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1. General Methods

All catalytic and stoichiometric reactions were performed under argon atmosphere using standard schlenk
and glove box techniques. Glassware was dried under vacuum at high temperatures, evacuated and
refilled with argon at least three times. The solvents were purified using solvent purification systems and
were stored and handled under argon. Chemicals were purchased from Sigma-Aldrich, Alfa-Aesar, abcr,
Acros Organics, TCl chemicals and used without further purification. NMR-spectra were recorded on
Bruker AV-300, AV-400, DPX-300, AV-600 spectrometers at the indicated temperatures with the chemical
shifts () given in ppm relative to TMS and the coupling constants (J) in Hz. The solvent signals were used
as references and the chemical shifts converted to the TMS scale (Acetonitrile-ds: o = 1.94 ppm and & =
118.3, 1.3 ppm; CDCls: &4 =7.26 ppm and & = 77.1 ppm; CD,Cla: 64 = 5.32 ppm and & = 54.00 ppm; C¢De:
6 = 7.16 ppm and oc = 128.1 ppm; THF-ds: &y = 1.72 ppm, 3.58 ppm and & = 67.2 ppm, 25.3 ppm;
toluene-ds: &4 = 2.08, 6.97, 7.01, 7.09 ppm and o&c = 137.5, 128.9, 127.9, 125.1, 20.4 ppm; DMSO-ds:
o1 =2.50 ppm and & =39.5ppm).}

Note: Catalytic reactions involving pressurized carbon monoxide and hydrogen were carried out in home
built stainless steel reactors equipped with pressure transducer and external electrical heating.

Safety advice: High-pressure experiments represent a significant risk and must be conducted with

appropriate safety procedures and in conjunction with the use of suitable equipment.

2. Synthesis of Manganese pincer complex 1

The manganese pincer complex 1 was synthesized according to the reported literature.? A solution of

H\N/—B—r\P"P Bis(2-(diisopropylphosphaneyl)ethyl)amine (2.26 mL, 10wt.% in THF, 0.655 mmol,
T2
N :ri\ 1.1 equiv.) was added to a solution of [Mn(CO)sBr] (163.7 mg, 0.595 mmol, 1.0 equiv.) in
p” ioCO . . .

iPr, . toluene (8 mL) and stirred for 24 h at 100 °C under argon atmosphere. The volatiles were

removed in vacuo and the residue was washed with pentane (3 x 5 mL). Upon drying in
vacuo, the residue was solidified and complex 1 was obtained as a bright yellow powder (267.4 mg,
0.54 mmol, 91%). The analytical data of complex are consistent with those previously reported in the

literature.?



3. Standard procedure and reaction optimization

Mn-MACHO-Pr 1 and NaO'Bu were measured into a glass inlet equipped with a stirring bar inside a
glovebox. The glass inlet was closed with a septum and transferred into the bottom part of the 10 mL steel
autoclave, where it was opened under a stream of argon. After sealing, the autoclave was evacuated and
purged with argon three times. 2-phenylethan-1-ol 2a (61.0 mg, 0.5 mmol) and toluene (0.8 mL) were
added at room temperature through a valve under argon. The autoclave was sealed, pressurized with CO
and H; and heated at certain temperature for 24 h. After completion of the reaction, the autoclave was
cooled to room temperature and slowly vented while stirring continued. Mesitylene was added as an
internal standard to the reaction mixture that was then passed through a short path of acidic alumina

before the composition was analyzed by NMR spectroscopy.

1/Base
toluene, T,
OH -H,0 OH
2a 3a

Table S1: Optimization reactions for f—methylation of 2a using 1.

Entry 1(mol%) CO(bar) H,(bar) Base(equiv.) Temp.(°C) Conv. (%)’ Yield (%)

1 1 5 15 NaO'Bu (2) 150 >99 65
2 2 5 15 NaO'Bu (2) 150 >99 92
3 2 5 15 NaO'Bu (2) 120 94 73
4 2 5 15 NaO'Bu (2) 170 >99 54
5 2 2.5 7.5 NaO'Bu (2) 150 72 15
6 2 8 24 NaO'Bu (2) 150 >99 93
7 2 5 15 NaO'Bu (1) 150 82 67
8 2 5 15 KO'Bu (2) 150 >99 0
9 - 5 15 NaO'Bu (2) 150 >99 0
10 - 5 15 - 150 4 0
11 2 5 15 NaO'Bu (0.1) 150 5 0




4. Conversion/time profile for the B-methylation of 2a using
Syngas at different time intervals

Ten individual reactions were performed for the reaction progress experiments at different time intervals.
Mn-MACHO-Pr 1 (4.95 mg, 2 mol%) and NaO'Bu (96.1 mg, 1 mmol) were measured into a glass inlet
equipped with a stirring bar inside a glovebox. The glass inlet was closed with a septum and transferred
into the bottom part of the 10 mL steel autoclave, where it was opened under a stream of argon. After
sealing, the autoclave was purged with argon three times. 2-phenyl ethanol 2a (61.0 mg, 0.5 mmol) and
toluene (0.8 mL) were added at room temperature through a valve under argon. The autoclave was
sealed, pressurized with CO (5 bar) and H; (15 bar) and heated to 150 °C temperature for 24 h. After
completion of the reaction, the autoclave was cooled to room temperature and slowly vented while
stirring continued. Mesitylene (43.2 mg, 0.36 mmol) was added as an internal standard to the reaction
mixture that was then passed through a short path of acidic alumina before the composition was analyzed

by NMR spectroscopy. The profile is shown in the manuscript which corresponds to Figure 1.
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Figure S1: 'H NMR (400 MHz, CDClIs, 298 K) reaction mixture spectrum of 2a with syngas after 30 minutes as
example.
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Figure S2: 'H NMR (400 MHz, CDCls, 298 K) reaction mixture spectrum of 2a with syngas after 16 h as example.3
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Figure S3: *H NMR (400 MHz, CDCl3z, 298 K) reaction mixture spectrum of 2a with syngas after 20 h as example.
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Figure S4: Pressure curve for the B-methylation of 2a using syngas.



5. Control experiments to investigate the proposed reaction
network

5.1. Reaction of 2-phenylethan-1-ol 2a with with CO and D, using 1

1 (2 mol%) 92% D D CD; 82% D

OH NaOBu OD 65% D
+ CO+2D, ————
tol., 150 °C, DD

2a 24 h 4 95% D

Mn-MACHO-Pr 1 (4.95 mg, 2 mol%) and NaOBu (96.10 mg, 1 mmol) were measured into a glass inlet
equipped with a stirring bar inside a glovebox. The glass inlet was closed with a septum and transferred
into the bottom part of the 10 mL steel autoclave, where it was opened under a stream of argon. After
sealing, the autoclave was evacuated and purged with argon three times. 2-phenylethan-1-ol 2a (61.0 mg,
0.5 mmol) and toluene (0.8 mL) were added at room temperature through a valve under argon. The
autoclave was sealed, pressurized with CO (5 bar) and D, (15 bar) and heated to 150 °C temperature. After
24 h, the autoclave was cooled to room temperature and slowly vented while stirring continued. The
reaction mixture was passed through a short path of acidic alumina before the composition was analyzed
by NMR spectroscopy.

'H NMR (400 MHz, CDCls, 298 K) & = 7.25-7.38 (m, 5H, ArCH), 3.72 (br s, 0.11H, CH,), 2.96-2.97 (m, 0.08H,
CH), 1.42 (br s, 0.35H, OH), 1.27 (br s, 0.53H, CH3).

2H NMR (61 MHz, CDCls, 298 K) & = 3.72 (br s), 2.94 (br m), 1.27 (br s).
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Figure S5: 'H NMR (400 MHz, CDCls, 298 K) reaction mixture spectrum for the reaction of 2a with CO and Da.
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Figure S6: 2H NMR (61 MHz, CDCls, 298 K) reaction mixture spectrum for the reaction of 2a with CO and Ds.



5.2. Reaction of 2-phenylethan-1-ol 2a with D, under standard
reaction conditions

1(2mol%) 80% D D_D

OH NaOBu oD
+ D2 —_— >
tol., 150 °C, DD

2a 24 h 2a, 72% D

Mn-MACHO-Pr 1 (4.95 mg, 2 mol%) and NaO'Bu (96.10 mg, 1 mmol) were measured into a glass inlet
equipped with a stirring bar inside a glovebox. The glass inlet was closed with a septum and transferred
into the bottom part of the 10 mL steel autoclave, where it was opened under a stream of argon. After
sealing, the autoclave was evacuated and purged with argon three times. 2-phenylethan-1-ol 2a (61.0 mg,
0.5 mmol) and toluene (0.8 mL) were added at room temperature through a valve under argon. The
autoclave was sealed, pressurized with D, (10 bar) and heated to 150 °C temperature. After 24 h, the
autoclave was cooled to room temperature and slowly vented while stirring continued. The reaction
mixture was further analyzed by NMR spectroscopy.

1H NMR (400 MHz, CDCls, 298 K) & = 7.33-7.37 (m, 2H, ArCH), 7.24-7.28 (m, 3H, ArCH), 3.92-3.97 (m, 0.57H,
CH>), 2.94-3.00 (m, 0.40 H, CH,).
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Figure S7: 'H NMR (400 MHz, CDCls, 298 K) reaction mixture spectrum for the reaction of 2a with Da.



5.3. Reaction of 2-phenylpropan-1-ol 3a with D, under standard

reaction conditions

1(2 mol%) 83% D D CD; 0% D

OH NaO'Bu oD
+ D2 _ =
tol., 150 °C, DD
3a 24 h . 82%D

Mn-MACHO-Pr 1 (4.95 mg, 2 mol%) and NaOBu (96.10 mg, 1 mmol) were measured into a glass inlet

equipped with a stirring bar inside a glovebox. The glass inlet was closed with a septum and transferred

into the bottom part of the 10 mL steel autoclave, where it was opened under a stream of argon. After

sealing, the autoclave was evacuated and purged with argon three times. 2-phenylpropan-1-ol 3a

(68.1 mg, 0.5 mmol) and toluene (0.8 mL) were added at room temperature through a valve under argon.

The autoclave was sealed, pressurized with D, (10 bar) and heated to 150 °C temperature. After 24 h, the

autoclave was cooled to room temperature and slowly vented while stirring continued. The reaction

mixture was further analyzed by NMR spectroscopy.

1H NMR (400 MHz, CDCls, 298 K) & = 7.34-7.38 (m, 2H, ArCH), 7.25-7.28 (m, 3H, ArCH), 3.70 (br s, 0.26H,

CH,), 2.94-2.99 (m, 017H, CH,), 1.29 (s, 3H, CHs).
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Figure S8: 'H NMR (400 MHz, CDCls, 298 K) reaction mixture spectrum for the reaction of 3a with Da.
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5.4. Reaction of 2-phenylethan-1-ol 2a with carbon monoxide in the
presence of a base

oH NaOBu o H
0,
+ CO (10 mol%) \n/
100°C, 5h 1% (0]
2a Sa

NaO'Bu (9.6 mg, 0.1 mmol) were measured into a glass inlet equipped with a stirring bar inside a glovebox.
The glass inlet was closed with a septum and transferred into the bottom part of the 10 mL steel autoclave,
where it was opened under a stream of argon. After sealing, the autoclave was evacuated and purged
with argon three times. 2-phenylethan-1-ol 2a (122.2 mg, 1.0 mmol) and toluene (0.8 mL) were added at
room temperature through a valve under argon. The autoclave was sealed, pressurized with CO (5 bar)
and heated to 100 °C. After 5 h, the autoclave was cooled to room temperature and slowly vented while
stirring continued. The reaction mixture was further analyzed by NMR spectroscopy. (8standara) = 3.78 (t,
2H), Sproduct = 4.33 (t, 2H)). The spectral data are in agreement with the reported literature.*

NMR Yield of 5a: 11%.
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Figure S9: 'H NMR (400 MHz, CDCl3, 298 K) reaction mixture spectrum for the reaction of 2a with CO in the
presence of a base.
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5.5. Reaction of 2-Phenethyl formate 5a with CO and H; using 1

1 (2 mol%)

(@] H t
Y+ CO+ 2H, _NaOBu
o tol., 150 °C,

5a

24 h, -H,0

81%

3a

OH

Mn-MACHO-Pr 1 (4.95 mg, 2 mol%) and NaO'Bu (96.10 mg, 1 mmol) were measured into a glass inlet

equipped with a stirring bar inside a glovebox. The glass inlet was closed with a septum and transferred

into the bottom part of the 10 mL steel autoclave, where it was opened under a stream of argon. After

sealing, the autoclave was evacuated and purged with argon three times. 2-Phenethyl formate 5a

(75.1 mg, 0.5 mmol) and toluene (0.8 mL) were added at room temperature through a valve under argon.

The autoclave was sealed, pressurized with CO (5 bar) and H; (15 bar) and heated to 150 °C temperature.

After 24 h, the autoclave was cooled to room temperature and slowly vented while stirring continued.

Mesitylene (43.2 mg, 0.36 mmol) was added as an internal standard to the reaction mixture that was then

passed through a short path of acidic alumina before the composition was analyzed by NMR spectroscopy.

NMR yield of 3a: 81%.
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Figure S10: *H NMR (400 MHz, CDCl3s, 298 K) reaction mixture spectrum for the reaction of 5a with CO and Ha.
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5.6. Reaction of butyl formate 5b with CO and H; using 1

0 1 (2 mol%)
M4 co s 2n, N2OBU
CO H 2 tol., 150 °C, /YOH
Sb 36 h, -H,0 10b

82%

Mn-MACHO-"Pr 1 (4.95 mg, 2 mol%) and NaO'Bu (96.10 mg, 1 mmol) were measured into a glass inlet
equipped with a stirring bar inside a glovebox. The glass inlet was closed with a septum and transferred
into the bottom part of the 10 mL steel autoclave, where it was opened under a stream of argon. After
sealing, the autoclave was evacuated and purged with argon three times. Butyl formate 5b (51.1 mg,
0.5 mmol) and toluene (0.8 mL) were added at room temperature through a valve under argon. The
autoclave was sealed, pressurized with CO (5 bar) and H; (15 bar) and heated to 150 °C temperature. After
36 h, the autoclave was cooled to room temperature and slowly vented while stirring continued.
Mesitylene (43.2 mg, 0.36 mmol) was added as an internal standard to the reaction mixture that was then

passed through a short path of acidic alumina before the composition was analyzed by NMR spectroscopy.

NMR yield of 10b: 82%.
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Figure S11: 'H NMR (400 MHz, CDCls, 298 K) reaction mixture spectrum for the reaction of 5b with CO and H.
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5.7. Reaction of 2a with ethyl formate 6 and hydrogen

1 (2 mol%)
OH o] NaO'Bu OH
DI SRl
H (@) tol., 150 °C, 40%
2a 6 24 h, -H0 3a
Mn-MACHO-"Pr 1 (4.95 mg, 2 mol%) and NaO'Bu (96.10 mg, 1 mmol) were measured into a glass inlet
equipped with a stirring bar inside a glovebox. The glass inlet was closed with a septum and transferred
into the bottom part of the 10 mL steel autoclave, where it was opened under a stream of argon. After
sealing, the autoclave was evacuated and purged with argon three times. 2-phenylethan-1-ol 2a (61.1 mg,
0.5 mmol), ethyl formate 6 (222.2 mg, 3 mmol) and toluene (0.8 mL) were added at room temperature
through a valve under argon. The autoclave was sealed, pressurized with H, (15 bar) and heated to 150 °C
temperature. After 24 h, the autoclave was cooled to room temperature and slowly vented while stirring
continued. Mesitylene (43.2 mg, 0.36 mmol) was added as an internal standard to the reaction mixture
that was then passed through a short path of acidic alumina before the composition was analyzed by NMR
spectroscopy.

NMR yield of 3a: 40%.
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Figure S12: *H NMR (400 MHz, CDCls, 298 K) reaction mixture spectrum for the reaction of 2a with 6 and Ha.
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5.8. Reaction of CO with H; using complex 1

1 (0.01 mmol)
NaOBu
CO + 2 Hz ——— CH3OH
tol., 150 °C,
(5 bar) (15 bar) 24 h TON =<2

Mn-MACHO-"Pr 1 (4.95 mg) and NaOBu (96.10 mg, 1 mmol) were measured into a glass inlet equipped
with a stirring bar inside a glovebox. The glass inlet was closed with a septum and transferred into the
bottom part of the 10 mL steel autoclave, where it was opened under a stream of argon. After sealing,
the autoclave was evacuated and purged with argon three times. Toluene (0.8 mL) was added at room
temperature through a valve under argon. The autoclave was sealed, pressurized with CO (5 bar) and H,
(15 bar) and heated to 150 °C temperature. After 24 h, the autoclave was cooled to room temperature
and slowly vented while stirring continued. Mesitylene (43.2 mg, 0.36 mmol) was added as an internal
standard to the reaction mixture that was then passed through a short path of acidic alumina before the
composition was analyzed by NMR spectroscopy.
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Figure S13: 'H NMR (400 MHz, CDCls, 298 K) reaction mixture spectrum for the hydrogenation of CO using 1.
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6. Standard procedure for the catalytic B-methylation of
aryl substituted alcohols

Mn-MACHO-Pr 1 (4.95 mg, 2 mol%) and NaO'Bu (96.1 mg, 1 mmol) were measured into a glass inlet
equipped with a stirring bar inside a glovebox. The glass inlet was closed with a septum and transferred
into the bottom part of the 10 mL steel autoclave, where it was opened under a stream of argon. After
sealing, the autoclave was purged with argon three times. Alcohol (0.5 mmol) and toluene (0.8 mL) were
added at room temperature through a valve under argon. The autoclave was sealed, pressurized with CO
(5 bar) and H; (15 bar) and heated to 150 °C temperature for 24 h. After completion of the reaction, the
autoclave was cooled to room temperature and slowly vented while stirring continued. Mesitylene was
added as an internal standard to the reaction mixture that was then passed through a short path of acidic
alumina before the composition was analyzed by NMR spectroscopy. The isolation of pure product was
carried out via column chromatography over silica gel (100-200 mesh) using ethyl acetate/pentane

(10 : 90) mixture as eluent.

2-phenylpropan-1-ol 3a: Prepared by following the general experimental procedure with: 1 (4.95 mg,

2.0 mol%), 2-phenylethan-1-ol 2a (61.0 mg, 0.5 mmol), NaO'Bu (96.1 mg, 1 mmol),
on toluene (0.8 mL), CO (5 bar), H (15 bar). Yield was determined by *H NMR spectrum

using mesitylene (43.2 mg, 0.36 mmol) as an internal standard (Smesitylene(standard) = 7.00

(s, 3H), Sproduct = 3.85 (d, 2H)).The spectral data are in agreement with the reported literature.®

H NMR (400 MHz, CDCls, 298 K) & = 7.24-7.28 (m, 2H, ArCH), 7.14-7.18 (m, 3H, ArCH), 3.62 (d, 2H, J =

6.83 Hz, CH,), 2.83-2.92 (m, 1H, CH), 1.41 (br s, 1H, OH), 1.20 (d, 3H, J = 7.02 Hz, CHs).

13C{*H}-NMR (101 MHz, CDCls, 298 K) 6 = 143.79 (Car), 128.77 (CHa/), 127.62 (CHar), 126.81 (CHa/), 68.84

(CH,), 42.57 (CH), 17.71 (CHs).

Isolated yield: 86%.

2-(p-tolyl)propan-1-ol 3b: Prepared by following the general experimental procedure with: 1 (4.95 mg,
2.0 mol%), 2-(p-tolyl)ethanol 2b (68.0 mg, 0.5 mmol), NaO'Bu (96.1 mg, 1 mmol),
on toluene (0.8 mL), CO (5 bar), H, (15 bar). Yield was determined by *H NMR spectrum
using mesitylene (43.2 mg, 0.36 mmol) as an internal standard (Swmesitylene(standard) =

7.07 (s, 3H), 8product = 3.89 (d, 2H)). The spectral data are in agreement with the reported literature.®
H NMR (400 MHz, CDCls, 298 K) & = 7.12-7.17 (m, 4H, ArCH), 3.69 (d, 2H, J = 6.94 Hz, CH,), 2.88-2.97 (m,

1H, CH), 2.34 (s, 3H, CHs), 1.33 (brs, 1H, OH), 1.26 (d, 3H, J = 7.00 Hz, CHs).
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BC{*H}-NMR (101 MHz, CDCls, 298 K) & = 140.67 (Car), 136.38 (Car), 129.49 (CHar), 127.49 (CHa/), 68.91
(CH), 42.16 (CH), 21.14 (CHs), 17.80 (CHs).
Isolated yield: 90%.

2-(4-isobutylphenyl)propan-1-ol 3c: Prepared by following the general experimental procedure with: 1

(4.95 mg, 2.0 mol%), 2-(4-isobutylphenyl)ethanol 2c (89.0 mg, 0.5 mmol),
on NaO'Bu (96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H, (15 bar). Yield was

determined by *H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an

internal standard (Owesitylene(standard) = 7.04 (s, 3H), Sproduct = 3.87 (d, 2H)). The spectral data are in agreement

with the reported literature.®

'H NMR (400 MHz, CDCls, 298 K) 6 = 7.10-7.16 (m, 4H, ArCH), 3.69 (d, 2H, J = 6.82 Hz, CH,), 2.88-2.97 (m,

1H, CH), 2.45 (d, 2H, J = 7.16 Hz, CH-), 1.80-1.91 (m, 1H, CH), 1.38 (br s, 1H, OH), 1.27 (d, 3H, J = 7.01 Hz,

CH,), 0.91 (d, 6H, J = 6.61 Hz, CH3).

BBC{IH}-NMR (101 MHz, CDCls, 298 K) & = 140.84 (Ca), 140.20 (Ca;), 129.51 (CHa,), 127.29 (CHa,), 68.92

(CH,), 45.17 (CH,), 42.16 (CH), 30.35 (CH), 22.54 (CHs), 17.74 (CHs).

Isolated yield: 85%.

2-(4-methoxyphenyl)propan-1-ol 3d: Prepared by following the general experimental procedure with: 1
(4.95 mg, 2.0 mol%), 2-(4-methoxyphenyl)ethan-1-ol 2d (76.1 mg, 0.5 mmol),

OH
NaOBu (96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H, (15 bar). Yield was

o determined by *H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an
internal standard (Omesitylene(standard) = 6.70 (s, 3H), Oproduct = 3.52-3.54 (m, 2H)). The spectral data are in
agreement with the reported literature.’

'H NMR (400 MHz, CDCl3, 298 K) & = 7.16 (d, 2H, J = 8.60 Hz, ArCH), 6.88 (d, 2H, J = 8.65 Hz, ArCH), 3.80 (s,
3H, OCHs), 3.65-3.67 (m, 2H, CH,), 2.86-2.94 (m, 1H, CH), 1.53 (br's, 1H, OH), 1.25 (d, 3H, J = 6.99 Hz, CHs).
13C{*H}-NMR (101 MHz, CDCls, 298 K) 6 = 158.42 (Car), 135.72 (Car), 128.48 (CHa), 114.14 (CHa:), 68.91
(CHy), 55.37 (OCHs), 41.68 (CH), 17.85 (CHs).

Isolated yield: 84%.

2-(3-methoxyphenyl)propan-1-ol 3e: Prepared by following the general experimental procedure with: 1

(4.95 mg, 2.0 mol%), 2-(3-methoxyphenyl)ethan-1-ol 2e (76.1 mg, 0.5 mmol),

_0 OH

NaO'Bu (96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H, (15 bar). Yield was

determined by H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an
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internal standard (Owmesitylene(standard) = 6.70 (S, 3H), Sproduct = 3.62 (d, 2H)). The spectral data are in agreement
with the reported literature.®

'H NMR (400 MHz, CDCl5, 298 K) 6 = 7.18 (t, 1H, J = 8.12 Hz, ArCH), 6.76 (d, 1H, J = 7.54 Hz, ArCH),
6.70-6.72 (m, 2H, ArCH), 3.74 (s, 3H, OCHs), 3.63 (d, 2H, J = 6.27 Hz, CH-), 2.83-2.88 (m, 1H, CH), 1.52 (br s,
1H, OH), 1.19 (d, 3H, J = 6.63 Hz, CH3).

BC{H}-NMR (101 MHz, CDCls, 298 K) & = 159.92 (Ca), 145.47 (Car), 129.74 (CHa/), 119.90 (CHa), 113.58
(CHar), 111.81 (CHar), 68.79 (CH.), 55.28 (OCHs), 42.64 (CH), 17.68 (CH).

Isolated yield: 66%.

2-(6-methoxynaphthalen-2-yl)propan-1-ol 3f: Prepared by following the general experimental procedure
with: 1 (4.95mg, 2.0 mol%), 2-(6-methoxynaphthalen-2-yl)ethanol 2f

OO on (101.2 mg, 0.5 mmol), NaO'Bu (96.1 mg, 1 mmol), toluene (0.8 mL), CO

™o (5 bar), Hz (15 bar). Yield was determined by 'H NMR spectrum using

mesitylene (43.2 mg, 0.36 mmol) as an internal standard (Smesitylene(standard) = 6.70 (S, 3H), Sproduct = 1.14 (d,

3H)). The spectral data are in agreement with the reported literature.’

'H NMR (400 MHz, CDs0D, 298 K) & = 7.56-7.60 (dd, 2H, J = 5.49, 8.63 Hz, ArCH), 7.48 (s, 1H, ArCH),

7.22-7.24 (dd, 1H, J=1.71, 8.49 Hz, ArCH), 7.06 (d, 1H, J = 2.44 Hz, ArCH), 6.96-6.99 (dd, 1H, J=2.53, 8.95

Hz, ArCH), 3.77 (s, 3H, CHs), 3.51-3.66 (dd, 2H, J = 6.94, 10.72, 42.79 Hz, CH,), 3.21 (br. s, 1H, OH), 2.83-

2.94 (m, 1H, CH), 1.23 (d, 3H, J = 6.98 Hz, CHs).

BC{!H}-NMR (101 MHz, CD;OD, 298 K) & = 158.71 (Car), 140.84 (Ca), 134.92 (Ca;), 130.54 (Cas), 130.02

(CHar), 127.88 (CHar), 127.49 (CHar), 126.51 (CHar), 119.55 (CHar), 106.50 (CHar), 69.05 (CH>), 55.65 (CHs),

43.61 (CH), 18.39 (CHs).

Isolated yield: 86%.

2-(4-chlorophenyl)propan-1-ol 3g: Prepared by following the general experimental procedure with: 1
(4.95 mg, 2.0 mol%), 2-(4-chlorophenyl)ethan-1-ol 2g (79.3 mg, 0.5 mmol),
NaO'Bu (96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H, (15 bar). Yield was

Cl determined by 'H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an

internal standard (Smesitylene(standard) = 7.03 (S, 3H), Sproduct = 3.82 (d, 2H)). The spectral data are in agreement

with the reported literature.®

1H NMR (400 MHz, CDCl3, 298 K) & = 7.22 (d, 2H, J = 8.40 Hz, ArCH), 7.10 (d, 2H, 8.43 Hz, ArCH), 3.58-3.61

(m, 2H, CH,), 2.80-2.89 (m, 1H, CH), 1.42 (br, 1H, OH), 1.18 (d, 3H, J = 7.04 Hz, CH).
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B3Cc{*H}-NMR (101 MHz, CDCls, 298 K) & = 142.34 (Car), 132.43 (Car), 128.94 (CHar), 128.82 (CHa), 68.60
(CH), 41.97 (CH), 17.66 (CH3).
Isolated yield: 74%.

2-(4-fluorophenyl)propan-1-ol 3h: Prepared by following the general experimental procedure with: 1
(4.95 mg, 2.0 mol%), 2-(4-fluorophenyl)ethan-1-ol 2h (70.0 mg, 0.5 mmol), NaO'Bu
on (96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H> (15 bar). Yield was determined
F by HNMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an internal
standard (Owesitylene(standard) = 6.70 (S, 3H), Sproduct = 1.14 (d, 3H)). The spectral data are in agreement with
the reported literature.’
'H NMR (400 MHz, CDCls, 298 K) & = 7.18-7.22 (m, 2H, ArCH), 6.99-7.04 (m, 2H, ArCH), 3.66-3.69 (dd, 2H,
J=3.18, 6.80 Hz, CH,), 2.90-2.98 (m, 1H, CH), 1.45 (brs, 1H, OH), 1.26 (d, 3H, J = 7.03 Hz, CH3).
13C{*H}-NMR (101 MHz, CDCl3, 298 K) 6 = 161.79 (d, Car, J = 244.40 Hz), 139.46 (d, Car, J = 3.20 Hz), 128.98
(d, CHar, J =7.79 Hz), 115.51 (d, CHar, J = 21.05), 68.80 (CH,), 41.84 (CH), 17.85 (CH3).

Isolated yield: 71%.

2-(thiophen-2-yl)propan-1-ol 3i: Prepared by following the general experimental procedure with: 1
S OH (4.95mg, 2.0 mol%), 2-(thiophen-2-yl)ethan-1-ol 2i (64.1 mg, 0.5 mmol), NaO'Bu

E/)_( (96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H, (15 bar). Yield was determined by

'H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an internal standard (Swmesitylene(standard) = 7.06

(s, 3H), Sproduct = 3.64-3.74 (m, 2H)). The spectral data are in agreement with the reported literature.°

H NMR (400 MHz, CDCls, 298 K) § = 7.19-7.20 (dd, 1H, J = 1.02, 5.09 Hz, ArCH), 6.96-6.99 (dd, 1H, J = 3.45,

5.08 Hz, ArCH), 6.90 (d, 1H, J = 3.17 Hz, ArCH), 3.64-3.76 (m, 2H, CH,), 3.21-3.29 (m, 1H, CH), 1.53 (br s,

1H, OH), 1.36 (d, 3H, J = 6.95 Hz, CHs).

BC{*H}-NMR (101 MHz, CDCls, 298 K) & = 147.35 (Cas), 126.84 (CHar), 123.92 (CHar), 123.56 (CHa/), 69.01

(CH,), 38.15(CH), 18.61 (CHs).

Isolated yield: 86%.

2-methyl-3-phenylpropan-1-ol 3j: Prepared by following the general experimental procedure with: 1
WOH (4.95mg, 2.0 mol%), 3-phenylpropan-1-ol 2j (68.0mg, 0.5 mmol), NaO'Bu
(96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H; (15 bar). Yield was determined

by !HNMR spectrum using mesitylene (43.2mg, 0.36mmol) as an internal standard
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(OMesitylene(standard) = 7.06 (s, 3H), Sproduct = 3.64-3.74 (ddd, 2H)). The spectral data are in agreement with the
reported literature.!

'H NMR (400 MHz, CDCls, 298 K) § = 7.30-7.35 (m, 2H, ArCH), 7.21-7.24 (m, 3H, ArCH), 3.50-3.61 (ddd, 2H,
J=5.95,10.56, 24.80 Hz, CH,), 2.78-2.83 (dd, 1H, CH), 2.45-2.50 (dd, 1H, CH), 1.95-2.02 (m, 1H, CH), 1.03
(brs, 1H, OH), 0.97 (d, 3H, /= 6.73 Hz, CHs).

BBC{*H}-NMR (101 MHz, CDCls, 298 K) & = 140.75 (Car), 129.27 (CHas), 128.39 (CHar), 126.00 (CHa), 67.80
(CH,), 39.84 (CH,), 37.92 (CH), 16.60 (CHs).

Isolated yield: 75%.

3-(4-chlorophenyl)-2-methylpropan-1-ol 3k: Prepared by following the general experimental procedure
OH Wwith: 1 (4.95mg, 2.0 mol%), 3-(4-chlorophenyl)propan-1-ol 2k (85.3 mg,

Clm 0.5 mmol), NaO'Bu (96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H,

(15 bar). Yield was determined by *H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an internal

standard (Omesitylene(standard) = 7.02 (s, 3H), Sproauct = 1.09 (d, 3H)). The spectral data are in agreement with

the reported literature.?

H NMR (400 MHz, CDCls, 298 K) & =7.17 (d, 2H, J=8.28 Hz, ArCH), 7.03 (d, 2H, J = 8.39 Hz, ArCH),

3.41-3.43 (m, 2H, CH-), 2.67 (dd, 1H, J = 13.49, 6.08 Hz, CH), 2.31 (dd, 1H, J = 2.31 Hz, CH), 1.79-1.88 (m,

1H, CH), 1.44 (br. s, 1H, OH), 0.82 (d, 3H, J = 6.68 Hz, CHs).

13C{*H}-NMR (101 MHz, CDCl3, 298 K) 6 = 139.19 (Car), 131.74 (Car), 130.61 (CHa), 128.48 (CHar), 67.54

(CH.), 39.04 (CH;), 37.81 (CH), 16.42 (CHs).
Isolated yield: 86%.

2-methyl-4-phenylbutan-1-ol 3I: Prepared by following the general experimental procedure with: 1

(4.95 mg, 2.0 mol%), 4-phenylbutan-1-ol 2l (75.1 mg, 0.5 mmol), NaO'Bu
on (96.1 mg, 1 mmol), toluene (0.8 mL), CO (5bar), H, (15 bar). Yield was

determined by H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an

internal standard (Omesitylene(standard) = 7.04 (S, 3H), Sproduct = 3.62-3.73 (ddd, 2H)). The spectral data are in

agreement with the reported literature.

'H NMR (400 MHz, CDCls, 298 K) 6 = 7.22-7.24 (m, 2H, ArCH), 7.14-7.16 (m, 3H, ArCH), 3.41-3.52 (ddd, 2H,

J=6.05, 10.38, 28.18 Hz, CH,), 2.52-2.71 (dddd, 2H, J = 5.92, 10.04, 13.77, 29.92 Hz, CH,), 1.67-1.77 (m,

1H, CH), 1.59-1.64 (m, 1H, CH), 1.40-1.43 (m, 2H, CH & OH), 0.95 (d, 3H, J = 6.60 Hz, CHs).

13C{*H}-NMR (101 MHz, CDCl3, 298 K) & = 142.71 (Car), 128.45 (CHar), 125.83 (CHar), 68.34 (CH,), 35.50 (CH),

35.10 (CHy), 33.41 (CH,), 16.63 (CH3).
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Isolated yield: 80%.

2-methyl-5-phenylpentan-1-ol 3m: Prepared by following the general experimental procedure with: 1
OH (4.95mg, 2.0 mol%), 5-phenylpentan-1-ol 2m (84.1 mg, 0.5 mmol), NaO'Bu

©/\/\(\ (96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H, (15 bar). Yield was

determined by H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an internal standard

(OMesitylene(standard) = 7.05 (S, 3H), Sproduct = 3.59-3.71 (ddd, 2H)). The spectral data are in agreement with the

reported literature.'

'H NMR (400 MHz, CDCls, 298 K) & = 7.18-7.21 (m, 2H, ArCH), 7.10-7.12 (m, 3H, ArCH), 3.33-3.45 (ddd, 2H,

J=6.23,10.37,32.79 Hz, CH,), 2.51-2.56 (m, 2H, CH,), 1.51-1.63 (m, 4H, CH,), 1.35-1.44 (m, 1H, CH), 1.10

(brs, 1H, OH), 0.85 (d, 3H, J = 6.58 Hz, CHs).

13C{*H}-NMR (101 MHz, CDCls, 298 K) 6 = 142.75 (Car), 128.52 (CHar), 128.42 (CHar), 125.81 (CHa/), 68.42

(CH3), 36.36 (CH2), 35.82 (CH), 32.92 (CH,), 29.06 (CH,), 16.66 (CH3).
Isolated yield: 67%.

2-methyl-8-phenyloctan-1-ol 3n: Prepared by following the general experimental procedure with: 1
(4.95 mg, 2.0 mol%), 8-phenyloctan-1-ol 2n (103.2 mg, 0.5 mmol),
on NaO‘Bu (96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H, (15 bar).
Yield was determined by HNMR spectrum using mesitylene
(43.2 mg, 0.36 mmol) as an internal standard (Smesityiene(standard) = 7.07 (s, 3H), Sproduct = 1.17 (d, 3H)). The
spectral data are in agreement with the reported literature.’
1H NMR (400 MHz, CDCls, 298 K) & = 7.22-7.24 (m, 2H, ArCH), 7.14-7.15 (m, 3H, ArCH), 3.35-3.48 (ddd, 2H,
J=6.16, 10.45, 36.15 Hz, CH,), 2.55-2.59 (m, 2H, CH,), 1.54-1.58 (m, 3H, CH,& CH), 1.29-1.30 (m, 9H, CH,&
OH), 0.87 (d, 3H, J = 6.71 Hz, CHs).
13C{*H}-NMR (101 MHz, CDCl;, 298 K) & = 143.00 (Car), 128.52 (CHar), 128.35 (CHar), 125.69 (CHa/), 68.53
(CHy), 36.11 (CH,), 35.88 (CH), 33.25 (CH,), 31.63 (CH,), 29.92 (CH;), 29.42 (CH,), 27.02 (CH3), 16.71 (CHs3).

Isolated yield: 74%.

2-(methyl(phenyl)amino)propan-1-ol 3o: Prepared by following the general experimental procedure

with: 1 (4.95mg, 2.0 mol%), 2-(methyl(phenyl)amino)ethanol 20 (75.6 mg,

©/ Y\OH 0.5 mmol), NaO'Bu (96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H, (15 bar).

Yield was determined by *H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol)
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as an internal standard (Smesitylene(standard) = 2.52 (S, 9H), Oproduct = 1.22 (d, 3H)). The spectral data are in
agreement with the reported literature.®

'H NMR (400 MHz, tol-d8, 298 K) & = 7.13-7.17 (m, 2H, ArCH), 6.74-6.78 (m, 1H, ArCH), 6.69-6.73 (m, 2H,
ArCH), 3.64-3.72 (m, 1H, CH), 3.20-3.30 (m, 2H, CH>), 2.28 (s, 3H, CHs), 1.54 (br. s, 1H, OH), 0.64 (d, 3H, J =
6.69 Hz, CHs).

B3C{'H}-NMR (101 MHz, tol-d8, 298 K) & = 151.23 (Car), 129.30 (CHar), 118.43 (CHar), 115.38 (CHar), 63.74
(CH), 57.15 (CH,), 29.72 (CHs), 12.15 (CHs).

Isolated yield: 66%.
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7. Standard procedure for catalytic f-monomethylation of
secondary alcohols

Mn-MACHO-Pr 1 (4.95 mg, 2 mol%) and NaO'Bu (96.1 mg, 1 mmol) were measured into a glass inlet
equipped with a stirring bar inside a glovebox. The glass inlet was closed with a septum and transferred
into the bottom part of the 10 mL steel autoclave, where it was opened under a stream of argon. After
sealing, the autoclave was evacuated and purged with argon three times. Secondary alcohol (0.5 mmol)
and toluene (0.8 mL) were added at room temperature through a valve under argon. The autoclave was
sealed, pressurized with CO (5 bar) and H; (15 bar) and heated to 150 °C temperature. After the certain
reaction time, the autoclave was cooled to room temperature and slowly vented while stirring continued.
Mesitylene was added as an internal standard to the reaction mixture that was then passed through a
short path of acidic alumina before the composition was analyzed by NMR spectroscopy. The isolation of
pure product was carried out via column chromatography over silica gel (100-200 mesh) using ethyl

acetate/pentane (10 : 90) mixture as eluent.

2-methyl-1-phenylpropan-1-ol 8a: Prepared by following the general experimental procedure with:
OH 1 (4.95 mg, 2.0 mol%), 1-phenylpropan-1-ol 7a (68.1 mg, 0.5 mmol), NaO'Bu (96.1 mg,

1 mmol), toluene (0.8 mL), CO (5 bar), H, (15 bar) and reaction time: 24 h. Yield was
determined by 'H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an internal

standard (Omesitylene(standard) = 7.05 (S, 3H), Sproduct = 4.54 (d, 1H)). The spectral data are in agreement with

the reported literature.’

'H NMR (400 MHz, CDCls, 298 K) & = 7.20-7.29 (m, 5H, ArCH), 4.29 (d, 1H, J = 6.87 Hz, CH), 1.85-1.93 (m,

1H, CH), 1.78 (brs, 1H, OH), 0.93 (d, 3H, J = 6.67 Hz, CHs), 0.73 (d, 3H, J =6.81 Hz, CHs).

13C{*H}-NMR (101 MHz, CDCI3, 298 K) 6 =143.78 (Car), 128.32 (CHar), 127.55 (CHar), 126.70 (CHa/), 80.19

(CH), 35.40 (CH), 19.14 (CHs), 18.37 (CHs).

Isolated yield: 77%.

2-methyl-1-(p-tolyl)propan-1-ol 8b: Prepared by following the general experimental procedure with:
OH 1 (4.95mg, 2.0 mol%), 1-(p-tolyl)propan-1-ol 7b (75.1 mg, 0.5 mmol), NaO'Bu

(96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H, (15 bar) and reaction time: 24 h.

Yield was determined by *H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as

an internal standard (Omesitylene(standard) = 7.07 (s, 3H), Oproduct = 4.53 (d, 1H)).The spectral data are in

agreement with the reported literature.’
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'H NMR (400 MHz, CDCls, 298 K) 6 =7.22 (d, 2H, ArCH), 7.17 (d, 2H, ArCH), 4.34 (d, 1H, J = 6.99 Hz, CH),
2.37 (s, 3H, CH3), 1.92-2.01 (m, 1H, CH), 1.78 (br s, 1H, OH), 1.02 (d, 3H, J = 6.65 Hz, CH3), 0.81 (d, 3H, J =
6.80 Hz, CH3).

13C{*H}-NMR (101 MHz, CDCI3, 298 K) & =140.81 (Car), 137.16 (Car), 129.00 (CHar), 126.62 (CHa/), 80.09
(CH), 35.34 (CH), 21.25 (CHs), 19.14 (CHs), 18.50 (CHs).

Isolated yield: 63%.

2-methyl-1,2,3,4-tetrahydronaphthalen-1-ol 8c: Prepared by following the general experimental
OH procedure with: 1 (4.95 mg, 2.0 mol%), 1,2,3,4-tetrahydronaphthalen-1-ol 7c (74.1 mg,

0.5 mmol), NaO'Bu (96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H, (15 bar) and

reaction time: 36 h. Yield was determined by H NMR spectrum using mesitylene

(43.2 mg, 0.36 mmol) as an internal standard (Owmesitylene(standard) = 6.98 (s, 3H), Sproquct = 4.72 (d, 1H),

Sproduct = 4.49 (d, 1H)). The spectral data are in agreement with the reported literature.*’- 8

25



8. Standard procedure and reaction optimization for
catalytic B-dimethylation of 1-phenylethanol

Mn-MACHO-"Pr 1 (4.95 mg, 2 mol%) and NaO'Bu were measured into a glass inlet equipped with a stirring
bar inside a glovebox. The glass inlet was closed with a septum and transferred into the bottom part of
the 10 mL steel autoclave, where it was opened under a stream of argon. After sealing, the autoclave was
evacuated and purged with argon three times. Secondary alcohol (0.5 mmol) and toluene (0.8 mL) were
added at room temperature through a valve under argon. The autoclave was sealed, pressurized with CO
and H; and heated to 150 °C temperature. After the certain reaction time, the autoclave was cooled to
room temperature and slowly vented while stirring continued. Mesitylene was added as an internal
standard to the reaction mixture that was then passed through a short path of acidic alumina before the

composition was analyzed by NMR spectroscopy.

1/NaOBu
OH toluene, 150 °C, OH OH
t
+ CO + H, > +
-2H,0
7d 8a 7a

Table S2: Optimization reactions for p—methylation of 7d using 1.

Entry CO (bar) H; (bar) Base (equiv.) Time (h) Conv. (%)* Yield (%)

(8a: 7a)
1 5 15 NaOBu (2) 24 >99 40 (73:27)
2 5 15 NaO'Bu (4) 24 >99 64 (73:27)
3 5 15 NaO'Bu (4) 36 >99 57 (100:0)
4 8 24 NaO'Bu (4) 36 >99 78 (100:0)

9. Standard procedure for catalytic (-dimethylation of
secondary alcohols

Mn-MACHO-Pr 1 (4.95 mg, 2 mol%) and NaO'Bu (192.2 mg, 2 mmol) were measured into a glass inlet
equipped with a stirring bar inside a glovebox. The glass inlet was closed with a septum and transferred
into the bottom part of the 10 mL steel autoclave, where it was opened under a stream of argon. After
sealing, the autoclave was evacuated and purged with argon three times. Secondary alcohol (0.5 mmol)

and toluene (0.8 mL) were added at room temperature through a valve under argon. The autoclave was
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sealed, pressurized with CO (8 bar) and H; (24 bar) and heated to 150 °C temperature. After 36 h, the
autoclave was cooled to room temperature and slowly vented while stirring continued. Mesitylene was
added as an internal standard to the reaction mixture that was then passed through a short path of acidic
alumina before the composition was analyzed by NMR spectroscopy. The isolation of pure product was
carried out using column chromatography over silica gel (100-200 mesh) using ethyl acetate/pentane

(10 : 90) mixture as eluent.

2-methyl-1-phenylpropan-1-ol 8a: Prepared by following the general experimental procedure with:
1(4.95 mg, 2.0 mol%), 1-phenylethanol 7d (61.1 mg, 0.5 mmol), NaOBu (192.2 mg, 2 mmol), toluene
OH (0.8 mL), CO (8 bar), Hz (24 bar) and reaction time: 36 h. Yield was determined by *H NMR

spectrum using mesitylene (43.2 mg, 0.36 mmol) as an internal standard (Swmesitylene(standard)
=7.11(s, 3H), Sproduct = 4.60 (d, 1H)). The spectral data are in agreement with the reported

literature.’

'H NMR (400 MHz, CDCls, 298 K) 6 = 7.20-7.29 (m, 5H, ArCH), 4.29 (d, 1H, J = 6.87 Hz, CH), 1.85-1.93 (m,

1H, CH), 1.78 (brs, 1H, OH), 0.93 (d, 3H, J = 6.67 Hz, CHs), 0.73 (d, 3H, J =6.81 Hz, CHs).

13C{*H}-NMR (101 MHz, CDCI3, 298 K) 6 =143.78 (Car), 128.32 (CHar), 127.55 (CHar), 126.70 (CHa/), 80.19

(CH), 35.40 (CH), 19.14 (CHs), 18.37 (CH3).

Isolated yield: 70%.

2-methyl-1-(naphthalen-2-yl)propan-1-ol 8d: Prepared by following the general experimental procedure
OH with: 1 (4.95 mg, 2.0 mol%), 1-(naphthalen-2-yl)ethanol 7e (86.1 mg, 0.5 mmol),

OO NaO'Bu (192.2 mg, 2 mmol), toluene (0.8 mL), CO (8 bar), H, (24 bar) and reaction

time: 36 h. Yield was determined by *H NMR spectrum using mesitylene (43.2 mg,

0.36 mmol) as an internal standard (Smesitylene(standard) = 7.11 (S, 3H), Sproduct = 4.60 (d, 1H)). The spectral data

are in agreement with the reported literature.’®

1H NMR (300 MHz, CDCls, 298 K) & = 7.75-7.85 (m, 3H, ArCH), 7.75 (br. s, 1H, ArCH), 7.45-7.50 (m, 3H,

ArCH), 4.54 (d, 1H, J = 6.84 Hz, CH), 2.00-2.17 (m, 1H, CH), 1.90 (br. s, 1H, OH), 1.05 (d, 3H, J = 6.69 Hz,

CHs), 0.84 (d, 3H, J = 6.80 Hz. CHs).

13C{*H}-NMR (75 MHz, CDCI3, 298 K) & = 141.24 (Car), 133.29 (Car), 133.08 (Car), 128.09 (CHa/), 128.06

(CHar), 127.79 (CHar), 126.19 (CHar), 125.87 (CHar), 125.54 (CHar), 124.76 (CHar), 80.30 (CH), 35.34 (CH),

19.29 (CHs), 18.38 (CHs).

Isolated yield: 48%.
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10. Standard procedure for catalytic [B-methylation of
aliphatic alcohols

Mn-MACHO-Pr 1 (4.95 mg, 2 mol%) and NaO'Bu (96.1 mg, 1 mmol) were measured into a glass inlet
equipped with a stirring bar inside a glovebox. The glass inlet was closed with a septum and transferred
into the bottom part of the 10 mL steel autoclave, where it was opened under a stream of argon. After
sealing, the autoclave was purged with argon three times. Aliphatic alcohol (0.5 mmol) and toluene
(0.8 mL) were added at room temperature through a valve under argon. The autoclave was sealed,
pressurized with CO (5 bar) and H; (15 bar) and heated to 150 °C temperature. After the certain reaction
time, the autoclave was cooled to room temperature and slowly vented while stirring continued.
Mesitylene was added as an internal standard to the reaction mixture that was then passed through a
short path of acidic alumina before the composition was analyzed by NMR spectroscopy. The isolation of
pure product was carried out using column chromatography over silica gel (100-200 mesh) using ethyl

acetate/pentane (10 : 90) mixture as eluent.

2-methylpropan-1-ol 10a: Prepared by following the general experimental procedure with: 1 (4.95 mg,

YOH 2.0 mol%), ethanol 9a (23.0 mg, 0.5 mmol), NaO'Bu (192.2 mg, 2 mmol), toluene (1.0 mL),
CO (8 bar), H, (24 bar) and reaction time: 36 h. Yield was determined by *H NMR spectrum

using mesitylene (43.2 mg, 0.36 mmol) as an internal standard (Swmesitylene(standard) = 6.69 (s, 3H), Sproduct = 3.45

(d, 2H)). The spectral data are in agreement with the reported literature.’®

H NMR (400 MHz, CDCls, 298 K) & = 3.49 (d, 2H, J = 6.47 Hz, CH,), 1.82-1.92 (m, 1H, CH), 1.53 (br. s, 1H,

OH), 1.04 (d, 6H, CH).

2-methylpropan-1-ol 10a: Prepared by following the general experimental procedure with: 1 (4.95 mg,

\(\OH 2.0 mol%), 1-propanol 9b (30.0 mg, 0.5 mmol), NaO'Bu (96.1 mg, 1 mmol), toluene (0.8 mL),
CO (5 bar), H, (15 bar) and reaction time: 36 h. Yield was determined by *H NMR spectrum

using mesitylene (43.2 mg, 0.36 mmol) as an internal standard (Swmesitylene(standard) = 7.07 (S, 3H), Sproduct = 1.17

(d, 3H)). The spectral data are in agreement with the reported literature.?

'H NMR (400 MHz, CDCls, 298 K) & =3.49 (d, 2H, J = 6.47 Hz, CH,), 1.82-1.92 (m, 1H, CH), 1.53 (br. s, 1H,

OH), 1.04 (d, 6H, CHs).

2-methylbutan-1-ol 10b: Prepared by following the general experimental procedure with: 1 (4.95 mg,
/W/\OH 2.0 mol%), 1-butanol 9¢ (37.1 mg, 0.5 mmol), NaO'Bu (96.1 mg, 1 mmol), toluene
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(0.8 mL), CO (5 bar), Hz (15 bar) and reaction time: 36 h. Yield was determined by *H NMR spectrum using
mesitylene (43.2 mg, 0.36 mmol) as an internal standard (Owmesitylene(standard) = 7.08 (s, 3H), Sproduct = 3.62-3.75
(ddd, 2H)). The spectral data are in agreement with the reported literature.?®

'H NMR (400 MHz, CDCls, 298 K) & = 3.37-3.51 (ddd, 2H, J = 6.15, 10.50, 37.05 Hz, CH,), 1.79 (br s, 1H, OH),
1.38-1.58 (m, 2H, CH,), 1.04-1.18 (m, 1H, CH), 0.87-0.91 (m, 6H, CHs).

13C{*H}-NMR (101 MHz, CDCl3, 298 K) & = 68.11 (CH,), 37.46 (CH), 25.86 (CH.), 16.21 (CHs), 11.43 (CHs).
Isolated yield: 66%

2-methylpentan-1-ol 10c: Prepared by following the general experimental procedure with: 1 (4.95 mg,

/\)\/OH 2.0 mol%), 1-pentanol 9d (44.1 mg, 0.5 mmol), NaO'Bu (96.1 mg, 1 mmol), toluene
(0.8 mL), CO (5 bar), Hz (15 bar) and reaction time: 36 h. Yield was determined by

'H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an internal standard (&mesitylene(standard) = 7.08

(s, 3H), Sproduct = 3.60-3.74 (ddd, 2H)).The spectral data are in agreement with the reported literature.?

'H NMR (400 MHz, CDCls, 298 K) 6 = 3.34-3.49 (m, 2H, CH.), 1.91 (br s, 1H, OH), 1.56-1.64 (m, 1H, OH),

1.21-1.40 (m, 3H, CH, & CH), 1.03-1.12 (m, 1H, CH), 0.86-0.89 (m, 6H, CH3).

BC{*H}-NMR (101 MHz, CDCls, 298 K) & = 68.40 (CH,), 35.57 (CH), 35.52 (CH,), 20.16 (CH,), 16.63 (CHs),

14.41 (CHs).

Isolated yield: 71%

2-methylhexan-1-ol 10d: Prepared by following the general experimental procedure with: 1 (4.95 mg,
WOH 2.0 mol%), 1-hexanol 9e (51.1 mg, 0.5 mmol), NaO'Bu (96.1 mg, 1 mmol), toluene

(0.8 mL), CO (5 bar), H; (15 bar) and reaction time: 36 h. Yield was determined by
'H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an internal standard (Smesitylene(standard) = 7.05
(s, 3H), Sproduct = 3.58-3.72 (ddd, 2H)). The spectral data are in agreement with the reported literature.?
'H NMR (400 MHz, CDCls;, 298 K) 6 = 3.54-3.68 (ddd, 2H, J = 6.26, 10.34, 38.20 Hz, CH,), 1.74-1.80 (m, 1H,
CH), 1.51-1.56 (m, 6H, CH, & CH), 1.25-1.34 (m, 1H, OH), 1.11-1.15 (m, 6H, CHs).

2-methyloctan-1-ol 10e: Prepared by following the general experimental procedure with: 1 (4.95 mg,

WOH 2.0 mol%), 1-octanol 9f (65.1 mg, 0.5 mmol), NaOBu (96.1 mg, 1 mmol),

toluene (0.8 mL), CO (5 bar), H> (15 bar) and reaction time: 36 h. Yield was
determined by 'H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an internal standard
(OMesitylene(standard) = 7.01 (s, 3H), Sproduct = 3.55-3.66 (ddd, 2H)).The spectral data are in agreement with the

reported literature.?
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'H NMR (400 MHz, CDCls, 298 K) & = 3.39-3.53 (ddd, 2H, J = 6.16, 10.47, 37.8 Hz, CH,), 1.55-1.65 (m, 1H,
CH), 1.42 (m, 1H, OH), 1.08 -1.27 (m, 10H, CH-) 0.91 (d, 3H, J = 6.72 Hz, CH3), 0.88 (t, 3H, J = 6.78 Hz, CH3).
13C{*H}-NMR (101 MHz, CDCl3, 298 K) & = 68.60 (CH,), 35.92 (CH), 33.30 (CH,), 32.01 (CH,), 29.76 (CH>),
27.09 (CHy), 22.82 (CH,), 16.74 (CHs), 14.26 (CHs).

Isolated yield: 73%.

2-methyldecan-1-ol 10f: Prepared by following the general experimental procedure with: 1 (4.95 mg,

/\/\/\/\(\OH 2.0 mol%), 1-decanol 9g (79.1 mg, 0.5 mmol), NaO'Bu (96.1 mg,
1 mmol), toluene (0.8 mL), CO (5 bar), H, (15 bar) and reaction time:

24 h. Yield was determined by *H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an internal

standard (&mesitylene(standard) = 7.10 (S, 3H), Sproduct = 3.61-3.76 (ddd, 2H)). The spectral data are in agreement

with the reported literature.?

'H NMR (400 MHz, CDCls;, 298 K) 6 = 3.39-3.52 (ddd, 2H, J = 6.14, 10.45, 38.25 Hz, CH,), 1.55-1.62 (m, 1H,

CH), 1.26-1.30 (m, 14H, CH>), 1.06-1.12 (m, 1H, OH), 0.86-0.92 (m, 6H, CHs).

BC{*H}-NMR (101 MHz, CDCls, 298 K) & = 68.57 (CH,), 35.91 (CH), 33.29 (CH,), 32.04 (CH,), 30.09 (CH,),

29.74 (CHa), 29.47 (CHy), 27.12 (CH.), 22.81 (CHy), 16.72 (CHs), 14.25 (CHs).
Isolated yield: 73%.

2-methylundec-10-en-1-ol 10g: Prepared by following the general experimental procedure with: 1

WOH (4.95 mg, 2.0 mol%), Undec-10-en-1-ol 9h (85.2 mg, 0.5 mmol),
NaO'Bu (96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H, (15 bar)

and reaction time: 24 h. Yield was determined by 'HNMR spectrum using mesitylene (43.2 mg,

0.36 mmol) as an internal standard (Swesitylene(standard) = 7.03 (S, 3H), Sproduct = 3.57-3.70 (ddd, 2H)). The

spectral data are in agreement with the reported literature.?

'H NMR (400 MHz, CDCls, 298 K) 6 = 5.76-5.86 (m, 1H, CH), 4.91-5.01 (m, 2H, CH,), 3.39-3.52 (ddd, 2H, J =

6.15, 10.42, 37.27 Hz, CH,), 2.01-2.06 (dd, 2H, J = 6.87, 14.22 Hz, CH-), 1.56-1.62 (m, 1H, CH), 1.28-1.39

(m, 12H, CH-), 1.06-1.13 (m, 1H, OH), 0.91 (d, 3H, J = 6.69 Hz, CHs).

BC{*H}-NMR (101 MHz, CDCls, 298 K) & = 139.37 (CH), 114.25 (CH.), 68.57 (CH,), 35.91 (CH), 33.94 (CH.),

33.27 (CH,), 30.01 (CH,), 29.60 (CH,), 29.26 (CH,), 29.06 (CH.), 27.10 (CH,), 16.72 (CH3).
Isolated yield: 61%.

2-methyldodecan-1-ol 10h: Prepared by following the general experimental procedure with: 1 (4.95 mg,

/\/\/\/\/\(\OH 2.0 mol%), dodecan-1-ol 9i (93.2mg, 0.5 mmol), NaO'Bu
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(96.1 mg, 1 mmol), toluene (0.8 mL), CO (5 bar), H, (15 bar) and reaction time: 24 h. Yield was determined
by *H NMR spectrum using mesitylene (43.2 mg, 0.36 mmol) as an internal standard (Smesitylene(standard) =
6.99 (s, 3H), Sproduct = 3.53-3.68 (ddd, 2H)). The spectral data are in agreement with the reported
literature.®®

'H NMR (400 MHz, CDCl3, 298 K) & = 3.32-3.46 (ddd, 2H, J = 6.08, 10.41, 38.64 Hz, CH), 1.48-1.57 (m, 1H,
CH), 1.19-1.23 (m, 18H, CH), 1.01-1.04 (m, 1H, OH), 0.79-0.85 (m, 6H, CHs).

B3C{*H}-NMR (101 MHz, CDCls, 298 K) & = 68.56 (CH,), 35.90 (CH), 33.28 (CH>), 32.06 (CH.), 30.09 (CH,),
29.81 (CHa), 29.80 (CH2), 29.78 (CH,), 29.76 (CH,), 29.49 (CHa), 27.12 (CH2), 22.83 (CH,), 16.72 (CHs), 14.26
(CHs).

Isolated yield: 85%.

2-methyloctadecan-1-ol 10i: Prepared by following the general experimental procedure with: 1 (4.95 mg,
/\/\/\/\/\/\/\/\(\OH 2.0mol%), octadecan-1-ol 9j (135.3 mg,
0.5 mmol), NaO'Bu (96.1 mg, 1 mmol), toluene
(0.8 mL), CO (5 bar), Hz (15 bar) and reaction time: 24 h. Yield was determined by *H NMR spectrum using
mesitylene (43.2 mg, 0.36 mmol) as an internal standard (Smesitylene(standard) = 7.0 (S, 3H), Sproduct = 3.55-3.68
(ddd, 2H)).
'H NMR (400 MHz, CDCls, 298 K) & = 3.32-3.46 (ddd, 2H, J = 6.11, 10.45, 38.34, CH), 1.48-1.58 (m, 1H, CH),
1.19-1.23 (m, 30H, CH2), 0.99-1.08 (m, 1H, OH), 0.79-0.85 (m, 6H, CHs).
1B3C{*H}-NMR (101 MHz, CDCls, 298 K) & = 68.58 (CH,), 35.91 (CH), 33.29 (CH,), 32.08 (CH>), 30.10 (CH>),
29.85 (CHa), 29.84 (CH,), 29.81 (CH2), 29.52 (CH2), 27.13 (CH,), 22.85 (CH,), 16.73 (CHs), 14.28 (CHs).
Isolated yield: 71%.
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11. Postulated Catalytic Sequence
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13. NMR spectra of isolated products
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Figure S15: *H NMR (400 MHz, CDCls, 298 K) spectrum of 2-phenylpropan-1-ol 3a.
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Figure S16: 13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-phenylpropan-1-ol 3a.
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Figure S17: *H NMR (400 MHz, CDCl3s, 298 K) spectrum of 2-(p-tolyl)propan-1-ol 3b.
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Figure S18: 13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-(p-tolyl)propan-1-ol 3b.
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Figure S19: 'H NMR (400 MHz, CDCls, 298 K) spectrum of 2-(4-isobutylphenyl)ethanol 3c.
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Figure S20: 3C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-(4-isobutylphenyl)ethanol 3c.
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Figure S21: 'H NMR (400 MHz, CDCls, 298 K) spectrum of 2-(4-methoxyphenyl)propan-1-ol 3d.
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Figure S22: 13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-(4-methoxyphenyl)propan-1-ol 3d.

36



oY~ oNnoO o Moy oMM oo
EEDL DL N0 ol a i =
M ROM W0 0 WD WD mmom 011l e —
A ) e S Ny |~

-
—
|
f

b T e T T T
=1 @ 0o =1 @
& =] S~ =] o W
- o (R - (=
T T T T T T T T T T T T T T T T T T T T T T
10,5 10.0 9.5 9.0 8.3 8.0 75 7.0 6.9 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 0.5

Figure S23: IH NMR (400 MHz, CDClIs, 298 K) spectrum of 2-(3-methoxyphenyl)propan-1-ol 3e.
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Figure S24:13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-(3-methoxyphenyl)propan-1-ol 3e.
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Figure S25: 'H NMR (400 MHz, CD30D, 298 K) spectrum of 2-(6-methoxynaphthalen-2-yl)propan-1-ol 3f.

6E8T—

T9'Er—
59'55—

S0'69—

05'80T—

SSBITA,
15921
m.&ﬂW
88421
20°0ET
bSOET
26'FET
paopT<

TLBST—

210 200 190 180 170 160 150 140 130 120 110 100 90

20

Figure S26: 13C{*H} NMR (101 MHz, CDz0D, 298 K) spectrum of 2-(6-methoxynaphthalen-2-yl)propan-1-ol 3f.
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Figure S27:'H NMR (400 MHz, CDCls, 298 K) spectrum of 2-(4-chlorophenyl)propan-1-ol 3g.
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Figure S28:13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-(4-chlorophenyl)propan-1-ol 3g.
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Figure S29: 'H NMR (400 MHz, CDCl3s, 298 K) spectrum of 2-(4-fluorophenyl)propan-1-ol 3h.
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Figure S30::*C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-(4-fluorophenyl)propan-1-ol 3h.
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Figure S31:H NMR (400 MHz, CDCls, 298 K) spectrum of 2-(thiophen-2-yl)propan-1-ol 3i.
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Figure S32: 13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-(thiophen-2-yl)propan-1-ol 3i.
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Figure S33: 'H NMR (400 MHz, CDClIs, 298 K) spectrum of 2-methyl-3-phenylpropan-1-ol 3j.
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Figure S34:13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-methyl-3-phenylpropan-1-ol 3j.
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Figure S35: 'H NMR (400 MHz, CDCl3s, 298 K) spectrum of 3-(4-chlorophenyl)-2-methylpropan-1-ol 3k.
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Figure S36: 13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 3-(4-chlorophenyl)-2-methylpropan-1-ol 3k.
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Figure S37: 'H NMR (400 MHz, CDCls, 298 K) spectrum of 2-methyl-4-phenylbutan-1-ol 3l.
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Figure S38: 13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-methyl-4-phenylbutan-1-ol 3l.
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Figure S39:'H NMR (400 MHz, CDCl3, 298 K) spectrum of 2-methyl-5-phenylpentan-1-ol 3m.

99'9T—

9062~
2626
ZE'SE
o£'9e

ZF'B9—

T8'52T~_
Zb'ael
B

SLTPT—

45

60 50 40 30 20 10

70

a0 80

CH

100
f1 (ppm)

T T T T
180 170 160 150 140 130 120 110

100

200

Figure S40:33C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-methyl-5-phenylpentan-1-ol 3m.



=+ 0o WnoT O MW O MW O W T OO oM
KRR FETT LM MAMNLLN hinhmcio o
MORPS Mmemmmem e e el oel A =00
=4 e L e I

L L I | I VAYY SO

o s T T
& o o 0 T v o
o o © I I &
~om %] ™~ m (=)} m

T
10.0 9.5 8.0 8.5 8.0 75 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

o .
o Mmoo m 00w Mmoo ey —
o @ @ in qmHoatg M
=+ IR o0 WM g g~ W
g BEY B gunaagh 8

(o SRATEE

OH

T T T T T T T T T T T
200 190 180 170 160 150 140 130 120 110 100 a0 a0 70 60

Figure S42: 13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-methyl-8-phenyloctan-1-ol 3n.
46



17
17
15
14
7
7
%
7
b5
74
74
b
b2
7
)
pe)
7
F
69
68
68
&7
&7
&
&
&4
)
=
>
21
S
=
15
0.65
0.65
0.64
.63

|
|
f
?

T T 7 T t
fu) o [s] W o ~ o
Q @ g =1 =] Q @ =1
(a1} o — (3} [ o [32]
9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 Lo 0.5 0.0

f1 {ppm)
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Figure S46: 13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-methyl-1-phenylpropan-1-ol 8a.
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Figure S48: 13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-methyl-1-(p-tolyl)propan-1-ol 8b.
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Figure S49: 'H NMR (400 MHz, CDCl3s, 298 K) spectrum of 2-methyl-1-(naphthalen-2-yl)propan-1-ol 8d.
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Figure S52: 13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-methylbutan-1-ol 10b.

51



98'0,
20
83'04
83'04
652'0
62'01
£0'TH
50T
90T
90T+
0T
80'T
60'T
o't
21
€21
e
Er
Free
@1
821
62T
62T
0eT
121
=T
=T
g1
g1
g1
bET
be'T
ST
o't
ESg
oe'T
£
€1
8e'T
6E'T
or'T
or'T
or'T
95T
85T
65T
091
z1
z1
161
pee]
s
seE
a'E
e
e
geE
e
o'
boE
SHE
SHE
e
e
e
e
e
evc)

OH

Fooz

2.0 1.5

2.5

5.0 4.5 4.0 35

5.5

a.0 75 7.0 6.5

8.5

9.5

10.0

Figure S53: 'H NMR (400 MHz, CDCls, 298 K) spectrum of 2-methylpentan-1-ol 10c.
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Figure S56: 13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-methyloctan-1-ol 10e.
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Figure S57: *H NMR (400 MHz, CDCls, 298 K) spectrum of 2-methyldecan-1-ol 10f.
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Figure S58: 13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-methyldecan-1-ol 10f.
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Figure S59: IH NMR (400 MHz, CDCls, 298 K) spectrum of 2-methylundec-10-en-1-ol 10g.
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Figure S60: 3C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-methylundec-10-en-1-ol 10g.
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Figure S61: *H NMR (400 MHz, CDCls, 298 K) spectrum of 2-methyldodecan-1-ol 10h.
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Figure S62: 13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-methyldodecan-1-ol 10h.
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Figure S63: 'H NMR (400 MHz, CDCls, 298 K) spectrum of 2-methyloctadecan-1-ol 10i.
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Figure S64: 13C{*H} NMR (101 MHz, CDCls, 298 K) spectrum of 2-methyloctadecan-1-ol 10i.
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Figure S65: 'H NMR (400 MHz, CDCls, 298 K) reaction mixture spectrum for table S1, entry 1.
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Figure S66: *H NMR (400 MHz, CDCl3s, 298 K) reaction mixture spectrum for table S1, entry 2.
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Figure S67: *H NMR (400 MHz, CDClIs, 298 K) reaction mixture spectrum for table S1, entry 3.
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Figure S68: 'H NMR (400 MHz, CDCls, 298 K) reaction mixture spectrum for table S1, entry 4.
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Figure S69: 'H NMR (400 MHz, CDCls, 298 K) reaction mixture spectrum for table S1, entry 5.
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Figure S70: *H NMR (400 MHz, CDCl3s, 298 K) reaction mixture spectrum for table S1, entry 6.
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Figure S71: 'H NMR (400 MHz, CDCl3, 298 K) reaction mixture spectrum for table S1, entry 7.
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Figure S72: *H NMR (400 MHz, CDCl3s, 298 K) reaction mixture spectrum for table S1, entry 8.
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Figure S73: 'H NMR (400 MHz, CDCls, 298 K) reaction mixture spectrum for table S1, entry 9.
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Figure S75: 'H NMR (400 MHz, CDCls, 298 K) reaction mixture spectrum for table S1, entry 11.
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Figure S76: *H NMR (400 MHz, CDCl3s, 298 K) reaction mixture spectrum of 2-(p-tolyl)propan-1-ol 3b.
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Figure S79: 'H NMR (400 MHz, CDsOD, 298 K) reaction mixture spectrum of 2-(6-methoxynaphthalen-2-
yl)propan-1-ol 3f.
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Figure S80: *H NMR (400 MHz, CDCl3s, 298 K) reaction mixture spectrum of 2-(4-chlorophenyl)propan-1-ol 3g.
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Figure S82: 'H NMR (400 MHz, CDCls, 298 K) reaction mixture spectrum of 2-methyl-3-phenylpropan-1-ol 3j.

66



7.02

92%
» Mmesitylene

v Mesitylene

Jt CLL_i_/\LJ

276=

T T
0 0.5 0.0

-

T T T
25 20 15

215—

T T T T T T T T
7.0 6.5 6.0 5.0 45 4.0 3.5 3.0

T T T T T T
).0 9.5 9.0 85 8.0 7.5

Figure S83: 'H NMR (400 MHz, CDCl3, 298 K) reaction mixture spectrum of3-(4-chlorophenyl)-2-methylpropan-
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