), 7.09–6.98 (m, 2H), 4.60 (s, 1H). ¹³C NMR (100 MHz, DMSO- d_6 , 343 K): δ 190.6, 157.6, 153.3, 131.9, 127.2, 124.2, 122.2, 118.9, 116.9, 112.5.¹⁰ FT-IR (ATR, cm⁻¹): 3301, 3067, 2922, 2842, 1673, 1632, 1590, 1527, 1486, 1440, 1418, 1390, 1370, 1324, 1282, 1256, 1218, 1205, 1170, 1084, 1064, 1041, 958, 940, 886, 835, 796, 760, 744, 716, 667. HRMS (ESI) calcd for C₁₄H₁₀N₂O₂ [M + H]⁺ 239.0815, found 239.0817.

2-(2-Hydroxy-6-(methoxymethoxy)phenyl)-1H-benzo[*d*]imidazole-7-carbaldehyde (4). To a stirred solution of **9** (158 mg, 0.526 mmol) in MeCN–CH₂Cl₂ (4:1, v/v, 25 mL) was added MnO₂ (88% active, 627 mg, 6.35 mmol). The reaction mixture was stirred at r.t. for 20 h, diluted with CH₂Cl₂ (100 mL), and filtered through a bed of Celite. The filtrate was washed with water (100 mL), and the residual organic fraction was extracted into CH₂Cl₂ (100 mL × 2). The combined extracts were dried over anhyd MgSO₄, filtered, and concentrated under reduced pressure. Flash column chromatography on SiO₂ (hexane:EtOAc = 9:1 to 3:1, v/v) furnished **4** as a yellow solid (124 mg, 0.416 mmol, yield = 79%). ¹H NMR (500 MHz, CDCl₃, 298 K): δ 13.80 (s, 1H), 11.89 (s, 1H), 10.04 (s, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 7.4 Hz, 1H), 7.33 (t, *J* = 7.7 Hz, 1H), 7.18 (t, *J* = 8.3 Hz, 1H), 6.71 (d, *J* = 8.3 Hz, 1H), 6.61 (d, *J* = 8.3 Hz, 1H), 5.42 (s, 2H), 3.59 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 298 K): δ 192.3, 161.2, 155.7, 152.7, 141.2, 132.2, 130.3, 128.4, 124.8, 122.6, 121.1, 111.9, 104.0, 102.5, 95.4, 57.3. FT-IR (ATR, cm⁻¹): 3445, 3085, 2913, 2832, 2744, 1666, 1591, 1523, 1474, 1448, 1407, 1388, 1364, 1308, 1273, 1240, 1196, 1152, 1090, 1077, 1037, 944, 918, 884, 839, 792, 777, 741, 723. HRMS (ESI) calcd for C₁₆H₁₄N₂O₄ [M + H]⁺ 299.1026, found 299.1029.

⁹ The resonances of two aromatic carbons were not found due to tautomerization.

¹⁰ The resonances of four aromatic carbons were not found due to tautomerization.

Scheme S3. Synthetic route to 1.

(2,3-Diamino-4-bromophenyl)methanol (10). To a stirred EtOH (50 mL) suspension of 4bromo-7-(hydroxymethyl)benzo[c]thiadiazole⁴ (905 mg, 3.69 mmol) was added CoCl₂·6 H₂O (159 mg, 0.668 mmol). The mixture was cooled to 0 °C, and NaBH₄ (1.41 g, 37.3 mmol) was added portionwise. The reaction mixture was warmed to r.t., stirred for 2 h, and quenched by adding water (150 mL). Insoluble material was removed by filtration, and the filtrate was extracted into EtOAc (200 mL × 3). The combined extracts were dried over anhyd MgSO₄, filtered, and concentrated under reduced pressure. Flash column chromatography on SiO₂ (hexane:EtOAc = 9:1 to 1:3, v/v) furnished **10** as a pale yellow solid (566 mg, 2.61 mmol, yield = 71%). ¹H NMR (500 MHz, DMSO-d₆, 298 K): δ 6.67 (d, J = 8.2 Hz, 1H), 6.41 (d, J = 8.2 Hz, 1H), 5.02 (t, J = 5.4 Hz, 1H), 4.70 (s, 2H), 4.63 (s, 2H), 4.36 (d, J = 5.1 Hz, 2H). ¹³C NMR (125 MHz, DMSO-d₆, 298 K): δ 133.8, 131.8, 124.6, 119.3, 117.9, 107.6, 61.2. FT-IR (ATR, cm⁻¹): 3379, 3302, 3226, 1592, 1471, 1449, 1279, 1249, 1204, 1140, 989, 938, 855, 796, 761, 710. HRMS (ESI) calcd for C₇H₉BrN₂O [M + H]⁺ 216.9971, found 216.9968.

2-(4-Bromo-7-(hydroxymethyl)-1H-benzo[d]imidazol-2-yl)-3-(methoxymethoxy)-

phenol (11). To a stirred solution of 10 (566 mg, 2.61 mmol) in EtOH (90 mL) was added 2-hydroxy-6-(methoxymethoxy)benzaldehyde⁵ (702 mg, 3.85 mmol). The solution was stirred for 10 min at 60 °C, and treated with an aq solution (3.6 mL) of Na₂S₂O₅ (415 mg, 2.18 mmol). The reaction mixture was heated at reflux for 16 h, cooled to r.t., and concentrated under reduced pressure. The crude mixture was diluted with EtOAc (100 mL), washed with water (100 mL), and extracted into EtOAc (100 mL × 2). The combined extracts were dried over anhyd MgSO₄, filtered, and concentrated under reduced pressure. Flash column chromatography on SiO₂ (hexane:EtOAc = 9:1 to 1:3, v/v) furnished **11** as a pale yellow solid (866 mg, 2.28 mmol, yield = 87%). ¹H NMR (500 MHz, DMSO-*d*₆, 298 K): δ 13.80 (s, 1H), 11.84 (s, 1H), 7.46 (d, *J* = 7.9 Hz, 1H), 7.34 (t, *J* = 8.3 Hz, 1H), 7.11 (d, *J* = 7.9 Hz, 1H), 6.78 (d, *J* = 8.3 Hz, 1H), 6.73 (d, *J* = 8.3 Hz, 1H), 5.82 (t, *J* = 5.0 Hz, 1H), 5.48 (s, 2H), 4.94 (d, *J* = 4.9 Hz, 2H), 3.49 (s, 3H). ¹³C NMR (125 MHz, DMSO-*d*₆, 298 K): δ 159.9, 155.2, 150.0, 138.3, 132.1, 130.7, 126.0, 124.9, 121.4, 110.8, 108.1, 104.5, 102.1, 95.0, 61.0, 56.5. FT-IR (ATR, cm⁻¹): 3436, 2959, 2927, 2906, 2830, 1624, 1592, 1524, 1472, 1401, 1373, 1312, 1273, 1241, 1202, 1156, 1115, 1090, 1073, 1026, 928, 807, 791, 778, 749, 728. HRMS (ESI) calcd for C₁₆H₁₅BrN₂O₄ [M + H]⁺ 379.0288, found 379.0286.

4-Bromo-2-(2-hydroxy-6-(methoxymethoxy)phenyl)-1H-benzo[d]imidazole-7-

carbaldehyde (6). To a stirred solution of 11 (866 mg, 2.28 mmol) in MeCN–CH₂Cl₂ (11:3, v/v, 140 mL) was added MnO₂ (88% active, 2.71 g, 27.4 mmol). The reaction mixture was stirred at r.t. for 20 h, diluted with CH₂Cl₂ (100 mL), and filtered through a bed of Celite. The filtrate was washed with water (150 mL), and the residual organic fraction was extracted into CH₂Cl₂ (150 mL × 2). The combined extracts were dried over anhyd MgSO₄, filtered, and concentrated under reduced pressure. Flash column chromatography on SiO₂ (hexane:EtOAc = 3:1 to 2:1, v/v) furnished **6** as a pale yellow solid (715 mg, 1.90 mmol, yield = 83%). ¹H NMR (500 MHz, CDCl₃, 298 K): δ 13.47 (s, 1H), 11.97 (s, 1H), 10.01 (s, 1H), 7.49 (d, J = 7.9 Hz, 1H), 7.45 (d, J = 7.9 Hz, 1H), 7.20 (t, J = 8.3 Hz, 1H), 6.71 (d, J = 8.4 Hz, 1H), 6.60 (d, J = 8.3 Hz, 1H), 5.43 (s, 2H), 3.60 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 298 K): δ 191.6, 161.3, 155.8, 153.0, 140.4, 132.7, 130.3, 128.7, 125.8, 120.2, 119.8, 112.1, 104.1, 102.1, 95.5, 57.4. FT-IR (ATR, cm⁻¹): 3429, 3063, 3025, 2959, 2909, 2820, 2720, 1677, 1633, 1585, 1521, 1471, 1412, 1381, 1354, 1344, 1312, 1265, 1242, 1199, 1154, 1118, 1090, 1080, 1033, 940, 922, 809, 787, 739, 658. HRMS (ESI) calcd for C₁₆H₁₃BrN₂O₄ [M + H]⁺ 377.0132, found 377.0136.

N-((7-Formyl-2-(2-hydroxy-6-(methoxymethoxy)phenyl)-1H-benzo[d]imidazol-4-

yl)(phenyl)methyl)acetamide (1). An oven-dried 25 mL Schlenk tube was charged with 6 (147 mg, 0.390 mmol), N-(phenyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)methyl)acetamide⁶ (269 mg, 0.978 mmol), $Pd_2(dba)_3$ (19.5 mg, 21.3 μ mol), $P(tBu)_3 \cdot HBF_4$ (26.8 mg, 92.3 μ mol), KF (113 mg, 1.94 mmol), 1,4-dioxane (2 mL), and H₂O (23 μ L). Freeze-pump-thaw cycles (× 2) were applied to remove oxygen. The reaction mixture was heated at reflux for 24 h, cooled to r.t., poured into water (100 mL), and extracted into EtOAc (100 mL \times 3). The combined extracts were dried over anhyd $MgSO_4$, filtered, and concentrated under reduced pressure. Flash column chromatography on SiO₂ (hexane:EtOAc = 9:1 to 1:9, v/v) furnished 1 containing a small amount of impurity. The resulting solid was recrystallized from EtOAc to provide analytically pure 1 as a white solid (29.1 mg, 65.3 μ mol, yield = 17%). ¹H NMR (500 MHz, CDCl₃, 298 K): δ 13.28 (s, 1H), 12.11 (s, 1H), 10.15 (s, 1H), 7.76 (d, J = 7.7 Hz, 1H), 7.48 (d, J = 7.5 Hz, 1H), 7.39 (d, J = 7.5 Hz, 2H), 7.36–7.27 (m, 3H), 7.25–7.23 (m, 1H), 6.86 (d, J = 7.0 Hz, 1H), 6.79 (d, J = 8.3 Hz, 1H), 6.76–6.67 (m, 2H), 5.52 (s, 2H), 3.65 (s, 3H), 2.12 (s, 3H). ¹³C NMR (150 MHz, CDCl₃, 298 K): δ 192.3, 169.7, 161.1, 156.0, 152.5, 140.8, 138.9, 138.3, 132.8, 131.2, 129.2, 128.2, 127.4, 121.7, 120.9. 112.1, 104.5, 102.6, 95.6, 57.5, 56.4, 23.8, 1.4. FT-IR (ATR, cm⁻¹): 3431, 3243, 3036, 2931, 2843, 1670, 1646, 1613, 1588, 1526, 1490, 1473, 1452, 1418, 1402, 1358, 1263, 1245, 1203, 1179, 1162,1120, 1082, 1041, 964, 941, 918, 840, 828, 797, 789, 775, 759, 745, 698, 660. HRMS (ESI) calcd for $C_{25}H_{23}N_3O_5 [M + H]^+ 446.1711$, found 446.1713.

X-ray Crystallographic Studies on 4. Single crystals of 4 were prepared by slow evaporation of an EtOAc solution of this material. A colorless crystal (approximate dimensions $0.038 \times 0.055 \times$ 0.733 mm^3) was placed onto a nylon loop with Paratone-N oil, and mounted on a XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer. The data collection was carried out using Cu K α radiation, and the crystal was kept at T = 93 K. A total of 16079 reflections were measured (10.172° $\leq 2\theta \leq 158.25^{\circ}$). The structure was solved with SHELXT¹¹ using intrinsic phasing methods, and refined with SHELXL¹² refinement package of OLEX2.¹³ A total 2987 unique reflections were used in all calculations. The final R1 was 0.0830 ($I \geq 2\sigma(I)$) and wR2 was 0.2396 (all data).

¹¹ G. M. Sheldrick, Acta Cryst., 2015, **A71**, 3–8.

¹² G. M. Sheldrick, Acta Cryst., 2015, C71, 3–8.

¹³ O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Cryst., 2009, 42, 339–341.

X-ray Crystallographic Studies on 6. Single crystals of 6 were prepared by slow evaporation of a CHCl₃ solution of this material. A pale yellow crystal (approximate dimensions 0.121 × 0.183 × 0.832 mm³) was placed onto a nylon loop with Paratone-N oil, and mounted on a XtaLAB AFC12 (RINC): Kappa dual home/near diffractometer. The data collection was carried out using Cu K α radiation, and the crystal was kept at T = 93 K. A total of 32612 reflections were measured (7.428° $\leq 2\theta \leq 158.47^{\circ}$). The structure was solved with SHELXT¹¹ using intrinsic phasing methods, and refined with SHELXL¹² refinement package of OLEX2.¹³ A total 8119 unique reflections were used in all calculations. The final R1 was 0.0740 ($I \geq 2\sigma(I)$) and wR2 was 0.2013 (all data).

X-ray Crystallographic Studies on 1. Single crystals of 1 were prepared by slow diffusion of pentane into a CHCl₃ solution of this material. A colorless crystal (approximate dimensions $0.04 \times 0.12 \times 0.13 \text{ mm}^3$) was placed onto a nylon loop with Paratone-N oil, and mounted on a PHOTON 100 CMOS diffractometer. The data collection was carried out using Cu K α radiation, and the crystal was kept at T = 223.15 K. A total of 62856 reflections were measured ($8.154^\circ \leq 2\theta \leq 155.552^\circ$). The structure was solved with SHELXT¹¹ using intrinsic phasing methods, and refined with SHELXL¹² refinement package of OLEX2.¹³ A total 4599 unique reflections were used in all calculations. The final R1 was 0.0508 ($I \geq 2\sigma(I)$) and wR2 was 0.1146 (all data).

	4	6	1
Chemical formula	$\mathrm{C}_{16}\mathrm{H}_{14}\mathrm{N}_{2}\mathrm{O}_{4}$	$C_{34}H_{28}Br_2Cl_6N_4O_8$	$C_{25}H_{23}N_3O_5$
Formula weight	298.29	950.64	445.46
Crystal system	monoclinic	monoclinic	monoclinic
Space group	I2/a	$P2_1/c$	$P2_1/c$
Color of crystal	colorless	light yellow	colorless
a (Å)	17.4514(4)	25.8801(5)	11.2876(6)
b (Å)	4.6477(1)	6.9453(1)	21.068(1)
c (Å)	35.6080(8)	23.8077(4)	9.7510(5)
lpha (°)			
β (°)	102.334(2)	116.121(2)	106.139(3)
γ (°)			
Volume (Å ³)	2821.5(1)	3842.3(1)	2227.5(2)
Z	7	17	4
$R_{ m int}$	0.1365	0.0839	0.0899
Final D indians $[I > 2-(I)]$	R1 = 0.0830,	R1 = 0.0740,	R1 = 0.0508,
Final R indices $[I \ge 20(I)]$	wR2 = 0.2263	wR2 = 0.2007	wR2 = 0.0990
Final D indiana [all data]	R1 = 0.0922,	R1 = 0.0755,	R1 = 0.0813,
r mai K muices [an data]	wR2 = 0.2396	wR2 = 0.2013	wR2 = 0.1146
Goodness-of-fit on F^2	1.078	1.110	1.026

Table S1. Summary of X-ray Crystallographic Data.

Density Functional Theory (DFT) Calculations. All density functional theory (DFT) calculations were conducted using Gaussian '09 Revision E.01 software.¹⁴ All geometry optimizations and vibrational frequency calculations were carried out with B3LYP hybrid functional with Gimme's D3 dispersion correction (B3LYP-D3) and 6-31G(d,p) basis set.

Atom	х	У	\mathbf{Z}	Atom	х	У	Z
\mathbf{C}	-0.491756	1.069277	-0.334097	Η	-3.854944	1.579061	-0.548125
\mathbf{C}	-0.583223	3.837741	-0.14069	Η	-0.641728	4.920308	-0.064296
\mathbf{C}	-1.747719	1.695939	-0.358467	Н	-2.717487	3.609763	-0.280876
\mathbf{C}	0.695445	1.824657	-0.221711	Η	2.703202	1.118774	-0.066189
\mathbf{C}	0.679307	3.227339	-0.116902	Η	3.709641	-5.029787	0.055164
\mathbf{C}	-1.763408	3.091477	-0.261275	Η	1.264158	-4.868335	0.521198
Ν	1.717748	0.913392	-0.235089	Η	4.96056	-3.018422	-0.735507
\mathbf{C}	1.158246	-0.337389	-0.343659	Η	-0.51829	-1.877648	0.106331
Ν	-0.173016	-0.271076	-0.411409	Η	5.567776	0.507441	-1.052757
\mathbf{C}	1.874349	-1.607391	-0.300674	Η	5.596252	-0.878111	0.09939
\mathbf{C}	3.197913	-4.077188	-0.042758	Η	4.701963	2.301272	1.878914
\mathbf{C}	3.250393	-1.737347	-0.586617	Η	6.130099	1.235816	1.707776
\mathbf{C}	1.155693	-2.783069	0.071438	Η	5.664286	2.363244	0.390687
\mathbf{C}	1.83817	-4.000112	0.218524	Η	1.769054	5.10408	0.0815
\mathbf{C}	3.912669	-2.951637	-0.465903	Η	-2.105719	-0.388416	-1.88164
Ο	-0.163905	-2.782496	0.312101	Η	-5.561582	1.039533	-2.043233
0	3.917824	-0.635145	-1.103435	Η	-5.608765	-0.200151	-0.779676
\mathbf{C}	4.970673	-0.093748	-0.354115	Н	-6.192555	-0.582237	-2.422035
Ο	4.402853	0.719155	0.651921	Η	-3.684176	-1.840923	4.201014
\mathbf{C}	5.286042	1.702356	1.181216	Η	-2.91449	-1.865285	-0.026468
\mathbf{C}	1.91011	4.00344	0.021991	Η	-3.596878	1.855975	2.006736
Ο	3.031477	3.514666	0.075032	Η	-3.905409	0.63678	4.139795
\mathbf{C}	-3.023109	0.873969	-0.452093	Η	-3.177398	-3.082408	2.103456
Ν	-2.988593	0.057112	-1.659338				
\mathbf{C}	-4.073018	-0.524645	-2.276701				
0	-3.920608	-1.379547	-3.138192				
\mathbf{C}	-5.446651	-0.032566	-1.849463				
\mathbf{C}	-3.234226	0.077858	0.845266				
\mathbf{C}	-3.561542	-1.305509	3.264238				
\mathbf{C}	-3.124806	-1.314153	0.883585				
\mathbf{C}	-3.517944	0.771558	2.0282				
\mathbf{C}	-3.683638	0.086166	3.23008				
\mathbf{C}	-3.281584	-2.001919	2.088971				

 Table S2. Cartesian Coordinates of the Optimized Geometry of 1.

¹⁴ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Boarone, B. Mennucci, G. A. Petersson et al. Gaussian '09, revision E.01; Gaussian, Inc.: Wallingford CT, 2009.

18.4873	20.7007	38.3784	45.6317	47.8926	51.1334
55.8766	65.7067	69.5381	80.7537	96.2855	105.976
114.592	132.996	157.726	179.394	182.023	186.074
201.44	209.134	214.684	224.873	230.748	247.897
261.477	275.321	303.528	330.255	354.233	365.077
371.556	401.266	415.709	421.497	448.214	494.788
501.616	505.154	525.378	533.757	551.864	557.298
571.604	575.79	588.635	599.269	616.451	632.357
646.389	659.269	662.641	669.228	685.877	712.663
716.156	724.128	746.173	764.466	781.318	787.724
792.462	799.464	802.119	813.639	843.211	854.481
862.977	871.148	878.075	935.097	939.798	970.443
971.205	980.497	985.167	1001.41	1004.71	1016.79
1023.53	1030.72	1056.83	1057.42	1071.72	1090.8
1110.35	1111.63	1123.5	1132.03	1145.53	1154.88
1163.41	1192.92	1196.05	1198.34	1204.78	1206.69
1219.39	1229.25	1251.13	1256.51	1266.49	1293.84
1304.56	1312.61	1317.47	1341.88	1351.45	1363.08
1364.76	1366.58	1368.05	1401.87	1414.47	1423.6
1437.85	1439.71	1449.43	1469.27	1487.65	1490.77
1491.69	1494.74	1499.65	1505.01	1509.92	1513.04
1534.6	1537.94	1540.3	1549.24	1572.6	1631.28
1642.4	1647.63	1655.17	1660.68	1677.36	1763.04
1795	2916.48	2992.27	3009.91	3048.16	3055.41
3065.7	3074.22	3114.67	3167.35	3168.6	3176.21
3178.02	3182.35	3190.93	3193.42	3194.66	3203.68
3213.48	3214.85	3222.6	3259.85	3452.67	3589.65

Table S3. Vibrational Frequences (cm^{-1}) of the Optimized Structure of **1**.

Atom	х	У	Z	Atom	х	У	Z
С	0.528335	-0.75749	-0.288165	Н	3.702455	-1.550884	-1.213524
\mathbf{C}	0.463057	-3.518507	0.078703	Ν	-3.443608	-4.124269	-1.514177
\mathbf{C}	1.723322	-1.479887	-0.458504	Η	0.470115	-4.596696	0.221687
\mathbf{C}	-0.684157	-1.42177	0.046471	Η	2.566028	-3.451471	-0.389199
\mathbf{C}	-0.723443	-2.810558	0.245592	Η	-3.254188	5.569217	0.502912
\mathbf{C}	1.658696	-2.862778	-0.27472	Η	-0.77108	5.252997	0.553528
Ν	-1.693106	-0.500164	0.179593	Η	-4.730205	3.603651	0.014797
\mathbf{C}	-1.082994	0.675878	-0.086941	Η	-1.83913	-4.402312	1.165145
\mathbf{C}	-1.707098	2.005717	-0.000627	Η	-2.697961	-1.727448	1.176519
\mathbf{C}	-2.82381	4.581084	0.361017	Η	-5.249739	1.482822	1.174384
\mathbf{C}	-3.099517	2.221651	-0.075056	Η	-4.100324	0.103806	1.328716
\mathbf{C}	-0.87626	3.151821	0.189619	Η	-6.101461	-1.835583	-0.955363
\mathbf{C}	-1.444221	4.417211	0.394417	Η	-4.454651	-1.180126	-1.176008
\mathbf{C}	-3.655241	3.490267	0.108929	Η	-4.879745	-2.016559	0.335337
Ο	0.4687	3.071642	0.185255	Η	1.985887	0.781542	-1.672907
Ο	-3.942706	1.188335	-0.418202	Η	5.202189	-0.775411	-2.79073
\mathbf{C}	-2.039684	-3.458405	0.640598	Η	5.629313	0.199017	-1.37992
Ο	-2.815521	-2.652214	1.503942	Η	5.902018	0.846266	-3.023624
\mathbf{C}	-4.752223	0.663146	0.638615	Η	5.466052	0.648438	3.900596
Ο	-5.747833	-0.127804	0.094425	Η	2.395834	1.269629	0.955887
\mathbf{C}	-5.256918	-1.357295	-0.454556	Η	5.212625	-1.934497	0.471397
\mathbf{C}	3.054961	-0.801391	-0.744566	Η	6.319469	-1.290632	2.593069
\mathbf{C}	-2.821476	-3.826	-0.579294	Η	3.497744	1.923193	3.063055
Ν	2.881391	0.30152	-1.690094	Ν	0.250271	0.583402	-0.377426
\mathbf{C}	3.857464	0.896858	-2.436072	Η	0.691845	2.13229	-0.097297
Ο	3.635519	1.890538	-3.121591				
\mathbf{C}	5.237415	0.248236	-2.400492				
\mathbf{C}	3.735011	-0.373127	0.560898				
\mathbf{C}	4.983845	0.36082	2.970161				
\mathbf{C}	3.259947	0.716336	1.304023				
\mathbf{C}	4.837831	-1.086967	1.041338				
\mathbf{C}	5.461208	-0.72578	2.238162				
С	3.88045	1.077822	2.498056				

 Table S4. Cartesian Coordinates of the Optimized Geometry of the Cyanohydrin Adduct of 1.

17.881	25.7289	31.9568	38.4493	48.5499	55.7138
60.8485	65.6882	75.8295	83.4569	85.2509	89.1068
104.399	112.829	144.67	152.252	163.667	177.635
188.483	194.907	198.789	207.831	222.477	239.289
245.892	254.856	264.248	279.814	309.589	329.756
340.279	351.675	380.743	395.812	414.151	420.06
435.203	451.246	482.741	506.385	518.693	530.391
536.692	552.586	566.411	575.497	589.24	604.875
610.917	616.002	628.822	637.16	645.875	666.934
673.527	680.752	707.093	715.205	717.493	739.607
747.732	762.756	776.452	786.433	788.246	795.697
811.12	845.078	845.51	859.41	860.554	864.678
889.18	898.559	920.639	928.438	945.544	960.905
968.869	983.59	993.333	998.228	1017.37	1029.61
1054.27	1055.36	1058.78	1062.08	1076.01	1088.87
1106.96	1109.35	1119.34	1144.99	1157.48	1185.09
1186.12	1189.17	1192.15	1197.24	1208.9	1217.21
1225.69	1236.37	1262.22	1264.87	1301.11	1307.62
1309.39	1312.74	1327.14	1331.21	1337.53	1346.23
1360.5	1365.43	1371.23	1385.52	1388.77	1414.93
1418.93	1443.01	1457.79	1489	1490.26	1494.52
1501.21	1503.54	1505.91	1506.38	1508.09	1531.49
1532.91	1536.28	1542.82	1553.62	1574.18	1633.43
1637.92	1639.65	1641.51	1658.08	1675.42	1782.33
2342.48	2984.5	3005.64	3030.49	3041.98	3042.5
3044.57	3047.64	3114.19	3122.43	3143.34	3153.74
3156.67	3167.68	3168.55	3169.64	3173.25	3182.22
3194.87	3199.74	3206.96	3233.25	3390.44	3537.61

Table S5. Vibrational Frequences (cm^{-1}) of the Optimized Structure of the Cyanohydrin Adduct of **1**.

Fig. S1. (a) Normalized absorption (black line), excitation ($\lambda_{em} = 465$ nm, gray line), and emission ($\lambda_{exc} = 400$ nm, blue line) spectra of 2 (0.100 mM) treated with Et₃N (25 equiv) in DMSO at T = 298 K. (b) Normalized excitation ($\lambda_{em} = 465$ nm for 2; $\lambda_{em} =$ 445 nm for 3 and 4) spectra of 2 (blue line), 3 (black line), and 4 (gray line) treated with NaCN (25 equiv) in DMSO at T = 298 K.

Fig. S2. ¹H NMR (500 MHz) spectrum of 2 in CDCl₃ (T = 298 K).

Fig. S3. ¹³C NMR (125 MHz) spectrum of 2 in CDCl₃ (T = 298 K).

Fig. S4. Molecular electrostatic potential (MEP) maps of **1** and **2** calculated at the B3LYP-D3/6-31g(d,p) level. The circled regions (in black) denote the aldehyde oxygen and benzimidazole sp^2 -nitrogen atoms of each molecule.

Fig. S5. Capped-stick representation of the X-ray structure of 1 showing (a) intermolecular hydrogen-bonding network (red dotted lines) of amide groups belonging to adjacent molecules in the crystal lattice, (b) close-up view of the intermolecular N-H···O contacts (red dotted lines), and (c) C-H··· π (blue dashed lines) and $\pi \cdots \pi$ (black dashed lines) interactions between "dimeric 1" in the solid-state.

Fig. S6. Partial 2D ROESY contour plot of 1 (4.0 mM) in DMSO- d_6 at T = 298 K. The corresponding 1D NMR spectrum is shown along the ordinate.

Fig. S7. Concentration-dependent ¹H NMR spectra of 1 in DMSO- d_6 at T = 25 °C.

Fig. S8. Concentration-dependent ¹H NMR spectra of 3 in DMSO- d_6 at T = 25 °C.

Fig. S9. ¹H NMR spectral changes of 3 in DMSO- d_6 (2.0 mM, 500 μ L) prior to (top) and after (bottom) treatment with H₂O (2 μ L).

Fig. S10. ¹H NMR spectral changes of 1 in DMSO- d_6 (2.0 mM, 500 μ L) prior to (top) and after (bottom) treatment with H₂O (2 μ L).

Fig. S11. HPLC-MS analysis of 1 (top) and 1 treated with NaCN (25 equiv, bottom) in DMSO. MS (ESI) calcd for $C_{25}H_{24}N_3O_5$ [1 + H]⁺, 446.1710; found, 446.20. Calcd for $C_{26}H_{25}N_4O_5$ [1 + CN + 2H]⁺, 473.1819; found, 473.15.

Fig. S12. (a) Time-dependent changes in the UV-vis absorption at $\lambda = 400$ nm upon the reaction of 1 (40.0 μ M) with NaCN (20 equiv) in DMSO-MeCN (1:1, v:v) at T =288 K. The gray curve overlaid on the experimental data points is a theoretical fit using $k' = 1.3 \text{ s}^{-1}$. (b) Plot of $k' (= k_2 [\text{CN}^-]_0)$ vs $[\text{CN}^-]_0$ to estimate the second-order rate constant $k_2 = 1.3 \times 10^3 \text{ M}^{-1} \text{ s}^{-1}$.

Fig. S13. (a) Absorption spectra of 3 (0.100 mM) prior to (black dashed line), and after treatment with NaCN (25 equiv, blue line) or Et_3N (25 equiv, gray line) in DMSO. (b) Absorption spectra of 4 (0.100 mM) prior to (black dashed line), and after treatment with NaCN (25 equiv, blue line) or Et_3N (25 equiv, gray line) in DMSO. T = 298 K.

Fig. S14. Variable-temperature ¹H NMR spectra of 3 (4.0 mM) in DMSO- d_6 at T = 293-363 K.

Fig. S15. Variable-temperature ¹H NMR spectra of 4 (4.0 mM) in DMSO- d_6 at T = 293-363 K.

Fig. S16. X-ray structure of 6 as an ORTEP diagram with thermal ellipsoids at the 50% probability level.

Fig. S17. ¹H NMR (500 MHz) spectrum of 5 in DMSO- d_6 (T = 298 K).

Fig. S18. ¹³C NMR (125 MHz) spectrum of **5** in DMSO- d_6 (T = 298 K).

Fig. S19. ¹H NMR (400 MHz) spectrum of 7 in DMSO- d_6 (T = 343 K).

Fig. S20. ¹³C NMR (100 MHz) spectrum of 7 in DMSO- d_6 (T = 343 K).

Fig. S21. ¹H NMR (500 MHz) spectrum of 8 in CD₃OD (T = 298 K).

Fig. S22. ¹³C NMR (125 MHz) spectrum of 8 in CD₃OD (T = 298 K).

Fig. S23. ¹H NMR (500 MHz) spectrum of 9 in CD₃OD (T = 298 K).

Fig. S24. ¹³C NMR (125 MHz) spectrum of 9 in CD₃OD (T = 298 K).

Fig. S25. ¹H NMR (500 MHz) spectrum of 3 in CD₃OD (T = 298 K).

Fig. S26. ¹³C NMR (100 MHz) spectrum of 3 in DMSO- d_6 (T = 343 K).

Fig. S27. ¹H NMR (500 MHz) spectrum of **4** in CDCl₃ (T = 298 K).

Fig. S28. ¹³C NMR (125 MHz) spectrum of 4 in CDCl₃ (T = 298 K).

Fig. S29. ¹H NMR (500 MHz) spectrum of 10 in DMSO- d_6 (T = 298 K).

Fig. S30. ¹³C NMR (125 MHz) spectrum of 10 in DMSO- d_6 (T = 298 K).

Fig. S31. ¹H NMR (500 MHz) spectrum of 11 in DMSO- d_6 (T = 298 K).

Fig. S32. ¹³C NMR (125 MHz) spectrum of 11 in DMSO- d_6 (T = 298 K).

Fig. S33. ¹H NMR (500 MHz) spectrum of **6** in CDCl₃ (T = 298 K).

Fig. S34. ¹³C NMR (125 MHz) spectrum of 6 in CDCl₃ (T = 298 K).

Fig. S35. ¹H NMR (500 MHz) spectrum of **1** in CDCl₃ (T = 298 K).

Fig. S36. ¹³C NMR (150 MHz) spectrum of 1 in CDCl₃ (T = 298 K).