Supplementary Materials for

Stable Monovalent Aluminum(I) in Reduced Phosphomolybdate Cluster as Active Acid Catalyst

 Wang, ${ }^{\text {a,* }}$ Zhan-Gang Han ${ }^{\text {a,* }}$

[a] Y-Q Zhang, L-Y Zhou, Y-Y Ma, L-Z Wang, Z-G Han
Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050024, People's Republic of China.
[b] K Dastafkan, C Zhao
School of Chemistry, The university of New South Wales, Sydney, NSW 2052, Australia.
(5) Y. Q. Zhang and L. Y. Zhou contributed equally to this work.

Correspondence to: mayy334@hebtu.edu.cn; wanglanzhi@126.com; hanzg116@126.com; hanzg116@hebtu.edu.cn

Table of Contents

Materials and Methods

Figure S1. The side sizes of $\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}$ subunit.
Figure S2. ORTEP views of the asymmetric unit in $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ (a) and $\mathbf{A I}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$ (b).
Figure S3. (a) Packing mode of 1D inorganic anions and organic cations in $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$. (b) Space-filling views showing the stacking modes of inorganic and organic moieties in $\mathrm{Al}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$. (c-d) Space-filling view showing the honeycomb-like supramolecular organic moiety to accommodate 1D inorganic chains via intermolecular forces
Figure S4. (a) 2D inorganic-organic network in $\mathrm{Al}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$. (b) Schematic views showing the packing mode of the inorganic and space-filling view showing the 3D stacked structure of bpe in $\mathrm{Al}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$.
Figure S5. 2D inorganic network in $\mathrm{Al}\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}_{2}$.
Figure S6. (a) 2D network structure in $\mathrm{Al}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2 \text { 2. (b) }}$ (b) Schematic view showing the packing mode of the simplified inorganic moiety and space-filling bpe cations in $\mathbf{A l}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{2}$
Figure S7. XPS spectra (a-c) of $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$. (d-f) of $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.
Figure S8. EDS spectra of crystals $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.
Figure S9. XRD patterns of $\mathbf{A l}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{2}$ after immersing in water for 24 hours.
Figure S10. IR spectra of $\mathbf{A l}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A I}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$ after immersing in water for 24 hours.
Figure S11. XPS spectra of $\mathbf{A l}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$ after immersing in water for 24 hours.
Figure S12. Solid UV-visible absorption spectra of $\mathrm{Al}_{6}\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}_{6}$ and $\mathrm{Al}^{2}\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}_{2}$ after immersing in water for 24 hours.
Figure S13. TG - DSC - DTG curves for crystals: (a) $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$; (b) $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.
Figure S14. IR spectra comparison of $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ between the fresh and after catalysis.
Figure S15. The recyclability of the $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ towards catalytic reaction.
Figure S16. XRD comparison of the fresh $\mathbf{A l}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$ (a) that after catalysis with three parallel experiments (b-d).
Figure S17. XPS spectra of $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ after the catalytic reaction.
Table S1. Crystal data and structural refinement details for hybrids $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.
Table S2. BVS calculations of Mo, P and Al centers in $\mathrm{Al}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.
Table S3. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ of $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$.
Table S4. Selected bond lengths (A) and bond angles $\left({ }^{\circ}\right)$ of $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.
Table S5. The XPS result of $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A I}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.
Table S6. The ICP result of $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.
Table S7. Substrate scope for the $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ catalyzed one-pot four-component domino reaction ${ }^{a}$
Physical characterization data of the synthesized compounds.

Materials and Methods

Materials and Characterizations

All chemical reagents are obtained commercially and used directly without any treatment. FTIR spectra (KBr pellet) were recorded with a FTIR-8900 IR spectrometer in the range of 400-4000 cm^{-1}. TG analyses were performed on a Perkin-Elmer Pyris Diamond TG/DTA instrument in flowing N_{2} with a heating rate of $10^{\circ} \mathrm{C} \mathrm{min}^{-1}$. XRD patterns were conducted using a Bruker AXS D8 Advance diffractometer. Energy-dispersive spectroscopy (EDS) were conducted on a cold field-emission scanning electron microscope (S-4800). The $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o} \mathbf{O}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o} \mathbf{O}_{6}\right\}_{2}$ catalyst was investigated using a Leeman Prodigy Spec inductively coupled plasma atomic emission spectrometer (ICP-AES).

Synthesis

A mixture of $\mathrm{Na}_{2} \mathrm{MoO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}(0.12 \mathrm{~g}, 0.50 \mathrm{mmol}), \mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}(0.08 \mathrm{~g}, 0.21 \mathrm{mmol})$, bpe (0.03 $\mathrm{g}, 0.16 \mathrm{mmol})$, bpp ($0.03 \mathrm{~g}, 0.15 \mathrm{mmol}), \mathrm{H}_{3} \mathrm{PO}_{4}(0.50 \mathrm{~mL}, 7.50 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{~mL}, 0.44 \mathrm{~mol})$ was stirred for half an hour at room temperature, and the pH was adjusted to 1.5 with 4 M NaOH . The mixture was transferred to a 20 mL Teflon-lined stainless-steel container and heated to 160 ${ }^{\circ} \mathrm{C}$ for 5 days. It was lowered to room temperature at a rate of $8{ }^{\circ} \mathrm{C} \mathrm{h}^{-1}$, and after washed and dried, the pure red strip crystals of $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ were isolated (yield 68% based on Mo). Elemental analysis calculated for $\mathrm{C}_{132} \mathrm{H}_{200} \mathrm{Al}_{6} \mathrm{Mo}_{36} \mathrm{~N}_{22} \mathrm{O}_{201} \mathrm{P}_{24}$ (\%): C, 16.39; H, 2.08; $\mathrm{N}, 3.19$. Found (\%): C , $16.27 ; \mathrm{H}, 2.10 ; \mathrm{N}, 3.15$. The preparation of hybrid $\mathrm{Al}\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}_{2}$ was similar to the method of $\mathrm{Al}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$, except that the pH value was adjusted to 0.5 with $8 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{4}$. Red block crystals were obtained (yield 55\% based on Mo).

Single-crystal X-ray diffraction

Crystal data were collected on a SMART APEX II CCD Area Detector diffractometer using Mo $K \alpha$ radiation ($\lambda=0.71073 \AA$) at $296(2)$ K. Then the collected data were analyzed using the SHELEXL program, the results were corrected using the full matrix least squares method, and anisotropic correction was performed for all non-hydrogen atoms. The hydrogen atoms connected to the carbons were added to the geometric ideal position, the hydrogen atoms of water molecule were not specified, but were directly added to the final molecular formula. The crystal data information of $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{2}$ is shown in Table S1 (CCDC: 1970141 for $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$; 1970140 for $\left.\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}\right)$.

Determination of acidity.

The acidity ($\mathrm{mmol} \mathrm{g}^{-1}$) of the $\mathrm{Al}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{2}$ was determined by the neutralization titration method. Typically, catalyst (0.1 g) was added to an aqueous solution of $\mathrm{NaCl}\left(2.0 \mathrm{~mol} \mathrm{~L}^{-}\right.$ ${ }^{1}, 20.0 \mathrm{~mL}$). The mixture was stirred for 24 h at room temperature. After filtered, the clear solution was titrated with aqueous $\mathrm{NaOH}\left(6.0 \mathrm{mmol} \mathrm{L}^{-1}\right)$ with phenolphthalein as the indicator.

Catalysis.

General catalytic procedure of four-component domino reaction for the solvent-free one-pot synthesis of 1,5-benzodiazepines was described as follows: a mixture of aromatic ketone (1.00 $\mathrm{mmol}), \mathrm{N}, \mathrm{N}$-dimethylformamide dimethyl acetal (1.00 mmol) and catalysts (10.00 mg) were heated at $60^{\circ} \mathrm{C}$ with constant stirring for 3.0 h . After the completion of reaction monitored by

TLC, 1,2-phenylenediamine (1.00 mmol) was added to the same reaction flask, respectively. Then, the resulting reaction mixture was further subjected to heating at $60^{\circ} \mathrm{C}$ for the time indicated in Table 1. After completion of reaction monitored by TLC, ketone derivative (1.00 mmol) was added to the same reaction flask and stirred at $30^{\circ} \mathrm{C}$ for 20 min . After that, the crude reaction mass was dissolved in ethyl acetate (10.00 mL). To recover the catalysts, the ethyl acetate portion was centrifuged and filtered. From the residue, POM catalyst was isolated and the filtrate (ethyl acetate layer) was then washed with water ($3 \times 10.00 \mathrm{~mL}$) and brine (1×10.00 mL), and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The reaction mixture was then concentrated under vacuum and purified by column chromatography using petroleum ether-ethyl acetate as the eluent.

Supplementary Figures

Figure S 1 . The side sizes of $\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}$ subunit.

Figure S2. ORTEP views of the asymmetric unit in $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ (a) and $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$ (b).

Figure S3. (a) Packing mode of 1D inorganic anions and organic cations in $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$. (b) Spacefilling views showing the stacking modes of inorganic and organic moieties in $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$. (c-d) Space-filling view showing the honeycomb-like supramolecular organic moiety to accommodate 1D inorganic chains via intermolecular forces.

Figure S4. (a) 2 D inorganic-organic network in $\mathrm{Al}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$. (b) Schematic views showing the packing mode of the inorganic and space-filling view showing the 3D stacked structure of bpe in $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$.

Figure S5. 2D inorganic network in $\mathrm{Al}\left\{\mathrm{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.

Figure S6. (a) 2D network structure in $\mathbf{A l}\left\{\mathrm{P}_{4} \mathbf{M o}_{6}\right\}_{2}$. (b) Schematic view showing the packing mode of the simplified inorganic moiety and space-filling bpe cations in $\mathbf{A}\left\{\mathbf{P}_{4} \mathbf{M o} \mathbf{o}_{6}\right\}_{2}$.

Figure S7. XPS spectra (a-c) of $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$. (d-f) of $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.

	Elements	Weight \%	Atom \%		
$\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$	C K	34.50	57.40		
	OK	23.75	29.66		
	PK	7.83 1	5.05	I	
	$\begin{aligned} & \mathrm{Al} \mathrm{~K} \\ & \mathrm{Mo} \text { L } \end{aligned}$	$\begin{aligned} & 1.54 \\ & 32.37 \end{aligned}$	$\begin{aligned} & 1.14 \\ & 6.74 \end{aligned}$		$\mathrm{Mo} / \mathrm{P}=1.33$
	Sum	100.00		-	
$\mathrm{Al}_{4}\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}_{2}$	C K	32.52	52.15		
	NK	7.88	10.84		
	OK	22.27	26.81		
	P K	6.06	3.77		
	$\mathrm{Al} \mathrm{K}^{\text {M }}$	0.30 30.97	0.22		
	Mo L	$\begin{aligned} & 30.97 \\ & 100.00 \end{aligned}$	6.22		$\mathrm{Mo} / \mathrm{P}=1.65$

Figure S8. EDS spectra of crystals $\mathbf{A l}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.

Figure S9. XRD patterns of $\mathbf{A l}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{\mathbf{2}}$ after immersing in water for $\mathbf{2 4}$ hours.

Figure $\mathbf{S 1 0}$. IR spectra of $\mathbf{A l}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A I}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{2}$ after immersing in water for 24 hours.
The IR spectra of $\mathbf{A l}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{2}$ were recorded between 4000 and $400 \mathrm{~cm}^{-1}$, as shown in Figure S10. All supramolecular assemblies $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$ exhibit the characteristic peaks of the $\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}$ polyoxoanion: the characteristic bands in the range of 540$730 \mathrm{~cm}^{-1}$ are attributed to $v(\mathrm{Mo}-\mathrm{O}-\mathrm{Mo})$ vibrations; strong peaks at $950-995 \mathrm{~cm}^{-1}$ are due to $v(\mathrm{Mo}=\mathrm{O})$ vibrations; the $\mathrm{v}(\mathrm{P}=\mathrm{O})$ vibration ranges from $1020-1130 \mathrm{~cm}^{-1}$. The feature peaks in 1500-1630 cm^{-1} ranges are assigned to the stretching vibrations of $\mathrm{C}=\mathrm{C}$ and $\mathrm{C}=\mathrm{N}$ bonds of bpe ligands. The broad bands at $2900-3440 \mathrm{~cm}^{-1}$ are associated with $\mathrm{C}-\mathrm{H}, \mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bending and stretching vibrations, further proving that there are extensive hydrogen bonding interactions among the supramolecular frameworks of $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.

Figure S11. XPS spectra of $\mathbf{A l}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$ after immersing in water for 24 hours.

Figure S12. Solid UV-visible absorption spectra of $\mathrm{Al}_{6}\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}_{6}$ and $\mathrm{Al}\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}_{2}$ after immersing for 24 hours.

Figure S13. TG - DSC - DTG curves for crystals: (a) $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$; (b) $\mathbf{A I}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.

Thermogravimetric analyses of crystals $\mathbf{A l}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o} \mathbf{o}_{6}\right\}_{2}$ was carried out under a \mathbf{N}_{2} atmosphere from 20 to $800{ }^{\circ} \mathrm{C}$, and the TG curves are shown in Figure S13. The TG curve of $\mathbf{A l}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$ displays two weight loss steps: the first weight loss of 3.49% (calc. 2.79%) in the temperature range of $29-260^{\circ} \mathrm{C}$ corresponds to the loss of lattice water and coordinated water molecules from $\mathrm{Al}(2)$ and $\mathrm{Al}(3)$; the second weight loss from $260-790^{\circ} \mathrm{C}$ is attributed to the decomposition of the bpe molecule (weight loss 18.16%, calc. 20.94\%). The TG curves of $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$ also show two steps of weight loss: the first weight loss of 3.88% (calc. 3.77\%) at 31$276^{\circ} \mathrm{C}$ corresponds to the loss of crystal waters; the second weight loss is attributed to the decomposition of the bpe molecule from $276-786^{\circ} \mathrm{C}$ (weight loss 16.63%, calc. 15.47%).

Figure S14. The recyclability of the $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ towards catalytic reaction.

Figure S15. XRD comparison of the fresh $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ (a) that after catalysis with three parallel experiments (b-d).
By comparing the XRD patterns of three parallel tests to the original data, it can be found that the intensities of peaks at 22° were basically unchanged and no new peaks were observed at 22°, while the intensities of peaks at 27° were slightly increased (Figure S15). As is known that the crystal grain size of sample could affect the diffraction intensity. It can be speculated that the slightly increased of peaks at 27° may be caused by the different grain size after catalytic reaction.

Figure S16. IR spectra comparison of $\mathbf{A l}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$ between the fresh and after catalysis.

Figure S17. XPS spectra of $\mathbf{A l}_{6}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{6}$ after the catalytic reaction.

The XPS spectra of $\mathrm{Al}_{6}\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}_{6}$ after catalysis in Figure S 17 show the existence of $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{Al}, \mathrm{Mo}$ and P elements in $\mathrm{Al}_{6}\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}_{6}$. The high-resolution $\mathrm{Al} 2 p$ spectrum shows the presence of Al and Alll' with atomic ratio of $c a .1: 1$. The high-resolution Mo $3 d$ spectrum demonstrated the oxidation state of Mo atoms are +5 . These results demonstrated that the structure of $\mathrm{Al}_{6}\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}_{6}$ after catalysis was kept.

Table S1. Crystal data and structural refinement details for hybrids $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.

Table S2. BVS calculations of Mo, P and Al centers in $\mathrm{Al}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.

	$\mathrm{Al}_{6}\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}_{6}$	$\mathrm{Al}\left\{\mathrm{P}_{4} \mathrm{Mo}_{6}\right\}_{2}$
Mo1	5.080	5.389
Mo2	5.145	5.365
Mo3	5.185	5.367
Mo4	5.100	5.378
Mo5	5.134	5.395
Mo6	5.136	5.366
P1	4.815	4.939
P2	4.801	5.045
P3	4.777	4.975
P4	4.813	5.166
Al1	0.981	1.106
Al2	3.102	
Al3	3.112	
Al4	1.010	

Table S3. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$ of $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$.

$\mathrm{Mo}(1)-\mathrm{O}(18)$	$1.964(6)$	$\mathrm{Mo}(5)-\mathrm{O}(27)$	$1.946(6)$	$\mathrm{P}(3)-\mathrm{O}(23)$	$1.911(6)$
$\mathrm{Mo}(1)-\mathrm{O}(20)$	$1.948(6)$	$\mathrm{Mo}(5)-\mathrm{O}(40)$	$2.085(7)$	$\mathrm{P}(4)-\mathrm{O}(61)$	$1.542(7)$
$\mathrm{Mo}(2)-\mathrm{O}(20)$	$1.954(6)$	$\mathrm{Mo}(6)-\mathrm{O}(12)$	$2.120(7)$	$\mathrm{P}(5)-\mathrm{O}(43)$	$1.593(7)$
$\mathrm{Mo}(2)-\mathrm{O}(35)$	$2.331(6)$	$\mathrm{Mo}(6)-\mathrm{O}(82)$	$2.082(6)$	$\mathrm{P}(6)-\mathrm{O}(63)$	$1.527(8)$
$\mathrm{Mo}(3)-\mathrm{O}(4)$	$1.958(6)$	$\mathrm{Al}(1)-\mathrm{O}(10)$	$2.308(7)$	$\mathrm{P}(7)-\mathrm{O}(81)$	$1.490(7)$
$\mathrm{Mo}(3)-\mathrm{O}(13)$	$1.941(6)$	$\mathrm{Al}(2)-\mathrm{O}(6)$	$1.911(6)$	$\mathrm{P}(8)-\mathrm{O}(1)$	$1.518(8)$
$\mathrm{Mo}(4)-\mathrm{O}(37)$	$1.948(6)$	$\mathrm{Al}(3)-\mathrm{O}(72)$	$1.900(6)$	$\mathrm{P}(10)-\mathrm{O}(93)$	$1.536(7)$
$\mathrm{Mo}(4)-\mathrm{O}(74)$	$1.678(7)$	$\mathrm{O}(16)-\mathrm{Al}(4)$	$2.273(6)$	$\mathrm{P}(12)-\mathrm{O}(14)$	$1.545(6)$
$\mathrm{O}(18)-\mathrm{Mo}(1)-\mathrm{O}(23)$	$81.3(2)$	$\mathrm{O}(4)-\mathrm{Mo}(3)-\mathrm{O}(11)$	$48.59(18)$	$\mathrm{O}(26)-\mathrm{Al}(1)-\mathrm{O}(15)$	$98.8(2)$
$\mathrm{O}(20)-\mathrm{Mo}(1)-\mathrm{O}(6)$	$103.2(2)$	$\mathrm{O}(24)-\mathrm{Mo}(3)-\mathrm{O}(36)$	$79.2(2)$	$\mathrm{O}(2 \mathrm{~W})-\mathrm{Al}(3)-\mathrm{O}(1 \mathrm{~W})$	$86.7(3)$
$\mathrm{O}(25)-\mathrm{Mo}(1)-\mathrm{O}(18)$	$95.0(3)$	$\mathrm{O}(13)-\mathrm{Mo}(3)-\mathrm{Mo}(11)$	$48.05(19)$	$\mathrm{O}(83)-\mathrm{Al}(3)-\mathrm{O}(81)$	$94.0(3)$
$\mathrm{O}(23)-\mathrm{Mo}(1)-\mathrm{Mo}(2)$	$87.93(16)$	$\mathrm{O}(35)-\mathrm{P}(3)-\mathrm{O}(23)$	$107.8(3)$	$\mathrm{O}(18)-\mathrm{Al}(4)-\mathrm{O}(16)$	$98.7(2)$
$\mathrm{O}(20)-\mathrm{Mo}(2)-\mathrm{O}(35)$	$83.5(2)$	$\mathrm{O}(81)-\mathrm{P}(7)-\mathrm{O}(94)$	$107.7(4)$	$\mathrm{Mo}(1)-\mathrm{O}(54)-\mathrm{Mo}(11)$	$112.9(3)$
$\mathrm{O}(44)-\mathrm{Mo}(2)-\mathrm{O}(35)$	$71.6(2)$	$\mathrm{O}(6)-\mathrm{Al}(2)-\mathrm{O}(3 \mathrm{~W})$	$85.7(3)$	$\mathrm{Mo}(6)-\mathrm{O}(26)-\mathrm{Al}(1)$	$131.1(3)$
$\mathrm{O}(47)-\mathrm{Mo}(2)-\mathrm{O}(77)$	$96.2(3)$	$\mathrm{O}(6) \# 1-\mathrm{Al}(2)-\mathrm{O}(3 \mathrm{~W})$	$87.0(3)$	$\mathrm{P}(1)-\mathrm{O}(6)-\mathrm{Al}(2)$	$135.9(4)$
$\mathrm{O}(77)-\mathrm{Mo}(2)-\mathrm{Mo}(1)$	$135.3(2)$	$\mathrm{O}(5)-\mathrm{Al}(1)-\mathrm{O}(9)$	$96.9(2)$	$\mathrm{Mo}(2)-\mathrm{O}(18)-\mathrm{Al}(4)$	$132.5(3)$

Symmetry transformations used to generate equivalent atoms: \#1 1-x, $y,-z+1 / 2$.

Table S4. Selected bond lengths $(A \AA)$ and bond angles $\left({ }^{\circ}\right)$ of $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.

$\mathrm{Mo}(1)-\mathrm{O}(7)$	$1.667(4)$	$\mathrm{Al}(1)-\mathrm{O}(2)$	$2.267(3)$	$\mathrm{P}(3)-\mathrm{O}(16)$	$1.503(4)$
$\mathrm{Mo}(2)-\mathrm{O}(10)$	$1.664(4)$	$\mathrm{Al}(1)-\mathrm{O}(2) \# 1$	$2.267(3)$	$\mathrm{P}(3)-\mathrm{O}(13)$	$1.528(4)$
$\mathrm{Mo}(3)-\mathrm{O}(21)$	$1.657(4)$	$\mathrm{Al}(1)-\mathrm{O}(5)$	$2.277(4)$	$\mathrm{P}(4)-\mathrm{O}(18)$	$1.510(5)$
$\mathrm{Mo}(4)-\mathrm{O}(15)$	$1.667(4)$	$\mathrm{Al}(1)-\mathrm{O}(5) \# 1$	$2.277(4)$	$\mathrm{P}(4)-\mathrm{O}(29)$	$1.487(5)$
$\mathrm{Mo}(5)-\mathrm{O}(25)$	$2.056(4)$	$\mathrm{Al}(1)-\mathrm{O}(3)$	$2.286(4)$	$\mathrm{Mo}(5)-\mathrm{O}(2)$	$1.928(3)$
$\mathrm{Mo}(6)-\mathrm{O}(27)$	$2.048(4)$	$\mathrm{Al}(1)-\mathrm{O}(3) \# 1$	$2.287(4)$	$\mathrm{Mo}(5)-\mathrm{O}(17)$	$1.925(4)$
$\mathrm{Mo}(1)-\mathrm{Mo}(6)$	$2.5628(7)$	$\mathrm{P}(1)-\mathrm{O}(8)$	$1.518(4)$	$\mathrm{Mo}(6)-\mathrm{O}(3)$	$1.934(4)$
$\mathrm{Mo}(2)-\mathrm{Mo}(3)$	$2.5816(7)$	$\mathrm{P}(2)-\mathrm{O}(25)$	$1.479(5)$	$\mathrm{Mo}(5)-\mathrm{O}(28)$	$2.347(4)$
$\mathrm{O}(7)-\mathrm{Mo}(1)-\mathrm{O}(17)$	$105.70(19)$	$\mathrm{O}(14)-\mathrm{Mo}(5)-\mathrm{O}(25)$	$86.10(19)$	$\mathrm{O}(18)-\mathrm{Mo}(4)-\mathrm{Mo}(5)$	$134.97(13)$
$\mathrm{O}(7)-\mathrm{Mo}(1)-\mathrm{O}(3)$	$102.67(17)$	$\mathrm{O}(20)-\mathrm{Mo}(5)-\mathrm{O}(11)$	$99.37(19)$	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{O}(2) \# 1$	180.0
$\mathrm{O}(17)-\mathrm{Mo}(1)-\mathrm{O}(3)$	$95.20(15)$	$\mathrm{O}(17)-\mathrm{Mo}(6)-\mathrm{O}(3)$	$95.23(16)$	$\mathrm{O}(5)-\mathrm{Al}(1)-\mathrm{O}(5) \# 1$	180.0
$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{O}(4)$	$155.22(15)$	$\mathrm{O}(24)-\mathrm{Mo}(6)-\mathrm{O}(27)$	$98.1(2)$	$\mathrm{O}(2)-\mathrm{Al}(1)-\mathrm{O}(3) \# 1$	$83.63(13)$
$\mathrm{O}(13)-\mathrm{Mo}(2)-\mathrm{O}(6)$	$80.27(14)$	$\mathrm{O}(7)-\mathrm{Mo}(1)-\mathrm{Mo}(6)$	$101.38(14)$	$\mathrm{O}(5)-\mathrm{Al}(1)-\mathrm{O}(3) \# 1$	$97.10(13)$
$\mathrm{O}(1)-\mathrm{Mo}(3)-\mathrm{O}(5)$	$95.19(15)$	$\mathrm{O}(3)-\mathrm{Mo}(1)-\mathrm{Mo}(6)$	$48.50(11)$	$\mathrm{Mo}(2)-\mathrm{O}(5)-\mathrm{Mo}(3)$	$83.51(14)$
$\mathrm{O}(21)-\mathrm{Mo}(3)-\mathrm{O}(5)$	$102.33(19)$	$\mathrm{O}(1)-\mathrm{Mo}(2)-\mathrm{Mo}(3)$	$48.11(11)$	$\mathrm{Mo}(3)-\mathrm{O}(5)-\mathrm{Al}(1)$	$132.91(18)$
$\mathrm{O}(15)-\mathrm{Mo}(4)-\mathrm{O}(2)$	$102.11(18)$	$\mathrm{O}(6)-\mathrm{Mo}(2)-\mathrm{Mo}(3)$	$89.20(9)$	$\mathrm{P}(1)-\mathrm{O}(6)-\mathrm{Mo}(2)$	$126.5(2)$
$\mathrm{O}(15)-\mathrm{Mo}(4)-\mathrm{O}(8)$	$170.26(18)$	$\mathrm{O}(26)-\mathrm{Mo}(3)-\mathrm{Mo}(2)$	$133.14(12)$	$\mathrm{P}(2)-\mathrm{O}(26)-\mathrm{Mo}(3)$	$134.4(3)$

Symmetry transformations used to generate equivalent atoms: \#1 1-x, 1-y, -z.

Table S5. The XPS result of $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{2}$.

Hybrid	Name	Atom \%
$\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$	C 1 s	41.2
	N 1 s	18.02
	O 1 s	26.75
	P 2 p	5.27
	$\mathrm{Al2p}$	1.63
	$\mathrm{Mo3d}$	5.95
$\mathbf{A l}\left\{\mathbf{P}_{\mathbf{4}} \mathbf{M o}_{6}\right\}_{\mathbf{2}}$	C 1 s	48.64
	N 1 s	16.31
	O 1 s	23.78
	P 2 p	4.36
	$\mathrm{Al2p}$	1.41
	$\mathrm{Mo3d}$	4.53

Table S6. The ICP result of $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ and $\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{2}$.

Hybrid	Theoretical Al content $(\mu \mathrm{g} / \mathrm{mL})$	Actual Al content $(\mu \mathrm{g} / \mathrm{mL})$
$\mathbf{A l}_{\mathbf{6}}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$	5.00	5.183963
	2.50	2.445948
${\mathbf{A l}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{\mathbf{2}}}$	1.00	1.043829

Table S7. Substrate scope for the $\mathbf{A l}_{6}\left\{\mathbf{P}_{4} \mathbf{M o}_{6}\right\}_{6}$ catalyzed one-pot four-component domino reaction ${ }^{a}$.

Ar		 4			
Entry	Aromatic ketones	1,2- phenylenediamines	Ketones derivatives	Product	$\begin{aligned} & \begin{array}{l} \text { Yield } \\ \\ \text { (\%) } \\ \hline \end{array} \end{aligned}$
1	Ph				86
2	Ph				76
3	Ph				79
4	Ph				88
5	Ph				78
6	Ph				82
7	4-ClPh				86
8	$4-\mathrm{CH}_{3} \mathrm{Ph}$				78

 90 ${ }^{a}$ Reaction conditions: aromatic ketones $1(1.00 \mathrm{mmol}), \mathrm{N}, \mathrm{N}$-dimethylformamide dimethyl acetal 2 (1.00 mmol), 12 -phenylenediamines 4 (1.00 mmol), ketone derivatives 6 (1.00 mmol) and catalyst (10.00 mg). ${ }^{\circ}$ Isolated yield when the reaction was performed at $30^{\circ} \mathrm{C}$, under solvent free reaction conditions, 20 min .

Physical characterization data of the synthesized compounds.

Ethyl 3-benzoyl-2-methyl-2,5-dihydro-1H-benzo[b][1,4]diazepine-2-carboxylate 8aaa

Yield: 86\%;
Characteristic: Light yellow solid;
M.p.: 218-219 ${ }^{\circ} \mathrm{C}$;

IR (KBr): 3346, 3301, 1724, 1639, $1588 \mathrm{~cm}^{-1}$;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}^{-}{ }_{6}, \mathrm{TMS}\right): \delta 0.90(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Me}), 1.58$ (3H, s, Me), 3.92 (2H, q, $\left.J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.64(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.79-6.92(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.03(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH}), 7.43-7.52(5 \mathrm{H}$, m, Ph), 9.33 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{NH}$);
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}, TMS): $\delta 14.29,25.64,60.32,63.21,116.56,119.47,121.65$,
122.42, 123.39, 128.62, 130.52, 132.53, 137.12, 140.93, 144.19, 172.61, 194.04;

MS calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} 336$, found 337 (M +1);
anal. calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$: C 71.41, H 5.99, N 8.33; found: C 71.70, H 6.01, N 8.30.
Ethyl 3-benzoyl-8-chloro-2-methyl-2,5-dihydro-1H-benzo[b][1,4]diazepine-2-carboxylate 8baa

Yield: 76\%;

Characteristic: Off-white solid;
M.p.: 253-255 ${ }^{\circ} \mathrm{C}$;

IR (KBr): 3353, 3295, 1724, 1646, 1548;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}_{6}, \mathrm{TMS}\right): \delta 0.96(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Me}), 1.62(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.98(2 \mathrm{H}, \mathrm{q}$, $\left.J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.98(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.88-6.93(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{CH}), 7.49-7.54(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 9.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{NH})$;
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}, TMS): δ 14.39, 25.46, 60.47, 63.20, 116.51, 120.80, 121.09, 121.34, 126.59, 128.65, 128.78, 130.70, 131.46, 138.43, 140.65, 143.56, 172.29, 194.16;

MS calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3} 370$, found $371(\mathrm{M}+1)$;
anal. calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C 64.78, H 5.16, N 7.55 ; found: C 64.92, $\mathrm{H} 5.18, \mathrm{~N} 7.56$.
Ethyl 3-benzoyl-8-bromo-2-methyl-2,5-dihydro-1H-benzo[b][1,4]diazepine-2-carboxylate 8caa

Yield: 79\%;
Characteristic: Gray solid;
M.p.: 231-232 ${ }^{\circ} \mathrm{C}$;

IR (KBr): 3353, 3295, 1717, 1646, 1569;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{TMS}\right): \delta 0.95(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Me}), 1.61(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.97(2 \mathrm{H}, \mathrm{q}$, $\left.J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.97(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.80-7.01(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{CH}), 7.49-7.54(5 \mathrm{H}$, $\mathrm{m}, \mathrm{Ph}), 9.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=4.0 \mathrm{~Hz}, \mathrm{NH})$;
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}, TMS): δ 14.39, 25.43, 60.47, 63.19, 114.46, 116.56, 121.13, 123.95, 124.17, 128.66, 128.79, 130.73, 131.88, 138.73, 140.62, 143.51, 172.26, 194.16;

MS calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{3} 414$, found $415(\mathrm{M}+1)$;
anal. calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{3}$: C 57.84, H 4.61, N 6.75; found: C 58.09, H 4.62, N 6.73.
Ethyl 3-benzoyl-2,8-dimethyl-2,5-dihydro-1H-benzo[b][1,4]diazepine-2-carboxylate 8daa

Yield: 88\%;
Characteristic: Light yellow solid;
M.p.: 175-176 ${ }^{\circ} \mathrm{C}$;

IR (KBr): 3359, 3295, 1724, 1633, 1543;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \mathrm{TMS}\right): \delta 0.98(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Me}), 1.61(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.22(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 3.98\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.58(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.67-6.88(3 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH})$,
7.52-7.53 (5H, m, Ph), 9.33 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{TMS}$): $\delta 14.30$, $20.74,25.73,60.28,63.19,116.24,119.44,122.31,122.73,128.61,130.09,130.41,132.38$, 136.97, 141.05, 144.28, 172.60, 193.82;

MS calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} 350$, found 351 (M + 1);
anal. calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C 71.98, H 6.33, N 7.99 ; found: C 72.14, H 6.35, N 8.01.
Ethyl 3-benzoyl-2,7,8-trimethyl-2,5-dihydro-1H-benzo[b][1,4]diazepine-2-carboxylate 8eaa

Yield: 78\%;
Characteristic: Yellow solid;
M.p.: 180-182 ${ }^{\circ} \mathrm{C}$;

IR (KBr): 3372, 3269, 1710, 1620, 1594;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \mathrm{TMS}\right): \delta 1.56(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 5.57(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.78-6.88(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 7.03 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH}$), 7.44-7.52 (5H, m, Ph), 9.29 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{NH}$), 11.97 ($1 \mathrm{H}, \mathrm{s}, \mathrm{COOH}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}, TMS): $\delta 25.70,63.32,116.61,119.39,121.39,122.44,123.30$, 128.62, 128.86, 130.58, 132.28, 137.35, 141.06, 144.08, 174.10, 194.28;

MS calcd for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} 308$, found 309 ($\mathrm{M}+1$);
anal. calcd (\%) for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$: C 70.12 H 5.23, N 9.09 ; found: C 70.39, H 5.25, N 9.11 .

Yield: 82\%;
Characteristic: Light yellow solid;
M.p.: 232-234 ${ }^{\circ} \mathrm{C}$;

IR (KBr): 3301, 3185, 1717, 1620, 1491;
${ }^{1} \mathrm{H}$ NMR(400 MHz, DMSO- d_{6}, TMS): $\delta 1.37$ (3H, s, Me), 2.00 (3H, s, Me), 5.53 ($1 \mathrm{H}, \mathrm{s}, \mathrm{NH}$), 6.81-
6.88 ($4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 7.37 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH}$), 7.36-7.52 ($5 \mathrm{H}, \mathrm{m}, \mathrm{Ph}$), 9.56 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{NH}$);
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \mathrm{TMS}$): $\delta 21.87,25.00,66.97,117.05,119.98,121.37,122.41$, 123.84, 128.41, 128.55, 128.65, 130.34, 131.37, 134.99, 137.45, 140.82, 145.78, 193.54, 204.22;

MS calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} 306$, found 307 (M +1);
anal. calcd (\%) for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: C 74.49, H 5.92, N 9.14; found: C 74.69, H 5.91, N 9.16.
Ethyl 3-(2,4-dichlorobenzoyl)-2,7,8-trimethyl-2,5-dihydro-1H-benzo[b][1,4]diazepine-2-
carboxylate 8eda

Yield: 90\%;
Characteristic: Light yellow solid;
M.p.: 245-246 ${ }^{\circ} \mathrm{C}$;

IR (KBr): 3340, 3289, 1724, 1639, 1581;
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \mathrm{TMS}\right): \delta 1.04(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Me}), 1.51(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.08(6 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 3.91\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.39(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.61(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 6.81(1 \mathrm{H}, \mathrm{s}, \mathrm{Ph}), 6.64-7.69(3 \mathrm{H}$, m, Ph), $7.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH}), 9.38(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{NH})$;
${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}, TMS): δ 14.48, 18.90, 19.25, 25.81, 60.41, 63.66, 116.69, 120.85, $123.87,127.82,129.41,129.48,129.75,130.54,131.66,131.90,134.16,135.07,139.45,146.09$, 172.34, 189.01;

MS calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3} 432$, found $433(\mathrm{M}+1)$;
anal. calcd (\%) for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{3}$: C 66.24, H 5.81, N 7.02 ; found: C 66.52, H 5.82, N 7.01 .
Ethyl 2-methyl-3-(4-methylbenzoyl)-2,5-dihydro-1H-benzo[b][1,4]diazepine-2-carboxylate 8aca

Yield: 78\%;
Characteristic: White solid;
M.p.: 234-235 ${ }^{\circ} \mathrm{C}$;

IR (KBr): 3372, 3295, 1724, 1639, 1607;
${ }^{1} \mathrm{H}$ NMR($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, \mathrm{TMS}$): $\delta 0.87(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Me}), 1.54(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 2.36(3 \mathrm{H}, \mathrm{s}$, $\mathrm{Me}), 3.89\left(2 \mathrm{H}, \mathrm{q}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.61(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.81-6.89(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 6.99(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH})$, 7.25-7.42 (4H, m, Ph), 9.25 (1H, d, J=8.0Hz, NH); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \mathrm{TMS}$): $\delta 14.43$, 21.31 25.58, 60.26, 63.13, 116.53, 119.37, 121.59, 122.36, 123.24, 128.95, 129.12, 132.59, 137.07, 138.04, 140.41, 143.65, 172.64, 194.00;

MS calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} 350$, found 351 (M + 1);
anal. calcd (\%) for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}$: C 71.98, H 6.33, N 7.99; found: C 72.73, H 6.31, N 8.00.
Ethyl 3-(4-chlorobenzoyl)-2-methyl-2,5-dihydro-1H-benzo[b][1,4]diazepine-2-carboxylate 8aba

Yield: 86\%;
Characteristic: White solid;
M.p.: 230-231 ${ }^{\circ} \mathrm{C}$;

IR (KBr): 3359, 3301, 1730, 1639, 1581;
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \mathrm{TMS}\right): \delta 0.92(3 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{Me}), 1.57(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.92(2 \mathrm{H}, \mathrm{q}$, $\left.J=8.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.69(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.82-6.89(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph}), 7.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{CH}), 7.56(4 \mathrm{H}, \mathrm{m}, \mathrm{Ph})$, 9.40 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}, \mathrm{NH}$);
${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}, TMS): δ 14.30, 25.53, 60.34, 63.16, 116.38, 119.57, 121.65, 122.41, 123.52, 128.73, 130.64, 132.38, 135.29, 137.15, 139.59, 144.27, 172.50, 192.65; MS calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3} 370$, found $371(\mathrm{M}+1)$;
anal. calcd (\%) for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{3}$: C 64.78, H 5.16, N 7.55 ; found: C 65.09, H 5.15, N 7.54.

${ }^{1} \mathrm{H}$ NMR spectra of compound 8aaa

${ }^{1} \mathrm{H}$ NMR spectra of compound 8baa

${ }^{1} \mathrm{H}$ NMR spectra of compound 8caa

${ }^{1} \mathrm{H}$ NMR spectra of compound 8daa

${ }^{1} \mathrm{H}$ NMR spectra of compound 8aab

${ }^{1} \mathrm{H}$ NMR spectra of compound 8aba

${ }^{13} \mathrm{C}$ NMR spectra of compound 8aaa

${ }^{13} \mathrm{C}$ NMR spectra of compound 8aab

${ }^{13} \mathrm{C}$ NMR spectra of compound 8eda

${ }^{13} \mathrm{C}$ NMR spectra of compound 8aba

IR-8aaa

IR-8baa

IR-8caa

IR-8daa

IR-8aac

IR-8eda

IR-8aca

IR-8aba

MS of compound 8aaa

MS of compound 8baa

MS of compound 8caa

MS of compound 8daa

MS of compound 8aab

MS of compound 8aac

MS of compound 8eda

MS of compound 8aca

MS of compound 8aba

