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1. Reagents and techniques
All reagents and starting materials were purchased from Sigma-Aldrich and used without further 
purification. The precursor, 2,6-diformylpyridine (DFP) was synthesized according to the 
published procedure with no modifications. Deionized water was used from Millipore Gradient 
Milli-Q water purification system. Thin-layer chromatography (TLC) was performed on silica gel 
60 F254 (E. Merck). The plates were inspected under the UV light. Column chromatography was 
performed on silica gel 60F (Merck 9385, 0.040–0.063 mm). Infrared spectra were recorded on 
an Agilent Technologies Cary 600 Series FTIR Spectrometer using the ATR mode. PXRD patterns 
of the samples were recorded by using an X-ray Panalytical Empyrean diffractometer. High 
resolution transmission electron microscopy (HRTEM) images were obtained using a Talos F200X 
Scanning/Transmission Electron Microscope (STEM) with a lattice-fringe resolution of 0.14 nm at 
an accelerating voltage of 200 kV equipped with CETA 16M camera. The high resolution images 
of periodic structures were analyzed using TIA software. N2 adsorption-desorption isotherms 
were obtained at 77 K using Micrometrics ASAP 2020 surface area analyzer. The topography of 
the self-templated samples was analyzed by dynamic atomic force microscopy (5500 Atomic 
Force Microscope; Keysight Technologies Inc., Santa Rosa, CA). We acquired topography, phase 
and amplitude scans simultaneously. Silicon cantilevers (NanosensorsTM, Neuchatel, 
Switzerland) with resonant frequencies of 250–300 kHz and force constants of 100– 130 Nm−1 
were used. The set point value was kept at 2.5V. AFM scans were collected at 1024 points/lines 
with scan speed of 0.20 at fixed scan angle of 0o. Scan artifacts were minimized by acquiring a 
typical scan at an angle of 90o under identical image acquisition parameters. We used 
GwyddionTM free soſtware (version 2.47), an SPM data visualization and analysis tool for post-
processing the AFM scans. Emission spectra in water at room temperature were recorded on a 
Perkin Elmer LS55 Fluorescence Spectrometer. Dynamic light scattering (DLS) measurements 
were performed on a Malvern Zetasizer NanoSeries to obtain the size and -potential of the 
nanoparticles. The XPS experiments were carried out on a Kratos Axis Ultra DLD spectrometer 
under a base pressure of ∼ 2×10−10 mbar. A monochromated Al Kα X-ray source (1486.69 eV) was 
used to irradiate samples at room temperature. Far-UV spectra were recorded between 200 and 
280 nm on a Chirascan CD spectrometer (Applied Photophysics, UK) with the lamp supplied with 
a flow of nitrogen. Fifty microlitres of the solution were added to a 0.1 mm path-length quartz 
cuvette (Hellma, UK) and the measurements were carried out at 20 °C (1 nm bandwidth 
resolution and 1 s acquisition time). Typically, at least two scans were recorded, and baseline and 
HEPES spectra were subtracted from each spectrum. Data were processed using Applied 
Photophysics Chirascan Viewer and Microsoft Excel. Phase contrast and fluorescence images 
were observed on an Olympus FV1000MPE confocal scanning microscope. Flow cytometry 
analyses were performed on Accuri C6 Flow Cytometer. The most favorable location of insulin 
molecules between COF layers was calculated with a simulated annealing process, using the 
Adsorption Locator module of Biovia Materials Studio. For this, the TTA-DFP COF structure was 
first modified by separating sets of three layers at a 25 Å distance, to allow the incorporation of 
insulin molecules. The insulin monomer was obtained from the 1zni structure of the protein data 
bank.1 One insulin monomer was incorporated per nCOF unit cell, which corresponds to ~ 70 
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wt%. The Monte Carlo simulation was then run with the use of a universal forcefield after charge 
assignment, and the conformation with lowest adsorption energy was selected. 

Table 1. Examples of COF materials loaded with enzymes in the literature and their applications.

COF Enzyme Results Ref

TPMM COFs Amylase Catalytic application in 
starch hydrolysis Samui et Al., 20202

COF-42-B Catalase, glucose 
oxidase (GOx)

Enzymatic 
immobilization in 

porous
matrixes

Li et Al., 20203

COF-1 and COF-5 Insulin conjugated to 
glucose oxidase (GOx)

Glucose and pH dual-
responsive insulin 

delivery carriers, in 
vitro and in vivo on 

diabetic mice

Zhang et Al., 20204

TPB-DMTP-COF Lysozyme

Understanding the 
enzyme behavior upon 

association within
a confined space

Sun et Al., 20195

COF-ETTA-EDDA Lipase Enzyme immobilization Sun et Al., 20195

PPF-2 Lipase Enzyme immobilization Oliveira et Al., 20196

TPB-DMTP-COF Lipase
Host material for the 
immobilization and 

stabilization of
enzymes

Sun et Al., 20187

COF-DhaTab Trypsin Enzyme immobilization Kandambeth, 20148

Table S2. Examples of insulin delivery systems and their loading capacities.

Material Loading capacity Reference

Insulin-loaded 
chitosan nanoparticles

Chitosan/poly ɣ- 
glutamic acid

71.8 % Tennagels et al.9

Alginate-chitosan 
microspheres

56.7 % Zhang et al.10
Insulin-loaded alginate 

nanoparticles
Alginate microspheres 75 % Ribeiro et al.11

Insulin-loaded dextran 
nanoparticles

Alginate/dextran 
sulfate (ADS)-NPs

72.4 % Lopes et al12
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Insulin-loaded PLGA 
nanoparticles

N-trimethyl chitosan 
chloride-coated PLGA 

nanoparticles
47.0% Sheng et al.13

Insulin-loaded PLA 
nanoparticles

PLA-PEG microspheres
42.7 % Sheshala et al.14

Insulin-loaded PAA 
nanoparticles

Polyallylamine (PAA) 
grafted with 

cholesteryl groups
86.5 % Thompson et al.15

Insulin-loaded 
nanoparticles 

containing CPP

Eudragit S100® (ES)-
coated chitosan 

nanoparticles + trans-
activating 

transcriptional peptide 
(Tat)

80 % Chen et al.16

Solid lipid 
nanoparticles

43 % Sarmento et al.17

Nanostructured Lipid 
Carriers (NLCs)

55.3 % Muntoni et al.18Lipid-Based 
Nanocarriers

Nanoemulsions water 
in oil in water (w/o/w)

47.3 % Li et al.19

Liposomes
Biotin-modified 

liposomes (BLPs)
45 % Zhang et al.20

Niosomes Span 60 niosomes 28.8 % Ning et al.21 

Micelles
Zwitterionic betaine 

polymer micelle 
6.2 % Han et al.22

Microgel
Glucose-responsive 

microgel
44.6 % Gu et al.23

Chondroitin sulfate 
(CS)-capped gold 

nanoparticles (AuNPs)
90.1 % Cho et al.24

Silica nanoparticles 7.4 % Zhao et al.25

Inorganic 
nanoparticles

Zirconium Phosphate 28 % Diaz et al.26

Metal-organic 
framework

MIL-100 35 % Zhou et al.27
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ZIF-8 80.6 % Duan et al.28

NU-1000 40 % Chen et al.29

PCN-222/MOF-545 63 % Wang et al.30

2. Synthesis

2.1. Synthesis of 2,6-diformylpyridine (DFP) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TTA)

2,6-diformylpyridine (DFP) was synthesized according to the published procedure with no 

modifications.31

4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TTA): The triamine (TTA) was synthesized according to 

the published procedure with no modifications.32

2.2. TTA-DFP-nCOF synthesis

TTA-DFP-nCOF was synthesized by co-condensation of 2,6-diformylpyridine (DFP, 21 mg, 0.15 

mmol, 5 equivalents) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TTA, 12 mg, 0.03 mmol, 1 

equivalent), in 3 mL of anhydrous 1,4-dioxane in presence of 0.5 mL of acetic acid (13 M, [acetic 

acid]final = 4.0 M) at room temperature for 10 min (Figure S1). The solution was cleaned using 

dialysis in H2O to obtain a stable colloidal suspension.
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Figure S1. Synthetic route and chemical structure of TTA-DFP-nCOF. 

2.3. Control experiment: TTA-DFP-nCOF synthesis in pure acetic acid

TTA-DFP-nCOF was synthesized by co-condensation of 2,6-diformylpyridine (DFP, 21 mg, 0.15 

mmol, 5 equivalents) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TTA, 12 mg, 0.03 mmol, 1 

equivalent), in 3 mL of anhydrous 1,4-dioxane in presence of 0.5 mL of acetic acid (17 M, ([acetic 

acid]final = 5.0 M) at room temperature for 10 min (Figure S1). The solution was cleaned using 

dialysis in H2O to obtain a stable colloidal suspension.

2.4. Insulin loading in TTA-DFP-nCOF

Insulin was loaded into TTA-DFP-nCOF by a simple impregnation method. TTA-DFP-nCOF (5 mg) 

was suspended in 2 mL HEPES buffer, then a HEPES-buffered aqueous insulin solution ([insulin] = 

10 mg.mL–1, 1 mL) was added (TTA-DFP-nCOF:Insulin ratio  1:2). The solution (pH 7.4) was stirred 

overnight at room temperature, cleaned with water several times by centrifugation and finally 

washed with deionized H2O to remove unloaded insulin molecules.
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2.5. Insulin-FITC loading in TTA-DFP-nCOF

Insulin-FITC (Sigma-Aldrich) was loaded into TTA-DFP-nCOF by a simple impregnation method. 

TTA-DFP-nCOF (5 mg) was suspended in 2 mL HEPES buffer, then a HEPES-buffered  aqueous 

insulin solution ([insulin-FITC] = 10 mg.mL–1, 1 mL) was added (TTA-DFP-nCOF:Insulin-FITC ratio 

 1:2). The solution (pH 7.4) was stirred overnight at room temperature, cleaned with water 

several times by centrifugation and then washed with deionized H2O to remove unloaded insulin-

FITC molecules.

2.6. Insulin-loading in TTA-DFP-nCOF to achieve 30 % loading capacity

Insulin was loaded into TTA-DFP-nCOF by a simple impregnation method. TTA-DFP-nCOF (5 mg) 

were suspended in 2 mL HEPES buffer, then a HEPE buffered aqueous insulin solution ([insulin] = 

2 mg.mL–1, 0.2 mL) was added (TTA-DFP-nCOF:Insulin ratio  2:1). The solution (pH 7.4) was 

stirred overnight at room temperature, cleaned with water several times by centrifugation and 

finally washed with deionized H2O to remove unloaded insulin molecules.

2.7. Glucose loading in TTA-DFP-nCOF

Glucose was loaded into TTA-DFP-nCOF by impregnation. TTA-DFP-nCOF (5 mg) were suspended 

in 2 mL HEPES buffer, then an aqueous glucose solution ([glucose] = 5 mg.mL–1, 1 mL) was added. 

The solution (pH 7.4) was stirred at room temperature overnight. The solution was then cleaned 

with water several times by centrifugation and washed with deionized H2O to remove unloaded 

glucose molecules.

3. Characterizations

3.1. High resolution transmission electron microscopy (HRTEM). 

High resolution transmission electron microscopy (HRTEM) images were obtained using a Talos 

F200X Scanning/Transmission Electron Microscope with a lattice-fringe resolution of 0.14 nm at 

an accelerating voltage of 200 kV equipped with a CETA 16M camera. The samples were prepared 

on holey carbon film mounted on a copper grid. A drop of diluted particle solution was spotted 



9

on the grid and dried overnight at room temperature (298 K). The obtained images of periodic 

structures were analyzed using TIA software. All the relevant areas were marked using bright 

field imaging mode at spot size 3 and the marked areas were also scanned using the STEM-HDAAF 

mode at spot size 9 for imaging and spot size 6 for conducting the STEM-EDAX. The STEM mode 

helps in providing the elemental composition as it works on the principle of mass determination. 

Such measurements can be performed at low electron dose by collecting the high-angle dark-

field signal using an annular detector. This mode is generally used to image the elements that 

have different masses, with the heavier mass element appearing brighter. The samples were 

scanned at spot size 9 and with screen current of 60 pA. The data was analyzed using Velox 

analytical software.
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Figure S2. HR-TEM (a, b, c, d) and STEM (e, f) images of TTA-DFP-nCOF. Lattice fringe distances (d 

= 0.4 nm) corresponding to the (110) plane of the nCOF and confirming the crystallinity of the 

material are also shown.
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Figure S3. Proposed mechanism of TTA-DFP-nCOF formation. Black arrows represent the stacking 

of the nanosheets due to the small presence of H2O co-solvent which favors hydrogen bonding 

between nanosheets.

Figure S4. HRTEM images of TTA-DFP-nCOF synthesized using 0.5 mL of acetic acid (17 M, [acetic 

acid]final = 5.0 M, no H2O co-solvent).

Figure S5. TEM image of TTA-DFP-nCOF suspended 24 hours at pH = 2.0 showing no alteration 

of the nCOF structure.



12

Figure S6. HR-TEM (a, b) and STEM (c, d) images of TTA-DFP-nCOF/insulin. 
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Figure S7. HR-TEM (a, b) images and size distributions (c, d) of TTA-DFP-nCOF (a, c) and TTA-DFP-

nCOF/insulin (b, d). In order to estimate the average size of the particles, an average of 300 

particles were counted.
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Figure S8. Comparison of STEM images for TTA-DFP-nCOF (a, b) and TTA-DFP-nCOF/insulin (c, d). 

Elemental Mapping

The chemical mapping was carried out in STEM-EDAX mode wherein the energy-dispersive X-ray 

analysis (EDAX) was carried out using a super-X EDS detector. The system has superior sensitivity 

with resolution of ≤ 136eV@Mn-Kα for 10kcps at zero-degree sample tilt. The detector provides 

quick data even for low intensity EDS signals. The data is the sum of 4 detectors and the collection 

time for the elemental maps in fast mapping mode can be reduced to minutes from hrs. The data 
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was analyzed using Velox analytical software. The samples for the HRTEM study were prepared 

on holey carbon film mounted on a copper grid.

Figure S9. TEM mapping of sulfur element S in a) TTA-DFP-nCOF and b) TTA-DFP-nCOF/insulin. i) 

STEM image, ii) EDS mapping for S, iii) overlay of i) and ii) showing the localization of S elements 

in the nanoparticles. iv) Elemental analysis.
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3.2. AFM Analysis

Figure S10. AFM images (a, c) and height profiles (b, d) of TTA-DFP-nCOFs (a, b) and TTA-DFP-

nCOFs/Insulin (c, d).

3.3. Dynamic light scattering (DLS) characterization

DLS measurements were carried out on a Zetasizer Nano-ZS (Malvern Instruments) to determine 

the Zeta(ζ)-potential as well as the hydrodynamic size of the nanoparticles. All samples were 

analyzed at room temperature in 100 mM HEPES.
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Figure S11. Hydrodynamic diameter (a) and TEM images (b, c) of TTA-DFP-nCOF after synthesis 

(black and b) and after 12 months (red and c) in 100 mM HEPES buffer at pH 7.4. Inset: pictures 

of the solutions at t = 0 and t = 12 months. The experiment was performed in triplicate.

3.4. Powder X-ray diffraction (PXRD) measurements

Powder X-ray diffraction (PXRD) measurements were carried out to confirm the crystalline nature 

of the framework. The TTA-DFP-nCOFs were found highly crystalline in nature. In fact, we 

observed a strong peak at 2θ of 4.9 ° assigned to the (110) plane of the regularly ordered lattice. 

TTA-DFP-nCOF shows a broad peak at ~24.80 corresponding to the reflection from the (003) 

plane. 
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Figure S12. PXRD patterns of pristine TTA-DFP-nCOF (yellow) and TTA-DFP-nCOF/insulin (30 % 

loading capacity, dark green) and TTA-DFP-nCOF/insulin (65 % loading capacity, light green).

3.5. N2 adsorption-desorption experiments 

N2 adsorption-desorption isotherms were obtained at 77 K using Micrometrics ASAP 2020 surface 

area analyzer. Specific surface areas (SBET) of the samples were calculated using Brunaur-Emmet-

Teller (BET), whereas the pore volume (Vp) and pore size distribution (DBJH) curves were obtained 

from Barrett-Joyner-Halenda (BJH) method.  

Before measurements, the TTA-DFP-nCOF (empty or loaded with Insulin) was activated at 358 K 

for 24 h to remove the solvent and trapped gas. Based on the IUPAC classification system, TTA-
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DFP-nCOF exhibited type-II isotherms, which are indicative of microporous materials. BET surface 

area was found to be 384.52 m2 g–1. 

Figure S13. Nitrogen adsorption/desorption isotherms and pore size distribution curves (inset) 

at 77 K of TTA-DFP-nCOF before (yellow) and after loading with Insulin (green). The experiment 

was performed in triplicate.

3.6. Fourier Transform infrared (FTIR) spectroscopy

The TTA-DFP-nCOF formation as well as insulin loading was confirmed and characterized by ATR-

IR spectroscopy using an Agilent Technologies Cary 600 Series FTIR spectrometer. The spectral 

data within the range of 4000 to 600 cm−1 were recorded, and 512 scans were averaged for each 

spectrum with a spectral resolution of 2 cm−1. The spectrum of the background was recorded first 

and it was subtracted from the spectra of samples automatically.
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Figure S14. Stacked FTIR spectra of TTA-DFP-nCOF and its precursors, 2,6-diformylpyridine (DFP) 

and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TTA). trz: triazine; ald: aldehyde; pyr: pyridine.
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Figure S15. Stacked FTIR spectra of insulin (top), TTA-DFP-nCOF (middle) and TTA-DFP-

nCOF/insulin (bottom).
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Figure S16. Comparison of the FTIR spectra of insulin (top), TTA-DFP-nCOF (middle) and TTA-DFP-

nCOF/insulin (bottom) between 1750-1350 cm−1.
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3.7. TTA-DFP-nCOF characterization in stomach conditions (pH = 2)

Figure S17. a) TEM image, b) PXRD pattern and c) nitrogen adsorption/desorption isotherms of 

TTA-DFP-nCOF suspended for 24 hours at pH = 2.0 showing no alteration of the nCOF structure.
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3.8. 1H NMR spectroscopy

1H NMR spectroscopy was used to observe the uptake of insulin by TTA-DFP-nCOF.

Figure S18. Monitoring insulin uptake into TTA-DFP-nCOF by 1H NMR at regular time intervals. 

Stacked 1H NMR spectra of insulin in the absence of TTA-DFP-nCOF (pH adjusted to 7.4 with an 

initial concentration of insulin of 10 mM. bottom trace), and in the presence of TTA-DFP-nCOF at 

t = 0, 30 min, 1h, 1.5h, 2h, 3h, 6h, 9h, 12h, and 24h in deuterated HEPES buffer solution in 500 

MHz at 310 K.
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3.9. Determination of the amount of insulin-FITC loaded in TTA-DFP-nCOF using fluorescence 

spectroscopy

At 37 °C, pH 7.4 and λex = 488 nm, TTA-DFP-nCOF are not intrinsically fluorescent. This indicates 

that fluorescence quenching occurs within the TTA-DFP-nCOF construct. Such quenching can be 

attributed to electronic interactions between the excited Insulin-FITC and the TTA-DFP-nCOF, or 

to self-quenching of the dye in the nanoparticles where the effective concentration of the protein 

is relatively high. 33, 34 The intensity of solution fluorescence was measured in comparison to a 

calibration curve (Figure S19).

To estimate the amount of Insulin-FITC loading into TTA-DFP-nCOF, the unloaded insulin-FITC in 

the supernatant was determined by fluorescence spectroscopy based on comparison to a 

calibration curve of insulin standard solution.

Figure S19. Calibration curve obtained by measuring the maximum fluorescence signal at 

different insulin-FITC concentrations (λex= 488 nm, λmax = 520 nm, H20, 298 K).
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Figure S20. Fluorescence emission spectra of a) diluted supernatant solution of TTA-DFP-nCOF 

impregnated with insulin-FITC at t = 0 hour (black) and after 24 hours (green curve); b) TTA-DFP-

nCOF (yellow), TTA-DFP-nCOF/insulin-FITC (green) and Insulin-FITC (black). λex= 488 nm, H2O at 

pH 7.4, 298 K. The experiment was performed in triplicate.

Figure S21. Confocal microscopy images of drop-cast TTA-DFP-nCOF/insulin-FITC on a cover slip 

to ensure immobilization of the NPs (λex = 488 nm). The experiment was performed in triplicate. 
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3.10. DLS and Zeta(ζ)-potential characterization of TTA-DFP-nCOF/insulin

Figure S22. Hydrodynamic diameter (a) and TEM images (b, c) of TTA-DFP-nCOF/insulin after 

synthesis (black and b) and after 12 months (red and c) in 100 mM HEPES buffer at pH 7.4. The 

experiment was performed in triplicate.

Figure S23. Zeta(ζ)-potential of insulin (blue), TTA-DFP-nCOF (yellow), and TTA-DFP-nCOF/insulin 

(green) at pH 7.4 in 100 mM HEPES. Error bars represent standard deviations of triplicate 

measurements.
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3.11. X-ray photoelectron (XPS) spectroscopy

X-ray photoelectron spectroscopy (XPS) analysis was performed in order to analyse the elemental 

composition of TTA-DFP-nCOF before and after addition of insulin, as well as to understand the 

interactions occurring between the nCOF surface and the protein. XPS experiments were carried 

out on a Kratos Axis Ultra DLD spectrometer under a base pressure of ∼ 2×10−10 mbar. A 

monochromated Al Kα X-ray source (1486.69 eV) was used to irradiate samples at room 

temperature. XPS spectra were recorded from an analysis area of 700 μm × 300 μm. High-

resolution XPS data of core levels was obtained with an energy resolution of 0.05 eV. For 

consistency, XPS measurements were calibrated to C1s (∼ 285 eV). Data was analyzed using 

CasaXPS package with Shirley background subtraction.
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Figure S24. High resolution XPS spectra of insulin. (a) XPS survey spectrum, and binding energy 

spectrum for (b) C1s, (c) O1s, (d) N 1s and (e) S 2s.
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Figure S25. High resolution XPS spectra of TTA-DFP-nCOF. (a) XPS survey spectrum, and binding 

energy spectrum for (b) C1s, (c) O1s and (d) N 1s.
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Figure S26. High resolution XPS spectra of TTA-DFP-nCOF/insulin. (a) XPS survey spectrum, and 

binding energy spectrum for (b) C1s, (c) O1s, (d) N 1s and (e) S 2s. 
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4. pH- and glucose dependent Insulin-FITC Release from TTA-DFP-nCOF by fluorescence 

emission spectroscopy

4.1. Insulin release conditions

The effect of pH on the release of Insulin-FITC from TTA-DFP-nCOF was monitored over time in 

water buffered with PBS (10 mM) at 37 °C and pH =2.0 and 7.4. The pH of the solutions was 

adjusted using a 1 M HCl(aq) solution. 

The effect of the glucose concentration on the release of insulin-FITC from TTA-DFP-nCOF was 

monitored using fluorescence spectroscopy over time in water buffered with PBS (10 mM) at 37 

°C and in several glucose concentrations ([glucose] = 0, 1 3, and 5 mg.mL–1). 

The effect of human serum, a mix of 11 amino acids (alanine, arginine, asparagine, aspartate, 

cysteine, glutamate, glutamine, glycine, proline, serine, tyrosine), a saline solution of fructose (3 

mg mL–1) or sucrose (3 mg mL–1) on the release of insulin-FITC from TTA-DFP-nCOF was monitored 

over time in water buffered with PBS (10 mM) at 37 °C and in hyperglycemic conditions ([glucose] 

= 3 mg.mL–1).

At regular intervals, samples were withdrawn and the fluorescence intensity was measured.
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Figure S27. In vitro accumulated insulin-FITC release from the TTA-DFP-nCOF/insulin at 37 °C in 

human serum (red) and a mix of amino acids (black) for 24 hours. The % of drug released was 

measured using fluorescence emission. The experiment was performed in triplicate.
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Figure S28. In vitro accumulated insulin-FITC release from the TTA-DFP-nCOF/insulin at 37 °C in 

PBS containing a) fructose ([fructose] = 3 mg.mL–1) and b) sucrose ([sucrose] = 3 mg.mL–1) for 24 

hours then glucose was added ([glucose] = 3 mg.mL–1) to trigger insulin-FITC release. The % of 

drug released was measured using fluorescence emission. The experiment was performed in 

triplicate.
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4.2. Circular dichroism (CD) spectroscopy

To evaluate the changes of the activity and structure of insulin released from the nanoparticles, 

circular dichroism (CD) spectroscopy was performed as a common method to analyze the 

secondary structure of a protein with high reliability. In the CD spectra of the native insulin in 

HEPES (pH 7.4), there were two extrema at 208 and 222 nm, due to the α-helix structure and β-

structure, respectively. 

We evaluated the chemical stability of insulin loaded in TTA-DFP-nCOF exposed to the GI fluid 

simulations (pH 2.0, 24 hours). At acidic pH, insulin is not released from the nanoparticle, 

therefore in order to perform CD analysis we exposed TTA-DFP-nCOF/insulin to NaOH (0.1M) to 

release the protein from the NPs. As presented in Figure S29 far-UV CD spectroscopy of the 

insulin released from NPs and pure insulin solution showed two negative bands at 208 nm and 

222 nm which correspond to the predominant α-helix structure and β-pleated sheet structure, 

respectively. The ratio of intensity of 208 and 223 nm bands ([Ф]208/[Ф]223) has usually been 

employed to provide a qualitative measure of insulin association. The [Ф]208/[Ф]223 ratios of 

native and GI fluid exposed insulin from TTA-DFP-nCOF were both 1.2 which reflected that there 

was no significant difference in the secondary structure between the native and GI fluid exposed 

TTA-DFP-nCOF/insulin.

The CD spectrum of the insulin after releasing for 12 hours from the TTA-DFP-nCOF/insulin under 

the hyperglycemic environment was similar to that of the native insulin with two extrema (Figure 

S30). The ratios between bands ([φ]208/[φ]222) for the native and released insulin were 1.25 

and 1.24, respectively. Therefore, the secondary structure of the insulin released from the 

nanoparticles was similar to the original insulin. Accordingly, the released insulin maintained its 

structure and properties.
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Figure S29. Circular dichroism spectra of native insulin solution (black) and insulin incubated in 

gastro-intestinal environment (green). Deg = degree. The experiment was performed in triplicate.
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Figure S30. Circular dichroism spectra of native insulin solution (black) and insulin released from 

the TTA-DFP-nCOF/insulin (red) incubated in hyperglycemic conditions (5 mg.mL–1) for 12 hours. 

Deg = degree. The experiment was performed in triplicate.
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4.3 Stability study of TTA-DFP-nCOF/insulin 

Figure S31. Hydrodynamic diameter (a, c and e) and TEM images (b, d and f) of TTA-DFP-

nCOF/insulin in 100 mM HEPES buffer at pH 7.4 (a, b), pH 2.0 (c, d) and in presence of lysozyme 

(5 mg.mL–1, e, f) at t = 0 hour (black) and 24 hours (red). The experiment was performed in 

triplicate.
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4.4. Glucose interaction 

In order to study the release mechanism of insulin triggered by glucose, we incubated the TTA–

DFP-nCOF 24 hours and 37 °C with i) insulin alone, ii) glucose alone (5 mg.mL–1) and iii) insulin 

followed by 24 hours with glucose (5 mg.mL–1). Samples were washed thoroughly and freeze-

dried using lyophilization. Loading efficiency (wt%) was calculated using mass differences by 

comparing with the TTA–DFP-nCOF mass.

Figure S32 Loading efficiency (wt%) of TTA-DFP-nCOF when incubated with insulin (green), 

glucose (blue), and successively insulin followed by glucose (dashed blue-green) at pH 7.4 in 100 

mM HEPES.
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Figure S33. Zeta(ζ)-potential of TTA-DFP-nCOF (yellow), TTA-DFP-nCOF/insulin (green), TTA-DFP-

nCOF/glucose (blue) and TTA-DFP-nCOF/insulin+glucose at pH 7.4 in 100 mM HEPES.
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Figure S34. a) TEM image, b) PXRD pattern and c) nitrogen adsorption/desorption isotherms of 

TTA-DFP-nCOF loaded with glucose.
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Figure S35. a) TEM image, b) PXRD pattern and c) nitrogen adsorption/desorption isotherms of 

TTA-DFP-nCOF/insulin (green) after release in hyperglycemic conditions ([glucose] = 5 mg.mL–1). 
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Figure S36. a) TEM images of a) TTA-DFP-nCOF, b) TTA-DFP-nCOF/insulin and c) TTA-DFP-

nCOF/insulin after release in hyperglycemic conditions. 

5. In vitro biological studies

5.1. Cell culture

Hepatocellular carcinoma (Hep-G2, ATCC HB-8065), colorectal carcinoma (HCT-116, ATCC CCL-

247), colon carcinoma (RKO, ATCC CRL-2577), cervical adenocarcinoma (Hela, ATCC CCL-2), 

breast adenocarcinoma (MCF-7, ATCC HTB-22), metastatic breast adenocarcinoma (MDAMB-

231, ATCC HTB. 26), epithelial embryonic kidney (HEK293-T, ATCC CRL-3216) and malignant 

glioblastoma (U251-MG, ATCC 09063001) human cell lines were cultured in Dulbecco's Modified 

Eagle's medium (DMEM) supplemented with 10 % fetal bovine serum (FBS), 1 % 

penicillin/streptomycin and 20 mL L-glutamine at 5 % CO2 and 37 °C.  

Ovarian cancer (A2780, ECACC 93112519) and intestine ileocecal adenocarcinoma (HCT-8 ATCC 

CCL-244) human cell lines were cultured at 5 % CO2 and 37 °C in Roswell Park Memorial Institute 

(RPMI)-1640 medium complemented with 10 % fetal bovine serum (FBS) and 1% 

penicillin/streptomycin. 

5.2. In vitro cell viability 

Cell viability was assessed using CellTiter-Blue® Cell Viability assay (CTB, Promega). The assay 

measures the metabolic reduction of a non-fluorescent compound, resazurin, into a fluorescent 

product, resofurin, in living cells. As non-viable cells rapidly lose their metabolic activity, the 
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amount of the resofurin product can be used to estimate the number of viable cells following 

treatment. Once produced, resofurin is released from living cells into the surrounding medium. 

Thus, the fluorescence intensity of the medium is proportional to the number of viable cells 

present. 

96-well plates were seeded with Hep-G2cells (~5,000 cells per well in 100 μL of DMEM) and 

incubated at 37 °C for 24 hours. The medium was removed and replaced with fresh medium 

(control) or various concentrations of test compounds and incubated at 37 °C for 48 hours. 

Thereafter, cells were incubated with 80 μL DMEM and 20 μL of CTB per well for 6 hours at 37 

°C. The fluorescence of the resofurin product (λex/em 560/620) was measured. Untreated wells 

were used as control. 

The percentage of cell viability were calculated using the following formula:

Viability (%) = [(Ftreated - Fblank) / (Fcontrol - Fblank)] × 100

All assays were conducted in triplicate and the mean IC50 ± standard deviation was determined.
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Figure S37. Viability of Hep-G2, HCT-116, HCT-8, RKO, HeLa, A2780, MDAMB-231, MCF-7, HEK-

293 and U251-MG cells after 48 h incubation with TTA-DFP-nCOF (yellow) or TTA-DFP-

nCOF/insulin (green) up to [TTA-DFP-nCOF] = 1 mg.mL–1. Error bars represent standard deviations 

of triplicate measurements.
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5.3. Intracellular distribution of nanoparticles using TEM analysis

TEM was used to investigate the fate of TTA-DFP-nCOF/insulin in cells, their impact on cellular 

structures and their interactions with organelles on 2 colon cell lines (RKO and HCT-116, 4 hours 

incubation times) and analyzed 4 h, 24 h and 48 h post-treatment.

For TEM analysis, cells were seeded in T75 flasks in complete DMEM and incubated 4 hours with 

cell-medium alone (control), TTA-DFP-nCOF/insulin ([TTA-DFP-nCOF] = 50 μg.mL–1in DMEM). Cells 

were harvested 4, 24 and 48 hour post-treatment. Cell pellets were washed twice with phosphate-

buffered saline (PBS). The cells were cryo-fixed within a few milliseconds at a pressure of 2000 bar 

under liquid nitrogen using a high-pressure freezer (Leica Microsystems, Germany). After freezing, 

the sample pod was released automatically into a liquid nitrogen bath. While still in liquid nitrogen, 

the sample carrier was separated from the specimen pod using precooled fine-tipped tweezers and 

transferred to the cryo-transfer storage box for the flat specimen carrier, where the samples were 

stored in preparation for freeze substitution. Freeze substitution was performed using an 

automatic freeze substitution (AFS) unit (Leica EM AFS2, Heerbrugg, Switzerland) in a 10 mL 

solution of cold dry absolute acetone (v/v) containing 1 % osmium tetroxide (w/v), 0.5 % uranyl 

acetate (w/v) and 5 % distilled water (v/v). The AFS unit was slowly warmed from –90 °C to 0 °C (2 

°C/h), with the temperature being held at both –60 °C and –30 °C for a period of 8 h. Samples were 

transferred to room temperature in a closed container to prevent condensation, rinsed with 

absolute acetone (3 × 5 minutes) and infiltrated with 30, 60 and 100 % Epon resin for 3 h each. 

Epon was exchanged and individual samples were embedded in 1 mL Eppendorf® lids for 24 h at 

60˚C. Finally, the samples were sectioned with an cryo ultra-microtome (Leica UC7/FC7) at room 

temperature using a diamond knife, and the ultrathin sections were examined under TEM (Talos 

F200X STEM).

The TEM images of untreated HCT-116 and RKO cells (Figures S39-40) showed typical 

morphological features of cells, including intact cellular membranes; numerous microvilli and 

membrane blebbing on the surface of plasma membranes; a well-developed rough endoplasmic 

reticulum, a large Golgi apparatus and other organelles or structures, such as mitochondria, small 
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vacuoles and granules; centric large nuclei with obvious nucleoli, surrounded by intact nuclear 

membranes; and, a normal distribution of heterochromatin. 

All TTA-DFP-nCOF/insulin treated samples showed regular ultrastructure of the RKO and HCT-116 

cells, with a roundish cellular shape and a plasma membrane rich in protrusions (such as 

microvilli), a well-developed rough endoplasmic reticulum, Golgi apparatus, and mitochondria, 

which indicate the maintenance of metabolic active cells (Figures S39-40). 

After 4 h of incubation, significant amounts of TTA-DFP-nCOF/insulin can be visualized within 

some of the treated cells and at their surface (Figures S39-40). TTA-DFP-nCOF/insulin undergo 

endocytosis and are located in endosomes. Membrane deformation was also observed, 

confirming the internalization of TTA-DFP-nCOF/insulin by endocytosis. The TTA-DFP-

nCOF/insulin which are internalized within the cell vacuoles could mainly be found as aggregates. 

Furthermore, we did not find any TTA-DFP-nCOF/insulin near the nucleus, as it is plausible these 

aggregates would be physically unable to breach the nuclear membrane pores with sizes in the 

range of 10–20 nm. After 24 h, TTA-DFP-nCOF/insulin could be located inside both cell lines 

vacuoles in the perinuclear region but no more on the membrane; cells continue growing with 

cells dividing (Figures S39-40). After 48 h, some HCT-116 cells still contain nanoparticles inside 

vacuole in the cytoplasm but most cells do not; cells continued growing and multiplying (Figure 

S39). In RKO cells, no nanoparticles could be detected (Figure S40).
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Figure S38. HCT-116 and RKO cells visualized by TEM (control cells).
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Figure S39. TEM images of HCT-116 cells treated with TTA-DFP-nCOF/insulin for 4 h at a) t = 4 h, 

b) t = 24 h and c) t = 48 h at various magnifications. White arrows show nanoparticle uptake in 

cells through endocytosis and their transit in the cytoplasm.
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Figure S40. TEM images of RKO cells treated with TTA-DFP-nCOF/insulin for 4 h at a) t = 4 h, b) t = 

24 h and c) t = 48 h at various magnifications. White arrows show nanoparticle uptake in cells 

through endocytosis and their transit in the cytoplasm.

5.4. Hemolysis assay

When the external membrane of the erythrocytes is destroyed, hemoglobin is released.35-37 It is 

possible to estimate the amount of destroyed erythrocytes in a given test by measuring the 

quantity of hemoglobin in a sample by spectrophotometry.38 Human blood was obtained from 3 

healthy donors. 2.0 mL of an ethylenediaminetetraacetate-stabilized blood sample was added 

into 4 mL of physiological saline and then red blood cells were isolated by centrifugation (3000 
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rpm, 8 min). The red blood cells were washed five times with physiological saline buffer (PBS) 

and diluted into 2 % red blood cell suspension. TTA-DFP-nCOF or TTA-DFP-nCOF/insulin (0.75, 1.5 

and 3.0 mg.mL–1) was added into the red blood cell suspensions at the predetermined 

concentration and mixed using a gentle vortex. Meanwhile, physiological saline with or without 

Triton X-100 (0.3 %) was added into the red blood cell suspensions as negative and positive 

controls, respectively. Samples were placed in a static condition at 37 °C for 1 h. Finally, all 

samples were centrifuged at 5000 rpm and 100 μL of the supernatant was placed into a 96-well 

plate for detection at the wavelength of 540 nm. The hemolysis ratio (HR) represents the degree 

of red blood cell membranes destroyed in the samples.

Asample, Apositive control, and Anegative control represented the absorbance of the sample, the positive 

control, and the negative control, respectively. These tests were performed in triplicate.
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Figure S41. Hemolysis activity of TTA-DFP-nCOF and TTA-DFP-nCOF/insulin. a) Photograph after 

centrifugation of fresh human blood incubated with different concentrations of TTA-DFP-nCOF 

and TTA-DFP-nCOF/insulin up to 3 mg.mL–1 for 1 hour. b) Hemolysis rates (%) induced by different 

concentrations of TTA-DFP-nCOF and TTA-DFP-nCOF/insulin up to 3 mg.mL–1. Physiological saline 

in the absence or the presence of Triton X-100 (0.3 %) were respectively used as negative (C-) 

and positive (C+) controls. ***p< 0.001, significantly different from negative control. Error bars 

represent standard deviations of triplicate measurements.
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6. Ex Vivo permeation study across mouse intestinal sac

Ex vivo absorption evaluation was carried out by permeation measurements in excised rat small 

intestine as described elsewhere.39, 40 Mice (25 g) were anaesthetized with isoflurane, killed and 

exsanguinated. As the animal was placed under anesthesia and euthanized for a different 

purpose, no ethical approval was necessary for retrieval of the tissue. Freshly excised intestinal 

tissues were washed with PBS and cut into pieces of 5–4 cm. 0.3 mL of TTA-DFP-nCOF/insulin-

FITC (1 mg.mL–1) was syringed into intestinal sacs; the filled tissues were incubated in oxygenated 

tissue culture Dulbecco’s Modified Eagle’s Medium (DMEM, 10 mL) at 37 °C. Sample solution (0.1 

mL) was withdrawn from the serosal side at fixed time intervals up to 180 min and replaced with 

fresh medium. Fluorescence signal for FITC was measured on a fluorescent plate reader, (FITC 

excitation/emission: 495 nm/519 nm) and compared to a standard curve of log dilutions for TTA-

DFP-nCOF/insulin-FITC ranging from 1 to 1  10–6 M. Tests were carried out in triplicate on three 

different intestinal segments from three different mice.

To calculate mucosal surface area, the intestine was considered as a cylinder and the following 

equation was used:

At the end of the experiments, tissues were washed with normal saline, and drug accumulation 

in the gut wall was investigated by TEM of the serosal medium as well the intestinal tissue.

Intestinal tissues were fixed in 4.5% paraformaldehyde solution. The fixed samples were cryo-

fixed within a few milliseconds at a pressure of 2000 bar under liquid nitrogen using a high-

pressure freezer (Leica Microsystems, Germany). Freeze substitution was performed using an 

automatic freeze substitution (AFS) unit (Leica EM AFS2, Heerbrugg, Switzerland) in a 10 mL 

solution of cold, dry, absolute acetone (v/v) containing 1 % osmium tetroxide (w/v), 0.5 % uranyl 

acetate (w/v), 5 % distilled water (v/v) and embedded with epoxy resin. Subsequently, an 
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ultrathin intestinal specimen was made and observed with high-resolution TEM (Talos F200X 

STEM).

Figure S42. Ex vivo permeation studies of TTA-DFP-nCOF/insulin-FITC. a) Apparent permeability 

profile of TTA-DFP-nCOF/insulin-FITC across mouse intestinal tissue in DMEM at 37 °C. The 

formulations under study were syringed into intestinal sacs obtained from freshly excised mouse 

tissue. The filled tissues were incubated in oxygenated buffer at 37 °C. Sample solution was 

withdrawn at fixed time intervals up to 180 min and replaced with fresh medium. Data are shown 

as the mean.  Inset: intestinal sac containing 300 µL of TTA-DFP-nCOF/insulin-FITC (1 mg.mL–1). 

Tests were carried out in triplicate on three different intestinal segments from three different 

mice. b) TEM micrograph of ex vivo intestinal tissue after 180 min of TTA-DFP-nCOF/insulin-FITC 

treatment showing the presence of TTA-DFP-nCOF/insulin (white arrows).
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Figure S43. TEM images of the serosal medium of ex vivo permeation studies showing that TTA-

DFP-nCOF can cross intact the intestinal barrier without change in morphology or size. 
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Figure S44. TEM images of ex vivo intestinal tissues after 180 min of TTA-DFP-nCOF/insulin-FITC 

treatment showing the distribution of TTA-DFP-nCOF/insulin through the intestine (white 

arrows). 

7. In vivo animal assessments

All animals were raised in accordance with the policies of the University of Tlemcen Institutional 

Animal Care and Use Committee (IACUC) (accreditation number: D01N01UN130120150006).
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7.1. Animal 

Wistar rats (12 weeks, 200 g ±20) were used for this study. They were obtained from Pasteur 

Institute (Algiers, Algeria). Rats were housed individually in wood-chip bedded plastic cages at 

constant temperature (25 °C), maintained on a 12:12 hours light/dark cycle and fed with a 

standard pellet diet and water ad libitum. The study was conducted in accordance with the 

national guidelines for the care and use of laboratory animals. 

7.2. T1D Induction 

Type 1 Diabetes was induced via a single intraperitoneal injection of streptozotocin (STZ, 

dissolved in 10 mM citrate buffer at pH 4.5) at the STZ dose of 45 mg.kg–1 body weight. Rats were 

returned to their cages, and given food and water for the next 4 days till the induction of diabetes. 

The blood glucose level was monitored using a blood glucose monitoring system (AccuChek 

Performa, Hoffman-La Roche) by taking samples from a rat tail vein. The rats showing fasting 

blood glucose level ≥ 250 mg/dL (13.7 mmol.L–1) were considered as diabetic and were selected 

for the studies. The rats were fasted overnight and remained fasted during the period of 

experiment, but were allowed to drink water. 

7.3. In vivo hypoglycemic effect 

Rats were randomly divided into six groups (n = 3), the formulations administered to the T1D rats 

were as follows: 1) TTA-DFP-nCOF/insulin administered by oral gavage (o.g., 50 IU.kg–1); 2) TTA-

DFP-nCOF administered by oral gavage (o.g., 2 mg.kg–1); 3) insulin solution administered by oral 

gavage (o.g., 50 IU.kg–1); 4) insulin solution administered subcutaneously (5 IU.kg–1) set as the 

positive control with 100 % pharmacological availability of insulin; 4) untreated diabetic rats and 

6) non-diabetic rats. Blood glucose level was determined with a glucometer. Blood samples were 

taken from the tail veins every hour for 10 hours.
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Figure S45. TTA-DFP-nCOF/insulin regulate glucose uptake in vitro and in vivo. a) In vivo blood 

glucose level (of initial %) changes versus time curves of the STZ-induced diabetic rats after oral 

administration of TTA-DFP-nCOF/insulin (green) and free-form insulin solution (red), all at an 

insulin dosage of 50 IU.kg–1. The group by subcutaneous injection (S.C., blue) of insulin at 5 IU.kg–1 

was set as a positive control, while the group orally administrated with empty TTA-DFP-nCOF 

(yellow) at 2 mg.kg–1 served as a negative control. Blood glucose level of diabetic (black) and non-

diabetic (purple) rats are also shown. TTA-DFP-nCOF/insulin showed statistically significant 

differences in hypoglycemic effect compared with diabetic control (*p<0.05; **p<0.01; 

***p<0.001). Each value represents mean ±S.D. (n=3).
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7.4. In vivo plasma insulin level 

Rats were randomly divided into 3 groups (n = 3), the formulations administered to the T1D rats 

were as follows: 1) TTA-DFP-nCOF/insulin administered by oral gavage (o.g., 50 IU.kg–1); 2) insulin 

solution administered subcutaneously (SC, 5 IU.kg–1) set as the positive control with 100 % 

pharmacological availability of insulin and 3) untreated diabetic rats. Pharmacological effect was 

determined by measuring the increase of serum insulin in diabetic rats during 10 h. Insulin plasma 

level was evaluated using a Rat Ins1 Insulin ELISA Kit from Sigma-Aldritch (RAB00904-1KT). Blood 

samples were collected from the tail veins every hour over 10 hours. The area above the curve 

(AAC) was calculated using the trapezoidal method. The pharmacological availability (PA) 

calculated as the cumulative hypoglycemic effect relative to 100 % PA of sc. free insulin was 

determined using the equation:

19, 41

Homeostatic model assessment (HOMA) of insulin resistance (HOMA-IR) and insulin-sensibility 

(HOMA-IS) of β-cell function were calculated using the following equations:

42

7.5. In vivo oral glucose tolerance test (OGTT).

For oral glucose tolerance test (OGTT), rats were randomly divided into 3 groups (n = 3) 

corresponding to i) TTA-DFP-nCOF/insulin administered by oral gavage (o.g., 50 IU.kg–1); ii) insulin 

solution administered subcutaneously (SC, 5 IU.kg–1) and iii) untreated diabetic rats. Animals have 

first received the TTA-DFP-nCOF/insulin by oral gavage or the subcutaneous insulin injection. 3 

hours after that, they received 2.5 g.kg–1 of glucose dissolved in 1ml of water and glycaemia was 

evaluated for 280 min. Glycaemia was measured at time zero (basal) and every 30 min up to 280 

min after gavage of 2.5 g.kg–1 body weight of glucose from the tail vein.
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7.6. Histopathology

The collected tissues were embedded in paraffin after fixing the tissues in 10 % formalin. Serial 

sections were cut and stained with hematoxylin and eosin. The sections were examined under 

high-power microscope (200×) and photomicrographs were taken.

SC insulin-treated rats’ livers compared to the non-diabetic control displayed an increase of big 

hepatocytes, a necrosis of hepatocytes and a narrowing in the sinusoids (Figure 3g-ii) due to the 

STZ-induced diabetes.43, 44 Histopathological study of the livers of the group treated with TTA-

DFP-nCOF/insulin showed similar structures to the non-diabetic rats, with normal hepatocytes 

and sinusoids. Regarding the kidney function, SC insulin-treated rats displayed an increase of the 

size of Bowman capsules,45 hypertrophy of the glomeruli44 and necrosis of the tubules46 (Figure 

3g-v) also due to STZ administration to induced diabetes. The kidneys of the rats treated with 

TTA-DFP-nCOF/insulin showed fewer alterations than the subcutaneous insulin rat kidneys, 

smaller Bowman’s spaces and well-individualized tubules. 

7.7. Biochemical determinations

Liver function test was carried out using serum biomarkers such as aspartate amino-transferase 

(AST) and Alanine transaminase (ALT) measured from the plasma obtained from the tail vein 

using SPINREACT kit. Kidney function test was performed using as urea and creatinine measured 

by SPINREACT kit.
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Figure S46. TTA-DFP-nCOF/insulin did not show toxicity in vivo. a) urea, b) creatinine levels and 

transaminase activities: c) aspartate aminotransferase (ASAT) and d) alanine aminotransferase 

(ALAT) activity of non-diabetic rats (grey) and the STZ-induced diabetic rats after oral 

administration of TTA-DFP-nCOF/insulin (green) at the insulin dosage of 50 IU.kg–1. The group by 

subcutaneous injection (S.C., blue) of insulin at 5 IU.kg–1 was set as a positive control, while the 

group orally administrated with empty TTA-DFP-nCOF (yellow) at 2 mg.kg–1 served as a negative 

control. Diabetic rat levels (control, dark grey) are also shown. (*p<0.05; **p<0.01; ***p<0.001). 

Each value represents mean ±S.D. (n=3).

References

1. G. Bentley, E. Dodson, G. Dodson, D. Hodgkin and D. Mercola, Nature, 1976, 261, 166-168.



62

2. A. Samui, Happy and S. K. Sahu, Micropor. Mesopor. Mat., 2020, 291, 109700.
3. M. Li, S. Qiao, Y. Zheng, Y. H. Andaloussi, X. Li, Z. Zhang, A. Li, P. Cheng, S. Ma and Y. Chen, J. Am. 

Chem. Soc., 2020, 142, 6675-6681.
4. G. Zhang, Y. Ji, X. Li, X. Wang, M. Song, H. Gou, S. Gao and X. Jia, Adv. Healthc. Mater., n/a, 

2000221.
5. Q. Sun, B. Aguila, P. C. Lan and S. Ma, Adv. Mater., 2019, 31, 1900008.
6. F. L. Oliveira, S. P. de Souza, J. Bassut, H. M. Álvarez, Y. Garcia-Basabe, R. O. M. Alves de Souza, P. 

M. Esteves and R. S. B. Gonçalves, Chem. Eur. J., 2019, 25, 15863-15870.
7. Q. Sun, C.-W. Fu, B. Aguila, J. Perman, S. Wang, H.-Y. Huang, F.-S. Xiao and S. Ma, J. Am. Chem. Soc., 

2018, 140, 984-992.
8. S. Kandambeth, V. Venkatesh, D. B. Shinde, S. Kumari, A. Halder, S. Verma and R. Banerjee, Nat. 

Commun., 2015, 6, 6786.
9. N. Tennagels and U. Werner, Arch. Physiol. Biochem., 2013, 119, 1-14.
10. Y. Zhang, W. Wei, P. Lv, L. Wang and G. Ma, Eur. J. Pharm. Biopharm., 2011, 77, 11-19.
11. C. M. Silva, A. J. Ribeiro, I. V. Figueiredo, A. R. Gonçalves and F. Veiga, Int. J. Pharm., 2006, 311, 1-

10.
12. M. Lopes, N. Shrestha, A. Correia, M.-A. Shahbazi, B. Sarmento, J. Hirvonen, F. Veiga, R. Seiça, A. 

Ribeiro and H. A. Santos, J. Control. Release, 2016, 232, 29-41.
13. J. Sheng, L. Han, J. Qin, G. Ru, R. Li, L. Wu, D. Cui, P. Yang, Y. He and J. Wang, ACS Appl. Mater. 

Interfaces, 2015, 7, 15430-15441.
14. R. Sheshala, K. K. Peh and Y. Darwis, Drug. Dev. Ind. Pharm., 2009, 35, 1364-1374.
15. C. J. Thompson, L. Tetley and W. P. Cheng, Int. J. Pharm., 2010, 383, 216-227.
16. S. Chen, F. Guo, T. Deng, S. Zhu, W. Liu, H. Zhong, H. Yu, R. Luo and Z. Deng, AAPS PharmSciTech, 

2017, 18, 1277-1287.
17. B. Sarmento, S. Martins, D. Ferreira and E. B. Souto, Int. J. Nanomedicine, 2007, 2, 743-749.
18. E. Muntoni, E. Marini, N. Ahmadi, P. Milla, C. Ghè, A. Bargoni, M. T. Capucchio, E. Biasibetti and L. 

Battaglia, Acta Diabetol., 2019, 56, 1283-1292.
19. X. Li, J. Qi, Y. Xie, X. Zhang, S. Hu, Y. Xu, Y. Lu and W. Wu, Int. J. Nanomedicine, 2013, 8, 23-32.
20. X. Zhang, J. Qi, Y. Lu, X. Hu, W. He and W. Wu, Nanoscale Res. Lett., 2014, 9, 185.
21. M. Ning, Y. Guo, H. Pan, H. Yu and Z. Gu, Drug Deliv., 2005, 12, 399-407.
22. X. Han, Y. Lu, J. Xie, E. Zhang, H. Zhu, H. Du, K. Wang, B. Song, C. Yang, Y. Shi and Z. Cao, Nat. 

Nanotech., 2020, 15, 605-614.
23. Z. Gu, T. T. Dang, M. Ma, B. C. Tang, H. Cheng, S. Jiang, Y. Dong, Y. Zhang and D. G. Anderson, ACS 

Nano, 2013, 7, 6758-6766.
24. H.-J. Cho, J. Oh, M.-K. Choo, J.-I. Ha, Y. Park and H.-J. Maeng, Int. J. Biol. Macromol., 2014, 63, 15-

20.
25. X. Zhao, C. Shan, Y. Zu, Y. Zhang, W. Wang, K. Wang, X. Sui and R. Li, Int. J. Pharm., 2013, 454, 278-

284.
26. A. Díaz, A. David, R. Pérez, M. L. González, A. Báez, S. E. Wark, P. Zhang, A. Clearfield and J. L. Colón, 

Biomacromolecules, 2010, 11, 2465-2470.
27. Y. Zhou, L. Liu, Y. Cao, S. Yu, C. He and X. Chen, ACS Appl. Mater. Interfaces, 2020, 12, 22581-22592.
28. Y. Duan, F. Ye, Y. Huang, Y. Qin, C. He and S. Zhao, Chem. Commun., 2018, 54, 5377-5380.
29. Y. Chen, P. Li, J. A. Modica, R. J. Drout and O. K. Farha, J. Am. Chem. Soc., 2018, 140, 5678-5681.
30. S. Wang, Y. Chen, S. Wang, P. Li, C. A. Mirkin and O. K. Farha, J. Am. Chem. Soc., 2019, 141, 2215-

2219.
31. T. Prakasam, M. Lusi, M. Elhabiri, C. Platas-Iglesias, J.-C. Olsen, Z. Asfari, S. Cianférani-Sanglier, F. 

Debaene, L. J. Charbonnière and A. Trabolsi, Angew. Chem. Int. Ed. Engl., 2013, 52, 9956-9960.



63

32. A. Halder, S. Kandambeth, B. P. Biswal, G. Kaur, N. C. Roy, M. Addicoat, J. K. Salunke, S. Banerjee, 
K. Vanka, T. Heine, S. Verma and R. Banerjee, Angew. Chem. Int. Ed. Engl., 2016, 55, 7806-7810.

33. A. Manciulea, A. Baker and J. R. Lead, Chemosphere, 2009, 76, 1023-1027.
34. F. Benyettou, H. Fahs, R. Elkharrag, R. A. Bilbeisi, B. Asma, R. Rezgui, L. Motte, M. Magzoub, J. 

Brandel, J. C. Olsen, F. Piano, K. C. Gunsalus, C. Platas-Iglesias and A. Trabolsi, RSC Adv., 2017, 7, 
23827-23834.

35. M. A. Dobrovolskaia, P. Aggarwal, J. B. Hall and S. E. McNeil, Mol. Pharm., 2008, 5, 487-495.
36. M. A. Dobrovolskaia and S. E. McNeil, J. Control. Release, 2013, 172, 456-466.
37. D. Morera and S. A. MacKenzie, Vet. Res., 2011, 42, 89-89.
38. B. I. Macías-Martínez, D. A. Cortés-Hernández, A. Zugasti-Cruz, B. R. Cruz-Ortíz and E. M. Múzquiz-

Ramos, J. Appl. Res. Technol., 2016, 14, 239-244.
39. M. J. Ansari, M. K. Anwer, S. Jamil, R. Al-Shdefat, B. E. Ali, M. M. Ahmad and M. N. Ansari, Drug 

Deliv., 2016, 23, 1972-1979.
40. S. W. Mateer, J. Cardona, E. Marks, B. J. Goggin, S. Hua and S. Keely, J. Vis. Exp., 2016, DOI: 

10.3791/53250, e53250-e53250.
41. N. Reix, A. Parat, E. Seyfritz, N. Ebel, L. Danicher, M. Pinget, Y. Frère, N. Jeandidier and S. Sigrist, 

Diabetes Metab., 2010, 36, A77.
42. A.-B. M. Aref, O. M. Ahmed, L. A. Ali and M. Semmler, J. Diabetes Res., 2013, 2013, 429154.
43. Y. Wang-Fischer and T. Garyantes, J. Diabetes Res., 2018, 2018, 8054073-8054073.
44. O. Ozdemır, P. P. Akalın, N. Baspınar and F. Hatıpoglu, Bull. Vet. Inst. Pulawy, 2009, 53, 783-790.
45. X. Yang, Drug Deliv., 2019, 26, 849-859.
46. O. M. Ahmed, T. M. Ali, M. A. Abdel Gaid and A. A. Elberry, PloS one, 2019, 14, e0214349.


