Cross Dehydrogenative C-O Coupling Catalysed by a Catenane-Coordinated Copper(I)

Lihui Zhu, ${ }^{a}$ Jiasheng Li, ${ }^{a}$ Jun Yang ${ }^{a}$ and Ho Yu Au-Yeung ${ }^{*}$,a,b

a: Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
b: State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China Email: hoyuay@hku.hk

Table of Contents

1. Synthesis of Catenane Ligands S 2
2. Cross-Dehydrogenative Coupling Reactions S4
3. ESI-MS Analysis of the Reaction Mixture S11
4. DFT Calculations S13

5 Time-dependent Studies S15
5. NMR Spectra S16
6. References S40

1. Synthesis of Catenane Ligands

General: All reagents were purchased from commercial suppliers (Dkmchem, J \& K, Aldrich and Energy) and used without further purification unless otherwise noted. All the solvents were of analytical grade (ACI Labscan and DUKSAN Pure Chemicals). MeCN were distilled over CaH_{2} before use. Copper complexes $[\mathrm{Cu}(\mathrm{L} 1)] \mathrm{PF}_{6},[\mathrm{Cu}(\mathrm{L2})] \mathrm{PF}_{6},[\mathrm{Cu}(\mathrm{L} 3)] \mathrm{PF}_{6}$ and compound 3 a were synthesised according to published procedures. ${ }^{1,2}$ In the synthesis of $\mathbf{L 1}$ in gram-scale, a $\mathrm{MeCN} / \mathrm{CHCl}_{3}$ mixture ($\mathrm{v} / \mathrm{v}=7: 3$) was further dried by activated $3 \AA \AA$ molecular sieve. ESI-MS were carried out using a Waters-Acquity UPLC H-Class system coupled with a QDa MS detector. HRMS spectra were obtained from a Waters Micromass Q-ToF Premier quadrupole time-of-flight tandem mass spectrometer. NMR spectra were recorded on Bruker DPX spectrometers with working frequencies of 400 MHz or 500 MHz for ${ }^{1} \mathrm{H}$, and 100 MHz or 125 MHz for ${ }^{13} \mathrm{C}$, respectively. Chemical shifts are reported in ppm and referenced to solvent residues $\left(\mathrm{CDCl}_{3}: \delta=7.26 \mathrm{ppm}\right.$ for ${ }^{1} \mathrm{H}$ NMR and $\mathrm{CDCl}_{3}: \delta=77.16 \mathrm{ppm}$ for $\left.{ }^{13} \mathrm{C} \mathrm{NMR}\right)$. Thin layer chromatography was performed on silica gel 60 F254 (Merck, Germany, Aluminium sheet) and column chromatography was carried out on silica gel 60F (Silicycle, Canada).

Scheme S1. Gram-scale synthesis of L1.

Gram-scale synthesis of L1. In a two-necked round bottom flask, a mixture of Phen-CHO (0.896 g, 2 mmol) and $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}(372.7 \mathrm{mg}, 1 \mathrm{mmol})$ in 200 mL of dried $\mathrm{MeCN}^{2} \mathrm{CHCl}_{3}(\mathrm{v} / \mathrm{v}=7: 3)$ was stirred under argon for 30 min . After a clear red solution was obtained, 1,8 -octanediamine ($316.8 \mathrm{mg}, 2.2 \mathrm{mmol}$) and piperidine (0.5 mL) were added. The reaction mixture was stirred for 4 hours and an additional amount of 1,8 -octanediamine ($72 \mathrm{mg}, 0.5 \mathrm{mmol}$) was added. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for another 4 hours and the reaction progress was monitored by UPLC-MS. After the reaction has been completed, the reaction mixture was slowly cooled to $0^{\circ} \mathrm{C}$ in an ice bath. $\mathrm{NaBH}_{4}(60 \mathrm{mg}, 1.59 \mathrm{mmol})$ was added in 3 portions at a $10-\mathrm{min}$ interval. $\mathrm{MeOH}(5 \mathrm{~mL})$ was added and the reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes. The resulting mixture was washed with saturated aq. $\mathrm{NaHCO}_{3}(3 \times 100 \mathrm{~mL})$, water $(100 \mathrm{~mL})$ and brine (100 mL), and solvents were evaporated. The residue was re-dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(50 \mathrm{~mL})$, filtered through a Celite pad and concentrated. Ethyl acetate $(50 \mathrm{~mL})$ was added and the dark red suspension was stirred at room temperature for 30 min and filtered. The filtered solid was washed with $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and dried under vacuum to afford $[\mathrm{Cu}(\mathbf{L 1})] P F_{6}$ as a brick-red powder. Yield $=1.01 \mathrm{~g}$, 76%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 8.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.74(\mathrm{~s}, 4 \mathrm{H})$, 6.51 (d, $J=8.5 \mathrm{~Hz}, 8 \mathrm{H}), 5.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 8 \mathrm{H}), 4.88(\mathrm{~s}, 8 \mathrm{H}), 3.43(\mathrm{~s}, 8 \mathrm{H}), 2.58(\mathrm{t}, J=6.1 \mathrm{~Hz}, 8 \mathrm{H}), 1.53$ (s, 24H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298 \mathrm{~K}, d_{6}$-DMSO) δ 156.2, 154.4, 143.0, 138.0, 133.2, 128.7, 128.3, 126.7, 125.9, 112.7, 70.9, 52.8, 49.3, 30.4, 29.4, 27.1.

To extract the copper ion, $[\mathrm{Cu}(\mathbf{L 1})] \mathrm{PF}_{6}(133 \mathrm{mg}, 0.1 \mathrm{mmol})$ was dissolved in 2 mL MeCN and an aqueous solution of $\mathrm{NaCN}(100 \mathrm{mg}, 2 \mathrm{mmol}, 10 \mathrm{~mL}$) was added (CAUTION! Special attention was paid during the handling of the highly toxic NaCN). The mixture was stirred for 2 hours and organic components were extracted by $10 \mathrm{mLCHCl}_{3}$. The organic phase was collected and solvents were evaporated. The residue was re-dissolved in 5 mL MeCN and 10 mg of tetrabutylammonium chloride was added. The mixture was stirred for 1 hour and the white precipitate was collected and washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ to afford L1. Yield $=100 \mathrm{mg}, 90 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{~d}_{6}$-DMSO) $\delta 8.52(\mathrm{~d}, \mathrm{~J}=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 8.00$ (s, 4H), 7.87 (d, $J=8.2 \mathrm{~Hz}, 4 \mathrm{H}), 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 8 \mathrm{H}), 6.74(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 8 \mathrm{H}), 5.30(\mathrm{~s}, 8 \mathrm{H}), 3.41(\mathrm{~s}$, $8 \mathrm{H}), 2.06(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 8 \mathrm{H}), 1.09(\mathrm{~s}, 8 \mathrm{H}), 0.86(\mathrm{~s}, 16 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(126 \mathrm{MHz}, d_{6}\right.$-DMSO) $\delta 157.6$, 157.4, 145.3, 137.6, 133.7, 129.3, 128.4, 126.9, 122.7, 114.9, 72.7, 52.8, 48.5, 30.6, 29.7, 27.2.

Scheme S2. Synthesis of $\left[\mathrm{Cu}(\mathrm{L} 4)_{2}\right] \mathrm{PF}_{6}$.

Synthesis of $\left[\mathbf{C u}(\mathrm{L} 4)_{2}\right] \mathrm{PF}_{6}$. In a two-necked round bottom flask, a mixture of Phen-CHO ($0.896 \mathrm{~g}, 2$ mmol) and $\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}(372.7 \mathrm{mg}, 1 \mathrm{mmol})$ in 200 mL of dried $\mathrm{MeOH} / \mathrm{MeCN} / \mathrm{CHCl}_{3}(\mathrm{v} / \mathrm{v}=2: 3: 5)$ was stirred under argon for 30 min . After a clear red solution was obtained, n-propylamine ($590 \mathrm{mg}, 10$ mmol) and piperidine $(0.5 \mathrm{~mL})$ were added. The reaction mixture was heated at $60^{\circ} \mathrm{C}$ for overnight and the reaction progress was monitored by UPLC-MS. After the reaction is completed, the reaction mixture was slowly cooled to $0^{\circ} \mathrm{C}$ in an ice bath and $\mathrm{NaBH}_{4}(190 \mathrm{mg}, 5 \mathrm{mmol})$ was added. The reaction mixture is stirred at $0^{\circ} \mathrm{C}$ for another 30 minutes. The resulting mixture was washed with saturated aq. NaHCO_{3} $(100 \mathrm{~mL})$, water (100 mL) and brine (100 mL) and solvents were evaporated. The solid residue was recrystallized in MeCN and $\mathrm{Et}_{2} \mathrm{O}$ to afford $\left[\mathrm{Cu}(\mathrm{L} 4)_{2}\right] \mathrm{PF}_{6}$ as a brick-red powder. Yield $=0.72 \mathrm{~g}, 55 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{t}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.13$ (d, J = $7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 4.93 (s, 2H), 3.57 (s, 2H), 2.54 (s, 2H), 1.65-1.43 (m, 2H), 0.92 (t, J = 7.1 Hz, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.3,155.6,142.9,137.9,129.1,128.9,126.8,124.8,113.4,70.8$, 53.1, 51.3, 23.0, 11.8. $\mathrm{HRMS}\left(E I^{+}\right)$calcd. for $\mathrm{C}_{68} \mathrm{H}_{76} \mathrm{CuN}_{8} \mathrm{O}_{4}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z})$: 1131.5280, found: 1131.5271.

2. Screening of the CDC

Screw-cap vials (10 mm inner diameter) and Synthware ${ }^{\circledR}$ Schlenk tubes were used to run the reactions under air and argon respectively. For a typical reaction, $\mathbf{1 a}(0.1 \mathrm{mmol}), \mathbf{2 a}(0.22 \mathrm{mmol}),[\mathrm{Cu}(\mathrm{L} 1)] \mathrm{PF}_{6}$ (5 $\mathrm{mol} \%)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.2 \mathrm{mmol})$ in 0.5 mL MeCN was stirred in air for 24 hours unless otherwise stated. Yield of the coupling product was determined by ${ }^{1} \mathrm{H}$ NMR using the phenol resonance with $1,3,5$-trimethoxybenzene as the internal standard. Thin layer chromatography (TLC) was performed on silica gel 60 F254 (Merck, Germany, Aluminium sheet) and column chromatography was carried out on silica gel 60F (Silicycle, Canada). Infrared Spectroscopy was conducted on PerkinElmer FT-IR Spectrometer Spectrum Two. ESI-MS were carried out using a Waters-Acquity UPLC H-Class system coupled with a QDa MS detector. HRMS spectra were obtained from a Waters Micromass Q-ToF Premier quadrupole time-of-flight tandem mass spectrometer. NMR spectra were recorded on Bruker DPX spectrometers with working frequencies of 400 MHz or 500 MHz for ${ }^{1} \mathrm{H}$, and 100 MHz or 125 MHz for ${ }^{13} \mathrm{C}$, respectively. Chemical shifts are reported in ppm and referenced to solvent residues.

Table S1. Effects of reaction conditions

Table S2. Effects of copper catalyst

 12		
Entry	Copper	Yield (\%)
1	[Cu(L1) PFF_{6}	80
2	$\left[\mathrm{Cu}(\mathrm{MeCN})_{4}\right] \mathrm{PF}_{6}$	44
3	[Cu(L4) 2] PF_{6}	42
4	CuBr	30
5	$\mathrm{Cu}(\mathrm{OAc})_{2}$	41
6	CuCl_{2}	trace
7	CuSO_{4}	40
8	$\mathrm{CuBr}+1$ eq. L 4	52
9	$\mathrm{CuBr}+2$ eq. L 4	40

Table S3. Effects of solvent

Entry	Solvent	Concentration	Yield (\%)
1	MeCN	0.2 M	80
2	MeCN	0.1 M	79
3	MeCN^{2}	0.5 M	80
4	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	0.2 M	55
5	CHCl_{3}	0.2 M	48
6	THF	0.2 M	46
7	MeOH	0.2 M	complex mixture
8	EtOAc	0.2 M	71
9	Toluene	0.2 M	67
10	DMF	0.2 M	36
11	$\mathrm{Et}_{2} \mathrm{O}$	0.2 M	31
12	DMSO^{2}	0.2 M	complex mixture
13	$\mathrm{H}_{2} \mathrm{O}$	0.2 M	complex mixture

Table S4. Effects of equivalence of 2a

Entry	2a	Yield (\%)
1	2.2 eq.	80
2	3 eq .	80
3	4 eq .	81
4	1.5 eq.	60
5	1.5 eq. under O_{2}	55

Table S5. Effects of additional ligand

Table S6. Effects of base

Entry	Base	Yield (\%)
1	2 eq. $\mathrm{K}_{2} \mathrm{CO}_{3}$	80
2	4 eq. NaHCO_{3}	no reaction
3	2 eq. KOH	12
4	2 eq. NaOH	36
5	2 eq. $\mathrm{Cs}_{2} \mathrm{CO}_{3}$	56
6	2 eq. $\mathrm{Et}_{3} \mathrm{~N}_{3}$	<10
7	4 eq. $\mathrm{Et}_{3} \mathrm{~N}^{2}$	<10
8	3 eq. $\mathrm{K}_{2} \mathrm{CO}_{3}$	80
9	1 eq. $\mathrm{K}_{2} \mathrm{CO}_{3}$	68

Table S7. Effect of temperature

Table S8. Effects of radical scavenger

Entry	Copper complex	TEMPO	Yield (\%)
1	$[\mathrm{Cu}(\mathbf{L 1})] \mathrm{PF}_{6}$	0	80
2	$[\mathrm{Cu}(\mathbf{L 1})] \mathrm{PF}_{6}$	0.5 eq.	55
3	$[\mathrm{Cu}(\mathbf{L 1})] \mathrm{PF}_{6}$	1 eq.	26
4	$[\mathrm{Cu}(\mathbf{L 4})] \mathrm{PF}_{6}$	0	42
5	$[\mathrm{Cu}(\mathbf{L 4})] \mathrm{PF}_{6}$	0.5 eq.	60
6	$[\mathrm{Cu}(\mathbf{L 4})] \mathrm{PF}_{6}$	1 eq.	70

General procedure for Cu-centered catenane catalysed CDC reaction:

To a screw-cap vial (inner diameter $=10 \mathrm{~mm}$) was added bromomalonate (2.2 equiv, 0.22 mmol), $[\mathrm{Cu}(\mathrm{L} 1)] \mathrm{PF}_{6}(1.33 \mathrm{mg}, 0.001 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(27,6 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 0.5 mL MeCN. The mixture was slightly stirred for 5 minutes and phenol (0.1 mmol) was added. The reaction tube was sealed carefully and heated to $50^{\circ} \mathrm{C}$ for 24 hours. After completion of the reaction, the mixture was concentrated in vacuo and purified by flash column chromatography or preparative TLC.

Characterization of new compounds:

3c

Colorless oil. Yield $=90 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.30(\mathrm{~m}$, $2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 1 \mathrm{H}), 4.35(\mathrm{dt}, J=7.1,5.4 \mathrm{~Hz}, 4 \mathrm{H})$, $1.27(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 163.4$, 153.5, 129.5, 124.7, 124.5, 118.9, 118.2, 88.1, 63.9, 13.7. IR (cm^{-1}): 2982, 2924, 1760, 1741, 1488, 1445, 1264, 1221, 1128, 1047, 912, 858, 753, 665. HRMS (EI ${ }^{+}$) calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}_{5}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z})$: 330.0103 , found: 330.0099.

Colorless oil. Yield $=91 \% .^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.29(\mathrm{~m}$, 1H), 7.22-7.10 (m, 1H), $3.89(\mathrm{~d}, \mathrm{~J}=3.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298$ $\mathrm{K}, \mathrm{CDCl}_{3}$) (164.0, 153.3, 129.6, 124.8, 124.7, 118.9, 118.2, 87.3, 54.5, 54.4. IR (cm^{-1}): 2956, 1762, 1744, 1591, 1487, 1434, 1274, 1229, 1205, 1052, 982, $865,753,668$. HRMS ($\mathrm{El}{ }^{+}$) calcd. for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{BrO}_{5}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z})$: 301.9790 , found: 301.9795.

Colorless oil. Yield $=90 \% .^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.30(\mathrm{~m}$, 2 H), 7.29-7.25 (m, 2H), 7.18-7.10 (m, 1H), 1.45 (s, 18H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 162.0,153.9,129.3,124.2,118.3,84.9,27.5$. IR (cm^{-1}): 2979, 2933, 1757, 1737, 1492, 1369, 1242, 1144, 1128, 912, 843, 808, 689, 647. HRMS (EI $)$ calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{BrO}_{5}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z}): 386.0729$, found: 386.0730.

Colorless oil. Yield $=85 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$) ठ 7.42-7.33 (m, 9H), 7.29 (dd, J = 6.4, 3.2 Hz, 3H), 7.23 (dd, J = 10.6, $4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.12$7.07(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 163.1$, 134.4, 129.9, 128.8, 128.6, 128.6, 128.5, 124.9, 118.1, 87.6, 69.5, 68.5. IR $\left(\mathrm{cm}^{-1}\right): 3033,2922,1757,1739,1495,1455,1265,1214,1132,1001,747$, 695, 595. HRMS (EI ${ }^{+}$) calcd. for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{BrO}_{5}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z})$: 454.0416, found: 454.0424.

Colorless oil. Yield $=81 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.31$ (m , 2 H), 7.17 (ddd, $J=4.6,2.8,0.8 \mathrm{~Hz}, 3 \mathrm{H}), 4.29$ (tdd, $J=7.2,4.6,2.7 \mathrm{~Hz}, 2 \mathrm{H})$, $2.55(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta$ 195.3, 153.2, 129.1, 124.4, 118.1, 117.7, 63.9, 23.6, 13.7. IR (cm^{-1}): 2923, 1764, 1734, 1590, 1488, 1253, 1195, 1118, 895, 753, 689. HRMS (EI ${ }^{+}$) calcd. for $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{BrO}_{4}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z})$: 299.9997 , found: 300.0003 .

Yellowish oil. Yield $=83 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 8.16-8.11$ (m , 4 H), $7.64-7.56$ (m, 2H), 7.45 (dd, $J=10.8,4.8 \mathrm{~Hz}, 4 \mathrm{H}$), 7.23 (ddd, $J=7.5$, $5.8,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.16-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 188.6,152.8,134.0,131.9,130.7,129.7,128.6$, 124.3, 117.9, 101.5. IR (cm^{-1}): 3062, 2923, 2852, 1708, 1676, 1594, 1490, 1447, 1230, 1200, 1183, 974, 796, 685, 634, 549. HRMS (El ${ }^{+}$) calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{BrO}_{3}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z}): 394.0205$, found: 394.0221.

Colorless oil. Yield $=86 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.14(\mathrm{~m}$, 2 H), 7.12-6.95 (m, 2H), 4.35 (dt, $J=7.1,5.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 163.2,120.3,120.2,116.2,115.9$, $64.0,63.9,29.7,13.8,13.8 . \operatorname{IR}\left(\mathrm{cm}^{-1}\right): 2921,2851,1760,1743,1502,1264$, 1217, 1196, 1099, 1048, 1011, 833, 661. HRMS (EI ${ }^{+}$) calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{BrFO}_{5}$ $[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z}): 348.0009$, found: 348.0017.

Colorless oil. Yield $=92 \% .^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 7.21-7.09(\mathrm{~m}$, $2 \mathrm{H}), 6.89-6.77(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, \mathrm{J}=7.1$ $\mathrm{Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ ס 163.5, 156.7, 147.2, 120.1, 114.4, 89.6, 63.9, 55.6, 13.8. IR $\left(\mathrm{cm}^{-1}\right): 2982,2838,1759,1741,1504,1220$, 1197, 1108, 1015, 828, 658, 568. HRMS (EI ${ }^{+}$) calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrO}_{6}$ $[M]^{+}(m / z): 360.0209$, found: 360.0201 .

Colorless oil. Yield $=81 \%$ yield. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 7.50-$ 7.32 (m, 5H), 7.21-7.12 (m, 2H), 7.03-6.86 (m, 2H), 5.04 (s, 2H), 4.35 (q, J = $7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.29$ (dd, $J=9.1,5.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298 \mathrm{~K}$, CDCl_{3}) 163.5, 155.9, 147.4, 136.7, 128.6, 128.1, 127.5, 120.1, 115.4, 89.5, $70.4,63.9,13.8$. IR $\left(\mathrm{cm}^{-1}\right): 2982,2924,1759,1740,1502,1220,1192,1108$, 1047, 1010, 911, 826, 740, 697. HRMS (EI $)$ calcd. for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{BrO}_{6}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z})$: 436.0522, found: 436.0510 .

Colorless oil. Yield $=96 \% .^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.05(\mathrm{~m}$, 4 H), 4.35 (dd, $J=14.3,7.2 \mathrm{~Hz}, 4 \mathrm{H}$), 2.32 (s, 3H), $1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) δ 163.5, 151.3, 134.3, 129.9, 118.3, 88.6, 63.9, 20.7, 13.8. IR (cm^{-1}): 2982, 2923, 1760, 1741, 1506, 1262, 1221, 1129, 1047, 1015, 911, 815, 659, 640. HRMS (EI') calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrO}_{5}$ $[M]^{+}(m / z): 344.0259$, found: 344.0262 .

Colorless oil. Yield $=94 \%$. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 7.19-7.09(\mathrm{~m}$, $4 \mathrm{H}), 4.35(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.63(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H})$, $1.23(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 163.5$, 151.4, 140.6, 128.7, 119.0, 118.3, 63.9, 28.1, 15.5, 13.7. IR (cm^{-1}): 2961, 2923, 1761, 1742, 1507, 1263, 1222, 1129, 1049, 1015, 912, 831, 659. HRMS (El^{+}) calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{BrO}_{5}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z})$: 358.0416 , found: 358.0406 .

$3 m$

Colorless oil. Yield $=88 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 7.39-7.30(\mathrm{~m}$, 2 H), 7.24-7.06 (m, 2H), 4.34 (dd, J=11.2, 4.0 Hz, 4H), 1.31 (s, 9H), 1.27 (t, J $=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 163.5,151.2,147.5$, 126.3, 117.8, 88.5, 63.9, 34.4, 31.4, 13.7. IR (cm^{-1}): 2962, 1761, 1742, 1509, 1297, 1264, 1225, 1187, 1103, 1048, 1014, 913, 832, 672. HRMS (EI ${ }^{+}$) calcd. for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{BrO}_{5}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z}): 386.0729$, found: 386.0740 .
Colorless oil. Yield $=78 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 9.98(\mathrm{~s}, 1 \mathrm{H})$, $7.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H})$, $1.29(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 190.7$, 163.0, 157.9, 132.5, 131.5, 118.2, 86.1, 64.3, 29.7, 13.7. IR $\left(\mathrm{cm}^{-1}\right): 2924$, 2852, 1760, 1744, 1698, 1599, 1504, 1264, 1225, 1163, 1110, 1046, 852, 831, 664. HRMS (EI $)$ calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrO}_{6}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z}): 358.0052$, found: 358.0039 .

Colorless oil. Yield $=80 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 7.28(\mathrm{dd}, \mathrm{J}=$ $10.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.07(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.27(\mathrm{~m}, 2 \mathrm{H})$, $1.68(\mathrm{~s}, 2 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta$ 163.5, 151.4, 150.3, 147.0, 128.0, 127.8, 126.7, 125.7, 117.7, 88.4, 63.9, 42.6, 30.8, 13.7. IR $\left(\mathrm{cm}^{-1}\right): 2969,2932,1761,1742,1504,1262,1223,1186$, 1132, 1048, 913, 832, 764, 700. HRMS (El $)$ calcd. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrO}_{5}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z})$: 448.0885, found: 448.0901 .

Colorless oil. Yield $=85 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 7.34$ (dd, $\mathrm{J}=$ $8.0,5.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.15(\mathrm{~m}, 2 \mathrm{H}), 4.68(\mathrm{~s}, 2 \mathrm{H}), 4.43-4.29(\mathrm{~m}, 4 \mathrm{H}), 1.29(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 6 \mathrm{H}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 163.4,152.9$, 137.1, 128.2, 118.4, 87.9, 64.7, 64.0, 29.7, 13.8. IR $\left(\mathrm{cm}^{-1}\right): 3302,2923,1759$, 1506, 1266, 1224, 1128, 1048, 1012, 914, 818, 662. HRMS (EI) calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{BrO}_{6}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z}): 360.0209$, found: 360.0201 .

Colorless oil. Yield $=90 \% .^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, \mathrm{~J}=$ $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, $298 \mathrm{~K}, \mathrm{CDCl}_{3}$) δ 163.0, 151.6, 149.1, 133.6, 129.8, 123.4, 115.1, 86.9, 64.4 , 19.9, 13.8. IR (cm^{-1}): 2983, 2923, 1760, 1743, 1529, 1264, 1229, 1125, 1048, 1013, 911, 811, 731. HRMS (EI $)$ calcd. for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{BrNO}_{7}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z})$: 389.0110, found: 389.0101.
Colorless oil. Yield $=72 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 7.17(\mathrm{~d}, \mathrm{~J}=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{dd}, J=8.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.23$ (m, 4H), $2.31(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 163.7,150.0,139.5,132.7,128.4,126.8,114.4,87.3$, 63.9, 34.7, 29.8, 29.7, 20.9, 13.7. IR (cm^{-1}): 2983, 2922, 2869, 1763, 1744, 1494, 1262, 1222, 1134, 1048, 918, 810, 661. HRMS (EI ${ }^{+}$) calcd. for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{BrO}_{5}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z}): 400.0885$, found: 400.0896 .

 $3 s$

Colorless oil. Yield $=92 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 7.57$ (d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{dd}, J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{q}, J$ $=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.93(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 1.28(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ ($101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 196.8,163.2,150.6,146.8,133.8,121.8,116.7$, 111.6, 86.7, 64.2, 56.3, 26.4, 13.7. IR (cm^{-1}): 2982, 2937, 1759, 1742, 1681, 1593, 1504, 1413, 1266, 1217, 1174, 1151, 1029, 914, 856, 661. HRMS (El $)$ calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{BrO}_{7}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z})$: 402.0314, found: 402.0325 .

Colorless oil. Yield $=88 \% .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 9.92(\mathrm{~s}, 1 \mathrm{H})$, $7.48(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.38(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $298 \mathrm{~K}, \mathrm{CDCl}_{3}$) $\delta 190.9$, 163.1, 151.1, 147.7, 133.1, 124.8, 117.0, 110.6, 86.4, 64.3, 56.3, 13.7. IR (cm^{-1}): 2982, 2923, 2851, 1760, 1689, 1593, 1502, 1464, 1263, 1225, 1136, 1030, 914, 859, 734. HRMS (EI ${ }^{+}$) calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{BrO}_{7}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z})$: 388.0158, found: 388.0166.

Yellowish oil. Yield $=75 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 7.00-6.87(\mathrm{~m}$, $4 \mathrm{H}), 4.39(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.36(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.298 \mathrm{~K}, \mathrm{CDCl}_{3}\right) \delta 163.6,145.9,122.7,109.3,105.2,63.3$, 13.9. IR ($\left.\mathrm{cm}^{-1}\right)$: 2984, 2923, 1761, 1481, 1370, 1310, 1224, 1126, 1050, 854, 802, 738. HRMS (El ${ }^{+}$) calcd. for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{O}_{6}[\mathrm{M}]^{+}(\mathrm{m} / \mathrm{z}):$ 266.0790, found: 266.0793.

Scheme S3. Conversion of 3 e to a functionalizable chloroimidazo[1,2-b]pyridazine.

Conversion of 3 e to 5 . To a solution of $3 \mathrm{e}(300 \mathrm{mg}, 1 \mathrm{mmol})$ in $\mathrm{MeOH}(20 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ under argon was added $\mathrm{LiOH}(48 \mathrm{mg}, 2 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 72 hours. After the reaction is completed, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added. The organic phase was separated, washed with brine and dried over through $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvents were evaporated to give 4 (187 mg, 82%) as a yellowish oil, which could be used directly in next step without further purification. To a solution of $4(187 \mathrm{mg}, 0.82 \mathrm{mmol})$ in 1,4-dioxane (10 mL) was added 3-amino-6-chloropyridazine (106 $\mathrm{mg}, 0.82 \mathrm{mmol}$). The reaction mixture was stirred at $95^{\circ} \mathrm{C}$ for 7 hours. After cooling, the reaction mixture was diluted with ethyl acetate $(30 \mathrm{~mL})$ and washed with saturated NaHCO_{3} solution. The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude solid was purified by column chromatography to give $5(170 \mathrm{mg}, 80 \%)$ as a white solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78$ (d, J=9.4 $\mathrm{Hz}, 1 \mathrm{H}), 7.32(\mathrm{dd}, J=8.6,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H})$. The ${ }^{1} \mathrm{H}$ NMR spectrum was checked with a previously report spectrum and is consistent. ${ }^{3}$

3. ESI-MS Analysis of the Reaction Mixture

For the reaction between 1a and $\mathbf{2 a}$ catalyzed by $[\mathbf{C u}(\mathbf{L 1})] \mathrm{PF}_{6}$, the mixture was analyzed by FIA-ESI-MS using a Waters-Acquity UPLC H-Class system coupled with a QDa MS detector. The ESI-MS (+ve) spectrum showed peaks at $m / z=395.3, m / z=592.1$ and $m / z=1184.1$, which are assigned to $[\mathrm{Cu}(\mathrm{L} 1)+2 \mathrm{H}]^{3+},[\mathrm{Cu}(\mathrm{L} 1)+\mathrm{H}]^{2+}$ and $[\mathrm{Cu}(\mathbf{L 1})]^{+}$(Figure S1), showing that the catenane copper complex as the only detectable copper-containing species in the system.

Figure $\mathbf{S 1}$.
To analyse the possible formation of copper-TEMPO complex with $[\mathrm{Cu}(\mathbf{L 1})] \mathrm{PF}_{6}$, a 20 mM solution of $[\mathrm{Cu}(\mathrm{L1})] \mathrm{PF}_{6}$ in the presence of 50 eq. TEMPO in $\mathrm{CD}_{3} \mathrm{CN}$ was analysed by FIA-ESI-MS. No copper-TEMPO complex was identified and only peaks due to $[\mathrm{Cu}(\mathbf{L 1})]^{+}(\mathrm{m} / \mathrm{z}=1183.9),\left[\mathrm{Cu}(\mathbf{L 1} \mathbf{)}+\mathrm{H}]^{2+}\right.$ $(\mathrm{m} / \mathrm{z}=592.3),[\mathrm{Cu}(\mathbf{L 1})+2 \mathrm{H}]^{3+}(\mathrm{m} / \mathrm{z}=395.2)$, and $[\mathrm{Cu}(\mathbf{L 1})+3 \mathrm{H}]^{4+}(\mathrm{m} / \mathrm{z}=296.7)$ were observed.

Figure $\mathbf{S 2}$.

For the reaction between $\mathbf{1 a}$ and $\mathbf{2 a}$ catalyzed by $\left[\mathrm{Cu}(\mathbf{L 5})_{2}\right] \mathrm{PF}_{6}$, the reaction mixture was analyzed by FIA-ESI-MS. The ESI-MS (+ve) spectrum showed peaks at $m / z=352.3, m / z=649.2$ and $m / z=703.4$, and are assigned as $\left[\{\mathrm{Cu}(\mathrm{L5})(\mathrm{MeCN})\}_{2} \mathrm{Br}+\mathrm{H}\right]^{2+}$, $\left[\{\mathrm{Cu}(\mathrm{L} 5)(\mathrm{HCOO})\}_{2}(\mathrm{OH})\right]^{+}$and $\left[\{\mathrm{Cu}(\mathrm{L} 5)(\mathrm{MeCN})\}_{2} \mathrm{Br}\right]^{+}$, suggesting dinuclear copper species are involved in the reaction.

Figure S3.

4. DFT Calculations

All molecular structures were optimized at the unrestricted DFT/B3LYP ${ }^{4}$ level of theory in solvent environment using the quantum chemistry program package Gaussian 16 Revision B.01. ${ }^{5}$ Dispersion correction was performed using DFT-D3 model. ${ }^{6}$ The Gibbs free energies corresponding to 298.15 K were computed for making thermal correction to all structures. Each optimized geometry was confirmed as minimum electronic energy. LanL2DZ pseudopotential and basis for Cu^{7} and $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis for other atoms were used for geometry optimization. ${ }^{8-10}$ All-electron $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ basis was used for single point energy calculation of optimized geometry and further thermal correction. The Solvation Model based on Density (SMD) was employed to account for the Gibbs free energy change of the solvated structures in the acetonitrile solvent. ${ }^{11}$ Due to the large molecular size of the catenane ligand, only a few possible intermediate molecules were hypothesized and optimized, as shown in Schemes S4 and S5.

For the CDC catalysed by $[\mathrm{Cu}(\mathbf{L 1})] \mathrm{PF}_{6}$, Gibbs free energies of the reactants, products and assumed possible intermediates were computed (Scheme S4). A few radical addition products of the copper catenane were proposed and calculated. The corresponding $\mathrm{Cu}(\mathrm{II})$ bromide was found as an accessible intermediate in the reaction pathway of a low free energy barrier.

Gibbs free energy of other possible intermediates:

Scheme S4.

For the CDC catalysed by $\left[\mathrm{Cu}(\mathbf{L 5})_{2}\right] \mathrm{PF}_{6}$, a binuclear reduction mechanism involving the dicopper complexes $\left[\left\{\mathrm{Cu}^{\prime}(\mathrm{L} 5)(\mathrm{MeCN})\right\}_{2} \mathrm{Br}\right]^{+}$and $\left[\left\{\mathrm{Cu}^{\prime \prime}(\mathrm{L5})(\mathrm{MeCN}) \mathrm{Br}\right\}_{2}\right]^{+}$was studied (Scheme S5), because a similar mechanism has been previously reported and the dicopper complexes have been observed in the ESI-MS analysis of the corresponding reaction mixture.

Scheme S5.

5. Time-dependent Studies

To study the possible intermediate involved in the CDC between $\mathbf{1 a}(0.1 \mathrm{mmol})$ and $\mathbf{2 a}$ (0.22 mmol) catalysed by $1 \mathrm{~mol} \%[\mathrm{Cu}(\mathbf{L 1})] \mathrm{PF}_{6}$ at $50^{\circ} \mathrm{C}$ in MeCN , a time-dependent ${ }^{1} \mathrm{H}$ NMR study was performed using 1,3,5-trimethoxybenzene as the internal standard. In addition to 3a ($\delta=7.20 \mathrm{ppm}$), diethyl phenoxymalonate 3a' ($\delta=5.23 \mathrm{ppm}$) and diethyl malonate ($\delta=3.39 \mathrm{ppm}$) were identified (see Figure S6). The reaction was monitored for 24 hours.

Figure S4. Time-dependent distribution of $\mathbf{3 a}$ (red)) and $\mathbf{3 a} \mathbf{a}^{\prime}$ (blue).

Figure S5. Time-dependent formation of 3a catalysed by $[\mathrm{Cu}(\mathbf{L 1})] \mathrm{PF}_{6}$ (red) and $\left[\mathrm{Cu}(\mathbf{L 5})_{2}\right] \mathrm{PF}_{6}$ (blue).

6. NMR Spectra

A crude mixture of the coupling between $\mathbf{1 a}$ and $\mathbf{2 a}$ catalysed by $[\mathbf{C u}(\mathbf{L} 1)] P F_{6}$ was studied by ${ }^{1} \mathrm{H}$ NMR using a Bruker 400 MHz DPX spectrometer. After the reaction is completed, the reaction mixture was passed through a short pad of silica gel and the solvents were evaporated. The ${ }^{1} \mathrm{H}$ NMR spectrum (400 $\mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) of the residue showed a peak at 3.39 ppm which was assigned to diethyl malonate, ${ }^{12}$ and the peaks at 6.99 ppm and 5.23 ppm were assigned to diethyl phenoxymalonate $3 \mathbf{a}^{\prime} .{ }^{13}$

Figure S6. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of a crude coupling product mixture $\mathbf{1 a}$ and $\mathbf{2 a}$ catalysed by $[\mathrm{Cu}(\mathbf{L 1})] \mathrm{PF}_{6}$.

To analyse the possible formation of copper-TEMPO complex with $[\mathrm{Cu}(\mathbf{L} 1)] \mathrm{PF}_{6}, \mathrm{a}^{1} \mathrm{H}$ NMR spectrum of a 20 mM solution of $[\mathrm{Cu}(\mathbf{L 1})] \mathrm{PF}_{6}$ in the presence of 50 eq . TEMPO in $\mathrm{CD}_{3} \mathrm{CN}$ was obtained. Apart from the peaks due to TEMPO at $15.1 \mathrm{ppm},-16.0 \mathrm{ppm}$ and -28.8 ppm , no other paramagnetically shifted signal due to any possible TEMPO complex of $[\mathrm{Cu}(\mathbf{L 1})]^{+}$was observed. Peak broadening of the signals from $[\mathrm{Cu}(\mathbf{L 1})]^{+}$due to the presence of TEMPO was observed.

Figure S7. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$) spectrum of $[\mathrm{Cu}(\mathrm{L} 1)] \mathrm{PF}_{6}$ in the presence of 50 eq. TEMPO. Shown in the inset are the expanded region of the ${ }^{1} \mathrm{H}$ spectrum of (A) a solution of $[\mathrm{Cu}(\mathbf{L 1})] \mathrm{PF}_{6}$ only; and (B) a mixture of $[\mathrm{Cu}(\mathbf{L 1})] \mathrm{PF}_{6}$ and 50 eq. TEMPO for comparison.

Figure $\mathbf{S 8}{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 a}$.

Figure S9. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 a}$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 b}$.

Figure S11. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 b}$.

Figure S12. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $3 \mathbf{c}$.

Figure S13. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 c}$.

Figure S14. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}$) spectrum of 3d.

Figure S15. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CD}_{3} \mathrm{CN}\right)$ spectrum of 3 d .

Figure S16. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $3 \mathbf{e}$.

Figure S17. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 e}$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 f}$.

Figure S19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 f}$.

$3 g$

Figure S20. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 g}$.

Figure S21. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 g}$.

Figure S22. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 h}$.

Figure S23. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 h}$.

Figure S24. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 i}$.

Figure S25. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 i}$.
エロッニロ
ininic

Figure S26．${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{3 j}$ ．

```
llll
M
ミN
```


Figure S27．${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR（ $101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$ ）spectrum of $\mathbf{3 j}$ ．

Figure S28. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 k}$.
-163.54
-151.43
-140.59
-128.73
-118.26

Figure S29. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 k}$.

Figure S30. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of 3 I .

Figure S31. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 I}$.
$\stackrel{\&}{\stackrel{\circ}{2}} \stackrel{1}{i}$

为

Figure S32. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 m}$.

Figure S33. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of 3 m .

Figure S34. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 n}$.

Figure S35. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 n}$.

Figure S36. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of 3 o .

Figure $\mathbf{S 3 7} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $3 \mathbf{0}$.

Figure S38. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 p}$.

Figure S39. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 p}$.

Figure S40. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of 3q.

Figure S41. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $3 \mathbf{q}$.

Figure S42. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $3 \mathbf{r}$.

Figure S43. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $3 \mathbf{r}$.

Figure S44. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 s}$.

-13.75

Figure S45. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}$) spectrum of $\mathbf{3 s}$.

Figure S46. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $\mathbf{3 t}$.

Figure S47. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of 3t.

Figure S48. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $\left[\mathrm{Cu}(\mathrm{L} 4)_{2}\right] \mathrm{PF}_{6}$.

Figure S49. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(126 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of $\left[\mathrm{Cu}(\mathbf{L 4})_{2}\right] \mathrm{PF}_{6}$.

Figure S50. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, 298 \mathrm{~K}, \mathrm{CDCl}_{3}\right)$ spectrum of 5.

7. References

1. Yee, C.-C.; Ng, A. W. H.; Au-Yeung, H. Y. Chem. Commun. 2019, 55, 6169.
2. Robins, A. H. Comp. Incorp. US5192785, 1993, A.
3. Ali, M. H.; Brookings, D. C.; Brown, J. A.; Hutchings, M. C.; Jackson, V. E.; Kroeplien, B.; Porter, J. R.; Quincey, J. R. U.S. Patent 2015, 9, 703.
4. Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
5. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R; Li, X. et. al. Gaussian 16. Revision B, 01. 2016.
6. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270.
7. Hariharan, P. C.; Pople, J. A. Theor. Chim. Acta 1973, 28, 213.
8. Hehre, W. J.; Ditchfield, R.; Pople, J. A. J. Chem. Phys. 1972, 56, 2257.
9. Rassolov, V. A.; Ratner, M. A.; Pople, J. A.; Redfern, P. C.; Curtiss, L. A. J. Comput. Chem. 2001, 22, 976
10. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378.
11. Patil, Y. P.; Nethaji, M. RSC Adv. 2014, 4, 44938.

12 Paul, N. D.; Chirila, A.; Lu, H.; Zhang, X. P.; de Bruin, B. Chem. Eur. J. 2013, 19, 12953.
13. Takemura, K. H.; Pulickal, S. M.; Hoff, F. O. J. Org. Chem. 1971, 36, 3646.

