Probing Conformational Hotspots For The Recognition And Intervention Of Protein Complex By Lysine Reactivity Profiling

Zheyi Liu,1*, Wenxiang Zhang,1,2* Binwen Sun,1,3 Yaolu Ma,1,3 Min He,1,3 Yuanjiang Pan,2 Fangjun Wang,1,3†

1CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.

2Department of Chemistry, Zhejiang University, Hangzhou 310027, China.

3University of Chinese Academy of Sciences, Beijing 100049, China.

†Corresponding Author. E-mail: wangfj@dicp.ac.cn
*These authors contributed equally to this work.

*Corresponding Author. E-mail: wangfj@dicp.ac.cn
Fig. S1. The workflow of two-step isotope labeling-lysine reactivity profiling strategy. The first-step labeling is performed under native state with heavy isotope dimethyl tags. After denaturation, the second-step labeling is performed to completely labeled all of the lysine residues with light dimethyl tags.

Fig. S2. Quantification of the relative lysine reactivities (N_{LE}) of purified BSA under native aqueous solution by TILLRP strategy. (A) The microenvironment of Lys350; (B) The correlation between the lysine N_{LE} values and the distances between lysine residues and their proximal acidic residues (the correlation coefficient r is 0.649); (C) The correlation between the lysine N_{LE} values and the corresponding solvent-accessible surface areas (SASAs) (the correlation coefficient r is -0.396).
Fig. S3. Quantification of the relative lysine reactivity of HSA by TILLRP strategy. (A) The N_{LE} profiles of purified and serum HSA; (B) Comparison of the N_{LE} of conserved lysines in HSA and BSA, the lysines in brackets for BSA.

Fig. S4. Quantification of the lysine reactivity of COMT with/without ligand combination by TILLRP strategy. (A) comparison of the N_{LE} of lysine residues in COMT, COMT-SAM,
and COMT-SAM-TCW; (B) the microenvironments of Lys144 in the crystal structure of apo-COMT (PDB: 4pyi) and COMT with ligands (PDB: 3bwy).

Fig. S5. The microenvironments of (A) ACE2 Lys288 (PDB: 6m18) and (B) S1 Lys444 (PDB: 6vxx). The salt bridge of lysine is shown as a yellow dashed line.

Fig. S6. The microenvironments of Lys417 and Lys444 at the closed trimer Spike glycoprotein conformation (PDB: 6vxx). The salt bridge of lysine is shown as a yellow dashed line.
Fig. S7. The microenvironments of Lys417 and Lys444 in SARS-CoV-2 S1-ACE2 complex (PDB: 6lzg). The salt bridge of lysines are shown as yellow dashed lines.

Fig. S8. Simulated docking conformation of the interactions of SARS-CoV-2 S1-ACE2 complex with glycyrrhizic acid. The gray and orange boxes represent the schematic diagram of lysine microenvironments before and after docking glycyrrhizic acid with S1-ACE2 complex. The salt bridges of lysines are shown as yellow dashed lines.
Fig. S9. Simulated docking conformation of the interactions of S1-ACE2 complex with hesperetin. The gray and blue boxes represent the schematic diagram of lysine microenvironments before and after docking hesperetin with S1-ACE2 complex. The salt bridges of lysines are shown as yellow dashed lines.
Fig. S10. The δN_{LE} of lysine residues in S1-ACE2 complexes modulated by the treatment of exogenous compounds nicotinamide, scutellarin, and sulfobutyl ether-β-cyclodextrin.