
1

Supporting Information

Evaluating and clustering retrosynthesis pathways

with learned strategy

Yiming Mo,‡a, b, c Yanfei Guan,‡a Pritha Verma,a Jiang Guo,d Mike E. Fortunato,a Zhaohong Lu,e

Connor W. Coley,a and Klavs F. Jensen*a

aDepartment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge,

Massachusetts 02139, United States

bCollege of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang

Province 310007, China.

cZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang

Province 311215, China.

dComputer Science and Artificial Intelligence Laboratory, Massachusetts Institute of

Technology, Cambridge, Massachusetts 02139, United States

eDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts

02139, United States

Table of contents
1. General information: data and code .. 2

2. Detailed tree-LSTM model structure and training .. 4

3. Baseline model details .. 8

4. Reference .. 13

5. Appendix ... 14

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2020

2

1. General information: data and code

The reaction database used this work is Pistachio patent database from NextMove (released in

June 2019)1. All scripts were written in Python 3.7. RDKit2 was used for molecule/reaction parsing,

molecular fingerprint conversion, and various cheminformatics calculations. PyTorch 1.43 was

used for building the machine learning architectures. The ASKCOS used in this work was an in-

house development version, however, the open-source version4 can also be used.

1.1 Pistachio patent pathway extraction process

As discussed in the manuscript, single-step reactions were grouped by patent number. Each

group only contains single-step reactions from the same patent, and then, connecting single-step

reactions via matching the canonical SMILES strings of products and reactants to construct the

reaction network. The reagents (compounds that do not contribute atoms to the products) are

neglected in the network. The example network is shown in Fig. 1a in the main text. Within this

network, compounds that only appeared as product and not appeared as reactants were first

identified as the root nodes. And then with a complete depth-first search (DFS) algorithm,

traversing through the network starting from the root nodes will give all the retrosynthesis

pathways embedded in the reaction network. However, when cyclic patterns (appearing

infrequently when grouping single-step reactions within a single patent) exist in the reaction

network, pathways with infinite depth can be found, and a maximum depth of 20 was set to avoid

finding cyclic pathways.

1.2 ASKCOS pathway generation process

ASKCOS retrosynthesis program uses template-based method to recursively apply single-step

reaction templates until all precursors can be purchased. A Monte Carlo tree search (MCTS)

algorithm is implemented during this tree search to improve success rate. At each step, multiple

templates will be applied, and priority of templates for further exploration will depend on the

trained ASKCOS retrosynthesis model and MCTS algorithm. Even for compounds that have

appeared in the database, ASKCOS can still give a variety of pathway designs that are significantly

different from those presented in the dataset.

We used the ASKCOS program to generate a set of artificial retrosynthesis pathways for each

target compound. The maximum depth allowed for the ASKCOS generated pathways for one

specific target molecule is two plus the depth of its patent pathway to avoid generating

unrealistically long pathways (e.g. the depth of the pathway (1) found in Fig. 1a in the main text

is 4, and the maximum depth allowed when searching pathways using ASKCOS was 6). We

randomly selected 300 artificial pathways from top 3,000 pathways outputted from ASKCOS. (If

the number of output pathways was less than 300, all the generated pathways were used. For each

target compound, there were at least 5 artificial pathways, otherwise the target compound was

dropped from the final pathway database.)

Pathways extracted from Pistachio patent database do not always end with buyable precursors.

To keep consistent comparison between Pistachio pathways and ASKCOS-generated pathways,

two stop criteria were used when searching retrosynthesis pathways using ASKCOS:

(1) When all the precursors of the pistachio pathway are buyable, the stop criterion is finding

pathways with buyable precursors.

3

(2) When one or more precursors of the Pistachio pathway are not buyable, the stop criterion is

finding pathways with precursors that are equally or less complex compared to the most

complex precursor in the Pistachio pathway. The complexity of the precursor is measured

by number of each type of atoms in the molecule (hydrogen atoms are excluded). For

example, C6H5NO2 is less complex than C7H5NO4.

Additional settings for ASKCOS pathway generation are shown in Table S1.

Table S1. Settings for ASKCOS pathway generation.

Settings Values

Searching time 30 s

Maximum branches each node 25

Maximum depth Depth of Pistachio pathway + 2

Single-step plausibility* 0.75

Minimum non-chiral template frequency§ 40

Minimum chiral template frequency§ 20

Maximum number of templates used each node† 1000

Maximum cumulative template probability† 0.9999

*Single-step reaction plausibility was evaluated by in-scope filter5. §The reaction template

frequency counts used in published literatures and patents were updated in 2017. †These settings

are for template relevance model6.

4

2. Detailed tree-LSTM model structure and training

Model structure

As illustrated in Figure 2B in the manuscript, the tree-LSTM model is a dynamic model

structure, and the structure is determined by the structure of the retrosynthesis pathway. Each node

in the tree is a reaction in the pathway, and the reaction is encoded using product fingerprint and

reaction fingerprint. The reaction fingerprint is calculated using the following formula7:

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝐹𝑃 = 𝑤 (∑ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐹𝑃𝑖
𝑖

−∑ 𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝐹𝑃𝑖
𝑖

) + (1 − 𝑤)∑ 𝐴𝑔𝑒𝑛𝑡𝐹𝑃𝑖
𝑖

Since the model focuses on the retrosynthesis strategy instead of the single-step reaction

plausibility, the reagent information is ignored in the reaction fingerprint. Thus, 𝑤 was set to 1,

and the reaction fingerprint was calculated as follows:

𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝐹𝑃 = ∑ 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝐹𝑃𝑖
𝑖

−∑ 𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝐹𝑃𝑖
𝑖

The fingerprints for products and reactants are 2048-bit Morgan circular fingerprints

(equivalent to ECFP48) with a radius of 2. The sum operation of fingerprints will be followed by

a compression operation to compress positive values on bits to one (zero bits will remain as zero).

The reason for using product fingerprints and reaction fingerprints as the input is making the model

aware of the structural information of each intermediate and its corresponding reaction performed.

This information is critical in understanding the strategic connections of single-step reaction in the

pathway.

The reaction encoder model structure is shown in Figure S1. Product fingerprint and reaction

fingerprint passed through its own 2-layer neural network, and then the two outputs were

aggregated using an element-wise multiplication operation to the reaction embedding of the singe-

step reaction.

Figure S1. The structure of the reaction encoding model.

5

The LSTM node uses the following formula to process the input and hidden states from the

child nodes9:

ℎ̃𝑡 = ∑ ℎ𝑘
𝑘∈𝐶(𝑗)

𝑖𝑡 = 𝜎(𝑊(𝑖)𝑥𝑡 + 𝑈(𝑖)ℎ̃𝑡 + 𝑏(𝑖))

𝑓𝑡𝑘 = 𝜎(𝑊(𝑓)𝑥𝑡 + 𝑈(𝑓)ℎ𝑘 + 𝑏(𝑓))

𝑜𝑡 = 𝜎(𝑊(𝑜)𝑥𝑡 + 𝑈(𝑜)ℎ̃𝑡 + 𝑏(𝑜))

𝑢𝑡 = 𝑡𝑎𝑛ℎ(𝑊(𝑢)𝑥𝑡 + 𝑈(𝑢)ℎ̃𝑡 + 𝑏(𝑢))

𝑐𝑡 = 𝑖𝑡 ⊙𝑢𝑡 + ∑ 𝑓𝑡𝑘 ⊙𝑐𝑘
𝑘∈𝐶(𝑗)

ℎ𝑡 = 𝑜𝑡 ⊙ tanh⁡(𝑐𝑡)

where 𝑥𝑡 is the input at the current node, 𝜎 denotes logistic sigmoid function, and ⊙ denotes

elementwise multiplication. Additionally, we defined 𝑖𝑡 as the input gate, 𝑓𝑡 as the forget gate, 𝑜𝑡
as the output gate, 𝑐𝑡 as memory cell state, and ℎ𝑡 as the hidden state. ℎ̃𝑡 is a sum of hidden states

from the child nodes. The tree-LSTM unit contains one forget gate 𝑓𝑡𝑘 for each child 𝑘. W, U and

b are weights and biases for each transition, respectively.

The tree-LSTM model was adopted from this GitHub repository10 for accelerated computation

and training speed compared to the original publication9.

The hidden state of the root node was used to represent the retrosynthesis pathway since this

latent vector contains all information of the whole pathway. This latent vector was then passed

through a scorer network to give a strategic level score for this pathway. The scorer network

structure is shown in Figure S2.

Figure S2. The structure of the reaction encoding model.

6

Model training procedure

As discussed in the main text, the score given by the tree-LSTM model is a relative score that

is used compare pathways with the same target compound. The model parameters are trained to

maximize the ranking accuracy when comparing the Pistachio pathway and its corresponding

ASKCOS-generated pathways. Thus, the loss function is a cross-entropy loss using the probability

distribution from softmax activation of the scores. For each Pistachio pathway and its

corresponding ASKCOS pathways, the loss can be calculated as follows:

𝑦𝑃𝑖𝑠𝑡𝑎𝑐ℎ𝑖𝑜 =
exp(𝑆𝑐𝑜𝑟𝑒𝑃𝑖𝑠𝑡𝑎𝑐ℎ𝑖𝑜)

exp(𝑆𝑐𝑜𝑟𝑒𝑃𝑖𝑠𝑡𝑎𝑐ℎ𝑖𝑜) + ∑ exp⁡(𝑆𝑐𝑜𝑟𝑒𝐴𝑆𝐾𝐶𝑂𝑆,𝑖)

𝑙𝑜𝑠𝑠 = −log⁡(𝑦𝑃𝑖𝑠𝑡𝑎𝑐ℎ𝑖𝑜)

Training was conducted on Nvidia GeForce RTX 2080 Ti Graphics Card. The reaction

fingerprints and product fingerprints were precomputed for improved training speed. During

training, batches of Pistachio pathways and ASKCOS pathways are fed into model with batch size

of 32 (32 is the suitable for 11 GB GPU memory size, and batch size can be bigger if larger GPU

memory is available). The loss of the batch is an average of the individual loss of each Pistachio

pathway and its corresponding ASKCOS pathways. With 80%, 10%, 10% split of the pathway

dataset, the training generally took ~10 hours each epoch for 199,358 records of pathways. We

trained the model for 5 epochs with a semi-shuffle of training data (only shuffled the order of

batches fed into the model). The evolution of training and validation loss is shown in Figure S3,

and evolution of the top-k accuracy during training is shown in Figure S4.

Figure S3. The evolution of training and validation loss during training.

(The x axis is the number of data records that have been fed into the model.)

7

Figure S4. The evolution of training and validation top-k accuracy during

training. (a) Top-1 accuracy; (b) Top-5 accuracy; (c) Top-10 accuracy; (d)

Top-30 accuracy; (e) Top-100 accuracy. (The x axis is the number of data

records that have been fed into the model.)

8

3. Baseline model details

3.1 SCScore baseline model

The SCScore baseline model uses the evolution of molecular complexity of intermediates

through a retrosynthesis pathway to evaluate its strategic level score (SLScore). Since the pathway

can have multiple branches, the model first linearizes the tree-structured retrosynthesis pathway

into individual linear pathways via splitting at each branching intermediate node.

Figure S5. Linearizing the tree-structured retrosynthesis pathway into

individual linear pathways. As an example, the tree-structured pathway for

cabozantinib 21 synthesis was split into two linear paths at Rxn 1.

For example, the Figure S5 shows the linearization process. Cabozantinib 21 has two precursors,

22 and 23, and neither 22 nor 23 is a leaf compound. In this case, the tree was split into two

individual linear routes at Rxn 1, and the resulting linear routes have only one intermediate

compound that is further decomposed for each layer. For each layer, the highest SCScore of the

intermediates belonging to this layer was selected to represent complexity of this layer. For

example, for the layer 4 of path 2, the SCScore of 27 is 2.26, while the SCScore of 28 is 1.55.

Then 2.26 is selected as the complexity index for this layer. The calculated SCScores for each

linear path were then put in a vector of length 13 that is used as the input to a neural network. The

input vector size of 13 is selected as the maximum depth of paths in the curated database. If the

path is shorter than 13, the remaining elements of the input vector will then be capped with 0.

The predicted scores of all linear paths will then be pooled by selecting the minimum score.

The training process, including loss function, optimizer, learning rate schedular, are the same as

training the tree-LSTM model.

The architecture of the SCScore model is shown in Figure S6. The evolution of training and

validation loss is shown in Figure S7, and evolution of the top-k accuracy during training is shown

in Figure S8.

9

Figure S6. SCScore baseline model architecture.

Figure S7. The evolution of training and validation loss during training of

SCScore model. (The x axis is the number of data records that have been

fed into the model.)

10

Figure S8. The evolution of training and validation top-k accuracy during

training for the SCScore model

11

3.2 Hybrid model

The Hybrid model uses a set of descriptors depicting the structure of the retrosynthesis tree. The

selected descriptors are listed and described in Table S2.

Table S2. Descriptors used for the hybrid baseline model.

Descriptors Descriptions Type

Depth Lenth of the longest linear path Int

Width
The number of linear pathways composing the

retrosynthesis tree path
Int

Number of nodes Number of intermediate compounds Int

Number of leaf Number of leaf compounds Int

Maximum forks
Maximum number of child nodes appended after

the parent node
Int

Target SCScore SCScore for the target compound Float [1,5]

Maximum leaf SCScore Maximum SCScore for leaf comopunds Float [1,5]

Maximum node

SCScore
Maximum SCScore for intermediate compounds Float [1,5]

Minimum node SCScore Minimum SCScore for intermediate compounds Float [1,5]

Maximum SCScore

differnece

Maximum difference between the SCScore of

product and reactatns for all single step reactions in

a tree

Float [1,5]

Minimum SCScore

difference

Minimum difference between the SCScore of

product and reactatns for all single step reactions in

a tree

Float [1,5]

A vector composing the descriptors above are then pass through a neural network to give the

final prediction. The training process is the similar to that of tree-LSTM model and SCScore

baseline model.

The evolution of training and validation loss is shown in Figure S9, and evolution of the top-k

accuracy during training is shown in Figure S10.

12

Figure S9. The evolution of training and validation loss during training of

hybrid model. (The x axis is the number of data records that have been fed

into the model.)

Figure S10. The evolution of training and validation top-k accuracy during

training for the hybrid model.

13

4. Reference

(1) Pistachio (NextMove Software) https://www.nextmovesoftware.com/pistachio.html

(accessed Apr 5, 2020).

(2) RDKit http://www.rdkit.org/ (accessed Mar 1, 2020).

(3) PyTorch https://www.pytorch.org (accessed Apr 20, 2020).

(4) ASKCOS https://github.com/connorcoley/ASKCOS (accessed Apr 20, 2020).

(5) Segler, M. H. S.; Preuss, M.; Waller, M. P. Planning Chemical Syntheses with Deep Neural

Networks and Symbolic AI. Nature 2018, 555 (7698), 604–610.

https://doi.org/10.1038/nature25978.

(6) Segler, M. H. S.; Waller, M. P. Neural-Symbolic Machine Learning for Retrosynthesis and

Reaction Prediction. Chem. – Eur. J. 2017, 23 (25), 5966–5971.

https://doi.org/10.1002/chem.201605499.

(7) Schneider, N.; Lowe, D. M.; Sayle, R. A.; Landrum, G. A. Development of a Novel

Fingerprint for Chemical Reactions and Its Application to Large-Scale Reaction

Classification and Similarity. J. Chem. Inf. Model. 2015, 55 (1), 39–53.

https://doi.org/10.1021/ci5006614.

(8) Rogers, D.; Hahn, M. Extended-Connectivity Fingerprints. J. Chem. Inf. Model. 2010, 50

(5), 742–754. https://doi.org/10.1021/ci100050t.

(9) Tai, K. S.; Socher, R.; Manning, C. D. Improved Semantic Representations From Tree-

Structured Long Short-Term Memory Networks. ArXiv150300075 Cs 2015.

(10) Pytorch implementation of the child-sum Tree-LSTM model

https://github.com/unbounce/pytorch-tree-lstm (accessed Apr 20, 2020).

14

5. Appendix

Randomly selected examples of pathway ranking can be found in the “SI pathway ranking

examples.pdf” file in the supplementary information. For illustration purpose, ASKCOS pathways

were first clustered and then the pathway with highest score in the cluster was displayed (maximum

10 clusters are plotted). The machine-readable format of these examples was also provided in the

supplementary information.

