Electronic Supplementary Information for

Aggregation-Induced Phosphorescence Sensitization in Two Heptanuclear and Decanuclear Gold-Silver Sandwich Clusters

Zhou Lu,^{†ab} Yu-Jie Yang,^{†c} Wen-Xiu Ni,^d Mian Li,^c Yifang Zhao,^a Yong-Liang Huang,^a Dong Luo,^a Xiaoping Wang,^c Mohammad A. Omary,^{*b} and Dan Li^{*a}

 ^{a.} College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China. Email: danli@jnu.edu.cn

^{b.} Department of Chemistry, University of North Texas, 1155 Union Circle #305070, Denton, Texas 76203, United States. Email: omary@unt.edu

^{c.} Department of Chemistry, Shantou University, Guangdong 515063, P. R. China.

^{d.} Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China.

^{e.} Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6475, United States.

[†]. Z.L. and Y.-J.Y contributed to this work equally.

Experimental Section

Materials and Physical Measurements

All starting materials were purchased from commercial sources and used as received without further purification. Fourier-transform infrared (FT-IR) spectra were measured using a Nicolet Avatar 360 FT-IR spectrophotometer. Thermogravimetric analysis (TGA) was carried out in a nitrogen stream using TA Instruments Q50 TGA thermal analysis equipment with a heating rate of 10 °C min⁻¹. Solution UV-vis absorption spectra were recorded on an Agilent UV-vis spectrometer 8453 and a Perkin-Elmer Lambda 900 UV/Vis/NIR spectrometer; solid-state UV-Vis absorption spectra were recorded on a Bio-Logic MOS-500 multifunctional circular dichroism spectrometer. Mass spectra were obtained on an Applied Biosystems 4800 Plus MALDI TOF Analyzer (ABI) spectrometer using a-Cyano-4-hydroxycinnamic acid (CHCA) as matrix. Elemental analyses were performed by Elementar vario EL Cube equipment. X-ray photoelectron spectroscopies (XPS) were obtained Thermo Fisher Scientific ESCALAB 250Xi (monochrome Al K α hv = 1486.6 eV, power = 150 W, beam spot = $500 \,\mu$ m, binding energy C1s = 284.8 eV). The dynamic light scattering (DLS) measurements were performed on Malvern Zetasizer Nano-ZS. Energy-dispersive X-ray spectroscopy (EDX) was performed on a scanning electron microscopy (SEM, Zeiss Gemini 300 Field Emission Scanning Electron Microscope) equipped with energy dispersive X-ray spectrometer operated at 15 kV. Powder X-ray diffraction (PXRD) experiments were performed on a Rigaku Ultima IV X-ray diffractometer (Cu K α , $\lambda = 1.5418$ Å). NMR studies were conducted by Bruker Ascend 400 MHz and Varian Inova 500 MHz spectrometer and coaxial insert tubes for internal reference technique were adopted for Au₆Ag and Au₉Ag, where inside tube contained two drops of concentrated CH_2Cl_2 solution of heterobimetallic Au/Ag cluster and outside tube contained blank deuterated chloroform. The reason why we adopted this technique was that both deuterated dichloromethane solutions of heterometallic Au/Ag clusters turned into dark with insoluble black species in several minutes but CH_2Cl_2 solutions could keep in a good shape for a long time period (vide infra, Figure S18). The deuterated dichloromethane was purchased from J&K Scientific, Ltd. (D, 99.8 atom%, Cat. No.: 334919, 10×0.75ML), Cambridge Isotope Laboratories, Inc. (D, 99.8 atom%, item: DLM-23-5×1; D, 99.8 atom% + 0.05% v/v TMS, item: DLM-23TB-10×0.6), and Sigma-Aldrich, Inc. (D, 99.9 atom%, SKU: 444324-10×1ML) to conduct parallel experiments and avoid trace impurify. The study on stability of heterometallic Au/Ag clusters in contacting deuterated solvents is still ongoing.

Room-temperature steady-state photoluminescence spectra (PL) for all samples were recorded on a PTI QM/TM spectrofluorometer (Birmingham, NJ, USA). Corrections of excitation and emission for the detector response were performed ranging from 250-750 nm. Decay curves excited by a N₂ laser at 337 nm were recorded on the same instrument, and lifetimes were calculated using the FelixGX advanced photoluminescence phosphorescence software. Varied-temperature emission spectra were measured on an Edinburgh FLS920 spectrometer equipped with a continuous Xe900 Xenon lamp and a closed cycle cryostat (Advanced Research Systems). The absolute quantum yield was measured at room temperature by employing Hamamatsu C11347-11 absolute PL quantum yield spectrometer. The radiative rate constant is calculated based on the following formula k_r (s⁻¹) = Φ_{PL}/τ and the non-radiative decay rate follows k_{nr} (s⁻¹) = $(1-\Phi_{PL})/\tau$. In solid samples, crystalline samples were used for the photoluminescence measurements. The crystalline phase purity of the samples is assured by elemental analyses and powder X-ray diffraction measurements.

Figure S3. ¹H-NMR spectra of Au₉Ag in d-chloroform and dichloromethane.

Figure S4. Energy-dispersive X-ray spectra (EDX) analysis of (top) **Au₆Ag** and (bottom) **Au₉Ag**. Calcd. for **Au₆Ag** (%): Au, 85.7; Ag, 14.3; Found: Au, 86.3; Ag, 13.7; Calcd. for **Au₉Ag** (%): Au, 90.0; Ag, 10.0; Found: Au, 89.9; Ag, 10.1.

Figure S5. XPS spectra of (a) Au₃, (b) Au₆Ag, and (c) Au₉Ag. XPS binding energies of (d) C 1s, (e) N 1s, (f) O 1s, (g) Au 4f regions for Au₃, Au₆Ag, and Au₉Ag. XPS binding energies of (h) Ag 3d region for Au₆Ag and Au₉Ag.

Figure S6. PXRD patterns for (black) simulated and (red) as-synthesized of Au₃.

Figure S7. PXRD patterns for (black) simulated, (blue) as-synthesized and (magenta) ground sample of Au₉Ag and for (red) as-synthesized of Au₆Ag.

Figure S8. FT-IR spectra of Au₃, Au₆Ag, and Au₉Ag.

Figure S9. Thermogravimetric analysis (TGA) curves of Au₃, Au₆Ag, and Au₉Ag.

Figure S10. Scanning electron microscope (SEM) images prepared from the 0.1 mM CH₂Cl₂ solution of (a) Au₆Ag and (b) Au₉Ag.

Crystallographic Study

sample	Au ₃	Au ₉ Ag	Au ₆ Ag			
Empirical formula	Au ₃ C ₂₇ O ₁₂ N ₆ H ₃₃	Au ₉ C ₈₁ O ₃₆ N ₁₈ H ₉₉ AgPF ₆	Au ₆ C ₅₄ O ₂₄ N ₁₂ H ₆₆ AgPF ₆			
CCDC No.	1968678	1968679	-			
Formula weight	1224.49	3926.31	2701.81			
Temperature (K)	293.00(10)	293(2)	100(2)			
Crystal system	monoclinic	hexagonal	hexagonal			
Space group	$P2_{1}/c$	$P-6_{2c}$	<i>P</i> -6			
<i>a</i> (Å)	8.03090(10)	17.9776(13)	17.7387(4)			
<i>b</i> (Å)	16.3497(2)	17.9776(13)	17.7387(4)			
<i>c</i> (Å)	25.1896(3)	20.5845(14)	33.7730(10)			
β (°)	94.2110(10)	-	-			
Volume (Å ³)	3298.54(7)	5761.5(9)	9203.3(5)			
Ζ	4	2	6			
$D_{calcd.}$ (g/cm ³)	2.466	2.263	2.529			
F (000)	2280.0	3652.0	6565.0			
μ (mm ⁻¹)	25.203	11.681	24.813			
2θ range for data collection (°)	6.45 - 148.302	7.202 - 52.736	5.234 - 147.598			
reflns. collected	20445	28858	29799			
Data / restraints / parameters	6535 / 0 / 439	4039 / 7 / 274	10873 / 5 / 70			
$R_{\rm int}$	0.0567	0.0321	0.0521			
Goodness-of-fit on F^2	1.053	1.019	1.682			
$R_1 [I > 2\sigma(I)]^a, wR_2$ $[I > 2\sigma(I)]^b$	0.0429, 0.1166	0.0219, 0.0481	0.1232, 0.3556			
R_1 [all data] ^{<i>a</i>} , wR_2 [all data] ^{<i>b</i>}	0.0488, 0.1208	0.0311, 0.0511	0.1438, 0.3931			
${}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} .^{b} wR_{2} = \{ \sum w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum [w(F_{o}^{2})^{2}] \}^{1/2}; w = 1 / [\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP], \text{ where } P = 1 / [\sigma^{2}(F_{o}^{2}) + (aP)^{2} + bP] \}$						
$= [\max(F_o^2, 0) + 2F_c^2]$	/3 for all data					

Table S1. Summary of crystal data and structure refinement parameters for Au₃, Au₉Ag, and Au₆Ag.

Figure S11. Rietveld refinement of PXRD patterns of Au₆Ag under 298 K.

1		8	· · · · · ·	. 9
	Au ₃	Au ₉ Ag#1	Au ₉ Ag#2	Au ₆ Ag
	2.012(6),			
	2.017(6),	2.011(10),	2.002(8),	
	2.026(6),	2.016(8),	2.010(8),	а
Au-IN	2.038(6),	2.033(9),	2.012(8),	-
	2.039(6),	2.047(5)	2.033(9)	
	2.043(6)			
				3.424(5),
				3.457(6),
A A	3.3883(5),	2,4196(9)	2 419((9)	3.538(7),
Au-Au (intra tring ar)	3.4008(6),	3.4180(8),	3.4180(8),	3.548(5),
(intra-trimer)	3.4180(5)	3.4886(14)	3.430(7)	3.574(6)
				3.705(8),
				3.705(19),
Au-Au	3.3676(4),	2 275((4)	3.175(6),	2 210(2)
(inter-trimer) ^b	3.5097(5)	3.2730(4)	3.649(3)	3.210(2)
				2.641(7),
				2.644(2),
				2.647(2),
A.11. A.2.		2.7971(7)	2.617(5),	2.679(3),
Au-Ag	-	2.7871(7)	2.735(7)	2.679(6),
				2.688(7),
				2.691(3),
				2.713(6)

Table S2. Comparison of selected bond length (Å) for Au₃, Au₉Ag, and Au₆Ag.

^{*a*} In Au₆Ag, the positions of ligand could not be determined by single-crystal X-ray crystallography due to disordering. ^{*b*} Only inter-trimer Au-Au distances shorter than 4.0 Å are under consideration.

Table S3. Selected bond angles (°) of Au3.						
N(1)-Au(1)-Au(2)#1	85.07(16)	N(6)-Au(1)-Au(2)#1	94.79(17)			
N(6)-Au(1)-N(1)	179.7(3)	N(5)-Au(3)-N(4)	176.8(2)			
N(2)-Au(2)-Au(1)#1	95.60(16)	N(2)-Au(2)-N(3)	176.6(2)			
N(3)-Au(2)-Au(1)#1	87.81(17)					
Symmetry code: #1 2-x,1-y,1-z						

Table S4. Selected bond angles (°) of Au ₉ Ag.						
N(2)#2-Au(1)-N(1)	178.5(4)	N(2)-N(1)-Au(1)	118.3(8)			
N(3)-Au(2Ab)-N(4)#2	164.8(3)	N(1)-N(2)-Au(1)#3	123.2(8)			
N(4)-N(3)-Au(2)	121.9(6)	N(4)-N(3)-Au(2A)	120.6(6)			
N(3)-N(4)-Au(2)#3	121.5(6)	N(3)-N(4)-Au(2A)#3	121.2(6)			
Symmetry codes: #1 +y,+x,1-z; #2 1+y-x,2-x,+z; #3 2-y,1+x-y,+z; #4 +x,+y,1/2-z;						
#5 +y-x,1-x,+z; #6 1-y,1+x-y,+z; #7 +y-x,1-x,1/2-z; #8 1-y,1+x-y,1/2-z						

Figure S12. (a) Asymmetric unit of **Au**₃ crystal structure at 293 K. (b) Packing diagram of **Au**₃. Colour representations: yellow, gold; blue, nitrogen; grey, carbon; red, oxygen. Hydrogen atoms are omitted from the figure for clarity.

Figure S13. Packing diagram of Au₆Ag at 100 K. Note that all silver cations are partially occupied; three of four silver atoms are half occupied and the remaining one silver atom is fully occupied. Colour representations: yellow, gold; magenta, silver; blue, nitrogen; grey, carbon; red, oxygen. Hydrogen atoms and counter-anions are omitted from the figure for clarity.

Figure S14. Distribution of Ag atoms in the gold-silver clusters of **Au**₆Ag. (a) Structure from X-ray diffraction. Silver atoms except Ag1 are half-occupied. (b, c) Local structures showing the two possible arrangements of silver atoms along the crystallographic *c*-direction with alternating {3 Au₆Ag, 1 Au₃ and 1 Au₉Ag₂} / {1 Au₉Ag₂, 1 Au₃ and 3 Au₆Ag} clusters as the repeating unit. The disordered Au atom (Au5B) and the ligands were omitted for clarity.

Figure S15. Illustrations of two different disordering sets of Au₉Ag (Colour representations: yellow, gold; magenta, silver. Ligands and counter-anions are omitted from the figures for clarity).

Photoluminescence Measurement

Figure S16. Varied-temperature solid-state emission spectra of (a) Au₃ (Ex = 300 nm), (c) Au₆Ag (Ex = 360 nm), and (e) Au₉Ag (Ex = 360 nm). Emission colour profiles of (b) Au₃, (d) Au₆Ag, and (f) Au₉Ag in CIE-1931 chromaticity diagram at 298 K and 77 K.

Figure S17. Solid state UV-vis spectra of three nanoclusters.

Table S5. Solid-state photoluminescence data of Au₃, Au₆Ag, and Au₉Ag.

Sample	λ_{ex} (nm)	$\lambda_{\rm em}({\rm nm})$	$\Phi_{\rm PL}{}^{a}$ [RT / 77 K] (%)	$ au^{b}(\mu s)$
Au ₃	351	670	67.5 / 78.8	15.32
Au ₆ Ag	354	496	43.9 / 95.2	9.31
Au9Ag	370	496	12.0 / 39.1	9.11

^a Absolute photoluminescence quantum yield. ^b Emission lifetime.

Figure S18. Digital photographs for the crystals of (top) Au₆Ag and (bottom) Au₉Ag immersing in different solvents (methanol, acetonitrile, DMSO, acetone, DCM, and chloroform, from left to right, respectively) under 365-nm hand-held

UV lamp. It is clear to see that upon adding methanol, acetonitrile, DMSO, and acetone, the heterometallic Au/Ag clusters turns into white powder in a short time, assuming the lability of sandwich-like structures in high-polar solvents. Only DCM solution of both Au₆Ag and Au₉Ag could keep in a good shape for a long time period and the crystals remain

Figure S19. (a) Varied-concentration UV-vis absorption spectra of aerated Au₃ CH₂Cl₂ solution. UV-vis absorption spectra of aerated and degassed 0.1 mM (b) Au₃, (c) Au₆Ag, and (d) Au₉Ag CH₂Cl₂ solution.

Figure S20. UV-vis absorption spectra for (a) Au₆Ag and (b) Au₉Ag at the concentrations ranging from 1×10^{-6} M to 1×10^{-4} M in CH₂Cl₂.

Figure S21. Molar absorptivity versus concentration of (a) **Au₆Ag** and (b) **Au₉Ag** CH₂Cl₂ solution at ambient temperature in the 10⁻⁴ M range. The inset zooms the wavelength region from 360 to 420 nm.

The aggregations of sandwich metal cluster in solutions give rise of deviation of Beer's Law, and oligomerization progress for Au_xAg (x = 6; 9) could be represented by eq. 1, with an equilibrium constant given by eq. 2. The differences between the highest absorption peak and low-energy absorption peak are as large as of 6,337 cm⁻¹ for Au_6Ag and 6,225 cm⁻¹ for Au_9Ag , which are also reasonable for monomer-dimer difference.

 $n[\mathbf{A}\mathbf{u}_{\mathbf{x}}\mathbf{A}\mathbf{g}] \rightleftharpoons [\mathbf{A}\mathbf{u}_{\mathbf{x}}\mathbf{A}\mathbf{g}]_n \quad \text{eq. 1}$ $K_{1n} = c_n/c_1^n \quad \text{eq. 2}$

Based on original expression of Beer's Law and eq. 2, the following eq. 3 could be derived by assumption of the appearance of dimer in solutions. The fitting curves and parameters are enclosed in Figures 3b and S21c. Detailed derivation and expression could refer to M. A. Rawashdeh-Omary, M. A. Omary, H. H. Patterson, *J. Am. Chem. Soc.* 2000, *122*, 10371-10380. c_0 is initial concentration; A is the absorbance for selected wavelength; ε_n is the molar extinction coefficient of the *n*-mer; b is the light path (1 cm here).

$$c_0 A^{-\frac{1}{n}} = \left(\frac{n}{\epsilon_n b}\right) A^{\frac{n-1}{n}} + \left(K_{1n} \epsilon_n b\right)^{-\frac{1}{n}} \qquad \text{eq. 3}$$

Table S6. Summary of equilibrium constants and free energies of Au₆Ag and Au₉Ag in CH₂Cl₂ solution at 298 K.

Species	Equilibrium constant K _{eq}	Free energy ΔG (298 K, kJ mol ⁻¹)
Au ₆ Ag	$1.35 \times 10^4 M^{-1}$	-23.6
Au ₉ Ag	$1.89 \times 10^3 \text{ M}^{-1}$	-18.7

Figure S22. (a) Excitation spectra and (b) emission spectra of Au₃ CH₂Cl₂ solution at the concentration of 0.1 mM in aerated and degassed situation. (c) Varied-concentration excitation spectra (Em = 710 nm) and (d) emission spectra (Ex = 310 nm) of aerated Au₃ CH₂Cl₂ solution.

Figure S23. Varied-concentration excitation and emission spectra for (a) Au_6Ag and (b) Au_9Ag from the concentration range of 1×10^{-6} M to 1×10^{-4} M in CH₂Cl₂. The excitation wavelength is 300 nm and the emission wavelength is recorded at 490 nm.

Figure S24. Emission Spectra of 0.1 mM different molar ratio of $Au_3/AgPF_6$ in CH_2Cl_2 solution (Ex = 310 nm).

Samula	Area of	Area of Area of Φ_{PL} $\Phi_{PL, avg}$		Sampla	Area of	Area of	$arPhi_{ ext{PL}}$	$arPsi_{ ext{PL, avg}}$	
Sample	absorbance	emission	/ %	/ %	Sample	absorbance	emission	/ %	/ %
	51610112	22682631	43.95	42.90		8465519	8078675	95.43	05.22
Au ₆ Ag,	51517930	22674902	44.01	43.89	Au ₆ Ag,	8395455	7981554	95.07	95.22
298 K	51452398	22486467	43.70	± 0.16	//K	8402608	7995525	95.16	± 0.19

	22127140	2665666	12.05	12.02		9447314	3664965	38.79	20.09
Au9Ag,	22106361	2674536	12.10	12.03	Au9Ag,	9318154	3661416	39.29	39.08
298 K	22111145	2637489	11.93	± 0.09	// K	9335304	3656789	39.17	± 0.26
A	22509314	15248334	67.74	67 19	A	7750306	6042756	77.97	78 70 1
AU3, 208 V	22660114	15306749	67.55	$0/.48$ ± 0.20	Au3, 77 V	7577026	6050305	79.85	$78.79 \pm$
298 K	22661086	15217176	67.15	± 0.30	//K	7709682	6056491	78.56	0.96

Table S8. Absolute photoluminescence quantum yields (Φ_{PL}) of heterobimetallic nanoclusters in the solution.^{*a*}

Concentration /	Area of	Area of	$arPhi_{ ext{PL}}$	$arPhi_{ ext{PL, avg}}$	Concentration /	Area of	Area of	$arPhi_{ ext{PL}}$	$arPsi_{ ext{PL, avg}}$
mM	absorbance	emission	/ %	/ %	mM	absorbance	emission	/ %	/ %
				Au	16Ag				
	74810814	4137316	5.53	5 50		110889936	23026397	20.77	20.72
0.01	74917834	4132701	5.52	5.52	0.05	110855306	22973864	20.72	20.73
	74809097	4121080	5.51	± 0.01		110884007	22963920	20.71	± 0.03
	140545799	37864526	26.94	26.06		145816804	45979174	31.53	21.56
0.1	140561195	37919119	26.98	20.90	0.2	145811715	46012195	31.56	51.50
	140547200	37870492	26.95	± 0.02		145830560	46089327	31.60	± 0.04
	146473898	62737211	42.83	42.80		148048994	76656305	51.78	51 79
0.4	146488927	62662914	42.78	42.80	0.6	148052818	76608571	51.74	51.78
	146486345	62672101	42.78	± 0.03		148064597	76740031	51.83	± 0.05
	146532232	73531006	50.18	50.10		27485141	16621814	60.48	(0.59
0.8	146546109	73618317	50.24	50.19	1.0	27432589	16672441	60.78	00.38 ± 0.17
	146527558	73494605	50.16	± 0.04		27488810	16627400	60.49	± 0.17
	127975892	32836773	25.66	25.26					
0.1 (degassed)	127834847	32248035	25.23	25.36					
	127832507	32207727	25.20	± 0.20					
				Au	ı9Ag				
	70562062	6211009	8.80	0 00		126010235	30800673	24.44	24.42
0.01	70487697	6198576	8.79	8.80	0.05	126039089	30799129	24.44	24.45
	70470152	6216310	8.82	± 0.02		126029092	30779483	24.42	± 0.01
	146903366	49927218	33.99	22.09		147556632	53696703	36.39	26.27
0.1	146885952	49917962	33.98	55.98	0.2	147542547	53701998	36.40	50.57
	146895562	49886777	33.96	± 0.02		147558690	53596887	36.32	± 0.04
	149221108	60992117	40.87	40.95		150587343	54949514	36.49	26.42
0.4	149206952	61019425	40.90	40.85	0.6	150585131	54825400	36.41	50.45
	149203433	60836211	40.77	± 0.07		150580602	54815382	36.40	± 0.03
	149332966	58985095	39.50	20.50		147406353	50367480	34.17	24.15
0.8	149318215	58937893	39.47	39.50	1.0	147388025	50350616	34.16	34.15
	149331323	59040148	39.54	± 0.04		147389249	50293912	34.12	± 0.03
	137833729	45051851	32.69	22 (9					
0.1 (degassed)	137839714	45042703	32.68	52.68					
	137849121	45034393	32.67	± 0.01					

^{*a*} All measurements were performed in undegassed dichloromethane solution under room temperature if not specifically informed.

Figure S25. Emission decay profiles of Au₃ in the solid state under (a) 298 K and (b-c) 77K.

Figure S26. Emission decay profiles of (a-b) Au₆Ag and (c-d) Au₉Ag in the solid state and solution, respectively.

Computational Section

Computational Details

All initial models were taken from X-ray crystallography data. Dimer of Au₃ was taken from crystal at 293 K with shortest inter-molecular Au-Au distance of 3.368 Å; both Au₆Ag and Au₉Ag units were taken from one set of disorder structure omitting counteranions, replacing ethoxycarbonyl with methoxycarbonyl groups since these parts have little contributions to electronic transitions and thus denoted as Au₆Ag* and Au₉Ag*, respectively. Geometry optimizations were performed by Amsterdam Modeling Suite (AMS 2018) program package¹ at the level of Grimme's D3-dispersioncorrected² PBE functional^{3,4} with Becke-Johnson (BJ) damping⁵ and slater-type triple-zeta polarity (TZP) basis set,⁶ using small frozen core approximation. No imaginary frequencies were observed in all optimized structures to confirm the minima on the energy surface. Energy decomposition analysis-natural orbitals for chemical valence (EDA-NOCV)⁷⁻⁹ calculations were conducted at the level of PBE-D3(BJ) functional and TZP basis sets with none frozen core, in which the interaction energies (ΔE_{int}) between two fragments were decomposed to Pauli repulsions (ΔE_{Pauli}), electrostatic interactions (ΔE_{Elstat}), orbital interactions (ΔE_{Orb}), and dispersion correction energies (ΔE_{Disp}). Relativistic effects were considered by apply zeroth-order regular approximation (ZORA) to the full relativistic effect treated in Dirac equation.¹⁰

Time-dependent density functional theory (TDDFT) calculations were performed by Gaussian 16 A.03 software package¹¹ using PBE0 functional^{12,13} with the effective core potential (ECP) of Lanl2dz basis set^{14,15} for metal atoms and 6-31G(d,p) basis set¹⁶ for non-metal atoms. The first 20 S₀ \rightarrow S_n and first 10 S₀ \rightarrow T_n vertical transitions were calculated for each model. All molecular orbital maps and electron density difference (EDD) maps of singlet-singlet spin-allowed (S₀ \rightarrow S_n) and singlet-triplet spin-forbidden (S₀ \rightarrow T_n) transitions were generated by Multiwfn 3.6 software¹⁷ using the formatted checkpoint file (.fchk files) and the Gaussian output file (.out files). The isovalue of contour is 0.02 a.u. for molecular orbitals (MOs) and 5 × 10⁻⁴ a.u. for EDA-NOCV deformation density and EDD maps. Abbreviations in this section: *f*, oscillator strength; HOMO or H, highest occupied molecular orbital; LUMO or L, lowest unoccupied molecular orbital; MLCT, metal-to-ligand charge transfer; ILCT, inter-ligand charge transfer; MC, metal-centred.

Computational Results

Figure S27. Comparison of experimental and simulated UV-vis absorption spectra for Au₃, [Au₃]₂, Au₆Ag*, and Au₉Ag*.

Table S9. Energy decomposition analysis (EDA) results for heterobimetallic nanocluster. (unit: kcal/mol)

Au ₆ Ag*				Au9Ag*			
Fragment 1	[Au ₃] ₂ *	Au3*Ag ⁺	[Au3] ₃ *	[Au3] ₂ *	[Au3]*Ag ⁺ [Au3] *		
Fragment 2	Ag^{+}	Au ₃ *	Ag^{+}	Au_3*Ag^+	Au ₃ *		
ΔE_{Pauli}	128.0	131.2	125.3	135.4	101.0		
A E	-134.4	-110.2	-132.4	-114.1	-75.7		
ΔE_{Elstat}	(52.2%)	(52.1%)	(51.1%)	(50.6%)	(47.5%)		
٨E	-110.6	-56.7	-113.2	-60.3	-33.1		
ΔE_{Orb}	(43.0%)	(26.8%)	(43.7%)	(26.8%)	(20.7%)		
ΔE_{Disp}	-12.3	-44.7	-13.5	-51.0	-50.7		
	(4.8%)	(21.1%)	(5.2%)	(22.6%)	(31.8%)		
ΔE_{Int}	-129.3	-80.4	-133.8	-89.1	-58.5		

Figure S28. Electrostatic potential (ESP) maps for (left) Au₃ and (right) Ag⁺ species.

Figure S29. Shape of the EDA-NOCV deformation densities (a-f) $\Delta \rho_{(1)-(6)}$, which are also associated with the orbital interaction $\Delta E_{orb(1)-(6)}$ in Au₆Ag* and the contribution thereof (in parentheses). The model of Au₆Ag* (charge: +1) here are separated as Ag⁺ and [Au₃]₂*. The colour code of the electron flow is orange to cyan.

Figure S30. Shape of the EDA-NOCV deformation densities (a-e) $\Delta \rho_{(1)-(5)}$, which are also associated with the orbital interaction $\Delta E_{orb(1)-(5)}$ in Au₆Ag* and the contribution thereof (in parentheses). The model of Au₆Ag* (charge: +1) here are separated as Au₃*Ag⁺ and Au₃*. The colour code of the electron flow is orange to cyan.

Figure S31. Shape of the EDA-NOCV deformation densities (a-f) $\Delta \rho_{(1)-(6)}$, which are also associated with the orbital interaction $\Delta E_{orb(1)-(6)}$ in Au₉Ag* and the contribution thereof (in parentheses). The model of Au₉Ag* (charge: +1) here are separated as Ag⁺ and [Au₃]₃*. The colour code of the electron flow is orange to cyan.

Figure S32. Shape of the EDA-NOCV deformation densities (a-d) $\Delta \rho_{(1)-(4)}$, which are also associated with the orbital interaction $\Delta E_{orb(1)-(4)}$ in Au₉Ag* and the contribution thereof (in parentheses). The model of Au₉Ag* (charge: +1) here are separated as Au₃*Ag⁺ and [Au₃]₂*. The colour code of the electron flow is orange to cyan.

Figure S33. Shape of the EDA-NOCV deformation densities (a-c) $\Delta \rho_{(1)-(3)}$, which are also associated with the orbital interaction $\Delta E_{orb(1)-(3)}$ in Au₉Ag* and the contribution thereof (in parentheses). The model of Au₉Ag* (charge: +1) here are separated as [Au₃]*Ag⁺[Au₃]*and Au₃. The colour code of the electron flow is orange to cyan.

Figure S34. Selected molecular orbitals and energy level (eV) for monomer of Au₃.

Figure S35. Selected molecular orbitals and energy level (eV) for dimer of Au₃.

No.	E/ev (λ/nm)	EDD	f	Major transitions and contributions	Туре
1	4.061 (305.5)		0.004	H-1→L (75%), H→L (13%), H→L+1 (6%)	¹ MLCT
5	4.574 (271.2)		0.013	H-3→L (57%), H-2→L+1 (19%), H-4→L (12%)	¹ MLCT/ ¹ ILCT
7	4.651 (266.8)		0.142	H-2→L (55%), H-2→L+1 (10%), H→L+3 (6%)	¹ MLCT/ ¹ ILCT
8	4.753 (261.0)		0.303	H-2→L+1 (50%), H-4→L (28%), H-2→L (7%)	¹ MLCT/ ¹ ILCT
9	4.785 (259.3)		0.170	H-4→L (47%), H-3→L (23%), H-2→L (15%), H-2→L+1 (6%)	¹ MLCT/ ¹ ILCT

Table S10. TD-DFT results of selected singlet excited states for monomer of Au₃.

Table S11. TD-DFT results of selected singlet excited states for dimer of Au_3 .

No.	E/ev (λ/nm)	EDD			Major transitions and contributions	Туре
1	3.662 (338.8)	Top View	Side View	0.034	H→L (91%)	¹ MLCT

2	3.777 (328.5)	ૡ૾૾૾ૡ૽૾ૢૢૢૢૢૺૢૢૺૺૢૺૢૺૢૺૢૺૺૺૢૺૺૺૢૺૡ૽ૺૡ૾ૺ ૾ૡૼૡૻૻૡૢૢૢૢૺૼૡ૱૱ૢૺૺૢૺૺૡ૽ૺૺૺૺૺૺૺૢૺૡ૾ૺૡ૽ ૺૡ	0.000	H→L+1 (54%), H-1→L (33%)	¹ MLCT
3	3.868 (320.7)	૱ૺ ૱ૢૺૢૢૢૺૣૢૢૢૢૢૢૢૢૺૢૺૢૺૢૺૢૺૢૺૢૺૢ ૡૢ૱૱ ૾ૡૼૡૻૼ૾ૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	0.002	H→L+2 (59%), H-1→L+1 (22%), H-2→L (7%)	¹ MLCT
6	4.011 (309.3)	ૡ૽ઌૺ૱ૢૢૢૢૢૢૢૺૡ૽ૺૢૼ૱૱ ૾ૡૼૡૻૻૡૺઌ૱ૡ૽ઌ ૾ૡૼ	0.015	H-1 \rightarrow L+1 (38%), H \rightarrow L+2 (29%), H-2 \rightarrow L (14%), H-2 \rightarrow L+2 (6%)	¹ MLCT

Table S12. TD-DFT results of selected triplet excited states for monomer of Au₃.

No.	E/ev (λ/nm)	EDD	Major transitions and contributions	Туре
1	3.519 (352.6)		H-2→L+1 (19%), H-4→L+1 (18%), H-4→L (8%), H-5→L+1 (7%)	³ ILCT/ ³ MLCT
2	3.534 (351.1)		H-4→L (19%), H-9→L (14%), H-3→L (11%), H-3→L+1 (8%), H-3→L+3 (6%)	³ ILCT/ ³ MLCT
3	3.558 (348.7)		H-3→L+3 (14%), H-3→L+2 (8%), H-3→L+1 (6%), H-2→L+3 (6%)	³ ILCT/ ³ MLCT

No.	E/ev (λ/nm)	E	Major transitions and contributions	Туре	
1	3.445 (360.2)	Top View	Side View	H→L (22%), H-9→L+3 (9%), H-8→L (9%)	³ ILCT/ ³ MLCT
2	3.462 (358.4)		ૡ૾ૢૡૼૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢૢ	H-8→L+3 (13%), H-9→L (11%), H-3→L (6%)	³ ILCT/ ³ MLCT
3	3.504 (354.1)		³ 3-3 9 3 ³ 3-3 ³ 4-3 ³ 5-3 ³	H-6→L+2 (9%), H→L (9%), H-7→L+4 (8%), H-4→L+2 (7%), H-7→L+3 (5%)	³ ILCT/ ³ MLCT

Table S13. TD-DFT results of selected triplet excited states for dimer of Au₃.

Au6Ag*

LUMO+14 (-2.089 eV)

LUMO+10 (-2.671 eV)

LUMO+24 (-1.217 eV)

LUMO+23 (-1.500 eV)

Figure S37. Selected molecular orbitals and energy level (eV) for Au₉Ag*.

Figure S38. Highest singly occupied molecular orbitals (HSOMO) for Au₆Ag* and Au₉Ag* at T₁ state.

No.	E/ev (λ/nm)	EDD		f	Major transitions and contributions	Туре
1	3.345 (370.9)	Top View	Side View	0.001	H→L (97%)	¹ MC
2	3.350 (370.3)		- 39393300000000000000000000000000000000	0.001	H-1→L (97%)	¹ MC
6	3.955 (313.7)			0.031	H-6→L (70%), H-5→L (20%)	¹ LMCT/ ¹ MC
7	3.956 (313.6)			0.031	H-6→L (20%), H-5→L (69%)	¹ LMCT/ ¹ MC

Table S14. TD-DFT results of selected singlet excited states for Au₆Ag*.

No.	E/ev (λ/nm)	E	EDD			Туре
1	3.080 (402.9)	Top View	Side View	0.000	H→L (96%)	¹ LMCT/ ¹ MC
2	3.131 (396.3)			0.001	H-1→L (95%)	¹ LMCT/ ¹ MC
5	3.707 (334.7)			0.060	H-1 \rightarrow L+1 (32%), H \rightarrow L+1 (31%), H \rightarrow L+4 (9%), H-1 \rightarrow L+3 (6%), H \rightarrow L+3 (4%)	¹ MLCT
6	3.730 (332.7)			0.028	$H \rightarrow L+1 (32\%),$ $H-1 \rightarrow L+1 (27\%),$ $H-1 \rightarrow L+2 (12\%),$ $H \rightarrow L+3 (7\%),$ $H-1 \rightarrow L+3 (6\%)$	¹ MLCT

Table S15. TD-DFT results of selected singlet excited states for Au₉Ag*.

Table S16. TD-DFT results of selected triplet excited states for Au₆Ag*.

No.	E /ev (λ /nm)	E	Major transitions and contributions	Туре	
1	2.877 (431.3)	Top View	Side View	H→L (95%)	³ MC
2	2.884 (430.2)		، نهری ونی که کوری ونی ور ۲۰۰۰ - وی کو	H-1→L (95%)	³ MC

Table S17. TD-DFT results of selected triplet excited states for Au₉Ag*.

No.	E /ev	E	Major transitions and	Туре	
	(λ /nm)		contributions		
1	2.718 (456.4)	Top View	Side View	H→L (81%)	³ MC
2	2.767 (448.4)			H-1→L (82%)	³ MC

References

- (1) ADF 2018. SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, https://www.scm.com, 2018.
- (2) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu. J. Chem. Phys. 2010, 132, 154104.
- (3) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
- (4) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396–1396.
- (5) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465.
- (6) van Lenthe, E.; Baerends, E. J. Optimized Slater-Type Basis Sets for the Elements 1–118. J. Comput. Chem. 2003, 24, 1142–1156.
- (7) Ziegler, T.; Rauk, A. A Theoretical Study of the Ethylene-Metal Bond in Complexes Between Cu⁺, Ag⁺, Au⁺, Pt⁰, or Pt²⁺ and Ethylene, Based on the Hartree-Fock-Slater Transition-State Method. *Inorg. Chem.* **1979**, *18*, 1558–1565.
- (8) Ziegler, T.; Rauk, A. CO, CS, N₂, PF₃, And CNCH₃ as σ Donors and π Acceptors. a Theoretical Study by the Hartree-Fock-Slater Transition-State Method. *Inorg. Chem.* 1979, 18, 1755–1759.
- (9) Mitoraj, M. P.; Michalak, A.; Ziegler, T. A Combined Charge and Energy Decomposition Scheme for Bond Analysis. J. Chem. Theory Comput. 2009, 5, 962–975.
- (10) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic Total Energy Using Regular Approximations. J. Chem. Phys. 1994, 101, 9783-9792.
- (11) Gaussian 16. A. 01. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyato, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc.: Wallingford CT 2016.
- (12) Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof Exchange-Correlation Functional. J. Chem. Phys. 1999, 110, 5029–5036.
- (13) Adamo, C.; Barone, V. Toward Reliable Density Functional Methods Without Adjustable Parameters: the PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170.
- (14) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for the Transition Metal Atoms Sc to Hg. J. Chem. Phys. 1985, 82, 270–283.
- (15) Hay, P. J.; Wadt, W. R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for K to Au Including the Outermost Core Orbitals. J. Chem. Phys. 1985, 82, 299–310.
- (16) Petersson, G. A.; Bennett, A.; Tensfeldt, T. G.; Laham, Al, M. A.; Shirley, W. A.; Mantzaris, J. A Complete Basis Set Model Chemistry. I. the Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements. J. Chem. Phys. 1988, 89, 2193–2218.
- (17) Lu, T.; Chen, F. Multiwfn: a Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2011, 33, 580-592.