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I. THE H2CO MOLECULE AND TECHNICAL DETAILS OF THE 6D

COMPUTATIONS

The planar ground-state (X) equilibrium structure of H2CO (C2v point-group symmetry)

is shown in Fig. 1. The definition of the body-fixed Cartesian axes in Fig. 1 follows the

Mulliken convention.1 The normal modes of H2CO are summarized in Fig. 2 and Table I. In

the excited electronic state (A) H2CO has two equivalent nonplanar equilibrium structures

(Cs point-group symmetry) that are connected by a planar transition state structure (C2v

point-group symmetry).
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Figure 1. Equilibrium structure of the H2CO molecule in its electronic ground state (X) and

definition of the body-fixed Cartesian axes (the x axis is directed outwards, as indicated by the +

sign).

In H2CO there is no natural conical intersection (CI) in the vicinity of the Franck–

Condon region. A seam of CIs has been characterized in refs. 2–4, but it is protected by a

transition barrier at low energies. H2CO has the great advantage of not having any first-order

nonadiabatic coupling between the ground (X) and first singlet excited (A) electronic states

around its equilibrium geometry. As a consequence, light-induced nonadiabatic phenomena

can be unambiguously separated from other natural nonadiabatic effects.

The six-dimensional (6D) time-independent vibrational Schrödinger equation was solved

variationally by the numerically exact and general rovibrational code GENIUSH5–7 to ob-

tain vibrational energy levels and eigenstates for the VX and VA potential energy surfaces
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Figure 2. Normal modes of the H2CO molecule.

Table I. Normal mode labels, C2v irreducible representations, description of normal modes and

anharmonic fundamentals (obtained by 6D variational computations in the electronic ground state

(X) of H2CO, in units of cm−1).

mode symmetry description ω/cm−1

ν1 A1 sym C-H stretch 2728.4

ν2 A1 C=O stretch 1738.1

ν3 A1 CH2 scissor 1466.0

ν4 B1 out-of-plane bend 1147.0

ν5 B2 antisym C-H stretch 2819.9

ν6 B2 CH2 rock 1234.5

(PESs). The body-fixed Cartesian position vectors of the nuclei were parameterized using

polyspherical coordinates8 and the body-fixed axes were oriented according to the Eckart

conditions9 using the equilibrium structure of the X electronic state as reference structure.

A symmetry-adapted 6D direct-product discrete variable representation (DVR) basis and

atomic mass values mC = 12.0 u, mO = 15.994915 u and mH = 1.007825 u were employed

throughout the 6D vibrational eigenstate computations.
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The permanent and transition dipole moment surfaces (PDM and TDM) were generated

by a second-order Taylor expansion using the polyspherical coordinates defined above. The

Taylor series are centered at the equilibrium structure of the X electronic state (TDM and

X-state PDM) and at the planar transition state structure of the A electronic state (A-

state PDM), respectively. The PDM and TDM components were referenced in the Eckart

frame described above and the necessary dipole derivatives were evaluated numerically at

the CAM-B3LYP/6-31G* level of theory.

II. TECHNICAL DETAILS OF THE 2D(ν2,ν4) AND 1D(ν4)

COMPUTATIONS

The 2D(ν2,ν4) and 1D(ν4) models of H2CO were defined by evaluating the normal coor-

dinates corresponding to the planar transition state structure of the A electronic state and

setting the values of the inactive normal coordinates to zero. The 2D(ν2,ν4) and 1D(ν4)

PESs (VX and VA) and TDM surfaces were calculated at the CAM-B3LYP/6-31G* level of

theory. All numerical computations employed PESs and TDM functions that were gener-

ated by interpolating the ab initio PES and TDM points and naturally include higher-order

expansion terms as well. The energy levels and eigenstates of the coupled molecule-cavity

system were computed by diagonalizing the Hamiltonian defined in eqn (2) of the manuscript

in the direct-product basis of 2D or 1D DVR basis functions and Fock states of the cavity

mode with n = 0, 1, 2, 3.

The polaritonic (adiabatic) PESs were obtained by diagonalizing the potential energy

part of the Hamiltonian defined in eqn (2) of the manuscript. The nonadiabatic coupling

between the polaritonic PESs was neglected and the time-independent Schrödinger equation

was solved for each polaritonic PES separately. The TDM was transformed into the adiabatic

representation and transition amplitudes were evaluated by computing the matrix elements

of the adiabatic TDM surfaces between different adiabatic eigenstates.

III. ANALYTICAL CONSIDERATIONS FOR THE 1D(ν4) MODEL

We consider only the singly-excited subspace (ground electronic state dressed with one

photon and excited electronic state dressed with zero photon) and diagonalize the two-
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dimensional potential energy matrix

V =

VA W1

W1 VX + ~ωc

 (1)

with W1 = −gµ where g and µ denote the coupling strength parameter and the TDM,

respectively. This yields the diagonal matrix Vad = U†VU with the lower and upper

polaritonic (adiabatic) PESs (V− and V+) on its diagonal. The two-dimensional orthogonal

matrix U can be parameterized with the transformation angle ϕ, that is,

U =

 cosϕ sinϕ

− sinϕ cosϕ

 (2)

with

ϕ =
1

2
arctan

(
2gµ

VA − VX − ~ωc

)
. (3)

As described in ref 10, the nonadiabatic coupling (NAC) between V− and V+ can be obtained

as the first derivative of ϕ with respect to the coordinates.

Let us consider two one-dimensional harmonic PESs

VX(x) =
1

2
mω2

Xx
2 (4)

and

VA(x) =
1

2
mω2

A(x− d)2 + ∆, (5)

where ωX and ωA refer to the harmonic frequencies of the ground and excited electronic

states, m is the mass, ∆ is the excitation energy and VA(x) is centered at x = d. The TDM

is assumed to have a simple linear form,

µ(x) = µ0 + αx. (6)

The transformation angle reads

ϕ(x) =
1

2
arctan

(
2g(µ0 + αx)

∆ − ~ωc + 1
2
mω2

A(x− d)2 − 1
2
mω2

Xx
2

)
, (7)

which yields

NAC(x) =
mg(µ0 + αx) [ω2

Xx− ω2
A(x− d)] + gα

[
∆ − ~ωc + 1

2
mω2

A(x− d)2 − 1
2
mω2

Xx
2
][

∆ − ~ωc + 1
2
mω2

A(x− d)2 − 1
2
mω2

Xx
2
]2

+ 4g2(µ0 + αx)2

(8)
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for the NAC.

Next, we discuss the model used in ref. 11 (called anthracene-like model therein) where

the following assumptions seem to have been made:

ωX = ωA = ω

∆ = ~ωc (9)

µ(x) = µ0 (α = 0).

Substituting these equations into eqn (8) results in

NAC(x) =
4gµ0mω

2d

m2ω4(d2 − 2xd)2 + 16g2µ2
0

(10)

which becomes proportional to g−1 for sufficiently large g values at every possible value of

x.

Finally, we investigate a model with

ωX > ωA

∆ > ~ωc (11)

d = 0

µ(x) = αx (µ0 = 0),

which is obviously related to the 1D(ν4) model of H2CO (only the out-of-plane mode is

active), although the one-dimensional PES along the ν4 normal mode has an anharmonic

double-well structure in the excited electronic state of H2CO. In this case the general NAC

formula in eqn (8) simplifies to

NAC(x) =
4gα(∆ − ~ωc) − 2gαm(ω2

A − ω2
X)x2

[2(∆ − ~ωc) +m(ω2
A − ω2

X)x2]
2

+ 16g2α2x2
. (12)

It is easy to see that in this case the two diabatic PESs VX(x) + ~ωc and VA(x) cross at

x0 = ±

√
2(∆ − ~ωc)

m(ω2
X − ω2

A)
, (13)

where the NAC evaluates to

NAC(x0) =
m(ω2

X − ω2
A)

4gα
. (14)
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Both eqn (12) and eqn (14) suggest that the NAC is inversely proportional to g, implying

that the NAC becomes negligible for sufficiently large g values. However, evaluating NAC(x)

of eqn (12) at x = 0 results in

NAC(0) =
gα

∆ − ~ωc

, (15)

which clearly shows that the NAC is proportional to g at x = 0. This striking behaviour

of the NAC indicates that the Born–Oppenheimer approximation can break down even for

large g values in one dimension. Finally, it is worth noting that as µ(0) = 0, the gap between

the two adiabatic PESs at x = 0 is determined solely by ωc (and not by g).

IV. ANALYTICAL CONSIDERATIONS FOR THE 2D(ν2,ν4) MODEL

Next, a two-dimensional model is introduced by defining the ground-state and excited-

state PESs as

VX(x, y) =
1

2
mω2

X1x
2 +

1

2
mω2

X2y
2 (16)

and

VA(x, y) =
1

2
mω2

A1x
2 +

1

2
mω2

A2(y − d)2 + ∆, (17)

and by choosing a simple linear TDM

µ(x, y) = αx, (18)

depending only on x. This two-dimensional model is inspired by the 2D(ν2,ν4) H2CO model

(x and y would become Q4 and Q2, respectively, with m = 1 for the 2D(ν2,ν4) model),

although there are clearly some approximations, such as treating both PESs as a sum of two

one-dimensional harmonic oscillator PESs. The form of µ(x, y) is justified by the fact that

no TDM is produced for any displacement along Q2 if Q4 is set to zero.

Similarly to the one-dimensional model, we first evaluate the transformation angle

ϕ(x, y) =
1

2
arctan

(
4gαx

2(∆ − ~ωc) +m(ω2
A1 − ω2

X1)x
2 +mω2

A2(y − d)2 −mω2
X2y

2

)
(19)

and then calculate the first partial derivatives of ϕ(x, y) with respect to x and y. It is easy

to see that a LICI arises at (x0, y0) in the two-dimensional case if

x0 = 0 (20)
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(zero coupling) and
1

2
mω2

X2y
2
0 =

1

2
mω2

A2(y0 − d)2 + ∆ − ~ωc (21)

(degeneracy of the two diabatic PESs).

As the general formulae for ∂ϕ(x,y)
∂x

and ∂ϕ(x,y)
∂y

are rather complicated, we limit the dis-

cussion to the x = x0 = 0 special case (this is a necessary condition for the LICI) and

obtain

NACx(0, y) =
∂ϕ(x, y)

∂x

∣∣∣
x=0

=
2gα

2(∆ − ~ωc) +mω2
A2(y − d)2 −mω2

X2y
2

(22)

and

NACy(0, y) =
∂ϕ(x, y)

∂y

∣∣∣
x=0

= 0. (23)

If the condition in eqn (21) is fulfilled, NACx of eqn (22) becomes singular, as it should be

the case at the LICI.
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