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Datasets

A summary of the PubChem, ZINC, and BDNCM bond dissociation energy (BDE) datasets

is presented in Table S1. Different energies are adopted in the three datasets: the PubChem

BDE dataset uses the gas-phase enthalpy at 298 K and 1 atm, the ZINC BDE dataset uses

the electronic structure energy, and the BDNCM BDE dataset uses the Gibbs free energy

at 298.15 K. We choose to use the Gibbs free energy for the BDNCM dataset because both

enthalpic and entropic contributions are critical to accurately capturing reaction thermody-

namics of charged and moderately sized molecules in solvent at ambient temperature and

pressure. The PubChem and ZINC BDE datasets are discussed in detail in Refs. 1 and 2,

respectively, and we refer the readers to them for more information. Here, we discuss how

the new BDNCM BDE dataset is constructed.

The BDNCM dataset was constructed with an initial target application of predicting

the early formation of the solid electrolyte interphase (SEI) formation in lithium-ion bat-

tery systems. We first collected a set of principal molecules that are used in or thought to
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be formed in lithium-ion battery electrolytes as reported in the literature. These include

cyclic carbonates (e.g. ethylene carbonate), linear carbonates (e.g. ethyl methyl carbonate),

their lithium coordination complexes and fluorinated derivatives, lithiated dicarbonates (e.g.

lithium ethylene dicarbonate), water, and more. We then fragmented these molecules by

systematically breaking all of their bonds to generate a set of fragments, and this process

was iteratively applied to the fragments, fragments of fragments, etc. in order to generate all

possible unique fragments. Each principle molecule and each unique fragment, defined by

the molecular connectivity, was then assigned charges −1, 0, and +1 to generate a prelimi-

nary set. We optimized the geometry of each molecule in the preliminary set using density

functional theory; subsequently, we performed a vibrational frequency analysis to calculate

the Gibbs free energy. After filtering the optimized structures again for uniqueness, defined

now by the molecular connectivity and the charge, we obtained 8518 unique molecules made

up of C, H, O, F, and Li, and these molecules yield 64312 homolytic and heterolytic bond

breaking reactions. The calculations of the Gibbs free energy were performed using Q-Chem

5.2.23 at the ωB97X-V4 level theory with the def2-TZVPPD basis set.5 The implicit SMD

model6 was chosen to approximate the thermodynamic properties of the solvent.

Table S1: Summary of the BDNCM, PubChem, and ZINC BDE datasets

BDNCM PubChem ZINC
Energy type Gibbs free energy enthalpy electronic structure energy

Chemical species C, H, O, F, Li C, H, O, N C, H, O, N, S
# unique molecules 8518 249374 4343

# bond-breaking reactions 64312 290644 16626
Molecular charge −1, 0, 1 0 0

Bond dissociation type hteterolytic, homolytic homolytic homolytic
Breaking ring bond yes no no

Input features

The input atom, bond, and global features for the BonDNet model are presented in Tables S2

and S3. The features are chosen based on the characteristics of the datasets. The BDNCM
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BDE dataset contains charged molecules coordinated with metal ions, so “charge” is chosen

as a global feature and “coordinate” is chosen as a bond feature. This complex dataset also

contains organic and inorganic species, closed-shell and radical molecules, making it difficult

to determine the “valence”, “aromatic”, “hybridization”, “acceptor”, and “donor” informa-

tion of atoms and the “conjugated” and “bond type” information of bonds. Therefore, these

are not included as input features. The PubChem and ZINC BDE datasets only have neutral

organic molecules, so neither the “charge” global feature nor the “coordiante” bond feature

is necessary. However, the features ignored by the BDNCM BDE dataset are well suited for

them and thus included.

Table S2: Input atom, bond, and global features for the BDNCM dataset

Feature type Feature name Description
Atom atom type chemical specie of an atom (one-hot)

degree number of bonds an atom forms (integer)
# hydrogens number of hydrogens connected to an atom (integer)
ring status whether an atom is in a ring (binary)
ring size number of atoms in the ring (3–7), “null” if the atom is not

in a ring (one-hot or null)
Bond ring status whether a bond is in a ring (binary)

ring size number of atoms in the ring (3–7), “null” if the bond is not
in a ring (one-hot or null)

coordinate whether it is a coordinate bond (binary)
Global # atoms number of atoms in a molecule (integer)

# bonds number of bonds in a molecule (integer)
weight weight of a molecule (integer)
charge total charge (−1, 0, 1) of a molecule (one-hot)
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Table S3: Input atom, bond, and global features for the PubChem and ZINC BDE datasets

Feature type Feature name Description
Atom atom type chemical specie of an atom (one-hot)

degree number of bonds an atom forms (integer)
# hydrogens number of hydrogens connected to an atom (integer)
ring status whether an atom is in a ring (binary)
ring size number of atoms in the ring (3–7), “null” if the atom is not

in a ring (one-hot or null)
valence valence of an atom (integer)
aromatic whether an atom forms aromatic bond (binary)
hybridization s, sp1, sp2, or sp3 (one-hot or null)
acceptor whether an atom accepts electrons (binary)
donor whether an atom donates electrons (binary)

Bond ring status whether a bond is in a ring (binary)
ring size number of atoms in the ring (3–7), “null” if the bond is not

in a ring (one-hot or null)
conjugated whether it is a conjugated bond (binary)
bond type single, double, triple, or aromatic (one-hot or null)

Global # atoms number of atoms in a molecule (integer)
# bonds number of bonds in a molecule (integer)
weight weight of a molecule (integer)

BonDNet hyperparameters

As discussed in the main text, the hyperparameters determining the structure of BonDNet

are selected based on the model performance on the validation set. We conducted a grid

search over six hyperparameters and their optimal values that result in the the smallest mean

absolute error (MAE) on the validation set are presented in Table S4. Some hyperparameters

need more explanation. (1) “graph-to-graph module hidden layer size” denotes the size of

the weights and biases in the two-layer fully connected neural networks (FCNNs). More

specifically, it is the number of columns of the weight matrices W1 and W2 and the length of

the bias vectors b1 and b2 in the feature update functions φ1, φ2, . . . , φ9 in Eqs. (4) (5) and (7)

in the main text. (2) “# hidden layer in graph-to-property module” denotes the number of

hidden layers in the FCNN used to map the concatenated reaction feature (Eq. (9) in the

main text) to the output BDE. (3) “graph-to-property module hidden layer sizes” denotes
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the corresponding sizes of the hidden layers in the FCNN.

Table S4: Hyperparameters of BonDNet for the three datasets

BDNCM PubChem ZINC
input feature embedding size 24 24 24
# graph-to-graph modules 3 3 3

graph-to-graph module hidden layer size 192 256 64
graph-to-graph module dropout ratio 0 0.1 0.1

# hidden layers in graph-to-property module 2 3 2
graph-to-property module hidden layer sizes 384, 192 512, 256, 128 128, 64

Reactant-only model hyperparameters

The reactant-only model applies multiple graph-to-graph modules and then map the features

of the breaking bond in the last graph-to-graph module to the BDE using an FCNN. The

hyperamarameters are determined in the same way as BonDNet, and the optimal values are

presented in Table S5. Note that the listed hyperparameters are the optimal values when the

whole PubChem BDE dataset is used. The optimal values vary when training on a subset of

the PubChem BDE dataset. This is also the case for BonDNet when training on a subset.

Table S5: Hyperparameters of the reactant-only model for the PubChem BDE dataset

input feature embedding size 24
# graph-to-graph modules 4

graph-to-graph module hidden layer size 256
graph-to-graph module dropout ratio 0.1

# hidden layer in FCNN 3
FCNN hidden layer sizes 256, 128, 64

Reactions with large test error

The reactions with the 10 largest prediction errors for the BDNCM test set are given in

Fig. S1. They can be broadly categorized into two groups: (1) reactions that are underrep-

resented in the dataset, including d), f), and j); and (2) reactions that are more complex
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than one-bond dissociation, including a), b), c), e), g), h), and i). Below, we provide a more

detailed analysis as to why BonDNet yields large errors for them.

The dataset has 9 molecules with CCCO double rings as in the reactant of d) and 151

molecules with a CCCO single ring as in the product. However, there is only one reaction

that breaks a bond in CCCO double rings and form a CCCO single ring (that is the reaction

shown in d)). It is expected that a machine learning model such as BonDNet cannot give

correct predictions for such underrepresented data. This is also the case for reaction f). For

j), although the dataset has BDEs for more than 500 F→Li+ bonds, most of them are Li+

coordinated to large molecules containing F, very different from the reaction in j). Actually,

this reaction is very unlikely to exist since it is extremely difficult to obtain a +1 charged F2

due to the large electronegativiy of F.

Reaction a) looks like a one-bond-breaking reaction, but a closer examination reveals

that the reactant and the product have very different electronic structures: the radical

is on an oxygen atom in the reactant, whereas it is on a carbon atom in the product.

Thus, the reference BDE calculated from DFT contains a substantial contribution from the

rearrangement of the electron density. This cannot be explained by one-bond dissociation

that BonDNet is designed to model. The other reactions in group (2) are all complex

reactions. We expect the reactant of b) to be a planar molecule, but it is actually not

(probably due to insufficient geometry optimization), and thus the reference BDE contains

some conformational energy. For c) and g), breaking a bond leads to the change of a

neighboring single bond to a double bond. For e), both the two electrons forming the O−O

bond in the reactant move to the C−−O bond in the product. For h), the O→Li+ coordinate

bond in the reactant results in strain in the neighboring bonds in the ring, which are released

upon bond dissociation. Therefore, the reference BDE contains strain energy. Finally, for i),

breaking the bond results in the change of the O−C−−C conjugated system in the reactant

to the O−−C−C conjugated system in the product. The current form of BonDNet is designed

to predict BDEs based on graph representation of molecules, and it make predictions only
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Figure S1: Reactions with large prediction error for the BDNCM test set.
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using molecular connectivity information and simple atom, bond, and global features. The

complex reactions discussed above are beyond BonDNet’s scope, and future extension can

be made to deal with these complex reactions.

Prediction for large drug-like molecules
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Figure S2: BDEs predicted by BonDNet versus DFT reference values for a set of drug-like
molecules much larger than the molecules in the training set. The predictions are made using
the BonDNet model trained on the PubChem BDE Dataset, and drug-like molecules and the
DFT reference energies are from Ref. 1. BonDNet achieves a mean absolute error (MAE) of
0.0460 eV for the drug-like molecules, and ALFABET achieves an MAE of 0.0494 eV.1
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Prediction error distribution
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Figure S3: Distribution of BonDNet prediction error by reactant charge for the BDNCM
dataset.
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Figure S4: Distribution of BonDNet prediction error by bond dissociation type for the
BDNCM dataset.
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