Electronic Supporting Information

Aromatic foldamers as scaffolds for metal second coordination sphere design
Antoine Meunier, ${ }^{\text {a\# }}$ Michael L. Singleton, ${ }^{\text {a§\# }}$ Brice Kauffmann, ${ }^{\text {b }}$ Thierry Granier, ${ }^{\text {a }}$ Guillaume Lautrette, ${ }^{\text {a }}$ Yann Ferrand,*a and Ivan Huc*a,c
a. Université de Bordeaux, CNRS, Bordeaux Institut National Polytechnique, CBMN (UMR 5248), IECB, 2 Rue Escarpit, 33600 Pessac, France. E-mail: y.ferrand@iecb.u-bordeaux.fr
${ }^{\text {b }}$ Université de Bordeaux, CNRS, INSERM, Institut Européen de Chimie et Biologie (UMS 3033), 2 rue Robert Escarpit, 33600, Pessac, France
${ }^{\text {c }}$ Department of Pharmacy, Centre for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstraße 5-13, D-81377 Munich, Germany. E-mail: ivan.huc@cup.Imu.de
\# A.M. and M.L.S. contributed equally to this work.
§ Current address: Institute of Condensed Matter and Nanosciences. Université Catholique de Louvain, Place Louis Pasteur 1, Louvain-la-Neuve, b1348, Belgium
This PDF file includes:
Page

1. Methods for NMR, Infrared Spectroscopy and X-ray Crystallography S2
2. Materials and Methods for chemical synthesis S3
2.1 Synthesis of oligomer 1 S3
2.2 Synthesis of oligomers 2, 13 and $\mathbf{3}$ S4
2.3 Synthesis of oligomers $\mathbf{4}$ and $\mathbf{5}$ S5
2.4 Synthesis of monomers $\mathbf{9 , 1 0}$ and $\mathbf{1 1}$ S6
2.5 Synthesis of dimer 14 S6
2.6 Synthesis of tetramer 23 S7
2.7 Experimental procedures S7
3. Solution studies by NMR S20
3.1 NMR study of monomer 9 S20
3.2 NMR study of monomer $\mathbf{1 6}$ S20
3.3 NMR study of dimer 20 S21
3.4 NMR comparison of dimer 20, tetramer $\mathbf{2 2}$ and oligomer 4 S21
3.5 NMR study of oligomer 5 S22
3.6 Full Width at Half Maximum of carbonyl ligand signals S25
4. Solid state X-Ray Crystallography S28
4.1 X-Ray data for oligomer 1 S28
4.2 X-Ray data for oligomer 3 S30
4.3 X-Ray data for oligomer 4 S32
4.4 X-Ray data for oligomer 5 S34
4.5 X-Ray data for monomer 9 S36
5. References S37
6. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of new synthetic compounds S38

1. Methods for NMR, Infrared Spectroscopy and X-Ray Crystallography

Nuclear Magnetic Resonance. NMR spectra were recorded on 3 different NMR spectrometers: (1) an Avance II NMR spectrometer (Bruker BioSpin) with a vertical 7,05T standard-bore/ultrashield magnet operating at 300 MHz for ${ }^{1} \mathrm{H}$ observation and 75 MHz for ${ }^{13} \mathrm{C}$ observation by means of a 5 mm BBFO $\mathrm{BB}-{ }^{19} \mathrm{~F} /{ }^{1} \mathrm{H}$ probe with Zgradients capabilities; (2) an Avance III HD NMR spectrometer (Bruker BioSpin) with a vertical 9.39T standardbore/ultrashield magnet operating at 400 MHz for ${ }^{1} \mathrm{H}$ observation and 100 MHz for ${ }^{13} \mathrm{C}$ observation by means of a 5 mm "Smart Probe" BBFO BB- ${ }^{19}$ F/ $/ \mathrm{H}$ with Z-gradients. (3) an Avance III NMR spectrometer (Bruker BioSpin) with a vertical 16.45 T standard-bore/ultrashield magnet operating at 700 MHz for ${ }^{1} \mathrm{H}$ observation and 176 MHz for ${ }^{13} \mathrm{C}$ observation by means of a 5 mm BBO ${ }^{1} \mathrm{H}-{ }^{19} \mathrm{~F} / \mathrm{BB}$ probe with Z-or a 5 mm TXI ${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}$ probe with Zgradients capabilities Each probe is connected to a Bruker Cooling Unit II. Chemical shifts are reported in parts per million (ppm, δ) and calibrated against residual ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ solvent signals. ${ }^{1} \mathrm{H}$ NMR splitting patterns with observed first-order coupling are designated as singlet (s), doublet (d), triplet (t), or multiplet (m). Coupling constants (J) are reported in hertz. Data processing was performed with TopSpin 3.2 software.

Infrared spectroscopy. Infrared spectra were recorded on a Bruker IFS 55 spectrometer in CaF 2 solution cell with a 0.1 mm path length from Specac (omni-cell).

X-Ray Crystallography. The data for crystal structures of compounds 1,2 and $\mathbf{3}$ have been collected at the European Synchrotron Radiation Facility (BM30A beamline). The data were processed using the XDS package. ${ }^{1}$ The data for crystal structures of compounds $\mathbf{4}$ and $\mathbf{5}$ have been collected at the European Institute for Chemistry and Biology X-ray facility (UMS 3033) on a Rigaku FRX rotating anode at the $\mathrm{CuK} \alpha$ wavelength. The system features a micro-focus x-ray source with the hybrid DECTRIS PILATUS 200K detector combined with the partial chi goniometer and the osmic® varimax multilayer optics. The system is driven and the data processed by the CrystalClear suite. The unit cell determinations have been performed using a combination of Fast Fourier and Difference Vector techniques. All the structures have been solved by direct methods with SHELXD or SHELXT and refined by full-matrix least-squares methods using SHELXL. ${ }^{2}$ The Coot software ${ }^{3}$ was used for modelling. Owing to the size of the molecules, and the thorough task of controlling bond angles and bond lengths, geometric restraints, generated with program PRODRG ${ }^{4}$, were applied to each model. It has to be noticed that all the crystals described below contain a large percentage of disordered solvent molecules and very few of them could be modeled in the Fourier difference density maps. Therefore, the SQUEEZE procedure ${ }^{5}$ implemented in PLATON ${ }^{6}$ was used for all structures in order to treat the regions with highly disordered solvent molecules (mainly chloroform, water, methanol, chlorobenzene or n-hexane molecules). Every time where solvent or side chain disorder could be modeled with partial occupancy, it was done so. SHELXL SIMU, DELU or RIGU restraints were used in the refinement strategy, when needed, as listed in the cif files. Hydrogen atoms were positioned theoretically on riding positions using AFIX command. The final cif files were checked using IUCR's checkcif algorithm. Due to the characteristics of the crystals mentioned above (small size, large volume fractions of disordered solvent molecules, side chains disorder, weak diffraction intensity, incompleteness of the data and moderate resolution), a number of A-level and B-level alerts remain in the check cif file.

2. Materials and Methods for chemical synthesis

All reactions were carried out under a dry nitrogen atmosphere. Commercial reagents were purchased from SigmaAldrich, Alfa-Aesar or TCI and were used without further purification unless otherwise specified. Tetrahydrofurane (THF) dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and toluene were dried over alumina columns; chloroform $\left(\mathrm{CHCl}_{3}\right)$ and diisopropylethylamine (DIEA) were distilled over calcium hydride $\left(\mathrm{CaH}_{2}\right)$ prior to use. Reactions were monitored by thin layer chromatography (TLC) on Merck silica gel 60-F254 plates and observed under UV light. Column chromatography purifications were carried out on Merck GEDURAN Si60 (40-63 $\mu \mathrm{m}$). Gel permeation chromatography was performed on an LC-9130G NEXT (Japan Analytical Industry Co., Ltd.) setup equipped with two preparative columns (Inner diameter of 20 mm and length of 600 mm): a JAIGEL 2.5 H and a JAIGEL 3H. Column temperatures were regulated at $37{ }^{\circ} \mathrm{C}$ in an oven. A mixture of chloroform (HPLC grade, ethanol stabilized) and trimethylamine ($0.5 \% \mathrm{vol} / \mathrm{vol}$) was used for the separations. ESI mass spectra were obtained from the Mass Spectrometry Laboratory at the European Institute of Chemistry and Biology (UMS 3033 - IECB), Pessac, France.

2.1 Synthesis of oligomer 1

Scheme S1. i) PyBOP, DIEA, CHCl_{3}.
2.2 Synthesis of oligomers 2, 13 and 3

70%

$14 \left\lvert\, \begin{gathered}\text { iii } \\ 74 \%\end{gathered}\right.$

Scheme S2. i) PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ii) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, iii) PyBOP, DIEA, CHCl_{3}.

2.3 Synthesis of oligomers 4 and 5

Scheme S3. i) PyBOP, DIEA, CHCl_{3}, ii) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

2.4 Synthesis of oligomers 9, 10 and 11

Scheme S4. i) $(\mathrm{COCl})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, ii) TMSEOH, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, iii) NBS benzoyl peroxide, benzene, $65^{\circ} \mathrm{C}$ iv) KNBoc_{2}, DMF, $50^{\circ} \mathrm{C}$, v) LiI, EtOAc, dark, $80^{\circ} \mathrm{C}$, vi) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, vii) HCl 4 M , dioxane, viii) $\mathrm{Fe}_{2}(\mathrm{SH})_{2} \mathrm{CO}_{6}$, formalin, THF.

2.5 Synthesis of dimer 14

Scheme S5. i) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, ii) LiOH. $\mathrm{H}_{2} \mathrm{O}$, THF/MeOH/H2O, iii) PyBOP, DIEA, CHCl_{3}, iv) TFA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

2.6 Synthesis of tetramer 23

Scheme S6. i) DPPA, DIEA, TMSEOH, toluene, $100^{\circ} \mathrm{C}$, ii) $\mathrm{LiOH} . \mathrm{H}_{2} \mathrm{O}$, THF, MeOH and $\mathrm{H}_{2} \mathrm{O}$, room temperature, iii) 2,4-dimethoxybenzaldehyde, $\mathrm{NaBH}(\mathrm{OAc})_{3}, \mathrm{DCE}, 40^{\circ} \mathrm{C}$, iv) PyBOP, DIEA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, v) LiI, EtOAc, dark, $80^{\circ} \mathrm{C}$, vi) PyBOP, DIEA, CHCl_{3}, room temperature, vii) TBAF, succinic acid, THF, DMF, room temperature.

2.7 Experimental procedures

Oligomer 1. Hexamer amine $\mathbf{1 2}^{7}(50 \mathrm{mg}, 37 \mu \mathrm{~mol})$, monomer complex $10(33 \mathrm{mg}, 40 \mu \mathrm{~mol})$ and PyBOP (38 mg , $73 \mu \mathrm{~mol})$ were dissolved in dry chloroform (1 mL). Then, DIEA ($12 \mu \mathrm{~L}, 70 \mu \mathrm{~mol}$) was added and the reaction mixture was let to stir at room temperature. After 12 hours, the reaction mixture was diluted with dichloromethane and washed with an aqueous saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, distilled water and brine. Then, the organic layer was dried over MgSO_{4}, filtered and solvents were removed under reduced pressure. The solid residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ using cyclohexane: $\mathrm{EtOAc}(3: 1 \mathrm{vol} / \mathrm{vol})$ as eluent to give $1(47 \mathrm{mg}, 59 \%)$ as a red solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}=11.92(\mathrm{~s}, 1 \mathrm{H}), 11.55(\mathrm{~s}, 1 \mathrm{H}), 11.46(\mathrm{~s}, 1 \mathrm{H}), 11.13(\mathrm{~s}, 1 \mathrm{H}), 10.37(\mathrm{~s}$, $1 \mathrm{H}), 9.78(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.83(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.80$ $(\mathrm{d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.46-8.40(\mathrm{~m}, 2 \mathrm{H}), 8.29(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}), 7.86-$ $7.84(\mathrm{~m}, 3 \mathrm{H}), 7.80(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~s}$, $1 \mathrm{H}), 7.02(\mathrm{~s}, 1 \mathrm{H}), 6.59(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45$ $(\mathrm{d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.24(\mathrm{~m}, J=15.9,8.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.21(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 4.19-4.12(\mathrm{~m}, J=7.1 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.08-3.93(\mathrm{~m}, 3 \mathrm{H}), 3.87-3.80(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~s}, 1 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.24(\mathrm{~m}$, $2 \mathrm{H}), 2.51-2.25(\mathrm{~m}, 6 \mathrm{H}), 1.30(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 24 \mathrm{H}), 0.78(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.52(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}=207.84,166.07,164.58,164.12,164.02,164.00,163.66,163.27$, $163.05,162.99,162.96,162.64,161.89,161.59,160.74,154.91,154.61,154.58,153.70,153.53,152.66,151.63$, $150.80,150.15,149.00,148.95,147.15,145.09,144.82,143.74,139.97,139.05,138.20,135.85,134.58,134.43$, $134.37,134.28,129.86,128.25,126.29,126.12,125.82,124.14,123.55,122.78,121.73,121.31,120.86,118.03$, $117.12,115.77,115.53,115.50,115.40,115.00,114.89,114.38,110.13,108.46,101.20,99.31,98.57,98.51$, $98.24,96.92,96.56,76.05,75.89,75.61,75.56,75.40,75.27,74.94,53.45,53.08,52.07,45.95,29.83,28.48$, 28.40, 28.33, 27.92, 19.64, 19.46, 19.35, 18.57. HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{189} \mathrm{H}_{196} \mathrm{Fe}_{2} \mathrm{~N}_{30} \mathrm{O}_{35} \mathrm{~S}_{2}[\mathrm{M}+2 \mathrm{H}]^{2+}$ 2157.5625 found 2157.5688. IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{CO})_{\text {complex }}, 2071,2033,1993$.

2
Oligomer 2. Amine hexamer $\mathbf{1 2}(120 \mathrm{mg}, 89 \mu \mathrm{~mol})$, diazaanthracene metal complex $\mathbf{1 1}(105 \mathrm{mg}, 0.115 \mathrm{mmol})$ and PyBOP ($140 \mathrm{mg}, 0.27 \mathrm{mmol}$) were dissolved in dry dichloromethane (2 mL). Then, DIEA ($50 \mu \mathrm{~L}, 0.27 \mathrm{mmol}$) was added and the reaction mixture was let to stir at room temperature. After 5 hours, the reaction mixture was diluted with dichloromethane, washed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, distilled water and brine. Then, the organic layer was dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The solid residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ using cyclohexane: $\mathrm{EtOAc}(3: 1 \mathrm{vol} / \mathrm{vol})$ as eluent to give 2 $(140 \mathrm{mg}, 70 \%)$ as a red solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=11.93(\mathrm{~s}, 1 \mathrm{H}), 11.61(\mathrm{~s}, 1 \mathrm{H}), 11.51(\mathrm{~s}, 1 \mathrm{H})$, $11.18(\mathrm{~s}, 1 \mathrm{H}), 10.43(\mathrm{~s}, 1 \mathrm{H}), 9.82(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H}), 8.85-8.78(\mathrm{~m}, J=9.1,4.2 \mathrm{~Hz}$, $3 \mathrm{H}), 8.43(\mathrm{dd}, J=12.9,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.30(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 3 \mathrm{H})$, $7.78(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.73-7.67(\mathrm{~m}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.23-7.12(\mathrm{~m}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.04(\mathrm{dd}, J=14.2,8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 6.66(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=165.5,13.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.36-$ $4.25(\mathrm{~m}, J=5.9 \mathrm{~Hz}, 4 \mathrm{H}), 4.21(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}), 4.07(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.90-3.72$ $(\mathrm{m}, J=13.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.61(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.31(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.20(\mathrm{~m}, 7 \mathrm{H}), 1.40-1.08(\mathrm{~m}$, $38 \mathrm{H}), 0.80(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.55(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}),-0.10(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=$ $207.89,165.67,164.55,164.00,163.97,163.87,163.65,163.10,163.02,162.91,162.83,162.55,161.79,161.46$, $160.58,154.86,154.80,154.53,154.46,153.66,153.29,152.62,151.47,150.74,150.16,149.69,149.11,147.04$, $145.03,144.71,143.67,139.87,139.04,139.02,138.09,135.47,134.56,134.30,128.17,126.32,126.05,125.79$, $124.06,123.48,122.79,121.49,121.15,120.76,118.00,117.06,115.74,115.46,115.35,114.93,114.83,114.24$, 109.91, 108.41, 101.08, 99.36, 98.54, 98.35, 98.12, 96.76, 96.40, 75.99, 75.83, 75.58, 75.51, 75.41, 75.27, 74.85, $64.47,53.38,51.84,28.43,28.36,28.31,28.28,27.89,19.41,19.33,19.29,18.59,17.36,-1.60$. HRMS (ESI $^{+}$): m / z calcd for $\mathrm{C}_{109} \mathrm{H}_{113} \mathrm{Fe}_{2} \mathrm{~N}_{18} \mathrm{O}_{23} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 2243.6176$ found 2243.6208. IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{CO})_{\text {complex }}, 2071$, 2033, 1993.

Oligomer 3. Heptamer complex acid 13 ($50 \mathrm{mg}, 23 \mu \mathrm{~mol}$), dimer amine $14(26 \mathrm{mg}, 34 \mu \mathrm{~mol})$ and PyBOP (36 $\mathrm{mg}, 69 \mu \mathrm{~mol})$ were dissolved in dry chloroform $(1 \mathrm{~mL})$. Then, DIEA $(22 \mu \mathrm{~L}, 69 \mu \mathrm{~mol})$ was added and the reaction mixture was let to stir at room temperature. After 12 hours, the reaction mixture was diluted with dichloromethane and washed with an aqueous saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, distilled water and brine. Then, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvents were removed under reduced pressure. The solid residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ using dichloromethane:acetone ($95: 5 \mathrm{vol} / \mathrm{vol}$) as eluent to give $3(50 \mathrm{mg}, 74 \%)$ as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=11.71(\mathrm{~s}, 1 \mathrm{H}), 11.36(\mathrm{~s}, 2 \mathrm{H}), 11.14(\mathrm{~s}, 1 \mathrm{H}), 10.83(\mathrm{~s}, 1 \mathrm{H}), 10.79$ $(\mathrm{s}, 1 \mathrm{H}), 10.09(\mathrm{~s}, 1 \mathrm{H}), 9.43(\mathrm{~s}, 1 \mathrm{H}), 9.21(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.95(\mathrm{~s}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.25(\mathrm{dd}, J=7.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.97-7.89(\mathrm{~m}, J=8.5,4.3 \mathrm{~Hz}$, $5 \mathrm{H}), 7.80(\mathrm{~s}, 2 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.17(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.33(\mathrm{t}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.21-6.12(\mathrm{~m}, 2 \mathrm{H}), 5.85(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.46-4.23(\mathrm{~m}, 10 \mathrm{H}), 4.23-4.07(\mathrm{~m}, 6 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.97-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.62(\mathrm{~m}, 7 \mathrm{H}), 3.19-3.03(\mathrm{~m}$, $2 \mathrm{H}), 2.56-2.33(\mathrm{~m}, 10 \mathrm{H}), 2.19-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.15(\mathrm{~m}, 54 \mathrm{H}), 1.10-1.03(\mathrm{~m}, 6 \mathrm{H}), 0.60(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H}), 0.30(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=207.69,166.78,164.50,164.45,164.28$, $164.04,163.64,163.42,163.24,162.58,162.31,162.13,161.96,161.58,161.38,159.66,155.48,155.16,154.26$, $154.15,153.56,152.87,152.60,152.05,151.98,151.07,150.89,150.10,149.00,147.76,147.70,147.45,147.16$, $146.55,144.92,144.57,143.69,138.80,138.57,137.65,134.38,134.28,134.07,131.93,128.04,127.03,126.63$, $125.75,123.99,123.27,122.58,122.07,121.87,121.27,120.86,120.07,119.66,119.41,118.23,116.64,116.53$, $115.84,115.71,115.48,115.35,114.72,113.58,113.43,108.32,106.30,101.67,98.77,98.31,97.63,96.76,95.43$, $95.31,93.69,92.43,77.36,75.97,75.71,75.52,75.27,75.17,75.08,53.92,53.18,52.60,19.74,19.41,19.33$, 19.29, 18.32, 1.13. HRMS (ESI $)$: m / z calcd for $\mathrm{C}_{147} \mathrm{H}_{150} \mathrm{Fe}_{2} \mathrm{~N}_{24} \mathrm{O}_{29} \mathrm{~S}_{2}[\mathrm{M}+2 \mathrm{H}]^{2+} 1445.9581$ found 1445.9621. IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{CO}), 2072,2034,1993$.

Oligomer 4. Tetramer $22(70 \mathrm{mg}, 39 \mu \mathrm{~mol})$ was dissolved in dry DMF (10 mL). Then, a solution of tetrabutylammonium fluoride 1 M in THF $(2 \mathrm{~mL})$ and succinic acid ($50 \mathrm{mg}, 0.4 \mathrm{mmol}$) was added and the reaction mixture was stirred at room temperature during 4 hours. After dilution with EtOAc, the organic layer was washed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, distilled water, brine then, the organic layer was dried over MgSO_{4} and filtered. The solvents were removed under reduced pressure to give $\mathbf{2 3}$ as a yellow solid that was used directly
in subsequent reaction without further purification. Heptamer complex acid $\mathbf{1 3}(70 \mathrm{mg}, 33 \mu \mathrm{~mol})$, tetramer amine ($39 \mu \mathrm{~mol}$) and PyBOP ($51 \mathrm{mg}, 98 \mu \mathrm{~mol}$) were dissolved in dry chloroform (2 mL). Then, DIEA ($10 \mu \mathrm{~L}, 65 \mu \mathrm{~mol}$) was added and the reaction mixture was stirred at room temperature during 12 hours. The reaction mixture was diluted with dichloromethane and washed with an aqueous saturated solution of $\mathrm{NH}_{4} \mathrm{Cl}$, distilled water and brine. Then, the organic layer was dried over MgSO_{4}, filtered and solvents were removed under reduced pressure. The solid residue was purified by GPC to give $4(50 \mathrm{mg}, 41 \%)$ as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=$ $11.76(\mathrm{~s}, 1 \mathrm{H}), 11.40(\mathrm{~s}, 2 \mathrm{H}), 11.32(\mathrm{~s}, 1 \mathrm{H}), 10.99(\mathrm{~s}, 1 \mathrm{H}), 10.90(\mathrm{~s}, 1 \mathrm{H}), 10.48(\mathrm{~s}, 1 \mathrm{H}), 10.24(\mathrm{~s}, 1 \mathrm{H}), 9.54(\mathrm{~s}, 1 \mathrm{H})$, $9.16(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.94(\mathrm{~s}, 2 \mathrm{H}), 8.79(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 2 \mathrm{H}), 8.35-$ $8.22(\mathrm{~m}, 5 \mathrm{H}), 8.19(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 3 \mathrm{H}), 7.71-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H})$, $7.58(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.08(\mathrm{~m}, 5 \mathrm{H}), 7.06(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.80(\mathrm{~s}, 1 \mathrm{H}), 6.60(\mathrm{~s}, 1 \mathrm{H}), 6.58-6.46(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.20-6.01(\mathrm{~m}$, $2 \mathrm{H}), 5.48-5.17(\mathrm{~m}, 3 \mathrm{H}), 4.72(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.04(\mathrm{~m}, 22 \mathrm{H}), 3.90(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 9 \mathrm{H}), 3.73(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~s}, 3 \mathrm{H}), 3.17-2.96(\mathrm{~m}, 3 \mathrm{H}), 2.65-2.01(\mathrm{~m}, 15 \mathrm{H}), 1.34-1.14(\mathrm{~m}, 72 \mathrm{H}), 1.09(\mathrm{~d}$, $J=5.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.98(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 6 \mathrm{H}), 0.65(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.37(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=207.80,171.27,166.24,163.92,163.40,163.29,162.50,161.73,161.27,159.79,159.63,158.14$, $157.05,154.96,154.69,154.32,153.65,153.32,152.74,151.90,151.54,150.48,149.30,147.69,147.37,147.25$, $147.04,146.83,146.45,144.49,143.56,138.77,138.18,137.72,134.33,134.11,133.66,130.95,128.06,126.76$, $125.94,125.61,123.77,123.25,122.49,121.33,120.78,120.49,119.69,119.44,118.99,118.76,117.71,116.66$, $116.09,115.70,115.25,114.98,114.58,114.35,113.74,109.42,106.89,103.66,101.15,98.98,98.03,97.25$, $96.10,95.68,95.51,93.82,92.01,75.45,75.14,75.01,55.12,53.88,53.06,45.84,29.73,28.35,27.64,19.25$, 18.32, 8.67, 1.05. HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{198} \mathrm{H}_{206} \mathrm{Fe}_{2} \mathrm{~N}_{30} \mathrm{O}_{37} \mathrm{~S}_{2}[\mathrm{M}+2 \mathrm{H}]^{2+} 1884.6668$ found 1884.6636. IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{CO})_{\text {complex }}$, 2072, 2030, 1992.

5
Oligomer 5. Oligomer $4(25 \mathrm{mg}, 0.16 \mathrm{mmol})$ was dissolved in dry dichloromethane (0.5 mL). Then, TFA (0.5 mL) was added slowly at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred at room temperature during 4 hours. The reaction mixture was diluted with dichloromethane and quenched with aqueous saturated NaHCO_{3} solution. The organic layer was washed with distilled water, brine, then the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed to give $5(23 \mathrm{mg}, 98 \%)$ as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=11.81(\mathrm{~s}$, $1 \mathrm{H}), 11.54(\mathrm{~s}, 1 \mathrm{H}), 11.41(\mathrm{~s}, 1 \mathrm{H}), 11.27(\mathrm{~s}, 1 \mathrm{H}), 11.18(\mathrm{~s}, 1 \mathrm{H}), 10.88(\mathrm{~s}, 1 \mathrm{H}), 10.76(\mathrm{~s}, 1 \mathrm{H}), 10.71(\mathrm{~s}, 1 \mathrm{H}), 10.36$ $(\mathrm{s}, 1 \mathrm{H}), 9.73(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~s}, 1 \mathrm{H}), 9.06(\mathrm{~s}, 1 \mathrm{H}), 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H})$, $8.26(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.02(\mathrm{~s}, 1 \mathrm{H}), 7.98(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}), 7.78(\mathrm{~s}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~s}$, $1 \mathrm{H}), 7.46(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 7.18(\mathrm{~s}, 2 \mathrm{H}), 7.14(\mathrm{~s}, 1 \mathrm{H}), 7.13$ - $7.11(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.41-6.38(\mathrm{~m}, 2 \mathrm{H}), 6.18(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{t}, J=$
$7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.67-4.59(\mathrm{~m}, J=15.6 \mathrm{~Hz}, 4 \mathrm{H}), 4.44-4.35(\mathrm{~m}, 6 \mathrm{H}), 4.26(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.24-4.19(\mathrm{~m}, 3 \mathrm{H}), 4.16(\mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=6.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.95-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.83(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-3.68(\mathrm{~m}, 10 \mathrm{H}), 3.46(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.84-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.42(\mathrm{~m}, 8 \mathrm{H}), 2.39-2.20(\mathrm{~m}, 7 \mathrm{H}), 2.16-2.11(\mathrm{~m}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.35-$ $1.18(\mathrm{~m}, 69 \mathrm{H}), 1.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.12-1.08(\mathrm{~m}, 12 \mathrm{H}), 0.49(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.26(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($176 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}=208.54,166.58,164.30,164.17,164.11,163.88,163.71,163.54,163.39$, $163.25,163.11,163.01,162.97,162.65,162.55,162.47,162.39,162.34,162.15,161.90,161.50,161.15,160.28$, $154.77,154.40,154.31,154.20,153.36,153.18,152.90,152.56,152.45,152.33,152.26,151.94,151.49,151.40$, $151.15,150.69,150.24,149.93,149.53,148.30,147.66,147.47,147.06,147.00,146.89,146.79,146.64,146.36$, $146.19,144.72,144.59,143.74,138.85,138.18,137.22,134.63,134.45,134.13,131.72,131.61,130.91,127.92$, $127.34,126.61,126.29,125.76,125.53,123.77,123.38,122.61,121.04,120.73,120.57,120.31,120.18,119.82$, $119.66,119.48,118.84,117.31,116.41,115.65,115.40,115.28,114.47,113.88,113.47,112.86,108.25,106.72$, $101.22,99.28,97.48,97.00,96.83,96.77,95.83,95.53,95.26,95.10,94.76,93.97,93.86,92.98,92.64,75.33$, $75.23,75.15,75.08,74.97,74.84,74.63,55.96,54.51,52.85,29.84,28.73,28.65,28.57,28.55,28.49,28.45$, $28.40,28.33,28.29,28.23,28.12,27.53,19.60,19.57,19.50,19.44,19.42,19.40,19.35,19.29,19.27,19.16$, 18.33, 1.16. HRMS (ESI $)$: m / z calcd for $\mathrm{C}_{189} \mathrm{H}_{196} \mathrm{Fe}_{2} \mathrm{~N}_{30} \mathrm{O}_{35} \mathrm{~S}_{2}[\mathrm{M}+2 \mathrm{H}]^{2+} 1809.6327$ found 1809.6343. IR (cm^{-1}, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{CO})_{\text {complex }}, 2072,2030,1992,1969$ (sh).

Monomer 7. Bromo-benzyl diazaanthracene $26(6.5 \mathrm{~g}, 10.5 \mathrm{mmol})$ and potassium di-tert-butyliminodicarbonate ($3.2 \mathrm{~g}, 12.6 \mathrm{mmol}$) were dissolved in anhydrous DMF $(30 \mathrm{~mL})$. The reaction mixture was stirred for 12 hours at $50^{\circ} \mathrm{C}$. After solvent removal on a vacuum line, solid residue and magnesium perchlorate ($235 \mathrm{mg}, 1.05 \mathrm{mmol}$) were dissolved in acetonitrile (20 mL) and heated to reflux during 1 h . During return to room temperature, a precipitate formed and was filtered, giving 7 as a yellow solid ($4.2 \mathrm{~g}, 61 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ $=9.21(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 5.79(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.61-4.53(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H})$, $4.08(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 12 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}=166.45,165.94,163.53,163.46,156.22,150.69,150.41,145.76,145.32,136.51$, $121.63,121.59,115.83,98.77,75.25,64.67,53.22,38.05,28.65,28.36,19.23,17.58,-1.33$. HRMS $\left.^{(E S I}\right): ~ m / z$ calcd for $\mathrm{C}_{34} \mathrm{H}_{50} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 656.3361$ found 656.3351 .

8
Monomer 8. Methyl ester diazaanthracene $7(655 \mathrm{mg}, 1 \mathrm{mmol})$ and lithium iodide ($160 \mathrm{mg}, 1.2 \mathrm{mmol}$) were dissolved in degassed EtOAc (6 mL). The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ and protected from light. After 5 hours, the reaction mixture was diluted with EtOAC, washed with an aqueous solution of citric acid ($5 \% \mathrm{wt}$),
distilled water and brine, then, the organic layer was dried over MgSO_{4}, filtered and solvent was removed. The solid residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ using dichloromethane:methanol:acetic acid (94:5:1) as eluent. The pure fractions were washed with aqueous saturated solution of NaHCO_{3}, aqueous solution of citric $\operatorname{acid}(5 \% \mathrm{wt})$, water and brine then, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvents were removed to give 8 as a yellow solid ($560 \mathrm{mg}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}=9.24(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.48$ $(\mathrm{s}, 1 \mathrm{H}), 5.76(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.44(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.55(\mathrm{~m}, J=9.0,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{dd}, J=6.3$, $5.0 \mathrm{~Hz}, 4 \mathrm{H}), 2.43-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.31-1.24(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{dd}, J=6.7,3.4 \mathrm{~Hz}, 13 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}=165.69,165.66,164.21,163.30,156.49,151.41,149.17,145.56,144.01$, $136.18,121.48,121.40,116.37,98.98,97.28,79.67,75.55,75.29,64.72,35.20,28.56,28.33,28.27,19.21,19.16$, 17.51, -1.29. HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 642.3205$ found 642.3205 .

Monomer 9. Boc-protected diazaanthracene $\mathbf{6}^{8}(570 \mathrm{mg}, 1 \mathrm{mmol})$ was dissolved in dioxane (8 mL). A solution of HCl 4 M in dioxane ($2 \mathrm{~mL}, 8 \mathrm{mmol}$) was slowly added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred during 1 hour at room temperature. The solvent was removed under reduced pressure and the resulting ammonium chloride salt was dried under high vacuum. In the meantime, complex $\mathrm{Fe}_{2} \mathrm{~S}_{2}(\mathrm{CO})_{6}(344 \mathrm{mg}, 1 \mathrm{mmol})^{9}$ was dissolved in dry THF (7.4 mL) and maintained at $-78^{\circ} \mathrm{C}$. Then, a solution of lithium triethylborohydride 1 M in THF ($2.2 \mathrm{~mL}, 2.2$ $\mathrm{mmol})$ was added slowly and the reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$. After 30 minutes, TFA $(0.18 \mathrm{~mL}$, 2.4 mmol) was slowly added and the reaction mixture was allowed to stir at room temperature. After 1 hour, formalin ($0.195 \mathrm{~mL}, 2.6 \mathrm{mmol}$) was added and the reaction mixture was allowed to stir 2 more hours at room temperature. Then, the last reaction mixture was added to the previous ammonium chloride salt and the whole was stirred during 12 hours at room temperature. Solvent was removed under reduced pressure and the crude was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ using cyclohexane: $\mathrm{EtOAc}(90 / 10)$ as eluent, followed by precipitation in hexane to give 9 as a red solid ($340 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}=9.18(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 2 \mathrm{H})$, $5.32(\mathrm{~s}, 2 \mathrm{H}), 4.27-4.01(\mathrm{~m}, 14 \mathrm{H}), 2.44-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ ppm $=208.34,166.36,163.59,150.53,145.68,136.78,121.88,116.19,98.92,75.39,53.38,53.30,49.82,28.40$, 19.28. HRMS (ESI^{+}): m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{Fe}_{2} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 840.0277$ found 840.0296. IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $v(\mathrm{CO})_{\text {complex }}$ 2070, 2031, 1993.

Monomer 10. Boc-protected diazaanthracene $7(400 \mathrm{mg}, 0.61 \mathrm{mmol})$ was dissolved in dry dichloromethane (3 $\mathrm{mL})$ then, TFA $(3 \mathrm{~mL})$ was slowly added at $0^{\circ} \mathrm{C}$ and the reaction mixture was let to stir at room temperature. After

2 hours, toluene was added and the solvents were removed by rotary evaporation. The resulting ammonium TFA salt diazaanthracene was dried under high vacuum. In the meantime, complex $\mathrm{Fe}_{2} \mathrm{~S}_{2}(\mathrm{CO})_{6}(210 \mathrm{mg}, 0.61 \mathrm{mmol})$ was dissolved in dry THF (4.4 mL) and maintained at $-78^{\circ} \mathrm{C}$. Then, a solution of lithium triethylborohydride 1 M in THF ($1.3 \mathrm{~mL}, 1.3 \mathrm{mmol}$) was added slowly and the reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$. After 30 minutes, TFA ($0.11 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was slowly added and the reaction mixture was allowed to stir at room temperature. After 1 hour, formalin $(0.120 \mathrm{~mL}, 1.6 \mathrm{mmol})$ was added and the reaction mixture was allowed to stir 2 more hours at room temperature. Then, the last reaction mixture was added to the previous ammonium TFA salt diazaanthracene and the whole was stirred during 12 hours at room temperature. Solvent was removed under reduced pressure and the residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ using dichloromethane:methanol (98/2) as eluent, followed by precipitation in hexane to give 10 as a red solid ($225 \mathrm{mg}, 43 \%$). ${ }^{1} \mathrm{H} \mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=9.27(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.14(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 4 \mathrm{H}), 2.44-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $\mathrm{ppm}=207.84,165.89,165.06,163.48,150.89,146.06,134.58,121.89,121.62,117.04,99.32,75.83,75.41$, $53.25,53.10$, 49.47, 28.24, 19.09. HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{32} \mathrm{Fe}_{2} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 826.0120$ found 826.0147. IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{CO})_{\text {complex }}$, 2072, 2033, 1995.

Monomer 11. Boc-protected diazaanthracene $\mathbf{8}(640 \mathrm{mg}, 1 \mathrm{mmol}$) was dissolved in dioxane (8 mL). A solution of HCl 4 M in dioxane ($2 \mathrm{~mL}, 8 \mathrm{mmol}$) was slowly added at $0^{\circ} \mathrm{C}$ and the reaction mixture was stirred during 1 hour at room temperature. The solvent was removed under reduced pressure and the resulting ammonium chloride salt diazaanthracene was dried under high vacuum. In the meantime, complex $\mathrm{Fe}_{2} \mathrm{~S}_{2}(\mathrm{CO})_{6}(344 \mathrm{mg}, 1 \mathrm{mmol})$ was dissolved in dry THF (7.4 mL) and maintained at $-78^{\circ} \mathrm{C}$. Then, a solution of lithium triethylborohydride 1 M in THF ($2.2 \mathrm{~mL}, 2.2 \mathrm{mmol}$) was added slowly and the reaction mixture was allowed to stir at $-78^{\circ} \mathrm{C}$. After 30 minutes, TFA ($0.18 \mathrm{~mL}, 2.4 \mathrm{mmol}$) was slowly added and the reaction mixture was allowed to stir at room temperature. After 1 hour, formalin ($0.195 \mathrm{~mL}, 2.6 \mathrm{mmol}$) was added and the reaction mixture was allowed to stir 2 more hours at room temperature. Then, the last reaction mixture was added to the previous ammonium chloride salt diazaanthracene and the whole was stirred during 12 hours at room temperature. The solvent was removed under reduced pressure and the crude was purified by precipitation in diethyl ether to give $\mathbf{1 1}$ as a red solid (400 mg , $44 \%) .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=9.26(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~s}, 2 \mathrm{H}), 4.60-4.53(\mathrm{~m}$, $J=9.5,7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.13(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 4 \mathrm{H}), 2.44-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.34-$ $1.27(\mathrm{~m}, J=9.6,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{dd}, J=6.7,1.8 \mathrm{~Hz}, 12 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=$ $207.99,165.74,165.21,164.24,163.64,151.59,149.61,146.37,143.97,134.84,122.17,121.78,117.25,99.43$, 97.02, 75.96, 75.52, 64.93, 53.38, 49.86, 28.39, 19.24, 17.88, -1.30. HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{Fe}_{2} \mathrm{~N}_{3} \mathrm{O}_{12} \mathrm{~S}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 912.0672$ found 912.0674. IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{CO})_{\text {complex, }}$ 2072, 2033, 1997.

13
Oligomer 13. Oligomer $2(350 \mathrm{mg}, 0.16 \mathrm{mmol})$ was dissolved in dry dichloromethane (2 mL). Then, TFA (4 mL) was added slowly at $0^{\circ} \mathrm{C}$ and the reaction mixture was let to stir at room temperature. After 2 hours, the reaction mixture was diluted with dichloromethane and quenched with aqueous saturated NaHCO_{3} solution. The organic layer was washed with distilled water, brine then, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. The solvent was removed under reduced pressure to give $13(315 \mathrm{mg}, 94 \%)$ as a red solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=11.91(\mathrm{~s}, 1 \mathrm{H})$, $11.54(\mathrm{~s}, 1 \mathrm{H}), 11.39(\mathrm{~s}, 1 \mathrm{H}), 11.27(\mathrm{~s}, 1 \mathrm{H}), 10.18(\mathrm{~s}, 1 \mathrm{H}), 9.74(\mathrm{~s}, 1 \mathrm{H}), 9.12(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.92$ - 8.75 (m, 3H), 8.46 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 8.24 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.10$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.05$ (s, 1H), 7.95 $7.69(\mathrm{~m}, 6 \mathrm{H}), 7.31(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~s}$, $1 \mathrm{H}), 6.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=173.3,11.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.40-4.14(\mathrm{~m}, 8 \mathrm{H}), 4.03$ $(\mathrm{d}, J=23.3 \mathrm{~Hz}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 4 \mathrm{H}), 2.61-2.17(\mathrm{~m}, 7 \mathrm{H}), 1.37$ $-1.13(\mathrm{~m}, 36 \mathrm{H}), 0.76(\mathrm{~s}, 3 \mathrm{H}), 0.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=207.50,164.63,164.51,164.21$, $164.11,164.00,163.90,163.79,163.42,163.14,163.09,162.41,162.11,161.59,160.38,155.00,154.94,154.58$, $153.80,153.68,152.83,152.62,150.67,149.83,148.75,148.45,147.59,145.12,144.91,143.65,140.19,139.04$, $138.34,134.60,134.44,133.21,128.29,126.47,126.28,125.68,124.13,123.62,122.82,122.07,121.38,121.08$, $118.10,117.30,117.02,115.81,115.65,115.43,114.99,114.83,114.59,110.26,109.03,101.25,99.44,98.73$, $98.52,97.52,97.32,96.60,76.05,75.93,75.83,75.75,75.66,75.44,75.13,53.32,51.63,28.48,28.41,28.33$, $27.95,19.48,19.44,19.37,19.33,19.27$. HRMS (ESI $): m / z$ calcd for $\mathrm{C}_{104} \mathrm{H}_{101} \mathrm{Fe}_{2} \mathrm{~N}_{18} \mathrm{O}_{23} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+} 2143.5468$ found 2143.5520. IR $\left(\mathrm{cm}^{-1}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right): v(\mathrm{CO})_{\text {complex, }}$ 2073, 2035, 1995.

Dimer 14. Boc-protected dimer 29 ($500 \mathrm{mg}, 0.58 \mathrm{mmol}$) was dissolved in dichloromethane (3 mL). Then, TFA (3 mL) was added slowly at $0^{\circ} \mathrm{C}$ and the reaction mixture was let to stir at room temperature. After 2 hours, the reaction mixture was diluted with dichloromethane and quenched with aqueous saturated NaHCO_{3} solution. The organic solvent was removed by rotary evaporation allowing precipitation of the dimer amine in basic aqueous solution. The precipitate was collected by filtration and washed with distilled water on the filter. Then, the solid was dissolved again in dichloromethane then, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvents were removed under reduced pressure to give 14 as a yellow solid ($410 \mathrm{mg}, 92 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}$ $=11.13(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 6.08$ $(\mathrm{s}, 1 \mathrm{H}), 4.23-4.09(\mathrm{~m}, 11 \mathrm{H}), 4.00(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.43-2.30(\mathrm{~m}, 4 \mathrm{H}), 1.20(\mathrm{t}, J=7.5 \mathrm{~Hz}, 24 \mathrm{H}) . \mathrm{HRMS}$ (ESI^{+}): m / z calcd for $\mathrm{C}_{43} \mathrm{H}_{51} \mathrm{~N}_{6} \mathrm{O}_{7}[\mathrm{M}+\mathrm{H}]^{+} 763.3813$ found 763.3812 .

Monomer 16. Mono-acid diazaanthracene $\mathbf{1 5}^{8}(3 \mathrm{~g}, 7 \mathrm{mmol})$ was dispersed in dry toluene (105 mL) and the mixture was sonicated to obtain a fine slurry. Then, DIEA ($2.4 \mathrm{~mL}, 14 \mathrm{mmol}$), diphenylphosphoryl azide (3 mL , $14 \mathrm{mmol})$ and 2-trimethylsilylethanol ($6 \mathrm{~mL}, 42 \mathrm{mmol}$) were added to the slurry. The reaction mixture was stirred vigorously at $100^{\circ} \mathrm{C}$ for 3 hours. The solvents were removed under reduced pressure and the residue was dissolved in dichloromethane, washed with a 2 M NaOH aqueous solution, distilled water and brine. Then the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ using dichloromethane:acetone ($95: 5 \mathrm{vol} / \mathrm{vol}$) as eluent to give $\mathbf{1 6}(2.3 \mathrm{~g}, 60 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=9.11(\mathrm{~s}, 1 \mathrm{H}), 8.62(\mathrm{~s}, 1 \mathrm{H}), 7.78-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{~s}$, $1 \mathrm{H}), 4.36-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.06(\mathrm{~m}, 7 \mathrm{H}), 2.42-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{dd}, J=6.7,4.7 \mathrm{~Hz}, 12 \mathrm{H}), 1.13-1.05$ $(\mathrm{m}, 2 \mathrm{H}), 0.09(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}=166.51,163.61,154.59,153.99,151.05,148.14$, $147.18,126.20,120.68,119.48,116.80,98.34,92.47,75.16,75.05,64.18,53.44,28.42,19.32,19.28,17.59$, 1.42. HRMS (ESI ${ }^{+}$: m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 542.2680$ found 542.2683.

Monomer 17. Methyl ester diazaanthracene $\mathbf{1 6}(2.3 \mathrm{~g}, 4.25 \mathrm{mmol})$ was dissolved in THF (30 mL) then, distilled water $(10 \mathrm{~mL})$ and lithium hydroxide monohydrate $(360 \mathrm{mg}, 8.5 \mathrm{mmol})$ were added. The reaction mixture was let to stir at room temperature. After 2 hours, the reaction mixture was quenched by addition of citric acid monohydrate ($3.57 \mathrm{~g}, 17 \mathrm{mmol}$) dissolved in distilled water (30 mL). The organic solvent was removed by rotary evaporation allowing precipitation of the acid diazaanthracene in acidic aqueous solution. The precipitate was collected by filtration and washed with distilled water on the filter. Then, the solid residue was dissolved in dichloromethane, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure to give 17 as yellow solid ($2.1 \mathrm{~g}, 98 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.86(\mathrm{~s}, 1 \mathrm{H}), 7.78$ $(\mathrm{s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 4.35-4.27(\mathrm{~m}, 2 \mathrm{H}), 4.21(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.08(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 2 \mathrm{H})$, $1.18(\mathrm{dd}, J=6.6,4.1 \mathrm{~Hz}, 12 \mathrm{H}), 1.11-1.04(\mathrm{~m}, 2 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.43,163.69$, $163.54,155.37,153.86,152.38,146.92,142.82,121.17,120.22,118.38,117.53,97.81,92.60,76.02,75.08,64.25$, 28.18, 19.08, 18.97, 17.51, -1.57. HRMS (ESI $)$: m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 528.2524$ found 528.2530.

Monomer 18. Boc-protected diazaanthracene $\mathbf{2 7}^{8}(1.8 \mathrm{~g}, 3.6 \mathrm{mmol})$ was dissolved in dichloromethane (8 mL). Then, TFA (4 mL) was added slowly at $0^{\circ} \mathrm{C}$ and the reaction mixture was let to stir at room temperature. After 2 hours, the reaction mixture was diluted with dichloromethane and quenched with aqueous saturated NaHCO_{3} solution. The organic solvent was removed by rotary evaporation allowing precipitation of the amine diazaanthracene in basic aqueous solution. The precipitate was collected by filtration and washed with distilled water on the filter. Then, the solid residue was dissolved in dichloromethane, the organic layer was dried over
$\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvent was removed under reduced pressure to give 18 as a yellow solid ($1.3 \mathrm{~g}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}=8.99(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}), 6.05(\mathrm{~s}, 1 \mathrm{H}), 4.98(\mathrm{~s}, 1 \mathrm{H}), 4.13-4.06$ $(\mathrm{m}, 5 \mathrm{H}), 3.96(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.26(\mathrm{~m}, 2 \mathrm{H}), 1.18(\mathrm{dd}, J=6.7,2.8 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{d}^{6}-\right.$ DMSO) $\delta \mathrm{ppm}=165.77,162.61,160.55,150.08,149.28,147.91,121.19,119.31,116.14,115.00,97.50,92.33$, 74.27, 73.78, 52.64, 27.81, 27.71, 18.82. HRMS (ESI ${ }^{+}$): m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 398.2074$ found 398.2061 .

Monomer 19. Amine diazaanthracene 18 ($398 \mathrm{mg}, 1 \mathrm{mmol}$) and 2,4-dimethoxybenzaldehyde ($498 \mathrm{mg}, 3 \mathrm{mmol}$) were dissolved in 1,2-dichloroethane (5 mL) then, sodium triacetoxyborohydride ($635 \mathrm{mg}, 3 \mathrm{mmol}$) was added and the reaction mixture was let to stir at $40^{\circ} \mathrm{C}$. After 5 days, the reaction mixture was diluted with dichloromethane and quenched with aqueous saturated NaHCO_{3} solution. The organic layer was washed with distilled water, brine then, dried over MgSO_{4}, filtered and the solvents were removed under reduced pressure. The residue was purified by flash chromatography $\left(\mathrm{SiO}_{2}\right)$ using dichloromethane:acetone ($8: 2 \mathrm{vol} / \mathrm{vol}$) as eluent to give $19(400 \mathrm{mg}, 73 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}=8.91(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 7.41$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{dd}, J=8.2,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~s}$, $1 \mathrm{H}), 4.68(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.11-4.06(\mathrm{~m}, 5 \mathrm{H}), 3.90(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 2.39-2.21$ $(\mathrm{m}, 2 \mathrm{H}), 1.15(\mathrm{dd}, J=8.9,6.8 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=166.68,163.42,161.57,160.29$, $158.79,158.59,150.15,149.34,148.67,130.97,123.49,120.21,119.65,117.36,115.85,103.87,98.48,97.52$, $91.21,74.75,74.21,55.36,55.30,53.15,40.72,28.30,28.18,19.15,19.13$. HRMS (ESI ${ }^{+}$) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 548.2755$ found 548.2755 .

Dimer 20. Secondary amine diazaanthracene 19 ($620 \mathrm{mg}, 1.14 \mathrm{mmol}$), acid diazaanthracene 17 ($600 \mathrm{mg}, 1.14$ mmol) and PyBOP ($1.18 \mathrm{~g}, 2.27 \mathrm{mmol}$) were dissolved in dry dichloromethane (5 mL). Then, DIEA (0.290 mL , 1.7 mmol) was added and the reaction mixture was let to stir at room temperature. After 3 hours, the reaction mixture was diluted with dichloromethane, washed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, distilled water and brine then, the organic layer was dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The residue was purified by GPC to give $20(650 \mathrm{mg}, 54 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=8.96(\mathrm{~s}, 2 \mathrm{H}), 8.44(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.36$ $(\mathrm{s}, 1 \mathrm{H}), 7.08(\mathrm{~s}, 1 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{dd}, J=8.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~s}, 2 \mathrm{H}), 4.31-$ $4.22(\mathrm{~m}, 2 \mathrm{H}), 4.11-3.93(\mathrm{~m}, 9 \mathrm{H}), 3.82(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.51(\mathrm{~s}, 3 \mathrm{H}), 2.38-2.21(\mathrm{~m}, 3 \mathrm{H}), 2.21$ $-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.21-1.08(\mathrm{~m}, 18 \mathrm{H}), 1.09-0.97(\mathrm{~m}, 8 \mathrm{H}), 0.05(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=$ $170.79,166.19,164.15,163.35,162.79,162.45,160.19,158.23,158.11,157.92,154.20,153.98,150.71,147.57$,
$147.42,146.61,130.68,127.41,123.11,120.56,120.07,119.05,118.84,118.09,116.98,116.43,104.23,98.74$, $98.33,98.20,97.68,91.73,75.09,75.01,74.94,74.80,64.19,55.28,55.15,53.28,46.04,28.22,28.02,19.15$, 19.12, 19.04, 17.39, -1.58. HRMS (ESI $)$: m / z calcd for $\mathrm{C}_{58} \mathrm{H}_{73} \mathrm{~N}_{6} \mathrm{O}_{11} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 1057.5101$ found 1057.5116.

21
Dimer 21. Diazaanthracene dimer $20(215 \mathrm{mg}, 0.2 \mathrm{mmol})$ and lithium iodide ($136 \mathrm{mg}, 1 \mathrm{mmol}$) were dissolved in degassed EtOAc $(5 \mathrm{~mL})$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ and protected from light. After 4 hours, the reaction mixture was let to reach room temperature and the precipitate that formed during the reaction was filtered. The precipitate was dissolved in dichloromethane, washed with an aqueous solution of citric acid ($5 \% \mathrm{wt}$), distilled water and brine then, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvent was removed to give 21 as a yellow solid ($145 \mathrm{mg}, 68 \%) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}=9.03(\mathrm{~s}, 1 \mathrm{H}), 8.99(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.96$ $(\mathrm{s}, 1 \mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}), 6.47(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{~s}, 1 \mathrm{H})$, $5.49(\mathrm{~s}, 2 \mathrm{H}), 4.32-4.24(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.08-3.98(\mathrm{~m}, 4 \mathrm{H}), 3.81(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.24(\mathrm{~m}, 4 \mathrm{H}), 1.14(\mathrm{dd}, J=6.6,3.1 \mathrm{~Hz}, 18 \mathrm{H}), 1.10-0.99(\mathrm{~m}, 8 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=170.74,165.48,164.91,162.81,162.62,160.33,158.71,158.22,154.22,153.62$, $151.10,147.96,147.09,144.50,130.40,124.62,120.83,119.80,119.40,118.09,117.54,104.36,99.28,98.37$, $97.19,91.35,75.80,75.18,74.99,64.85,55.41,55.23,46.18,29.78,28.49,28.07,19.18,19.10,17.63,-1.44$. HRMS (ESI $)$: m / z calcd for $\mathrm{C}_{57} \mathrm{H}_{71} \mathrm{~N}_{6} \mathrm{O}_{11} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 1043.4944$ found 1043.4988.

Tetramer 22. Acid dimer 21 ($100 \mathrm{mg}, 0.096 \mathrm{mmol}$), amine dimer 14 ($95 \mathrm{mg}, 0.12 \mathrm{mmol}$) and PyBOP (150 mg , 0.29 mmol) were dissolved in dry chloroform (2 mL). Then, DIEA ($40 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$) was added and the reaction mixture was let to stir at room temperature. After 12 hours, the reaction mixture was diluted with dichloromethane, washed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, distilled water and brine then, the organic layer was dried over MgSO_{4}, filtered and the solvents were removed under reduced pressure. The residue was purified by GPC to give $22(55 \mathrm{mg}, 32 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}=11.10(\mathrm{~s}, 1 \mathrm{H}), 11.01(\mathrm{~s}, 1 \mathrm{H}), 9.08$ (d, $J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.99(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.58(\mathrm{~s}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.08$ $(\mathrm{s}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H})$, $6.51(\mathrm{dd}, J=8.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 4.30-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.04(\mathrm{~m}, 15 \mathrm{H})$, $4.01(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-3.75(\mathrm{~m}, 5 \mathrm{H}), 3.58(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.22(\mathrm{~m}, 8 \mathrm{H}), 1.26-0.99(\mathrm{~m}, 50 \mathrm{H}), 0.05(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=170.80,166.46,163.86,163.62,163.44,162.83,162.20,160.13,158.26$, $157.89,157.62,153.64,151.93,151.72,150.92,148.03,147.59,147.40,147.10,146.93,146.75,130.47,127.04$, $126.82,125.97,124.50,120.86,120.73,120.60,120.20,119.64,118.84,118.48,116.74,116.59,104.21,98.59$, 28.01, 19.27, 19.17, 19.05, 17.55, -1.47. HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{100} \mathrm{H}_{119} \mathrm{~N}_{12} \mathrm{O}_{17} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+} 1787.8580$ found 1787.8652.

25
Monomer 25. Monoacid 9-méthyldiazaanthracene $\mathbf{2 4}^{8}(10 \mathrm{~g}, 21.6 \mathrm{mmol})$ was dissolved in dry dichloromethane $(44 \mathrm{~mL})$. A needle was inserted into the septum to act as a gas vent while oxalyl chloride ($5.56 \mathrm{~mL}, 64.8 \mathrm{mmol}$) was added slowly to the mixture and the reaction mixture was let to stir at room temperature. After 3 hours, solvent was removed under vacuum and the resulting acyl chloride diazaanthracene was dried under high vacuum. Then, the solid was dissolved in dry dichloromethane (44 mL), 2-trimethylsilylethanol ($3.18 \mathrm{~mL}, 23.8 \mathrm{mmol}$) was added and the reaction mixture was let to stir at room temperature. After 12 hours, the reaction mixture was quenched with aqueous saturated NaHCO_{3} solution, the organic layer was washed with water and brine then, dried over MgSO_{4}, filtered and solvent was removed under reduced pressure. The residue was dissolved in dichloromethane then, methanol was added and dichloromethane was slowly removed by rotary evaporation allowing precipitation of the diazaanthracene. The precipitate was filtered, washed with cold methanol on the filter and dried under vacuum to give $25(8.84 \mathrm{~g}, 75 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta \mathrm{ppm}=9.17(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}$, $1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}), 4.66-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.17(\mathrm{dd}, J=6.3,2.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.13(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.45$ $-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 12 \mathrm{H}), 0.18(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=$ $166.52,166.18,163.40,163.31,150.27,149.71,146.00,145.87,139.24,121.60,121.52,113.34,98.75,98.69$, $75.10,75.07,64.63,53.25,28.40,19.25,17.45,13.18,-1.26$. HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$ 541.2728 found 541.2718 .

Monomer 26. Diazaanthracene 25 ($4.4 \mathrm{~g}, 8.13 \mathrm{mmol}$), recrystallized N-bromosuccinimide ($1.88 \mathrm{~g}, 10.5 \mathrm{mmol}$) and benzoyl peroxide ($492 \mathrm{mg}, 2 \mathrm{mmol}$) were dissolved in benzene (40 mL) then, the reaction mixture was let to stir at $65^{\circ} \mathrm{C}$. After 12 hours, the reaction mixture was washed with a sodium bisulfite aqueous solution, until a negative starch iodide test for peroxides. Solvent was removed under reduced pressure and the residue was dissolved in dichloromethane, washed with water and brine then, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and solvent was removed under reduced pressure. The residue was dissolved in dichloromethane then, methanol was added and dichloromethane was slowly removed by rotary evaporation allowing precipitation of the diazaanthracene. The precipitate was filtered, washed with cold methanol on the filter and dried under vacuum to give $26(4 \mathrm{~g}, 79 \%)$ as a yellow solid. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=9.27(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.16(\mathrm{~s}, 2 \mathrm{H}), 4.64-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.16-4.11(\mathrm{~m}, 4 \mathrm{H}), 4.10(\mathrm{~s}, 3 \mathrm{H}), 2.42-2.30(\mathrm{~m}, \mathrm{~J}=13.1,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.31-$ $1.23(\mathrm{~m}, J=10.9,5.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 12 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=$
$166.47,166.11,163.52,163.43,151.50,150.94,145.22,145.15,136.02,121.89,121.80,117.12,99.41,99.37$, $75.35,75.32,64.77,53.34,28.39,25.26,19.25,17.43,-1.18$. HRMS $\left(\mathrm{ESI}^{+}\right): m / z$ calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{BrN}_{2} \mathrm{O}_{6} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+} 619.1833$ found 619.1824 .

Monomer 28. Methyl ester diazaanthracene $27^{8}(1.6 \mathrm{~g}, 3.2 \mathrm{mmol})$ was dissolved in a mixture of THF/MeOH/ $\mathrm{H}_{2} \mathrm{O}$ ($30 \mathrm{~mL}, 8: 1: 1 \mathrm{vol} / \mathrm{vol}$) and lithium hydroxide monohydrate $(270 \mathrm{mg}, 6.4 \mathrm{mmol})$ were added. The reaction mixture was let to stir at room temperature. After 2 hours, the reaction mixture was quenched by addition of an aqueous citric acid solution (5% weight). The organic solvent was removed by rotary evaporation allowing precipitation of the acid diazaanthracene in acidic aqueous solution. The precipitate was collected by filtration and washed with distilled water on the filter. Then, the solid residue was dissolved in dichloromethane, the organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure to give 28 as yellow solid (1.52 g , 98%). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 8.41(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 4.12(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.44-2.28(\mathrm{~m}, 2 \mathrm{H}), 1.57(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 165.92,164.17,163.66,155.34,152.55,150.60,123.02,120.93,119.14,117.87,96.75,92.74,81.94$, 75.95, 75.20, 28.48, 28.39, 19.35, 19.22. HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{6}[\mathrm{M}+\mathrm{H}]^{+} 484.2442$ found 484.2436.

29
Dimer 29. Amine diazaanthracene 27 ($500 \mathrm{mg}, 1.26 \mathrm{mmol}$), acid diazaanthracene $20(608 \mathrm{mg}, 1.26 \mathrm{mmol})$ and PyBOP ($1.31 \mathrm{~g}, 2.52 \mathrm{mmol}$) were dissolved in dry chloroform (10 mL). Then, DIEA ($0.43 \mathrm{~mL}, 2.52 \mathrm{mmol}$) was added and the reaction mixture was let to stir at $45^{\circ} \mathrm{C}$. After 12 hours, the reaction mixture was diluted with dichloromethane, washed with a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$, distilled water and brine then, the organic layer was dried over MgSO_{4}, filtered and the solvent was removed under reduced pressure. The residue was dissolved in dichloromethane then, methanol was added and dichloromethane was slowly removed by rotary evaporation allowing precipitation of the dimer. The precipitate was filtered, washed with cold methanol on the filter and dried under vacuum to give $29(940 \mathrm{mg}, 87 \%)$ as a yellow solid. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=$ $11.14(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}), 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.64$ $(\mathrm{s}, 1 \mathrm{H}), 7.47(\mathrm{~s}, 1 \mathrm{H}), 4.22-4.09(\mathrm{~m}, 11 \mathrm{H}), 2.45-2.32(\mathrm{~m}, 4 \mathrm{H}), 1.59(\mathrm{~s}, 9 \mathrm{H}), 1.25-1.16(\mathrm{~m}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta \mathrm{ppm}=166.48,163.98,163.82,163.39,154.90,153.62,152.89,151.77,150.86,147.98,147.32$, $147.15,146.98,126.73,125.27,120.81,120.42,119.57,119.28,116.67,116.52,98.22,95.48,93.54,92.58,81.60$, $75.18,75.07,74.95,53.42,28.45,19.35,19.27$. HRMS (ESI ${ }^{+}$): m / z calcd for $\mathrm{C}_{48} \mathrm{H}_{59} \mathrm{~N}_{6} \mathrm{O}_{9}[\mathrm{M}+\mathrm{H}]^{+} 863.4338$ found 863.4344.

3. Solution studies by NMR

3.1 NMR study of monomer 9

A.

B.

C.

Figure S1. (A) Full ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) at 298 K of monomer 9 in CDCl_{3} with signals attribution. (B) Excerpt of HMBC spectrum (400 MHz) at 298 K of monomer 9 in CDCl_{3}. (C) Excerpt of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum $(400 \mathrm{MHz}, \tau=300 \mathrm{~ms})$ at 298 K of monomer 9 in CDCl_{3} showing correlations between aromatic and lateral chain protons.

3.2 NMR study of monomer 16

A.

B.

Figure S2. (A) Full ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) at 298 K of monomer 16 in CDCl_{3} with signals attribution. (B) Excerpt of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum ($400 \mathrm{MHz}, \tau=300 \mathrm{~ms}$) at 298 K of monomer 16 in CDCl_{3} showing correlations between aromatic and lateral chain protons.

3.3 NMR study of dimer 20

A.

Figure S3. (A) Full ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) at 298 K of dimer 20 in CDCl_{3} with signals attribution. (B) Excerpt of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum ($400 \mathrm{MHz}, \tau=300 \mathrm{~ms}$) at 298 K of dimer 20 in CDCl_{3} showing the correlation between the aromatic proton $\mathrm{H6}$ and the benzylic protons Hb in red due to tertiary amide cis conformation.

3.4 NMR comparison of dimer 20, tetramer 22 and oligomer 4

Figure S4. Part of ${ }^{1} \mathrm{H}$ NMR spectrum (300 MHz) at 298 K in CDCl_{3} of dimer $\mathbf{2 0}$ (A), tetramer $\mathbf{2 2}$ (B) and oligomer 4 (C) with appearance of benzyl protons anisochronicity (dotted line).

3.5 NMR study of oligomer 5

Figure S5. Monomers and atoms numbering for oligomer 5.

Figure S6. Full ${ }^{1} \mathrm{H}$ NMR spectrum $(700 \mathrm{MHz})$ at 298 K of oligomer 5 in CDCl_{3}.

tgure S7. (A) Excerpt of HMBC spectrum (700 MHz) at 298 K of oligomer 5 in CDCl_{3} showing the different aromatic protons from the A^{H} units. (B) Excerpt of ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ NOESY spectrum ($700 \mathrm{MHz}, \tau=300 \mathrm{~ms}$) at 298 K of oligomer 5 in CDCl_{3} showing correlations between lateral chain protons $H \alpha$ due to anisochronicity.

Table S1. Partial attribution of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts for oligomer 5 in CDCl 3 , measured at 700 MHz and 176 MHz , respectively, 298 K .

	Chemical shift (ppm)			Chemical shift (ppm)			Chemical shift (ppm)	
	${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$		${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$		${ }^{1} \mathrm{H}$	${ }^{13} \mathrm{C}$
Q1-CH7	7.11 (d)	125.7	NH3	9.73 (s)			11.27 (s)	
Q1-CH6	7.09 (t)	123.5	P-CH3	6.38 (d)	106.7	NH8,9,10	10.80 (s)	
Q1-CH5	8.25 (d)	127.7	P-CH4	6.18 (t)	137.1		10.35 (s)	
Q1-CH3	6.76 (s)	99.2	P-CH5	6.85 (d)	108.2	$A^{H} 1-\mathrm{CH} 6$	8.02 (s)	92.6
Q1-C4		162.3	NH4	10.71 (s)			8.06 (s)	92.7
Q1-C10		123.3	N1-CH3	7.13 (s)	96.7	$\begin{gathered} A^{H} 2,3,4- \\ C H 6 \end{gathered}$	8.42 (s)	93.7
Q1-CH α	$\begin{aligned} & 3.70(\mathrm{t}) \\ & 3.74(\mathrm{t}) \end{aligned}$	74.9	N1-CH5	7.33 (d)	131		8.38 (s)	93.8
NH1	11.80 (s)		N1-CH6	7.82 (d)	112.8		7.70 (s)	95
Q2-CH7	8.11 (d)	116.6	N1-C5a		113.5	$\begin{gathered} A^{H} 1,2,3- \\ \text { CH3 } \end{gathered}$	7.77 (s)	95.1
Q2-CH6	5.89 (t)	125.9	N1-CH2 α	3.75 (t)	75		7.87 (s)	95.7
Q2-CH5	6.68 (d)	115.2	NH5	11.40 (s)		$A^{H} 4-\mathrm{CH} 3$	7.19 (s)	97.4
Q2-CH3	7.46 (s)	101.3	N2-CH3	7.11 (s)	96.8		8.31 (s)	127.3
Q2-C4		163.4	N2-CH5	7.44 (d)	131		7.98 (s)	126.5
Q2-C10		122.2	N2-CH6	8.15 (d)	113.8	$\begin{gathered} A^{H} 1,2,3,4- \\ \text { CH9 } \end{gathered}$	7.79 (s)	126.2
Q2-CH α	2.82 (t)	75	N2-C5a		113.9		6.97 (s)	125.7
NH2	$\begin{gathered} 2.46(\mathrm{t}) \\ 11.53 \end{gathered}$		N2-CH2 α	3.74 (t)	75		9.08 (s)	115.5
Q3-CH7	8.04 (d)	117.3	NH6	11.18 (s)			9.06 (s)	115.6
Q3-CH6	6.04 (t)	125.5	$\begin{gathered} A^{F e_{-}} \\ \text {CH3/CH6 } \end{gathered}$	7.18 (s)	95	$\begin{gathered} A^{H} 1,2,3,4- \\ \text { CH1O } \end{gathered}$	8.98 (s)	115.5
Q3-CH5	6.52 (d)	113.9	$A^{F e}$ - CH 10	7.73 (s)	114.5		8.84(s)	115.2
Q3-CH3	6.40 (s)	95.2		4.80 (d)		CH_{3}-Ester	3.69 (s)	52.9
Q3-C4		161.5	$A^{F e}-\mathrm{CH}_{2} a$	5.53 (d)	50.5			
Q3-C10		120.5	$A^{F e}-\mathrm{CH}_{2} \mathrm{~b}$	4.63 (m)	54.5			
Q3-CH α	$\begin{aligned} & 3.45(\mathrm{t}) \\ & 3.76(\mathrm{t}) \end{aligned}$	74.6	NH7	10.75 (s)				

3.6 Full Width at Half Maximum of carbonyl ligand signals

Figure S8. (A) Full ${ }^{13} \mathrm{C}$ NMR spectra (176 MHz) of monomer 9 in CDCl_{3} at variable temperatures. (B) Excerpt of ${ }^{13} \mathrm{C}$ NMR spectra (176 MHz) of monomer $\mathbf{9}$ in CDCl_{3} at variable temperatures.

Figure S9. (A) Full ${ }^{13} \mathrm{C}$ NMR spectra (176 MHz) of oligomer 1 in CDCl_{3} at variable temperatures. (B) Excerpt of ${ }^{13} \mathrm{C}$ NMR spectra $(176 \mathrm{MHz})$ of oligomer $\mathbf{1}$ in CDCl_{3} at variable temperatures.

Figure S10. (A) Full ${ }^{13} \mathrm{C}$ NMR spectra (176 MHz) of oligomer 5 in CDCl_{3} at variable temperatures. (B) Excerpt of ${ }^{13} \mathrm{C}$ NMR spectra (176 MHz) of oligomer $5 \mathrm{in} \mathrm{CDCl}_{3}$ at variable temperatures.

4. Solid state X-Ray Crystallography

4.1 X-Ray crystallographic data for compound 1

Table S2. Crystal data and refinement details for compound 1.

Identification code	1
Chemical formula	$\mathrm{C}_{107} \mathrm{H}_{105} \mathrm{Cl}_{9} \mathrm{Fe}_{2} \mathrm{~N}_{19} \mathrm{O}_{23} \mathrm{~S}_{2}$
Formula weight	2159.96
Temperature (K)	130
Wavelength (\AA)	1.54178
Crystal system	monoclinic
Space group	C2/c
Unit cell dimensions $(a, b, c, \alpha, \beta, \gamma)\left(\right.$ A $\left.^{\circ}\right)$	42.379, 22.277, 31.801, 90.0, 98.36, 90.0
Volume (\AA^{3})	29703.8
Z	8
Density (calculated)	1.127
Absorption coefficient	3.826
Absorption correction	multiscan
Crystal size (mm)	0.10, 0.10, 0.10
Index ranges	$-39 \leqslant h \leqslant 40,-21 \leqslant k \leqslant 16,-22 \leqslant 1 \leqslant 30$
Completeness to theta $=22.72^{\circ}$	0.988
Reflections collected	46092
Reflections observed [$I>2 \sigma(I)$]	13285
$R_{\text {int }}$	0.1018
Data/parameters/restrains	13285/1474/27
Goodness-of-fit on F^{2}	1.132
Final R indices [$I>2 \sigma(I)]$	0.1284
R indices (all data)	0.1747
Largest diff. peak and hole	0.47/-0.46
CCDC \#	2031551
*SQUEEZE procedure was used	remove severely disordered solvent molecules

Figure S11. Crystal structure views of oligomer 1. (A) side view, (B) front view, (C) view from above in CPK representations. Monomers are color coded as in manuscript and isobutoxy side chains are omitted for clarity. (D) view from above in tube representation where isobutoxy side chains are shown and atoms are color coded in grey for carbon, red for oxygen, blue for nitrogen, white for hydrogen, yellow for sulfur and purple for iron.

4.2 X-Ray crystallographic data for compound 3

Table S3. Crystal data and refinement details for compound 3.

Identification code	3
Chemical formula	C148 H150 Cl3 Fe2 N24029 S2
Formula weight	2890
Temperature (K)	100
Wavelength (\AA)	0.8100
Crystal system	triclinic
Space group	P-1
Unit cell dimensions $(a, b, c, \alpha, \beta, \gamma)\left(\AA^{\circ}{ }^{\circ}\right)$	17.679, 22.049, 25.574, 72.80, 73.10, 79.75
Volume (\AA^{3})	9065.6
Z	2
Density (calculated)	1.102
Absorption coefficient	0.413
Absorption correction	None
Crystal size (mm)	0.10, 0.05, 0.07
Index ranges	$-19<\mathrm{h}<19,-24<\mathrm{k}<24,-28<1<28$
Completeness to theta $=27.06^{\circ}$	0.913
Reflections collected	94230
Reflections observed [$I>2 \sigma(I)$]	15839
$R_{\text {int }}$	0.0576
Data/parameters/restrains	24578/1917/1707
Goodness-of-fit on F^{2}	1.367
Final R indices [$I>2 \sigma(I)$]	0.1129
R indices (all data)	0.1384
Largest diff. peak and hole	1.14/-0.45
CCDC \#	2031556

Figure S12. Crystal structure views of oligomer 3. (A) front view where the aromatic backbone is shown in color coded tube representation whereas the metal complex is show in CPK representation. (B) side view in CPK representation. (C) view from above in CPK representation. Monomers are color coded as in manuscript and isobutoxy side chains are omitted for clarity. (D) view from above in tube representation where isobutoxy side chains are shown and atoms are color coded in grey for carbon, red for oxygen, blue for nitrogen, white for hydrogen, yellow for sulfur and purple for iron.

4.3 X-Ray crystallographic data for compound 4

Table S4. Crystal data and refinement details for compound 4.

Identification code	4
Chemical formula	C198 H204 Fe2 N30 O37 S2
Formula weight	4010.48
Temperature (K)	100
Wavelength (\AA)	1.54178
Crystal system	triclinic
Space group	P-1
Unit cell dimensions (a,b,c, $\alpha, \beta, \gamma)\left(\AA{ }^{\circ}{ }^{\circ}\right)$	26.612, 29.084, 36.118, 83.26, 82.98, 68.18
Volume (\AA^{3})	25678
Z	4
Density (calculated)	1.037
Absorption coefficient	2.15
Absorption correction	multiscan
Crystal size	0.10, 0.10, 0.01
Index ranges	$-20<\mathrm{h}<24,-22<\mathrm{k}<26,-29<1<32$
Completeness to theta $=44.28^{\circ}$	0.897
Reflections collected	35867
Reflections observed [$I>2 \sigma(I)$]	9759
$R_{\text {int }}$	0.1147
Data/parameters/restrains	35867/4990/8374
Goodness-of-fit on F^{2}	1.088
Final R indices [$I>2 \sigma(I)]$	0.1170
R indices (all data)	0.2194
Largest diff. peak and hole	+0.27/-0.26
CCDC \#	2031552
*SQUEEZE procedure was used	emove severely disordered solvent molecules

Figure S13. Crystal structure views of oligomer 4. (A) front view where the aromatic backbone is shown in color coded tube representation whereas the metal complex and DMB group are shown in CPK representation. (B) side view in CPK representation. (C) view from above in CPK representation. Monomers are color coded as in manuscript and isobutoxy side chains are omitted for clarity. (D) view from above in tube representation where isobutoxy side chains are shown and atoms are color coded in grey for carbon, red for oxygen, blue for nitrogen, white for hydrogen, yellow for sulfur and purple for iron.

4.4 X-Ray crystallographic data for compound 5

Table S5. Crystal data and refinement details for compound 5 .

Identification code	$\mathbf{5}$
Chemical formula	$\mathrm{C} 195 \mathrm{H} 198 \mathrm{Cl13} \mathrm{Fe} 2 \mathrm{~N} 30 \mathrm{O} 35 \mathrm{~S} 2$
Formula weight	3733.12
Temperature (K)	130
Wavelength (\AA)	1.54178
Crystal system	triclinic
Space group	$\mathrm{P}-1$
Unit cell dimensions	$17.496,21.656,33.846,97.71,104.52$,
(a,b,c, $\alpha, \beta, \gamma)\left(\AA,{ }^{\circ}\right)$	97.62
Volume $\left(\AA^{3}\right)$	12116
Z	2
Density $($ calculated $)$	1.023
Absorption coefficient	1.744
Absorption correction	multiscan
Crystal size	$0.20,0.20,0.2$
Index ranges	$-15<\mathrm{h}<15,-19<\mathrm{k}<19,-30<1<30$
Completeness to theta $=51.33^{\circ}$	0.987
Reflections collected	78733
Reflections observed $[I>2 \sigma(I)]$	18810
$R_{\text {int }}$	0.1429
Data/parameters/restrains	$18810 / 2417 / 231$
Goodness-of-fit on F^{2}	0.85
Final R indices [I $>2 \sigma(I)]$	0.0890
R indices (all data)	0.1555
Largest diff. peak and hole	$+0.44 /-0.32$
CCDC \#	2031555
*SQUEEZE procedure was used to remove severely disordered solvent molecules	

Figure S14. Crystal structure views of oligomer 5. (A) front view and (B) back view where the aromatic backbone is shown in color coded tube representation whereas the metal complex is shown in CPK representation. (C) view from above in CPK representation. Monomers are color coded as in manuscript and isobutoxy side chains are omitted for clarity. (D) view from above in tube representation where isobutoxy side chains are shown and atoms are color coded in grey for carbon, red for oxygen, blue for nitrogen, white for hydrogen, yellow for sulfur and purple for iron.

4.5 X-Ray crystallographic data for compound 9

Table S6. Crystal data and refinement details for compound 9 .

Identification code	9
Chemical formula	C 33 H 33 Fe 2 N 3 O 12 S 2
Formula weight	839.44
Temperature (K)	100
Wavelength (\AA)	0.8000
Crystal system	Triclinic
Space group	$\mathrm{P}-1$
Unit cell dimensions $(a, b, c, \alpha, \beta, \gamma)\left(\AA,{ }^{\circ}\right)$	$11.614,11.913,14.995,90.34,100.67,114.20$
Volume $\left(\AA^{3}\right)$	1851.9
Z	2
Density (calculated $)$	1.505
Absorption coefficient	1.329
Absorption correction	none
Crystal size $($ mm $)$	$0.10,0.050,0.02$
Index ranges	$-12<\mathrm{h}<12,-12<\mathrm{k}<12,-15<1<15$
Completeness to theta $=24.895^{\circ}$	0.882
Reflections collected	3993
Reflections observed $[I>2 \sigma(I)]$	3617
Rint	0.0595
Data/parameters $/$ restrains	$3993 / 507 / 465$
Goodness-of-fit on F^{2}	1.039
Final R indices $[I>2 \sigma(I)]$	0.0576
R indices (all data)	0.0618
Largest diff. peak and hole	$0.83 /-0.72$
CCDC \#	2031550

A.
B.

D.

Figure S15. Crystal structure views of A^{Fe} monomer 9: (A) side view in CPK representations, (B) front view in CPK representations, view from above (C) in CPK representations and (D) in tube representation.

5. References

(1) Kabsch, W. Acta Cryst. 2010, D66, 125-132.
(2) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
(3) Emsley, P., Lohkamp, B., Scott, W. G., and Cowtan, K. Acta Cryst. 2010, D66, 486-501.
(4) Schüttelkopf, A. W. and van Aalten, D. M. F., Acta Crystallogr 2004, D60, 1355-1363.
(5) Spek, A. L. Acta Cryst. 2015, C71, 9-18.
(6) Spek, A. L. J. Appl. Cryst. 2003, 36, 7-13.
(7) Ferrand, Y.; Kendhale, A. M.; Kauffmann, B.; Grélard, A.; Marie, C.; Blot, V.; Pipelier, M.; Dubreuil, D.; Huc, I. J. Am. Chem. Soc. 2010, 132, 7858-7859.
(8) Singleton, M. L.; Castellucci, N.; Massip, S.; Kauffmann, B.; Ferrand, Y.; Huc, I. J. Org. Chem. 2014, 79, 2115-2122.
(9) Seyferth, D., Henderson, R. S. \& Song, L. C. Chemistry of μ-Dithlo-bis(tricarbonyliron), a Mimic of Inorganic Disulfides. 1. Formation of Di- μ-thiolato-bis(tricarbonyliron) Dianion. Organometallics. 1982, 1, 125-133.
6. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra of new synthetic compounds

 .. Tipiowm - Mi Minionici

$\begin{array}{r}28.29 \\ < \\ \hline 28.17 \\ \text { - } 19.15 \\ \hline 19.12\end{array}$

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) q3pn2afe_a_sq
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: q3pn2afe_a_sq

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level A

THETMO1_ALERT_3_A The value of sine(theta_max)/wavelength is less than 0.550

Alert level B

PLAT084_ALERT_3_B	High wR2 Value (i.e. > 0.25)	0.38 Repor
PLAT234_ALERT_4_B	Large Hirshfeld Difference 000H --C01T	0.29 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference O00K --C024	0.28 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference N015 --C02K	0.26 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference N01G --C01F	0.27 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C01W --C02W	0.29 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C01Y --C03I	0.26 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C02B --C02E	0.28 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C02C --C031	0.30 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C02V --C038	0.27 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C02Y --C03S	0.26 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C03B --C03P	0.28 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C03E --C04B	0.26 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C03F --C045	0.28 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C03K --C03T	0.26 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C03X --C03Z	0.26 Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C048 --C04J	0.30 Ang.
PLAT241_ALERT_2_B	High 'MainMol' Ueq as Compared to Neighbors of	N01G Check
PLAT242_ALERT_2_B	Low 'MainMol' Ueq as Compared to Neighbors of	C04G Check
PLAT260_ALERT_2_B	Large Average Ueq of Residue Including Cl3	0.415 Check
PLAT260_ALERT_2_B	Large Average Ueq of Residue Including Cl4	0.370 Check
PLAT341_ALERT_3_B	Low Bond Precision on $\mathrm{C}-\mathrm{C}$ Bonds	0.02641 Ang.
PLAT369_ALERT_2_B	Long C (sp2)-C (sp2) Bond C010 - C021	1.59 Ang.
PLAT369_ALERT_2_B	Long C(sp2)-C (sp2) Bond C02I - C02Q	1.57 Ang.

Alert level C

ABSTY02_ALERT_1_C An _exptl_absorpt_correction_type has been given without
a literature citation. This should be contained in the
_exptl_absorpt_process_details field.
Absorption correction given as multi-scan

PLAT260_ALERT_2_C	Large Average Ueq of Residue Including Fe01	0.153 Check
PLAT260_ALERT_2_C	Large Average Ueq of Residue Including Cl05	0.184 Check
PLAT336_ALERT_2_C	Long Bond Distance for C04K -Cl4	1.900 Ang.
PLAT369_ALERT_2_C	Long C(sp2)-C (sp2) Bond C022 - C02T	1.55 Ang.
PLAT906_ALERT_3_C	Large K Value in the Analysis of Variance	9.680 Check
PLAT906_ALERT_3_C	Large K Value in the Analysis of Variance	3.503 Check
PLAT906_ALERT_3_C	Large K Value in the Analysis of Variance	2.113 Check
PLAT911_ALERT_3_C	Missing FCF Refl Between Thmin \& STh/L= 0.476	154 Report
PLAT918_ALERT_3_C	Reflection(s) with I(obs) much Smaller I (calc)	1 Check
PLAT923_ALERT_1_C	$S \quad$ Values in the CIF and FCF Differ by	0.013 Check
PLAT934_ALERT_3_C	Number of (Iobs-Icalc)/Sigma (W) > 10 Outliers	1 Check

Alert level G		
PLAT002_ALERT_2_G	Number of Distance or Angle Restraints on AtSite	Note
PLAT003_ALERT_2_G	Number of Uiso or Uij Restrained non-H Atoms	5 Report
PLAT007_ALERT_5_G	Number of Unrefined Donor-H Atoms	6 Report
PLAT072_ALERT_2_G	SHELXL First Parameter in WGHT Unusually Large	0.20 Report
PLAT172_ALERT_4_G	The CIF-Embedded .res File Contains DFIX Records	3 Report
PLAT187_ALERT_4_G	The CIF-Embedded .res File Contains RIGU Records	1 Report
PLAT232_ALERT_2_G	Hirshfeld Test Diff (M-X) Fe01 --C01T	6.8
PLAT232_ALERT_2_G	Hirshfeld Test Diff (M-X) Fe02 --C025	5.9 s.u
PLAT335_ALERT_2_G	Check Large C6 Ring C-C Range C01R -C02F	0.15 Ang.
PLAT335_ALERT_2_G	Check Large C6 Ring C-C Range C022 -C03A	0.25 Ang.
PLAT335_ALERT_2_G	Check Large C6 Ring C-C Range C02G -C03H	0.18 Ang.
PLAT432_ALERT_2_G	Short Inter X...Y Contact 000J ..C04P	3.00 Ang.
	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	1_555 Check
PLAT434_ALERT_2_G	Short Inter HL..HL Contact Cl4 ..Cl4	3.19 Ang.
	1-x,y,3/2-z	2_656 Check
PLAT606_ALERT_4_G	Solvent Accessible VOID (S) in Structure	Info
PLAT720_ALERT_4_G	Number of Unusual/Non-Standard Labels	256 Note
PLAT860_ALERT_3_G	Number of Least-Squares Restraints	27 Note
PLAT869_ALERT_4_G	ALERTS Related to the Use of SQUEEZE Suppressed	Info
PLAT910_ALERT_3_G	Missing \# of FCF Reflection(s) Below Theta (Min).	1 Note
PLAT913_ALERT_3_G	Missing \# of Very Strong Reflections in FCF	2 Note
PLAT933_ALERT_2_G	Number of OMIT Records in Embedded .res File	Note
PLAT941_ALERT_3_G	Average HKL Measurement Multiplicity	3.5 Low
PLAT978_ALERT_2_G	Number C-C Bonds with Positive Residual Density.	Info

[^0]It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of $\mathbf{1 0 / 0 8} / \mathbf{2 0 2 0}$; check.def file version of $\mathbf{0 6 / 0 8} / \mathbf{2 0 2 0}$

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) ah2fip_a_sq_sq
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: ah2fip_a_sq_sq

```
Bond precision: C-C = 0.0132 A Wavelength=0.81000
Cell: a=17.679(4) b=22.049(4) c=25.574(5)
    alpha=72.80(3) beta=73.10(3) gamma=79.74(3)
Temperature: 100 K
    Calculated Reported
    9065(4) 9066(4)
Space group P -1 P -1
Hall group -P 1 -P 1
Moiety formula Cl47 H149 Fe2 N24 O H Cl3 [+ solvent]
Sum formula C148 H150 Cl3 Fe2 N24 O29 C14
Mr 3011.10
Dx,g cm-3
Z
Mu (mm-1)
F000 3146.0
3146.0
F000' 3151.13
h,k,lmax 19,24,28 19,24,28
Nref 26911 24578
Tmin,Tmax 0.960,0.960
Tmin' 0.960
Correction method= Not given
Data completeness= 0.913 Theta(max)= 27.067
R(reflections)= 0.1129( 15839) wR2(reflections)= 0.3608( 24578)
S = 1.367 Npar= 1917
```


test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level A

Alert level B

THETMO1_ALERT_3_B The value of sine(theta_max)/wavelength is less than 0.575

Calculated sin(theta_max)/wavelength = 0.5618

PLAT031_ALERT_4_B Refined Extinction Parameter Within Range 2.200 Sigma
PLAT084_ALERT_3_B High wR2 Value (i.e. > 0.25)
0.36 Report

PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of C049 Check
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of C05E Check
PLAT360_ALERT_2_B Short C(sp3)-C(sp3) Bond C053 - C05F . 1.24 Ang.
PLAT416_ALERT_2_B Short Intra D-H..H-D H00T ..H013 . 1.70 Ang.
$\mathrm{x}, \mathrm{y}, \mathrm{z}=\quad$ 1_555 Check
PLAT911_ALERT_3_B Missing FCF Refl Between Thmin \& STh/L= $0.562 \quad 2324$ Report
PLAT934_ALERT_3_B Number of (Iobs-Icalc)/Sigma(W) > 10 Outliers .. 3 Check

PLAT369_ALERT_2_C	Long	C (sp2)-C (sp2) Bond	C03D	C041	1.55	Ang.
PLAT369_ALERT_2_C	Long	C(sp2)-C(sp2) Bond	C03G	C045	1.55	Ang.
PLAT410_ALERT_2_C	Shor	Intra H...H Contact	H04A	H053	1.96	Ang.
				x,y,z	1_555 Ch	
PLAT906_ALERT_3_C	Larg	K Value in the Anal	is of	riance	7.632	Check
PLAT906_ALERT_3_C	Larg	K Value in the Analy	is of	riance	2.623	Check
PLAT910_ALERT_3_C	Miss	\#g of FCF Reflectio	$\mathrm{n}(\mathrm{s}) \mathrm{B}$	w Theta		Note
PLAT913_ALERT_3_C	Miss	ng \# of Very Strong	eflect	in FCF	25	Note
PLAT918_ALERT_3_C	Refl	ction(s) with I(obs)	much S	ler I (ca		Check
PLAT977_ALERT_2_C	Chec	Negative Difference	Densit	n Hk	-0.39	eA-3
PLAT977_ALERT_2_C	Chec	Negative Difference	Densit	n H0AB	-0.36	eA-3

Alert level G

ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu
not performed for this radiation type.

PLAT002_ALERT_2	Number of Distance or Angle Restraints on AtSite	22 Note
PLAT007_ALERT_5	Number of Unrefined Donor-H Atoms	9 Report
PLAT092_ALERT_4	Check: Wavelength Given is not Cu, Ga, Mo, Ag, In Ka	0.81000 Ang.
PLAT154_ALERT_1	The s.u.'s on the Cell Angles are Equal .. (Note)	0.03 Degree
PLAT171_ALERT_4	The CIF-Embedded .res File Contains EADP Records	1 Report
PLAT172_ALERT_4	The CIF-Embedded .res File Contains DFIX Records	10 Report
PLAT187_ALERT_4	The CIF-Embedded .res File Contains RIGU Records	4 Report
PLAT300_ALERT_4	Atom Site Occupancy of C1 Constrained at	0.5 Check
PLAT300_ALERT_4_-	Atom Site Occupancy of C2 Constrained at	0.5 Che
PLAT300_ALERT_4	Atom Site Occupancy of C5 Constrained at	0.5 Check
PLAT300_ALERT_4	Atom Site Occupancy of C056 Constrained at	0.5 Check
PLAT300_ALERT_4	Atom Site Occupancy of C05B Constrained at	0.5 Ch
PLAT300_ALERT_4_	Atom Site Occupancy of C05k Constrained at	0.5 Check
PLAT300_ALERT_4_	Atom Site Occupancy of C05N Constrained at	0.5 Check
PLAT300_ALERT_4	Atom Site Occupancy of COAA Constrained at	0.5 Check
PLAT300_ALERT_4	Atom Site Occupancy of H1 Constrained at	0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H2A Constrained at	0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H2B Constrained at	0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H2C Constrained at	0.5 Check
PLAT300_ALERT_4_-	Atom Site Occupancy of H5A Constrained at	0.5 Check
PLAT300_ALERT_4_	Atom Site Occupancy of H5B Constrained at	0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H05L Constrained at	0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H05m Constrained at	0.5 Check
PLAT300_ALERT_4_	Atom Site Occupancy of H05V Constrained at	0.5 Ch
PLAT300_ALERT_4_S	Atom Site Occupancy of H05W Constrained at	0.5 Check
PLAT300_ALERT_4_	Atom Site Occupancy of H05X Constrained at	0.5 Check
PLAT300_ALERT_4_-	Atom Site Occupancy of H8AA Constrained at	0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of Hj Constrained at	0.5 Check
PLAT300_ALERT_4_	Atom Site Occupancy of Hk Constrained at	0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H1BA Constrained at	0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H0AB Constrained at	0.5 Check
PLAT300_ALERT_4	Atom Site Occupancy of H0AC Constrained at	0.5 Check
PLAT300_ALERT_4_G	Atom Site Occupancy of H0AD Constrained at	0.5 Check
PLAT301_ALERT_3	Main Residue Disorder (Resd 1	2\% Note
PLAT335_ALERT_2_G	Check Large C6 Ring C-C Range C01U -C02U	0.15 Ang.
PLAT335_ALERT_2_S	Check Large C6 Ring C-C Range C04D -C04X	0.19 Ang.
PLAT343_ALERT_2_G	Unusual sp3 Angle Range in Main Residue for	C053 Check
PLAT410_ALERT_2_G	Short Intra H...H Contact H02G ..H05L	2.12 Ang.
	$\mathrm{x}, \mathrm{y}, \mathrm{z}$	1_555 Check
PLAT606_ALERT_4_S	Solvent Accessible VOID (S) in Structure	Info
PLAT720_ALERT_4_S	Number of Unusual/Non-Standard Labels	353 Note
PLAT860_ALERT_3_G	Number of Least-Squares Restraints	1707 Note
PLAT869_ALERT_4_G	ALERTS Related to the Use of SQUEEZE Suppressed	Info
PLAT883_ALERT_1_G	No Info/Value for _atom_sites_solution_primary	Please Do !
PLAT933_ALERT_2_G	Number of OMIT Records in Embedded .res File	14 Note


```
ALERT level A = Most likely a serious problem - resolve or explain
ALERT level B = A potentially serious problem, consider carefully
3 7 \text { ALERT level C = Check. Ensure it is not caused by an omission or oversight}
54 ALERT level G = General information/check it is not something unexpected
10 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
4 4 ~ A L E R T ~ t y p e ~ 2 ~ I n d i c a t o r ~ t h a t ~ t h e ~ s t r u c t u r e ~ m o d e l ~ m a y ~ b e ~ w r o n g ~ o r ~ d e f i c i e n t
15 ALERT type 3 Indicator that the structure quality may be low
3 5 ~ A L E R T ~ t y p e ~ 4 ~ I m p r o v e m e n t , ~ m e t h o d o l o g y , ~ q u e r y ~ o r ~ s u g g e s t i o n ~
    2 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of $\mathbf{1 0 / 0 8} / \mathbf{2 0 2 0}$; check.def file version of $\mathbf{0 6 / 0 8} / \mathbf{2 0 2 0}$

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) squeezed
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: squeezed

Bond precision:	$C-C=0.0232 \mathrm{~A}$	Wavelength=1.54178	
Cell:	$a=26.6118$ (13)	$\mathrm{b}=29.0835(13)$	5 (13) $\quad C=36.1175$ (12)
	alpha=83.259(3)	beta=82.984(3)	984(3) gamma=68.182 (4)
Temperature:	100 K		
	Calculated	Reported	
Volume	25678(2)		25678(2)
Space group	P -1		P -1
Hall group	-P 1		-P 1
Moiety formula	$\begin{aligned} & \text { C198 H204 Fe2 N30 } \\ & 2(\mathrm{C} \mathrm{H} \mathrm{Cl3)} \end{aligned}$	$037 \mathrm{~S} 2, \text { ? }$?
Sum formula	$\begin{aligned} & \mathrm{C} 200 \mathrm{H} 206 \mathrm{Cl} 6 \mathrm{Fe} 2 \\ & \mathrm{~S} 2 \end{aligned}$	$\begin{array}{ccc} \text { N30 } & 037 & \text { C200 } \\ & \text { S2 } \end{array}$	```C200 H206 Cl6 Fe2 N30 O37 S2```
Mr	4010.48		4010.46
Dx, g cm-3	1.037		1.037
Z	4		4
$\mathrm{Mu}(\mathrm{mm}-1)$	2.149		2.149
F000	8392.0		8392.0
F000'	8418.56		
h, k, lmax	24,26,32		24,26,32
Nref	39970		35867
Tmin, Tmax	$0.807,0.807$		
Tmin'	0.807		
Correction method= Not given			
Data completeness $=0.897$		Theta $(\max)=44.284$	
R (reflections) $=0.1170$ (9759)		$w R 2($ reflections $)=0.2564(35867)$	
$S=1.088$	Npar= 4990		

Click on the hyperlinks for more details of the test.

Alert level A

THETMO1_ALERT_3_A The value of sine(theta_max)/wavelength is less than 0.550
Calculated sin(theta_max)/wavelength $=0.4529$
PLAT026_ALERT_3_A Ratio Observed / Unique Reflections (too) Low .. 27 \%
PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full value Low . 0.897 Note
PLAT602_ALERT_2_A VERY LARGE Solvent Accessible VOID(S) in Structure ! Info

Alert level B

REFNR01_ALERT_3_B Ratio of reflections to parameters is <8 for a	
centrosymmetric structure	
sine(theta)/lambda	
Proportion of unique data used	1.0000
Ratio reflections to parameters	

PLAT088_ALERT_3_B Poor Data / Parameter Ratio
PLAT220_ALERT_2_B Non-Solvent Resd 2 C Ueq(max)/Ueq(min) Range
PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of
PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of
PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of
PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of
PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of
PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of
PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of
PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of
PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of
PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of
PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of
PLAT241_ALERT_2_B High 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT242_ALERT_2_B Low 'MainMol' Ueq as Compared to Neighbors of
PLAT341_ALERT_3_B Low Bond Precision on C-C Bonds
PLAT411_ALERT_2_B Short Inter H...H Contact H3_4 .. H1_87 .
PLAT413_ALERT_2_B Short Inter XH3 . . XHn H18A_32.. H34B_42 ..
PLAT911_ALERT_3_B Missing \# FCF Refl Between THmin \& STh/L= 0.453

Alert level C

ALERT	
PLAT241_ALERT_2	h
PLAT241_ALERT_2	High
PLAT241_ALERT_2	h
PLAT241_ALERT	gh
PLAT241_ALERT	gh
PLAT241_ALERT_2	h
PLAT241_ALERT	h
PLAT241_ALERT_	
PLAT241_ALERT	gh
PLAT241_ALERT_2	High
PLAT241_ALERT	h
PLAT241_ALERT_2	h
PLAT241_ALERT_2	h
PLAT241_ALERT	h
PLAT241_ALERT_2	
PLAT241_ALERT_2	
PLAT241_ALERT_2	h
PLAT241_ALERT	igh
PLAT241_ALERT	h
PLAT241_ALERT_2	High
PLAT241_ALERT	gh
PLAT242_ALERT_2	Lo
PLAT242_ALERT_2	
PLAT242_ALERT	Low
PLAT242_ALERT_2	
PLAT242_ALERT	
PLAT242_ALERT_2	Low
PLAT242_ALERT	
PLAT242_ALERT_2	Low
PLAT242_ALERT_2	
PLAT242_ALERT	Low
PLAT242_ALERT_2	Low
PLAT242_ALERT	Low
PLAT242_ALERT_2	Low
PLAT242_ALERT_2	Low
PLAT242_ALERT	
PLAT242_ALERT_2	
PLAT242_ALERT	Low
PLAT242_ALERT_2	Low
PLAT242_ALERT	
PLAT242_ALERT_2	
PLAT242_ALERT_2_	Low
PLAT242_ALERT_2_	
PLAT242_ALERT_2_	
PLAT242_ALERT	Low
PLAT242_ALERT_2	
PLAT242_ALERT_2	Low
PLAT242_ALERT_2	Low
PLAT242_ALERT_2	
PLAT242_ALERT_2	Low
PLAT242_ALERT_2_	
PLAT242_ALERT_2	
PLAT242_ALERT_2	Low
PLAT242_ALERT_2	Low
PLAT242_ALERT_2	Low
PLAT242_ALERT_2_C	Low
PLAT242_ALERT_2_	Lo
PLAT242_ALERT_2_	Low

'MainMol' Ueq as Compared to Neighbors of 'MainMol' Ueq as Compared to Neighbors of

C3_32 Check C6_32 Check C6_33 Check C15_33 Check C3_34 Check C5_34 Check C10_35 Check C4_36 Check C2_37 Check C4_37 Check C10_37 Check Cg_37 Check C12_42 Check C15_42 Check C8_42 Check C4_42 Check C32_42 Check C1_43 Check C22_44 Check C1_44 Check C11_45 Check C2_72 Check S64_1 Check 031_1 Check 010_71 Check N11_3 Check N1_3 Check N7_4 Check N1_4 Check N11_5 Check N11_6 Check N14_12 Check N0_12 Check N6_14 Check C23_1 Check C10_1 Check C60_1 Check C16_2 Check C4_2 Check C5_2 Check C9_2 Check C3_3 Check C5_4 Check C8_5 Check
C_5 Check Cd_5 Check C2_6 Check C5_7 Check C7_7 Check C9_7 Check
C_7 Check C2_12 Check C32_12 Check C11_13 Check C3_13 Check C32_13 Check C23_14 Check C13_14 Check C33_14 Check C11_15 Check C13_15 Check C2_71 Check

PLAT242_ALERT_2_C Low

PLAT242_ALERT_2_C	Low
PLAT242_ALERT_2_C	
	Low

PLAT242_ALERT_2_
PLAT242_ALERT_2_C
PLAT242_ALERT_2_C
PLAT242_ALERT_2_C
PLAT242_ALERT_2_C PLAT242_ALERT_2_C
PLAT242_ALERT_2_C
PLAT242_ALERT_2_C

PLAT242_ALERT_2_C
PLAT242 ALERT 2 C

PLAT242_ALERT_2_C
PLAT242_ALERI_2_C
PLAT242_ALERT_2_C
PLAT242_ALERT_2_C
PLAT242_ALERT_2_C
PLAT242_ALERT_2_C
PLAT242_ALERT_2_C
PLAT242_ALERT_2_C
PLAT242_ALERT_2_C
PLAT242_ALERT_2_C
PLAT244_ALERT_4_C
PLAT244_ALERT_4_C PLAT244_ALERT_4_C
PLAT309_ALERT_2_C
PLAT309_ALERT_2_C
PLAT361_ALERT_2_C
PLAT361_ALERT_2_C
PLAT410_ALERT_2_C
PLAT410_ALERT_2_C
'MainMol' Ueq as Compared to Neighbors of 'Solvent' Ueq as Compared to Neighbors of Single Bonded Oxygen ($\mathrm{C}-\mathrm{O}>1.3 \mathrm{Ang}$) Single Bonded Oxygen (C-O > 1.3 Ang) Long C(sp3)-C(sp3) Bond C32_12 - C33_12 .. Long $C(s p 3)-C(s p 3)$ Bond C33_31 - C35_31.. Short Intra H...H Contact H2_1 .. H32A_1 . Short Intra H...H Contact H9_5 .. Hg2_5 . Short Inter XH3 . . XHn Hd_6 .. He2B_37 ..

C4_71 Check C_74 Check C_75 Check C_76 Check C_82 Check
Fe02_50 Check
S64_31 Check
S65_31 Check
021_31 Check
031_42 Check
O_46 Check
N7_33 Check
N11_35 Check
N_37 Check
N14_43 Check N6_43 Check NO_43 Check N6_44 Check
C13_31 Check C9_31 Check C4_31 Check C1_31 Check
C60_31 Check
C16_32 Check C5_32 Check
C12_32 Check
C15_32 Check C8_33 Check C2_35 Check C8_35 Check C9_35 Check C_35 Check C2_36 Check Cg_36 Check Cd_36 Check C3_37 Check C7_37 Check C9_37 Check
C13_42 Check C7_42 Check C33_42 Check C22_43 Check C2_43 Check C2_44 Check C33_44 Check C13_45 Check C1_45 Check C1_72 Check C4_72 Check C_79 Check C_80 Check C1_85 Check C1_86 Check C1_87 Check C1_88 Check

O4\# Check
031\# Check
1.65 Ang
1.65 Ang.
1.93 Ang.
1.96 Ang.
2.05 Ang.

PLAT906_ALERT_3_C
Large K value in the Analysis of Variance
PLAT906_ALERT_3_C
PLAT906_ALERT_3_C Large K value in the Analysis of Variance 41.226 Check PLAT906_ALERT_3_C Large K value in the Analysis of Variance...... Large K value in the Analysis of Variance Reflection(s) with I(obs) much Smaller I(calc). Number C-C Bonds with Positive Residual Density.
4.011 Check
2.223 Check

2 Check
0 Info

Alert level G

02_ALERT		4	Note
PLAT003_ALERT_2	Number of Uiso or Uij Restrained non-H Atoms	554	Report
PLAT007_ALERT_5	Number of Unrefined Donor-H Atoms	18	Report
PLAT013_ALERT_1	N.O.K. _shelx_hkl_checksum found in CIF	Please	Check
PLAT172_ALERT_4	The CIF-Embedded .res File Contains DFIX Records	239	Report
PLAT173_ALERT_4	The CIF-Embedded .res File Contains DANG Records	211	Repo
PLAT174_ALERT_4	The CIF-Embedded .res File Contains FLAT Records	141	Repor
PLAT177_ALERT_4	The CIF-Embedded .res File Contains DELU Records		Repor
PLAT186_ALERT_4	The CIF-Embedded .res File Contains ISOR Records		Re
PLAT187_ALERT	The CIF-Embedded .res File Contains RIGU Records		Re
PLAT343_ALERT_2	Unusual sp? Angle Range in Main Residue for	C_73	Check
PLAT343_ALERT_2	Unusual sp? Angle Range in Main Residue for	C_74	Check
PLAT343_ALERT_2	Unusual sp? Angle Range in Main Residue for	C_81	Ch
PLAT343_ALERT_2_G	Unusual sp? Angle Range in Main Residue for	C_77	Check
PLAT343_ALERT_2	Unusual sp? Angle Range in Main Residue for	C_78	ck
PLAT343_ALERT_2_G	Unusual sp? Angle Range in Main Residue for	C_79	Check
PLAT343_ALERT_2	Unusual sp? Angle Range in Main Residue for	C_84	Check
PLAT398_ALERT_2	Deviating C-O-C Angle from 120 Deg for Ob_6	105.5	Degr
PLAT432_ALERT_2	Short Inter X...Y Contact 0_37 .. C1_88	3.00	Ang.
PLAT720_ALERT_4_G	Number of Unusual/Non-Standard Labels	966	Note
PLAT790_ALERT_4	Centre of Gravity not Within Unit Cell: Resd.		Note
CH	Cl3		
PLAT860_ALERT_3	Number of Least-Squares Restraints	8374	Note
PLAT908_ALERT_2	Max. Perc. Data with I > 2^{*} S(I) per Res. Shell	66.20%	Note
PLAT910_ALERT_3_	Missing \# of FCF Reflection(s) Below Theta (Min)		Note
PLAT913_ALERT_3_G	Missing \# of Very Strong Reflections in FCF		Jote
PLAT933_ALERT_2_G	Number of OMIT Records in Embedded .res File	104	ote
PLAT961_ALERT_5_G	Contains no Negative Intensities	Please	heck

[^1]It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or E or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

PLATON version of $13 / 08 / 2017$; check.def file version of 27/07/2017

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) end_a
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: end_a

test-name_ALERT_alert-type_alert-level.

Click on the hyperlinks for more details of the test.

Alert level A

THETM01 ALERT 3 A The value of sine(theta_max)/wavelength is less than 0.550

Alert level B

PLAT088_ALERT_3_B	Poor Data / Parameter Ratio			7.78	Note
PLAT230_ALERT_2_B	Hirshfeld Test Diff for N00R	--C03E	-	7.5	s.u.
PLAT230_ALERT_2_B	Hirshfeld Test Diff for N023	--C03C		7.5	s.u.
PLAT230_ALERT_2_B	Hirshfeld Test Diff for C031	--C034		7.3	s.u.
PLAT230_ALERT_2_B	Hirshfeld Test Diff for C039	--C05F		7.6	s.u.
PLAT234_ALERT_4_B	Large Hirshfeld Difference 001X	--N01I		0.27	Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C022	--C04Q		0.28	Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C03H	--C05C	-	0.28	Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C03I	--C04N		0.28	Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C047	--C04T		0.27	Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C04N	--C04X		0.27	Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C04S	--C05E		0.27	Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C052	--C05V		0.26	Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C05L	--C06K		0.28	Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C05Y	--C06I		0.28	Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference C065	--C077		0.26	Ang.
PLAT234_ALERT_4_B	Large Hirshfeld Difference Cl00	--C06P		0.28	Ang.
PLAT241_ALERT_2_B	High 'MainMol' Ueq as Compared to	Neighbors	of	C06X	Check
PLAT242_ALERT_2_B	Low 'MainMol' Ueq as Compared to	Neighbors	of	C05U	Check
PLAT242_ALERT_2_B	Low 'MainMol' Ueq as Compared to	Neighbors	of	C05Z	Check
PLAT242_ALERT_2_B	Low 'MainMol' Ueq as Compared to	Neighbors		C081	Check
PLAT341_ALERT_3_B	Low Bond Precision on $\mathrm{C}-\mathrm{C}$ Bonds			0.02108	Ang.
PLAT360_ALERT_2_B	Short C(sp3)-C (sp3) Bond C16	- C075		1.29	Ang.
PLAT360_ALERT_2_B	Short C (sp3)-C (sp3) Bond C06A	- C078		1.31	Ang.
PLAT410_ALERT_2_B	Short Intra H...H Contact H05X	..H07M		1.80	Ang.
		$x, y, z=$		555 Che	
PLAT 412_ALERT_2_B	Short Intra XH3 . XHn H06F	..H0AD		1.77	Ang.

Alert level C

RINTA01_ALERT_3_C The value of Rint is greater than 0.12
Rint given 0.143
PLAT020_ALERT_3_C The Value of Rint is Greater Than 0.12 0.143 Report
PLAT026_ALERT_3_C Ratio Observed / Unique Reflections (too) Low .. 42% Check
PLAT084_ALERT_3_C High wR2 Value (i.e. > 0.25)
0.26 Report

PLAT084_ALERT_3_C
igh wR2 Value (i.e.
Atom C16
Atom C18
Atom C03Y
Atom C063
Atom C06X
Atom C073
Atom CO7D
has ADP max/min Ratio 3.8 prolat
has ADP max/min Ratio 3.7 prolat
has ADP max/min Ratio 3.3 prolat
has ADP max/min Ratio 3.3 prolat
has ADP max/min Ratio 3.5 prolat
has ADP max/min Ratio 3.1 prolat
has ADP max/min Ratio 3.2 prolat

PLAT213_ALERT_2_C	Atom C07V has ADP max	Ratio		4.	prolat
PLAT213_ALERT_2_C	Atom COAA has ADP max	Ratio		3.	prolat
PLAT220_ALERT_2_C	NonSolvent Resd 1 C Ueq (max)	(min)	Range	6.	Ratio
PLAT222_ALERT_3_C	NonSolvent Resd 1 H Uiso (max)	(min)	Range	7.	Ratio
PLAT230_ALERT_2_C	Hirshfeld Test Diff for 0000	--C046		5.	s.
PLAT230_ALERT_2_C	Hirshfeld Test Diff for NOOQ	--C02M		6.	s.u.
PLAT230_ALERT_2_C	Hirshfeld Test Diff for NOOU	--C02 J		6.	s.
PLAT230_ALERT_2_C	Hirshfeld Test Diff for N01V	--C05D		6.	s.u.
PLAT230_ALERT_2_C	Hirshfeld Test Diff for C02R	--C03H		6.	s.u
PLAT230_ALERT_2_C	Hirshfeld Test Diff for C02V	--C03B		6.	s.u.
PLAT230_ALERT_2_C	Hirshfeld Test Diff for C037	--C04T		6.	s.
PLAT230_ALERT_2_C	Hirshfeld Test Diff for C043	--C04E		6.	s.u
PLAT230_ALERT_2_C	Hirshfeld Test Diff for C046	--C04O		5.	s.u.
PLAT230_ALERT_2_C	Hirshfeld Test Diff for C047	--C05J		5.	s.
PLAT230_ALERT_2_C	Hirshfeld Test Diff for C040	--C05C		5.	s.
PLAT230_ALERT_2_C	Hirshfeld Test Diff for C04Y	--C056		6.	s.
PLAT230_ALERT_2_C	Hirshfeld Test Diff for C051	--C070		5.	s.u
PLAT230_ALERT_2_C	Hirshfeld Test Diff for C052	--C064		6.	s.
PLAT234_ALERT_4_C	Large Hirshfeld Difference Fe01	--C05I		0.20	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference 0005	--C04M		0.2	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference 0007	--C02M		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference 0008	--C03Q		0.22	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference O00E	--C05Y		0.20	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference OOOW	--C05A		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference 0016	--C03P		0.2	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference 0016	--C05Z		0.2	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference 0018	--C05M		0.2	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference 0019	--C064		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference O01D	--C04Z		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference 001Z	--C05I		0.2	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference 0027	--C046		0.2	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference 002K	--C03Y		0.2	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference NOOA	--C020		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference NOOA	--C025		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference NOOI	--C028		0.25	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference NOOM	--C03K		0.20	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference NOOM	--C049		0.20	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference NOOQ	--C020		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference NOOT	--C02V		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference NOOV	--C02O		0.22	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference N012	--C025		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference N012	--C03G		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference N01A	--C038		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference NO1B	--C03U		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference N01F	--C044		0.2	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference NO1J	--C04B		0.2	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference NO1O	--C03A		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference NO1V	--C05Q		0.20	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference N01W	--C02Y	-	0.18	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference NO1Y	--C05B		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference C01P	--C02L	.	0.20	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference C01P	--C041		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference C01R	--C033		0.2	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference C01T	--C021	-	0.2	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference C020	--C04E		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference C024	--C03F	-	0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference C026	--C04G		0.22	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference C02A	--C04H	.	0.2	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference C02B	--C02T		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference C02C	--C045		0.2	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference C02F	--C03T		0.1	Ang.
PLAT234_ALERT_4_C	Large Hirshfeld Difference C02H	--C032		0.1	Ang.

Alert level G

PLAT002_ALERT_2_G Number of Distance or Angle Restraints on AtSite PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... PLAT007_ALERT_5_G Number of Unrefined Donor-H Atoms PLAT072_ALERT_2_G SHELXL First Parameter in WGHT Unusually Large PLAT154_ALERT_1_G The s.u.'s on the Cell Angles are Equal .. (Note) PLAT172_ALERT_4_G The CIF-Embedded .res File Contains DFIX Records

```
8 Note
47 Report
10 Report
0.15 Report
0.03 Degree
4 Report
12 Report
7.2 s.u.
7.7 s.u.
6.2 s.u.
C063 Check
C07D Check
3.20 Ang.
1_655 Check
! Info
444 Note
1.71 Ang.
1.70 Ang.
231 Note
! Info
Please Do !
2 Note
1 Note
8 Note
4.2 Low
1 Info
```

[^2]```
 2 ~ A L E R T ~ t y p e ~ 1 ~ C I F ~ c o n s t r u c t i o n / s y n t a x ~ e r r o r , ~ i n c o n s i s t e n t ~ o r ~ m i s s i n g ~ d a t a
106 ALERT type 2 Indicator that the structure model may be wrong or deficient
1 4 ~ A L E R T ~ t y p e ~ 3 ~ I n d i c a t o r ~ t h a t ~ t h e ~ s t r u c t u r e ~ q u a l i t y ~ m a y ~ b e ~ l o w ~
9 6 ~ A L E R T ~ t y p e ~ 4 ~ I m p r o v e m e n t , ~ m e t h o d o l o g y , ~ q u e r y ~ o r ~ s u g g e s t i o n ~
 1 ALERT type 5 Informative message, check
```

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

## Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or $E$ or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

## Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

## PLATON version of $\mathbf{1 0 / 0 8} / \mathbf{2 0 2 0}$; check.def file version of $\mathbf{0 6 / 0 8} / \mathbf{2 0 2 0}$



## checkCIF/PLATON report

Structure factors have been supplied for datablock(s) a-fe_fip2011
THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

## Datablock: a-fe_fip2011



The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

[^3]PLATO29_ALERT_3_A _diffrn_measured_fraction_theta_full value Low . 0.882 Why?

## Alert level B

| PLAT088_ALERT_3_B | Poor Data / Parameter Ratio | 7.88 Note |
| :---: | :---: | :---: |
| PLAT213_ALERT_2_B | Atom C17A has ADP max/min Ratio | 4.7 obla |
| PLAT911_ALERT_3_B | Missing FCF Refl Between Thmin \& STh/L= 0.526 | 533 R |


| Alert level |  |  |
| :---: | :---: | :---: |
| PLAT213_ALERT_2_C | Atom 05 has ADP max/min Ratio | 3.1 oblate |
| PLAT213_ALERT_2_C | Atom C20B has ADP max/min Ratio | 3.4 prolat |
| PLAT213_ALERT_2_C | Atom C201 has ADP max/min Ratio | 3.3 oblate |
| PLAT220_ALERT_2_C | NonSolvent Resd 1 C Ueq(max)/Ueq(min) Range | 4.3 Ratio |
| PLAT222_ALERT_3_C | NonSolvent Resd 1 H Uiso(max)/Uiso(min) Range | 4.3 Ratio |
| PLAT250_ALERT_2_C | Large U3/U1 Ratio for Average U(i,j) Tensor | 2.4 Note |
| PLAT341_ALERT_3_C | Low Bond Precision on C-C Bonds | 0.00828 Ang. |
| PLAT913_ALERT_3_C | Missing \# of Very Strong Reflections in FCF | 4 Note |
| PLAT977_ALERT_2_C | Check Negative Difference Density on H28A | -0.32 eA-3 |

## Alert level G

ABSMU01_ALERT_1_G Calculation of _exptl_absorpt_correction_mu
not performed for this radiation type.
PLAT003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ...


[^4]It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

## Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation); however, if you intend to submit to Acta Crystallographica Section C or $E$ or IUCrData, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

## Publication of your CIF in other journals

Please refer to the Notes for Authors of the relevant journal for any special instructions relating to CIF submission.

## PLATON version of 26/06/2020; check.def file version of 17/06/2020




[^0]:    3 ALERT level A = Most likely a serious problem - resolve or explain
    4 ALERT level B = A potentially serious problem, consider carefully
    1 ALERT level C = Check. Ensure it is not caused by an omission or oversight
    ALERT level $\mathbf{G}=$ General information/check it is not something unexpected

    3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
    55 ALERT type 2 Indicator that the structure model may be wrong or deficient
    14 ALERT type 3 Indicator that the structure quality may be low
    67 ALERT type 4 Improvement, methodology, query or suggestion
    1 ALERT type 5 Informative message, check

[^1]:    4 ALERT level A = Most likely a serious problem - resolve or explain
    41 ALERT level $B=A$ potentially serious problem, consider carefully
    190 ALERT level C = Check. Ensure it is not caused by an omission or oversight
    27 ALERT level $\mathbf{G}=$ General information/check it is not something unexpected
    2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
    228 ALERT type 2 Indicator that the structure model may be wrong or deficient
    18 ALERT type 3 Indicator that the structure quality may be low
    12 ALERT type 4 Improvement, methodology, query or suggestion
    2 ALERT type 5 Informative message, check

[^2]:    7 ALERT level A = Most likely a serious problem - resolve or explain
    26 ALERT level B = A potentially serious problem, consider carefully
    161 ALERT level $\mathbf{C}=$ Check. Ensure it is not caused by an omission or oversight
    25 ALERT level $\mathbf{G}=$ General information/check it is not something unexpected

[^3]:    Calculated sin(theta_max)/wavelength = 0.5262

[^4]:    ALERT level A = Most likely a serious problem - resolve or explain
    3 ALERT level B = A potentially serious problem, consider carefully
    9 ALERT level C = Check. Ensure it is not caused by an omission or oversight
    19 ALERT level $\mathbf{G}=$ General information/check it is not something unexpected
    6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
    12 ALERT type 2 Indicator that the structure model may be wrong or deficient
    12 ALERT type 3 Indicator that the structure quality may be low
    3 ALERT type 4 Improvement, methodology, query or suggestion
    0 ALERT type 5 Informative message, check

