Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Information

Site-Selectivity and Mechanism of Pd-Catalyzed C(sp²)–H Arylation of Simple Arenes

Daeun Kim,^{1,2} Geunho Choi,^{1,2} Wonjeong Kim,² Dongwook Kim,³ Youn K. Kang,⁴ and Soon Hyeok Hong^{1,*}

¹Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea

²Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea

³Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea

⁴Department of Chemistry and Energy Engineering, Sangmyung University, Seoul 03016, Korea

E-mail: Soon Hyeok Hong (soonhyeok.hong@kaist.ac.kr)

Table of contents

- 1. General Information (S2)
- 2. Preparation of Biaryl Authentic Samples (S3)
- 3. Optimization of Reaction Conditions (S4)
- 4. General Procedure for the C–H Arylation Reaction (S8)
- 5. Mechanistic Studies (S9)
- 6. Characterization Data (S32)
- 7. Calculation of Proton Affinities of Arenes (S48)
- 8. Calculation of Reductive Elimination Process (S53)
- 9. Cartesian Coordinates of Optimized Geometry (S56)
- 10. References (S109)
- 11. NMR Spectra (S112)
- 12. X-ray Crystallographic Data (S206)

1. General Information

Unless otherwise noted, all reactions were performed under inert conditions. Benzene, ether, pentane and diethyl ether were dried using a PureSolv solvent purification system. All chemicals were purchased from commercial sources (Sigma-Aldrich, Alfa Aesar, TCI, or Strem) and used without further purification. Reactions were monitored by thin-layer chromatography (TLC) on EMD Silica Gel 60 F254 plates, and visualized either using UV light (254 nm) or by staining with potassium permanganate and heating. Nuclear magnetic resonance (NMR) spectra were recorded in CDCl₃ and CD₃OD on a Bruker DPX-300 (300 MHz) spectrometer, Varian 400 and 500 NMR (400 and 500 MHz), Bruker AVANCE 300 (300 MHz), Bruker AVANCE 400 (400 MHz), or Bruker AVANCE III HD (400 MHz), and the residual solvent signal was used as a reference. Chemical shifts are reported in ppm and coupling constants are given in Hz. Gas chromatography (GC) was carried out using a 7890A or 7890B GC system (Agilent Technologies) equipped with an HP-5 column and a flame ionization detector (FID). Gas chromatography-mass spectrometry (GC-MS) was carried out using 5977B GC/MSD system (Agilent Technologies) equipped with an HP-5MS column. Elemental analysis was conducted at KAIST Analysis Center for Research Advancement (KARA) using a Flash 1112 elemental analyzer. High-resolution mass spectrometry (HRMS) was performed at the Organic Chemistry Research Center in Sogang University using the ESI method and Korea Basic Science Institute (KBSI) for EI method. X-ray diffraction data of 4b was collected on a Bruker D8 QUEST coated with Paraton-N oil under a stream of N₂ (g) at 173 K by using APEX III software.

2. Preparation of Biaryl Authentic Samples (3aa-3am, 3bb-3fb, 3hb-3ob, 3ij, 3kj)

Authentic samples were prepared following slightly modified literature procedure.¹ To a stirred solution of arylboronic acid (0.75 mmol, 1.5 equiv), iPr_2NH (140 µL, 1.0 mmol, 2.0 equiv), Pd(OAc)₂ (1.1 mg, 0.0050 mmol, 1.0 mol %) and H₂O (1.0 mL) was added aryl bromide (0.50 mmol, 1.0 equiv) under air. The reaction was vigorously stirred at 100 °C for 1 h. The reaction mixture was then cooled and diluted with EtOAc (10 mL), washed with water (3 x 10 mL), dried (anhydrous Na₂SO₄), filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography (silica gel, hexanes/EtOAc gradient elution) to afford the authentic samples of biaryls.

Biaryls **3kj** were synthesized by literature procedures.²

3. Optimization of Reaction Conditions

Table S1. Evaluation of Catalytic Condition for the Direct C-H Arylation of Ethoxybenzene^a

Entry	[Pd] (mol %)	Ligand (mol %)	Temperature (°C)	Yield (%)	Selectivity (o / m / p)	% Selectivity (o / m / p)
1	Pd(OAc) ₂ (3)	PCy ₃ (3)	120	71	1 / 8.2 / 2.9	8 / 68 / 24
2	Pd(OAc) ₂ (3)	PPh ₃ (3)	120	48	1 / 8.5 / 2.8	8 / 69 / 23
3	Pd(OAc) ₂ (3)	P(C ₆ F ₅) ₃ (3)	120	14	1 / 6.0 / 2.0	11 / 67 / 22
4	Pd(OAc) ₂ (3)	1,10-phen (3)	120	0	-	-
5	Pd(PPh ₃) ₄ (3)	-	120	54	1 / 5.3 / 1.9	12 / 65 / 23
6	$Pd(CO_2CF_3)_2(3)$	-	120	68	1 / 10.0 / 3.1	7 / 71 / 22
7	$Pd(PhCN)_2Cl_2(3)$	-	120	70	1 / 10.7 / 3.1	7 / 72 / 21
8	Pd(CH ₃ CN) ₄ (BF ₄) ₂ (3)	-	120	17	1 / 8.9 / 2.8	8 / 70 / 22
9	Pd(CH ₃ CN) ₂ Cl ₂ (3)	-	120	79	1 / 10.2 / 3.2	7 / 71 / 22
10	Pd(CH ₃ CN) ₂ Cl ₂ (3)	-	100	35	1 / 10.7 / 3.1	7 / 72 / 21
11	Pd(CH ₃ CN) ₂ Cl ₂ (3)	-	140	44	1 / 6.8 / 2.4	8 / 71 / 21
12	$Pd(CH_3CN)_2Cl_2(1)$	-	120	79	1 / 10.2 / 3.1	7 / 71 / 22
13	Pd(CH ₃ CN) ₂ Cl ₂ (10)	-	120	15	1 / 10.3 / 3.0	7 / 72 / 21
14^b	Pd(CH ₃ CN) ₂ Cl ₂ (3)	-	120	56	1 / 9.3 / 2.7	8 / 71 / 21

^{*a*}The total yield and regioselectivity (*ortho / meta / para*) were determined by GC analysis of the reaction mixture using dodecane as an internal standard. ^{*b*}With H₂O (2 equiv)

Table S2. Acid Screening^a

^{*a*}The total yield and regioselectivity (*ortho / meta / para*) were determined by GC analysis of the reaction mixture using dodecane as an internal standard.

Table S3. Base Screening^a

Ó ↓	\sim	Br	Pd(CH ₃ CN) ₂ PivOH (0	Cl ₂ (3 mol %)).3 equiv)	0		
1a 60 equiv		Base (2. DMA, 120 2a		5 equiv)) °C, 18 h	3aa		
	Entry	Base	Yield (%)	Selectivity (o / m / p)	% Selectivity (o / m / p)		
	1	K ₂ CO ₃	79	1 / 10.2 / 3.2	7 / 71 / 22		
	2	Na ₂ CO ₃	0	-	-		
	3	Rb ₂ CO ₃	75	1 / 5.7 / 2.9	10 / 59 / 31		
	4	Cs ₂ CO ₃	0	-	-		
	5	K ₃ PO ₄	1.3	1 / 0.7 / 0.8	40 / 30 / 30		
	6^b	NaOPiv	1.3	1 / 1.6 / 1.2	26 / 43 / 31		
	7	KOPiv	25	1 / 5.2 / 1.8	13 / 65 / 22		
	8^b	KOPiv	32	1 / 6.2 / 2.0	11 / 68 / 21		
	9^b	CsOPiv	4.3	1 / 1.4 / 1.8	31 / 45 /24		
	10	DABCO	0	-	-		
	11	Quinuclidine	0	-	-		
	12	TEA	0	-	-		

^{*a*}The total yield and regioselectivity (*ortho / meta / para*) were determined by GC analysis of the reaction mixture using dodecane as an internal standard. ^{*b*}Without PivOH.

Table S4. Solvent Screening^a

^aThe total yield and regioselectivity (*ortho / meta / para*) were determined by GC analysis of the reaction mixture using dodecane as an internal standard.

Scheme S1. Reaction with Acetophenone

Scheme S2. Reactions of Ethoxybenzene under the Stoichiometric Conditions

4. General Procedure for the C–H Arylation Reaction

 K_2CO_3 was dried at 120 °C in an oven overnight. Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with K_2CO_3 (2.5 equiv, 69 mg, 0.50 mmol), $Pd(CH_3CN)_2Cl_2$ (3.0 mol %, 1.6 mg, 0.0060 mmol), and pivalic acid (0.30 equiv, 6.1 mg, 0.060 mmol). Aryl halide (1.0 equiv, 0.20 mmol) was then added to the Schlenk tube in, followed by DMA (1.2 mL) and arene (60 equiv). The Schlenk tube was sealed and heated to 120 °C for 18 h. Upon completion of the reaction, the mixture was cooled down to room temperature. The crude mixture was filtered through Celite[®] and then analyzed by GC using dodecane as an internal standard and isolated by silica gel flash chromatography using hexane and EtOAc as eluent.

5. Mechanistic Studies

5.1. Comparison of the Reaction Rates

Reaction rates of various arenes are compared by obtaining the initial rates of the C–H arylation. Initial rates were analyzed by total yields combining all regioisomers. For accurate comparison of the reaction rates, all arene compounds (99+% purity) were purified by passing through a short pad of activated neutral alumina, and used in a glove box.

All reactions were conducted using the above general procedure with the following modification. Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with K_2CO_3 (2.5 equiv, 69 mg, 0.50 mmol), pivalic acid (0.30 equiv, 6.1 mg, 0.060 mmol, stock solution in DMA). Pd(CH₃CN)₂Cl₂ (3.0 mol %, 1.6 mg, 0.0060 mmol, stock solution in DMA) was then added to the Schlenk tube as a solution in DMA, followed by **2b** (28 µL, 0.2 mmol, 1.0 equiv), arene (6.0 equiv) and dodecane (0.044 mmol, 10 µL) as an internal standard. The amount of DMA was varied to maintain the concentration of [Pd] (4.6 mM) and substrate (154 mM). Each tube was sealed and heated to 120 °C. Aliquots of the reaction mixture were taken as indicated times and analyzed by GC. The same experiment was repeated two more times in each substrates and the average rate values were used to compare the reaction rates.

Table S5. Summary of the Comparison of the Reaction Rates of Various Arenes

R	F	NO ₂	CN	CF ₃	Н	Me	OEt
Reaction rate (mM/min)	1.1147	0.9066	0.8245	0.2329	0.4223	0.2295	0.1324
$k_{rel}{}^a$	2.6	2.2	1.9	1.3	1	0.54	0.31

 $^{a}k_{rel}$ = relative reaction rate vs $k_{(R=H)}$

5.2. Kinetic Isotope Effect (KIE) Experiments

The KIE was determined by comparing the initial reaction rates of the C–H arylation with benzene and benzene- d_6 . Both reactions were conducted using the above general procedure with the following modification. Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with K₂CO₃ (2.5 equiv, 69 mg, 0.50 mmol), Pd(CH₃CN)₂Cl₂ (3.0 mol %, 1.6 mg, 0.0060 mmol), and pivalic acid (0.30 equiv, 6.1 mg, 0.060 mmol). **2b** (28 µL, 0.2 mmol, 1.0 equiv, 91 mM) and dodecane (0.044 mmol, 10 µL) as an internal standard were then added to the Schlenk tube in, followed by DMA (1.2 mL) and benzene or benzene- d_6 (60 equiv, 1.0 mL, 12 mmol). Each tube was sealed and heated to 120 °C. Aliquots of the reaction mixture were taken every 5 min and analyzed by GC. The observed large primary KIE value (4.43) suggested that the C–H bond cleavage step of the arene is involved in the rate-limiting step.

Figure S1. Initial Rates of the C–H Arylation of Benzene and Benzene-d₆

 $KIE = k_H/k_D = 0.3506/0.0792 = 4.43$

5.3. Kinetic Data

As shown in Scheme 3b, to obtain more information about mechanism of the reaction, kinetic studies were conducted such as the order of [Pd], [ArBr], KOPiv and K₂CO₃. Each kinetic experiment was conducted using the general procedure with the following modification.

5.3.1. Order in [Pd]

The order in [Pd] was determined by obtaining the initial rates of the C–H arylation with benzene at differing concentrations of Pd(CH₃CN)₂Cl₂ precatalyst. Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with K₂CO₃ (2.5 equiv, 69 mg, 0.50 mmol), pivalic acid (0.30 equiv, 6.1 mg, 0.060 mmol, stock solution in DMA), **2b** (28 μ L, 0.2 mmol, 1.0 equiv, 94 mM), and dodecane (0.044 mmol, 10 μ L) as an internal standard. Different amount of Pd(CH₃CN)₂Cl₂ (stock solution in DMA) was then added to the Schlenk tube in, followed by DMA (1.2 mL) and benzene (60 equiv, 1.0 mL, 12 mmol). Each tube was sealed and heated to 120 °C. Aliquots of the reaction mixture were taken every 5 min and analyzed by GC. The same experiment was repeated two more times in each [Pd] concentrations and the average rate values were used.

Table S6. Results to Determine the Order of Pd(CH₃CN)₂Cl₂

Ender	An	Dete (m Mhain)		
Entry	mg	mmol	mM	Kate (mivi/min)
1	0.80	0.00308	1.402	0.1500
2	0.96	0.00370	1.682	0.1796
3	1.28	0.00493	2.243	0.2595
4	1.60	0.00617	2.803	0.3506
5	2.40	0.00925	4.205	0.4699

Figure S2. Initial Rates with Different Concentrations of Pd(CH₃CN)₂Cl₂

Figure S3. Plot of Initial Rates with Different Concentrations of Pd(CH₃CN)₂Cl₂

5.3.2. Order in [ArBr]

The order in [ArBr] was determined by obtaining the initial rate of the C–H arylation with benzene at differing concentrations of 1-bromo-3,5-dimethylbenzene **2b**. Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with K₂CO₃ (2.5 equiv, 69 mg, 0.50 mmol), pivalic acid (0.30 equiv, 6.1 mg, 0.060 mmol, stock solution in DMA), Pd(CH₃CN)₂Cl₂ (3.0 mol %, 1.6 mg, 0.0060 mmol), and dodecane (0.044 mmol, 10 μ L) as an internal standard. Different amount of **2b** was then added to the Schlenk tube in, followed by DMA (1.2 mL) and benzene (60 equiv, 1.0 mL, 12 mmol). Each tube was sealed and heated to 120 °C. Aliquots of the reaction mixture were taken every 5 min and analyzed by GC. The same experiment was repeated two more times in each [ArBr] concentrations and the average rate values were used.

Table S7.	Results to	Determine	the	Order	of 2b
-----------	------------	-----------	-----	-------	--------------

E. t.				
Entry	μL	mmol	mM	Rate (mM/min)
1	15	0.110	50.2	0.3495
2	20	0.147	66.9	0.3696
3	25	0.184	83.6	0.3354
4	28	0.206	93.7	0.3506
5	33	0.243	110	0.3283

Figure S4. Initial Rates of the C-H Arylation with Different Concentrations of 2b

Figure S5. Plot of Initial Rates with Different Concentrations of 2b

5.3.3. Dependence on KOPiv

The dependence on KOPiv was determined by obtaining the initial rate of the C–H arylation with benzene at differing amount of KOPiv. Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with K_2CO_3 (2.5 equiv, 69 mg, 0.50 mmol), $Pd(CH_3CN)_2Cl_2$ (3.0 mol %, 1.6 mg, 0.0060 mmol, stock solution in DMA), 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol, 1.0 equiv, 94 mM), and dodecane (0.044 mmol, 10 µL) as an internal standard. Different amount of KOPiv was the Schlenk tube in, followed by DMA (1.2 mL) and benzene (60 equiv, 1.0 mL, 12 mmol). Each tube was sealed and heated to 120 °C. Aliquots of the reaction mixture were taken every 5 min and analyzed by GC. The same experiment was repeated in each KOPiv equivalence and the average rate values were used.

E				
Entry	mg	mmol	equiv	Kate (mNI/min)
1	1.40	0.010	0.050	0.0587
2	2.80	0.020	0.10	0.3435
3	2.61	0.040	0.20	0.3551
4	11.2	0.080	0.40	0.2610
5	16.8	0.120	0.60	0.1027

Table S8. Results to Determine the Dependence of KOPiv

Figure S7. Plot of Initial Rates with Different Concentration of KOPiv

5.3.4. Dependence on K₂CO₃

The dependence on K_2CO_3 was determined by obtaining the initial rate of the C–H arylation with benzene at differing amount of K_2CO_3 . Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with KOPiv (0.30 equiv, 8.4 mg, 0.060 mmol), Pd(CH₃CN)₂Cl₂ (3.0 mol %, 1.6 mg, 0.0060 mmol, stock solution in DMA), 1-bromo-3,5-dimethylbenzene (**2b**, 0.20 mmol, 1.0 equiv, 94 mM), and dodecane (0.044 mmol, 10 µL) as an internal standard. Different amount of K₂CO₃ was the Schlenk tube in, followed by DMA (1.2 mL) and benzene (60 equiv, 1.0 mL, 12 mmol). Each tube was sealed and heated to 120 °C. Aliquots of the reaction mixture were taken every 5 min and analyzed by GC. The same experiment was repeated two more times in each equivalence of K₂CO₃ and the average rate values were used.

Table S9. Results to Determine the Dependence of K₂CO₃

Entur		Data (M/		
Entry	mg	mmol	equiv	Kate (IIIIvi/IIIII)
1	8.29	0.060	0.30	0.3262
2	13.8	0.10	0.50	0.3676
3	19.4	0.14	0.70	0.3244
4	41.5	0.30	1.50	0.3325
5	69.1	0.50	2.50	0.3278

Figure S8. Initial Rates of the C–H Arylation with Different Equivalences of K₂CO₃

Figure S9. Plot of Initial Rates with Different Concentration of K₂CO₃

5.4. Kinetic Data in [Pd] at Low Concentrations in C₆D₆

To distinguish between monometallic and bimetallic processes, the order in [Pd] was determined by obtaining the initial rate of the C–H arylation at low concentration of [Pd] in C_6D_6 . Each kinetic experiment was conducted using the general procedure with the following modification.

5.4.1. Order in Pd(CH₃CN)₂Cl₂ at Low Concentrations

The order in Pd(CH₃CN)₂Cl₂ was determined by obtaining the initial rate of the C–H arylation at low concentration of Pd(CH₃CN)₂Cl₂ in benzene- d_6 . Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with K₂CO₃ (2.5 equiv, 69 mg, 0.50 mmol), pivalic acid (0.30 equiv, 6.1 mg, 0.060 mmol, stock solution in DMA), 1-bromo-3,5-dimethylbenzene (**2b**, 28 µL, 0.20 mmol, 1.0 equiv, 94 mM), and dodecane (0.044 mmol, 10 µL) as an internal standard. Different amount of Pd(CH₃CN)₂Cl₂ (stock solution in DMA) was then added to the Schlenk tube in, followed by DMA (1.2 mL) and benzene- d_6 (60 equiv, 1.0 mL, 12 mmol). Each tube was sealed and heated to 120 °C. Aliquots of the reaction mixture were taken every 1 h and analyzed by GC. The same experiment was repeated in each [Pd] concentrations and the average rate values were used.

Table S10.	Results to	o Determine th	e Order	of Pd(CI	$H_3CN)_2($	Cl ₂ at Low	Concentrations
		· - · · · · · · · · · · · · · · · · · ·					001100110110110

T (Ar	mount of Pd(CH ₃ CN) ₂ C		
Entry	mg	mmol	mM	Rate (mM/h)
1	0.048	0.0001850	0.0841	0.1198
2	0.072	0.0002775	0.1262	0.2621
3	0.088	0.0003392	0.1542	0.5334
4	0.14	0.0005551	0.2523	0.8665
5	0.18	0.0006784	0.3084	1.6128

Figure S10. Initial Rates of the C-H Arylation with Different Concentrations of Pd(CH₃CN)₂Cl₂

5.4.2. Order in Pd(OAc)₂ at Low Concentrations

The order in Pd(OAc)₂ was determined by obtaining the initial rate of the C–H arylation at low concentration of Pd(OAc)₂ in benzene- d_6 . Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with K₂CO₃ (2.5 equiv, 69 mg, 0.50 mmol), pivalic acid (0.30 equiv, 6.1 mg, 0.060 mmol, stock solution in DMA), 1-bromo-3,5-dimethylbenzene (**2b**, 28 µL, 0.20 mmol, 1.0 equiv, 94 mM), and dodecane (0.066 mmol, 15 µL) as an internal standard. Different amount of Pd(OAc)₂ (stock solution in DMA) was then added to the Schlenk tube in, followed by DMA (1.2 mL) and benzene- d_6 (60 equiv, 1.0 mL, 12 mmol). Each tube was sealed and heated to 120 °C. Aliquots of the reaction mixture were taken every 1 h and analyzed by GC. The same experiment was repeated two more times in each [Pd] concentrations and the average rate values were used.

T (А			
Entry	mg	mmol	mM	Rate (mM/h)
1	0.016	0.0000715	0.0325	0.0299
2	0.022	0.0000990	0.0450	0.0423
3	0.030	0.0001320	0.0600	0.1133
4	0.037	0.0001650	0.0750	0.1522
5	0.044	0.0001980	0.0900	0.2876

Table S11. Results to Determine the Order of Pd(OAc)₂ at Low Concentrations

Figure S12. Plot of Initial Rates of the C–H Arylation with Different Concentration of $Pd(OAc)_2$ at Low Concentrations

Figure S13. Plot of Initial Rates with Different Concentration of Pd(OAc)₂

5.4.3. Order in Pd(OAc)₂ with DavePhos at Low Concentrations

The order in [Pd] was determined by obtaining the initial rate of the C–H arylation at low concentration of Pd(OAc)₂ and Davephos (1:1 ratio) in benzene- d_6 . Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with K₂CO₃ (2.5 equiv, 69 mg, 0.50 mmol), pivalic acid (0.30 equiv, 6.1 mg, 0.060 mmol, stock solution in DMA), 1-bromo-3,5-dimethylbenzene (**2b**, 28 µL, 0.20 mmol, 1.0 equiv, 94 mM), and dodecane (0.044 mmol, 10 µL) as an internal standard. Different amount of Pd(OAc)₂ (stock solution in DMA) and DavePhos (stock solution in DMA) was then added to the Schlenk tube in, followed by DMA (1.2 mL) and benzene- d_6 (60 equiv, 1.0 mL, 12 mmol). Each tube was sealed and heated to 120 °C. Aliquots of the reaction mixture were taken every 1 h and analyzed by GC. The same experiment was repeated in each [Pd] concentrations and the average rate values were used.

Table S12	Results to	Determine	the Order	of Pd(OAc) ₂	with DavePhos	s at Low	Concentrations
-----------	------------	-----------	-----------	-------------------------	---------------	----------	----------------

Entry	Aı	Amount of Pd(OAc) ₂			Rate (mM/h)
	mg	mmol	mM	mg	
1	0.040	0.000178	0.0810	0.070	0.0553
2	0.070	0.000312	0.1417	0.123	0.1867
3	0.100	0.000445	0.2025	0.175	0.4475
4	0.130	0.000579	0.2632	0.228	0.6459
5	0.160	0.000713	0.3239	0.280	0.7159

Figure S14. Plot of Initial Rates of the C–H Arylation with Different Concentration of Pd(OAc)₂/DavePhos at Low Concentrations

Figure S15. Plot of Initial Rates with Different Concentration of Pd(OAc)₂/DavePhos

5.4.4. Order in Pd(OAc)₂ with PCy₃ at Low Concentrations

The order in [Pd] was determined by obtaining the initial rate of the C–H arylation at low concentration of Pd(OAc)₂ and PCy₃ (1:1 ratio) in benzene- d_6 . Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with K₂CO₃ (2.5 equiv, 69 mg, 0.50 mmol), pivalic acid (0.30 equiv, 6.1 mg, 0.060 mmol, stock solution in DMA), 1-bromo-3,5-dimethylbenzene (**2b**, 28 µL, 0.20 mmol, 1.0 equiv, 94 mM), and dodecane (0.066 mmol, 15 µL) as an internal standard. Different amount of Pd(OAc)₂ (stock solution in DMA) and PCy₃ (stock solution in DMA) was then added to the Schlenk tube in, followed by DMA (1.2 mL) and benzene- d_6 (60 equiv, 1.0 mL, 12 mmol). Each tube was sealed and heated to 120 °C. Aliquots of the reaction mixture were taken every 1 h and analyzed by GC. The same experiment was repeated two more times in each [Pd] concentrations and the average rate values were used.

Table S13. R	esults to Determ	ine the Order	of Pd(OAc) ₂ wi	th PCy ₃ at Low	Concentrations
--------------	------------------	---------------	----------------------------	----------------------------	----------------

Entry	Ai	Amount of Pd(OAc)2			Rate (mM/h)
	mg	mmol	mM	mg	
1	0.040	0.0001782	0.0810	0.050	0.0502
2	0.065	0.0002895	0.1316	0.081	0.0955
3	0.090	0.0004009	0.1822	0.11	0.2478
4	0.12	0.0005345	0.2430	0.14	0.6518
5	0.15	0.0006682	0.3037	0.19	0.8386

Figure S17. Plot of Initial Rates with Different Concentration of Pd(OAc)₂/PCy₃

5.4.5. Order in Pd(OAc)₂ with PPh₃ at Low Concentrations

The order in [Pd] was determined by obtaining the initial rate of the C–H arylation at low concentration of Pd(OAc)₂ and PPh₃ (1:1 ratio) in benzene- d_6 . Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with K₂CO₃ (2.5 equiv, 69 mg, 0.50 mmol), pivalic acid (0.30 equiv, 6.1 mg, 0.060 mmol, stock solution in DMA), 1-bromo-3,5-dimethylbenzene (**2b**, 28 μ L, 0.20 mmol, 1.0 equiv, 94 mM), and dodecane (0.066 mmol, 15 μ L) as an internal standard. Different amount of Pd(OAc)₂ (stock solution in DMA) and PPh₃ (stock solution in DMA) was then added to the Schlenk tube in, followed by DMA (1.2 mL) and benzene- d_6 (60 equiv, 1.0 mL, 12 mmol). Each tube was sealed and heated to 120 °C. Aliquots of the reaction mixture were taken every 1 h and analyzed by GC. The same experiment was repeated two more times in each [Pd] concentrations and the average rate values were used.

Table S14. Results to Determine the Order of Pd(OAc)₂ with PPh₃ at Low Concentrations

Entry	A	Amount of Pd(OAc) ₂			Rate (mM/h)
	mg	mmol	mM	mg	
1	0.040	0.0001782	0.0810	0.047	0.0214
2	0.065	0.0002895	0.1316	0.076	0.0719
3	0.090	0.0004009	0.1822	0.11	0.1526
4	0.12	0.0005345	0.2430	0.14	0.2602
5	0.15	0.0006682	0.3037	0.18	0.4070

Figure S18. Plot of Initial Rates of the C–H Arylation with Different Concentration of Pd(OAc)₂/PPh₃ at Low Concentrations

Figure S19. Plot of Initial Rates with Different Concentration of Pd(OAc)₂/PPh₃

5.4.6. Order in Pd(OAc)₂ with P(C₆F₅)₃ at Low Concentrations

The order in [Pd] was determined by obtaining the initial rate of the C–H arylation at low concentration of Pd(OAc)₂ and P(C₆F₅)₃ (1:1 ratio) in benzene- d_6 . Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with K₂CO₃ (2.5 equiv, 69 mg, 0.50 mmol), pivalic acid (0.30 equiv, 6.1 mg, 0.060 mmol, stock solution in DMA), 1-bromo-3,5-dimethylbenzene (**2b**, 28 µL, 0.20 mmol, 1.0 equiv, 94 mM), and dodecane (0.066 mmol, 15 µL) as an internal standard. Different amount of Pd(OAc)₂ (stock solution in DMA) and P(C₆F₅)₃ (stock solution in DMA) was then added to the Schlenk tube in, followed by DMA (1.2 mL) and benzene- d_6 (60 equiv, 1.0 mL, 12 mmol). Each tube was sealed and heated to 120 °C. Aliquots of the reaction mixture were taken every 1 h and analyzed by GC. The same experiment was repeated two more times in each [Pd] concentrations and the average rate values were used.

Table S15. Results to	o Determine the	Order of Pd(OA	Ac) ₂ with P($(C_6F_5)_3$ at Low	Concentrations
-----------------------	-----------------	----------------	--------------------------	---------------------	----------------

Entry	Amount of Pd(OAc)2			Amount of P(C6F5) 3	Rate (mM/h)
	mg	mmol	mM	mg	
1	0.090	0.0004009	0.1822	0.21	0.0345
2	0.12	0.0005345	0.2430	0.28	0.0590
3	0.15	0.0006682	0.3037	0.36	0.1081
4	0.18	0.0008018	0.3644	0.43	0.1320

Figure S20. Plot of Initial Rates of the C–H Arylation with Different Concentration of $Pd(OAc)_2/P(C_6F_5)_3$ at Low Concentrations

5.5. Reaction of Electron-poor Arenes with Two Different Aryl Bromides

Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with K_2CO_3 (2.5 equiv, 69 mg, 0.50 mmol), Pd(CH₃CN)₂Cl₂ (3.0 mol %, 1.6 mg, 0.0060 mmol), and pivalic acid (0.30 equiv, 6.1 mg, 0.060 mmol). Aryl bromide (**2b** or **2j**, 1.0 equiv, 0.20 mmol) was then added to the Schlenk tube in, followed by DMA (1.2 mL) and arenes (**1i** or **1k**, 6.0 equiv, 1.2 mmol). The Schlenk tube was sealed and heated to 120 °C for 3 h. Upon completion of the reaction, the mixture was cooled to room temperature. The crude mixture was filtered through Celite[®] and then the yield and selectivity of the products **3ib** and **3ij** were analyzed by GC for the yield and ¹⁹F-NMR measurement for the selectivity. For **3kb** and **3kj**, the yield and selectivity of the products were analyzed by GC using dodecane as an internal standard.

5.6. Competition Experiments

5.6.1. Competition between Two Different Aryl Bromides

Experiment A: bromobenzene (2e) vs 3-bromotoluene (2a)

To a 10 mL Schlenk tube equipped with a magnetic stirring bar were added K_2CO_3 (2.5 equiv, 69 mg, 0.50 mmol), Pd(CH₃CN)₂Cl₂ (3.0 mol %, 1.6 mg, 0.0060 mmol), pivalic acid (0.30 equiv, 6.1 mg, 0.060 mmol), DMA (1.2 mL) and ethoxybenzene (60 equiv, 1.52 mL, 12 mmol) followed by **2e** (22 µL, 0.20 mmol, 1.0 equiv) and **2a** (25 µL, 0.20 mmol, 1.0 equiv). The Schlenk tube was sealed and heated to 120 °C for 6 h. Upon completion of the reaction, the mixture was cooled to room temperature. The crude mixture was filtered through Celite[®] and then analyzed by GC using dodecane as an internal standard.

Experiment B: bromobenzene (2e) vs 3-bromobenzotrifluoride (2i)

The reaction was conducted using 2e (22 µL, 0.20 mmol, 1.0 equiv) and 2i (28 µL, 0.20 mmol, 1.0 equiv) as competing substrates followed by the above procedure.

5.6.2. H/D scrambling Experiment with D₂O

H/D scrambling between with D₂O was determined by ²H NMR analysis of the product **3ab**. The reactions were conducted using the above general procedure with the following modification. To a 4 mL vial equipped with a magnetic stirring bar were added K₂CO₃ (2.5 equiv, 138 mg, 1.0 mmol), Pd(CH₃CN)₂Cl₂ (0.030 equiv, 3.1 mg, 0.012 mmol), pivalic acid (0.30 equiv, 12.3 mg, 0.12 mmol). 1-bromo-3,5-dimethylbenzene (**2b**, 1.0 equiv, 56 μ L, 0.40 mmol) and ethoxybenzene (3.0 equiv, 152 μ L, 1.2 mmol) were then added to the vial in, followed by DMA (1.2 mL) and D₂O (3.0 equiv, 22 μ L, 1.2 mmol). The reaction vial was sealed and heated to 120 °C for 18 h. Upon completion of the reaction, the mixture was cooled down to room temperature. The crude mixture was filtered through Celite[®] and then the yield was analyzed by GC using dodecane as internal standard. The product was isolated by flash column chromatography and preparative TLC (PTLC) using hexane/ether eluent. The isolated product **3ab** was further analyzed by ²H NMR spectroscopy in CH₂Cl₂ solvent with CD₃CN (1.93 ppm) as an internal standard.

5.6.3. H/D Scrambling Experiment between Ethoxybenzene and Benzene-d₆

H/D scrambling between two arene substrates was determined by ²H NMR analysis of the product **3ab**. The reactions were conducted using the above general procedure with the following modification. To a 4 mL vial equipped with a magnetic stirring bar were added K₂CO₃ (2.5 equiv, 138 mg, 1.0 mmol), Pd(CH₃CN)₂Cl₂ (0.030 equiv, 3.1 mg, 0.012 mmol), pivalic acid (0.30 equiv, 12.3 mg, 0.12 mmol), DMA (1.2 mL), ethoxybenzene (3.0 equiv, 152 μ L, 1.2 mmol) and benzene-*d*₆ (3.0 equiv, 107 μ L, 1.2 mmol) followed by **2b** (56 μ L, 0.40 mmol, 1.0 equiv). The reaction vial was sealed and heated to 120 °C for 18 h. Upon completion of the reaction, the mixture was cooled down to room temperature. The crude mixture was filtered through Celite[®] and then the yield was analyzed by gas chromatography using dodecane as internal standard. The product was isolated by flash column chromatography and preparative TLC (PTLC) using hexane/ether eluent. The isolated product **3ab** was further analyzed by ²H NMR spectroscopy in CH₂Cl₂ solvent with CD₃CN (1.93 ppm) as an internal standard. H/D scrambling on the aryl group was clearly detected suggesting that the C–H bond cleavage facilitated by CMD process is reversible.

5.7. Synthesis of Pd Complex 4a and 4b

AgOPiv and Pd complex 4a were synthesized by literature procedures.³

5.7.1. Synthesis of Intermediate Pd Complex 4b'

Inside a glove box, to a stirred solution of $PtBu_3$ (45 mg, 1.1 equiv, 0.22 mmol) and 1-chloro-2-iodobenzene (1.0 mL) was added $Pd(dba)_2$ (115 mg, 1.0 equiv, 0.2 mmol). The reaction mixture was stirred at room temperature for 10 min. Pentane (20 mL) was added and the resulting mixture was stirred for 1 min and then cooled at -20 °C for 1 h. The solid was filtered, washed with ether until the filtrate contained no free dba, as judged by ¹H NMR spectroscopy. The solid was dried under reduced pressure to obtain the title compound as an orange color solid (60 mg, 55%).

¹H NMR (400 MHz, C₆D₆) δ 7.21 (d, J = 7.5 Hz, 1H), 6.98 – 6.95 (m, 1H), 6.61 (t, J = 7.4 Hz, 1H), 6.53 (t, J = 7.2 Hz, 1H), 1.03 (d, J = 12.6 Hz, 27H); ¹³C NMR (151 MHz, CD₂Cl₂) δ 138.02 (d, J = 5.0 Hz), 137.66 (d, J = 2.0 Hz), 129.34, 128.73, 125.67, 125.27 (d, J = 2.3 Hz), 41.50 (d, J = 8.1 Hz), 31.88 (d, J = 2.8 Hz); ³¹P NMR (162 MHz, C₆D₆) δ 53.9; Anal. calc'd for C₁₈H₃₁ClIPPd: C, 39.51; H, 5.71. Found: C, 38.3; H, 5.49.

5.7.2. Synthesis of Pd Complex 4b

Inside a glove box, to a stirred solution of **4b'** (60 mg, 0.11 mmol, 1.0 equiv) and AgOPiv (25 mg, 0.12 mmol, 1.1 equiv) was added pentane (5 mL). The reaction mixture was stirred at room temperature for 12 h. The resulting mixture was filtered through Celite[®] and concentrated under reduced pressure. Recrystallization from pentane at -20 °C produced the Pd complex **4b** as yellow crystals which is suitable for X-ray diffraction analysis. Further filtration and drying afforded the title compound as a yellow solid (30 mg, 48%).

¹H NMR (400 MHz, C₆D₆) δ 7.42 (dt, *J* = 7.3, 2.1 Hz, 1H), 7.07 – 7.03 (m, 1H), 6.71 – 6.60 (m, 2H), 1.32 (d, *J* = 12.7 Hz, 27H), 1.28 (s, 9H); ¹³C NMR (101 MHz, C₆D₆) δ 194.8, 141.1 (d, *J* = 3.0 Hz), 140.5, 138.6 (d, *J* = 3.2 Hz), 128.7, 125.4, 124.6 (d, *J* = 1.5 Hz), 40.6 (d, *J* = 11.8 Hz), 40.4, 32.2 (d, *J* = 3.2 Hz), 27.5; ³¹P NMR (162 MHz, C₆D₆) δ 76.1; Anal. calc'd for C₂₃H₄₀ClO₂PPd: C, 52.98; H, 7.73. Found: C, 52.7; H, 7.82.

5.8. Stoichiometric Reaction of Pd Complex

= CI, 4b

Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with Pd complex (0.0060 mmol, 1.0 equiv) and the corresponding additives (see table below) followed by DMA (1.2 mL) and ethoxybenzene (1.5 mL). The Schlenk tube was sealed and heated to 120 °C for 18 h. Upon the completion of the reaction, the mixture was cooled down to room temperature. The crude mixture was filtered through Celite[®] and then analyzed by gas chromatography for **3ac** or GC-MS for **3am** using dodecane (3.0 μ L) as an internal standard.

Entry	Pd complex	Additive (equiv)	Yield of 3ac or 3am (%)	Selectivity (o / m / p)	% Selectivity (o / m / p)
1	4 a	None	0	-	-
2	4 a	PivOH (20), K ₂ CO ₃ (160)	0.6	1 / 0.7 / 0.7	42 / 30 / 28
3	4 a	PivOH (20), K ₂ CO ₃ (160), nBu ₄ NBr (10)	21	1 / 1.3 / 1.4	27 / 35 / 38
4	4 a	<i>n</i> Bu ₄ NBr (10), Pd(OPiv) ₂ (5)	22	1 / 3.9 / 2.2	14 / 55 / 31
4	4 a	PivOH (20), K ₂ CO ₃ (160), Pd(CH ₃ CN) ₂ Cl ₂ (5)	26	1 / 0.8 / 1.6	29 / 24 / 47
5	4 a	PivOH (20), K ₂ CO ₃ (160), <i>n</i> Bu ₄ NBr (10), Pd(CH ₃ CN) ₂ Cl ₂ (5)	65	1 / 6.2 / 2.6	10 / 64 / 26
6	4 b	PivOH (20), K ₂ CO ₃ (160), nBu ₄ NBr (10)	7	1 / 0.1 / 0.1	84 / 8 / 8.0
7	4 b	PivOH (20), K ₂ CO ₃ (160), <i>n</i> Bu ₄ NBr (10), Pd(CH ₃ CN) ₂ Cl ₂ (5)	65	1 / 0.7 / 0.4	48 / 33 / 19

5.9. Effect of Crown Ethers

Inside a glove box, a 10 mL Schlenk tube equipped with a magnetic stirring bar was charged with K_2CO_3 (2.5 equiv, 69 mg, 0.50 mmol), Pd(CH₃CN)₂Cl₂ (3.0 mol %, 1.6 mg, 0.0060 mmol), and pivalic acid (0.30 equiv, 6.1 mg, 0.060 mmol). Aryl bromide (1.0 equiv, 0.20 mmol) and crown ether additive were then added to the Schlenk tube, followed by DMA (1.2 mL) and arene (60 equiv, 12 mmol). The Schlenk tube was sealed and heated to 120 °C for 18 h. Upon completion of the reaction, the mixture was cooled down to room temperature. The crude mixture was filtered through Celite[®] and then analyzed by gas chromatography using dodecane as an internal standard.

Table S16. Impact of Crown Ether Additives in the C-H Arylation of Ethoxybenzene

Entry	Additive (x equiv)	Yield (%)	Selectivity (o / m / p)	% Selectivity (o / m / p)
1	-	79	1 / 10.2 / 3.2	7 / 71 / 22
2	18-Crown-6 (0.3)	91	1 / 8.0 / 2.6	9 / 69 / 22
3	18-Crown-6 (1)	90	1 / 4.4 / 1.9	14 / 60 / 26
4	18-Crown-6 (2.5)	85	1 / 2.8 / 1.5	19 / 53 / 28
5	18-Crown-6 (5)	80	1 / 2.0 / 1.4	23 / 47 / 30
6	18-Crown-6 (10)	59	1 / 1.4 / 1.2	29 / 39 / 32
7	15-Crown-5 (1)	0	-	-
8	12-Crown-4 (1)	0	-	-
9	diethyl ether (5)	55	1 / 10.2 / 3.0	7 / 72 / 21

 Table S17. Impact of Crown Ether Additives in the C–H Arylation of Toluene^a

Entry	Additive (x equiv)	Yield (%)	Selectivity (o / m / p)	% Selectivity (o / m / p)
1	-	87	1 / 13.0 / 6.1	5 / 64 / 31
2	18-Crown-6 (0.3)	91	1 / 10.1 / 4.9	6 / 63 / 31
3	18-Crown-6 (1)	90	1 / 5.5 / 2.9	11 / 58 / 31
4	18-Crown-6 (2.5)	85	1/3.0/1.9	17 / 51 / 32
5	18-Crown-6 (5)	80	1 / 2.1 / 1.5	22 / 46 / 32

6. Characterization Data

3-Ehoxy-3'-methyl-1,1'-biphenyl (3aa)

A modification of general procedure was employed for the reaction of 3-bromotoluene (2a, 0.2 mmol). The isomeric mixture of compound was obtained as a pale yellow oil (76% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (500 MHz, CDCl₃) δ 7.44 – 7.37 (m, 2H), 7.37 – 7.30 (m, 2H), 7.17 (dd, J = 7.6, 1.3 Hz, 2H), 7.13 (t, J = 2.1 Hz, 1H), 6.89 (dd, J = 8.2, 2.6 Hz, 1H), 4.11 (q, J = 6.9 Hz, 2H), 2.42 (s, 3H), 1.45 (t, J = 7.0 Hz, 3H); ¹³C NMR (126) MHz, CDCl₃) δ 159.4, 143.0, 141.3, 138.4, 129.8, 128.8, 128.2, 128.1, 124.4, 119.7, 113.6, 113.3, 63.6, 21.7, 15.1; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₆O, 212.1201; found, 212.1200. The *ortho*-isomer; ¹H NMR (500 MHz, CDCl₃) δ 7.43 – 7.38 (m, 2H), 7.35 (dd, J = 7.5, 1.7 Hz, 1H), 7.34 – 7.28 (m, 2H), 7.15 (d, J = 7.3 Hz, 1H), 7.03 (t, J = 7.4 Hz, 1H), 6.99 (d, J = 8.2 Hz, 1H), 4.06 (q, J = 7.0 Hz, 2H), 2.42 (s, 3H), 1.37 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.0, 138.7, 137.5, 131.1, 131.0, 130.4, 128.5, 127.9, 127.6, 126.9, 120.9, 112.8, 64.2, 21.7, 14.9; HRMS-EI (m/z) [M]⁺ calcd for $C_{15}H_{16}O$, 212.1201; found, 212.1199. The *para*-isomer; ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, J = 8.7Hz, 2H), 7.38 (d, J = 10.8 Hz, 2H), 7.32 (t, J = 7.5 Hz, 1H), 7.14 (d, J = 7.4 Hz, 1H), 6.98 (d, J = 8.7 Hz, 2H), 4.10 (q, J = 7.0 Hz, 2H), 2.43 (s, 3H), 1.46 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) 8 158.6, 141.0, 138.4, 133.9, 128.8, 128.3, 127.7, 127.5, 124.0, 114.8, 77.4, 77.2, 76.9, 63.7, 21.7, 15.0; HRMS-EI (m/z) $[M]^+$ calcd for C₁₅H₁₆O, 212.1201; found, 212.1203.

3'-Ethoxy-3,5-dimethyl-1,1'-biphenyl (3ab)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol). The isomeric mixture of compound was obtained as a pale yellow oil (81% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 7.47 – 7.40 (m, 1H), 7.35 (s, 2H), 7.32 – 7.25 (m, 2H), 7.11 (s, 1H), 6.99 (dd, *J* = 7.7, 2.1 Hz, 1H), 4.18 (q, *J* = 7.0 Hz, 2H), 2.50 (s, 6H), 1.55 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.3, 143.0, 141.2, 138.2, 129.7, 129.1, 125.2, 119.6, 113.5, 113.1, 63.4, 21.4, 15.0; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₈O, 226.1358; found, 226.1361. The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.45 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.38 (ddd, *J* = 8.1, 7.5, 1.8 Hz, 1H), 7.32 (s, 2H), 7.15 – 7.03 (m, 3H), 4.13 (q, *J* = 7.0 Hz, 2H), 2.48 (s, 6H), 1.46 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 7.62 (d, *J* = 8.5 Hz, 2H), 7.30 (s, 2H), 7.12 – 7.01 (m, 3H), 4.18 (q, *J* = 7.0 Hz, 2H), 2.49 (s, 6H), 1.55 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 7.62 (d, *J* = 8.5 Hz, 2H), 7.30 (s, 2H), 7.12 – 7.01 (m, 3H), 4.18 (q, *J* = 7.0 Hz, 2H), 2.49 (s, 6H), 1.55 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 7.62 (d, *J* = 8.5 Hz, 2H), 7.30 (s, 2H), 7.12 – 7.01 (m, 3H), 4.18 (q, *J* = 7.0 Hz, 2H), 2.49 (s, 6H), 1.55 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 7.62 (d, *J* = 8.5 Hz, 2H), 7.30 (s, 2H), 7.12 – 7.01 (m, 3H), 4.18 (q, *J* = 7.0 Hz, 2H), 2.49 (s, 6H), 1.55 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 158.5, 141.0, 138.3, 134.0, 128.4, 128.3, 124.8, 114.8, 63.6, 21.5, 15.0; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₈O, 226.1358; found, 226.1359.

3'-Methoxy-3,5-dimethyl-1,1'-biphenyl (3bb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and anisole (**1b**, 60 equiv). The isomeric mixture of compound was obtained as a colorless oil (58% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 7.34 (t, *J* = 7.9 Hz, 1H), 7.20 (s, 2H), 7.16 (d, *J* = 7.7 Hz, 1H), 7.11 (t, *J* = 2.3 Hz, 1H), 7.00 (s, 1H), 6.88 (dd, *J* = 7.9, 2.2 Hz, 1H), 3.87 (s, 3H), 2.38 (s, 6H). The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.30 (d, *J* = 7.4 Hz, 2H), 7.14 (s, 2H), 7.04 – 6.97 (m, 3H), 3.82 (s, 3H), 2.37 (s, 6H). The *para*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.52 (d, *J* = 7.8 Hz, 2H), 7.18 (s, 2H), 6.98 – 6.95 (m, 3H), 3.85 (s, 3H), 2.38 (s, 6H). Their identity was confirmed by comparison with reported data.⁴

3,3',5-Trimethyl-1,1'-biphenyl (3cb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and toluene (**1c**, 60 equiv). The isomeric mixture of compound was obtained as a colorless oil (87% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (500 MHz, CDCl₃) δ 7.45 (s, 1H), 7.43 (d, *J* = 8.0 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 7.26 (s, 2H), 7.17 (d, *J* = 7.5 Hz, 1H), 7.01 (s, 1H), 2.44 (s, 3H), 2.41 (s, 6H). The *ortho*-isomer; ¹H NMR (500 MHz, CDCl₃) δ 7.47 – 7.35 (m, 4H), 7.16 (s, 1H), 7.13 (s, 2H), 2.54 (s, 6H), 2.46 (s, 3H). The *para*-isomer; ¹H NMR (500 MHz, CDCl₃) δ 7.52 (d, *J* = 8.0 Hz, 2H), 7.26 (s, 2H), 7.25 (s, 2H), 7.01 (s, 1H), 2.41 (d, *J* = 4.0 Hz, 9H). Their identity was confirmed by comparison with reported data.^{4b, 5}

3'-Ethyl-3,5-dimethyl-1,1'-biphenyl (3db)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and ethylbenzene (**1d**, 60 equiv). The isomeric mixture of compound was obtained as a colorless oil (77% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 7.53 (d, *J* = 9.2 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.35 (s, 2H), 7.30 (d, *J* = 7.3 Hz, 1H), 7.12 (s, 1H), 2.84 (q, *J* = 7.6 Hz, 2H), 2.51 (s, 6H), 1.42 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 144.7, 141.7, 138.3, 138.2, 128.9, 128.7, 127.0, 126.8, 125.3, 124.7, 29.1, 21.5, 15.8; HRMS-EI (m/z) [M]⁺ calcd for C₁₆H₁₈, 210.1409; found, 210.1410. The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.43 – 7.34 (m, 2H), 7.33 – 7.26 (m, 2H), 7.09 (s, 1H), 7.04 (s, 2H), 2.71 (q, *J* = 7.6 Hz, 2H), 2.46 (s, 6H), 1.22 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 142.0, 142.0, 141.7, 137.5, 130.0, 128.52, 128.4, 127.4, 127.2, 125.5, 26.3, 21.5, 15.8; HRMS-EI (m/z) [M]⁺ calcd for C₁₆H₁₈, 210.1409; found, 210.1409; found, 210.1407. The *para*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.68 (d, *J* = 8.2 Hz, 2H), 7.41 (d, *J* = 8.1 Hz, 2H), 7.38 (s, 2H), 7.14 (s, 1H), 2.85 (q, *J* = 7.6 Hz, 2H), 2.54 (s, 6H), 1.45 (t, *J* = 7.6 Hz, 3H). Identity of the *para*-isomer was confirmed by comparison with reported data.⁶

3'-Isopropyl-3,5-dimethyl-1,1'-biphenyl (3eb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and cumene (**1e**, 60 equiv). The isomeric mixture of compound was obtained as a colorless oil (79% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 7.45 – 7.34 (m, 3H), 7.24 – 7.22 (m, 3H), 7.02 (s, 1H), 3.00 (hept, J = 6.9 Hz, 1H), 2.42 (s, 6H), 1.34 (d, J = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 149.4, 141.8, 141.7, 138.3, 128.9, 128.7, 125.6, 125.3, 125.3, 124.9, 77.6, 77.2, 76.7, 34.4, 24.2, 21.6.; HRMS-EI (m/z) [M]⁺ calcd for C₁₇H₂₀, 224.1565; found, 224.1564. The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.31 (m, 2H), 7.24 – 7.17 (m, 2H), 7.02 (s, 1H), 6.94 (s, 2H), 3.10 (hept, J = 6.9 Hz, 1H), 2.39 (s, 6H), 1.20 (d, J = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 146.5, 142.2, 141.5, 137.5, 130.0, 128.4, 127.6, 127.3, 125.6, 125.3, 77.6, 77.2, 76.8, 29.5, 24.5, 21.5; found, 224.1565. The *para*isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, J = 8.2 Hz, 2H), 7.32 (d, J = 8.1 Hz, 2H), 7.24 (s, 2H), 7.01 (s, 1H), 2.98 (hept, J = 6.9 Hz, 1H), 2.41 (s, 6H), 1.33 (d, J = 6.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 147.9, 141.4, 139.1, 138.3, 128.8, 127.2, 126.9, 125.1, 77.6, 77.2, 76.7, 33.9, 24.2, 21.6; HRMS-EI (m/z) [M]⁺ calcd for C₁₇H₂₀, 224.1565; found, 224.1563.

N-(3',5'-Dimethyl-[1,1'-biphenyl]-3-yl)-*N*-methylacetamide (3fb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and *N*-methylacetanilide (**1f**, 60 equiv). The isomeric mixture of compound was obtained and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (400 MHz, CD₃OD) δ 7.15 – 6.93 (m, 3H), 6.75 (s, 2H), 6.71 (d, *J* = 7.6 Hz, 1H), 6.57 (s, 1H), 2.81 (s, 3H), 1.92 (s, 6H), 1.42 (s, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 172.9, 146.0, 144.8, 141.0, 139.6, 132.1, 131.3, 130.5, 127.7, 126.6, 125.9, 37.6, 22.4, 21.5; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₇H₁₉NNaO, 276.1359; found, 276.1367. The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.41 – 7.34 (m, 3H), 7.23 – 7.19 (m, 1H), 6.99 (s, 1H), 6.88 (s, 2H), 3.02 (s, 3H), 2.33 (s, 6H), 1.80 (s, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 170.6, 142.1, 140.3, 138.8, 138.2, 131.6, 129.5, 128.7, 128.5, 128.3, 126.3, 37.2, 22.4, 21.5; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₇H₁₉NNaO, 276.1359; found, 270.0) δ 7.65 (d, *J* = 8.3 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.22 (s, 2H), 7.00 (s, 1H), 3.25 (s, 3H), 2.35 (s, 6H), 1.88 (s, 3H); ¹³C NMR (75 MHz, CD₃OD) δ 173.0, 144.5, 142.6, 141.1, 139.6, 130.31, 129.4, 128.4, 125.9, 37.6, 22.4, 21.5; HRMS-ESI (m/z) [M+Na]⁺ calcd for C₁₇H₁₉NNaO, 276.1359; found, 276.1369.

3,5-Dimethyl-1,1'-biphenyl (3gb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and benzene (**1g**, 60 equiv). The title compound was obtained as a white solid (>99% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, *J* = 7.0 Hz, 2H), 7.58 (t, *J* = 7.4 Hz, 2H), 7.51 – 7.46 (m, 1H), 7.40 (s, 2H), 7.16 (s, 1H), 2.55 (s, 6H). Its identity was confirmed by comparison with reported data.⁷

1-(3,5-Dimethylphenyl)naphthalene (3hb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and naphthalene (**1h**, 60 equiv). The isomeric mixture of compound was obtained and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 7.93 (t, J = 9.2 Hz, 2H), 7.86 (d, J = 8.1 Hz, 1H), 7.57 – 7.40 (m, 4H), 7.14 (s, 2H), 7.10 (s, 1H), 2.43 (s, 6H). The β isomer; ¹H NMR (300 MHz, CDCl₃) δ 8.14 (s, 1H), 8.04 – 7.90 (m, 3H), 7.84 (dd, J = 8.6, 1.8 Hz, 1H), 7.63 – 7.51 (m, 2H), 7.45 (s, 2H), 7.13 (s, 1H), 2.52 (s, 6H). Their identity was confirmed by comparison with reported data.^{4b, 8}

3'-Fluoro-3,5-dimethyl-1,1'-biphenyl (3ib)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and fluorobenzene (**1i**, 6 equiv) for 3 h. The isomeric mixture of compound was obtained as a colorless oil (96% yield) and its identity was confirmed by comparison with ¹H and ¹⁹F NMR spectra. ¹H NMR (300 MHz, CDCl₃) δ 7.44 (td, J = 7.7, 1.8 Hz, 1H), 7.34 – 7.10 (m, 5H), 7.04 (s, 1H), 2.40 (s, 6H); ¹⁹F NMR (376 MHz, CDCl₃) δ -117.8. The *meta*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.43 – 7.32 (m, 2H), 7.31 – 7.25 (m, 1H), 7.19 (s, 2H), 7.07 – 6.96 (m, 2H), 2.39 (s, 6H); ¹⁹F NMR (376 MHz, CDCl₃) δ -113.4. The *para*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.53 (ddt, J = 8.4, 5.2, 3.0 Hz, 2H), 7.18 (s, 2H), 7.11 (t, J = 8.7 Hz, 2H), 7.02 (s, 1H), 2.40 (s, 6H); ¹⁹F NMR (376 MHz, CDCl₃) δ -116.0. Their identity was confirmed by comparison with reported data.^{4b, 9}

3',5'-Dimethyl-[1,1'-biphenyl]-2-carbonitrile (3jb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and benzonitrile (**1j**, 60 equiv). The isomeric mixture of compound was obtained and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 7.75 (dd, *J* = 7.7, 0.9 Hz, 1H), 7.62 (td, *J* = 7.8, 1.4 Hz, 1H), 7.51 (dd, *J* = 7.9, 0.8 Hz, 1H), 7.42 (td, *J* = 7.6, 1.3 Hz, 1H), 7.19 (s, 2H), 7.10 (s, 1H), 2.41 (d, *J* = 0.5 Hz, 6H). The *meta*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (t, *J* = 1.5 Hz, 1H), 7.79 (dt, *J* = 7.8, 1.6 Hz, 1H), 7.61 (dt, *J* = 7.7, 1.4 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 1H), 7.17 (s, 2H), 7.06 (s, 1H), 2.40 (s, 6H). The *para*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.72 – 7.65 (m, 4H), 7.20 (s, 2H), 7.07 (s, 1H), 2.40 (s, 6H). Their identity was confirmed by comparison with reported data.¹⁰

3'-Chloro-3,5-dimethyl-1,1'-biphenyl (3kb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and chlorobenzene (**1k**, 60 equiv). The isomeric mixture of compound was obtained and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR
(300 MHz, CDCl₃) δ 7.56 (t, *J* = 1.8 Hz, 1H), 7.45 (dt, *J* = 7.4, 1.6 Hz, 1H), 7.37 – 7.28 (m, 2H), 7.18 (s, 2H), 7.02 (s, 1H), 2.39 (s, 6H). The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.53 (dd, *J* = 6.8, 1.3 Hz, 1H), 7.42 – 7.28 (m, 3H), 7.14 (s, 2H), 7.11 (s, 1H), 2.46 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 140.9, 139.5, 137.6, 132.6, 131.5, 130.0, 129.4, 128.4, 127.3, 126.8, 21.5; HRMS-EI (m/z) [M]⁺ calcd for C₁₄H₁₃Cl, 216.0706; found, 216.0707. The *para*-isomer; ¹H NMR (500 MHz, CDCl₃) δ 7.54 (d, *J* = 8.5 Hz, 2H), 7.21 (s, 2H), 7.05 (s, 1H), 2.42 (s, 6H); ¹³C NMR (126 MHz, CDCl₃) δ 140.1, 140.0, 138.5, 133.3, 129.4, 128.9, 128.5, 125.0, 21.50; HRMS-EI (m/z) [M]⁺ calcd for C₁₄H₁₃Cl, 216.0706; found, 216.0703. Identity of the *meta*-isomer was confirmed by comparison with reported data.^{4b}

3,5-Dimethyl-3'-(trifluoromethoxy)-1,1'-biphenyl (3lb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and (trifluoromethoxy)benzene (**1l**, 60 equiv). The isomeric mixture of compound was obtained as a colorless oil (64% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 7.54 – 7.45 (m, 2H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.21 (s, 3H), 7.05 (s, 1H), 2.40 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 150.0, 144.0, 139.9, 138.7, 130.1, 129.9, 125.7, 125.3, 121.1 (q, *J* = 257.7 Hz), 120.0, 119.5, 21.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.7; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₃F₃O, 266.0918; found, 266.0920. The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.48 – 7.40 (m, 1H), 7.38 – 7.26 (m, 3H), 7.13 (s, 2H), 7.04 (s, 1H), 2.38 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 146.5, 137.9, 137.0, 135.8, 131.7, 129.5, 128.5, 127.2, 127.0, 121.3, 120.8 (q, *J* = 259.2 Hz), 21.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.0; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₃F₃O, 266.0918; found, 266.0918; found, 266.0918, found, 266.0918; found, 266.0918, 7.54 (dt, *J* = 8.7, 2.6 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.18 (s, 2H), 7.04 (s, 1H), 2.40 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ -57.9; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₃F₃O, 266.0918; found, 266.0918. The *para*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.54 (dt, *J* = 8.7, 2.6 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.18 (s, 2H), 7.04 (s, 1H), 2.40 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 148.8, 140.6, 140.1, 138.7, 129.6, 128.6, 125.3, 121.1 (q, *J* = 257.0 Hz), 121.3, 21.3; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.9; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₃F₃O, 266.0918; found, 266.0915.

3,5-Dimethyl-3'-(trifluoromethyl)-1,1'-biphenyl (3mb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and benzotrifluoride (**1m**, 6 equiv). The isomeric mixture of compound was obtained as a colorless oil (86% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 7.82 (s, 1H), 7.76 (d, *J* = 7.5 Hz, 1H), 7.63 – 7.49

(m, 2H), 7.22 (s, 2H), 7.06 (s, 1H), 2.41 (s, 6H). The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.73 (d, *J* = 8.0 Hz, 1H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.44 (t, *J* = 7.9 Hz, 1H), 7.32 (d, *J* = 7.5 Hz, 1H), 7.03 (s, 1H), 6.95 (s, 2H), 2.36 (s, 6H). The *para*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.76 (m, 4H), 7.31 (s, 2H), 7.16 (s, 1H), 2.50 (s, 6H). Their identity was confirmed by comparison with reported data.^{4b, 11}

1-(3',5'-Dimethyl-[1,1'-biphenyl]-3-yl)-2,2-dimethylpropan-1-one (3nb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and pivalophenone (**1n**, 6 equiv). The isomeric mixture of compound was obtained and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 7.85 (t, *J* = 1.6 Hz, 1H), 7.64 (t, *J* = 8.6 Hz, 2H), 7.44 (t, *J* = 7.7 Hz, 1H), 7.21 (s, 2H), 7.02 (s, 1H), 2.39 (s, 6H), 1.38 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 209.7, 141.6, 140.6, 139.3, 138.6, 129.6, 129.4, 128.4, 126.8, 126.4, 125.2, 44.5, 28.2, 21.5; HRMS-EI (m/z) [M]⁺ calcd for C₁₉H₂₂O, 266.1671; found, 266.1672. The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.45 – 7.42 (m, 2H), 7.39 – 7.34 (m, 1H), 7.17 (d, *J* = 7.8 Hz, 1H), 7.03 (s, 2H), 7.01 (s, 1H), 2.37 (s, 6H), 0.94 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 217.0, 141.2, 141.0, 138.3, 138.1, 129.6, 129.3, 128.8, 127.4, 126.7, 125.9, 45.0, 27.5, 21.4; HRMS-EI (m/z) [M]⁺ calcd for C₁₉H₂₂O, 266.1671; found, 260.1673. The *para*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.85 (d, *J* = 8.4 Hz, 2H), 7.65 (d, *J* = 8.4 Hz, 2H), 7.27 (s, 2H), 7.07 (s, 1H), 2.43 (s, 6H), 1.44 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 208.5, 144.1, 140.2, 138.5, 136.8, 129.7, 128.8, 126.8, 125.2, 44.3, 28.3, 21.5; HRMS-EI (m/z) [M]⁺ calcd for C₁₉H₂₂O, 266.1671; found, 266.1673.

3,5-Dimethyl-3'-nitro-1,1'-biphenyl (3ob)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and nitrobenzene (**1o**, 6 equiv). The isomeric mixture of compound was obtained as a pail yellow oil (95% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 8.44 (t, *J* = 1.9 Hz, 1H), 8.18 (dd, *J* = 8.2, 2.2 Hz, 1H), 7.90 (d, *J* = 7.8 Hz, 1H), 7.58 (t, *J* = 8.0 Hz, 1H), 7.24 (s, 2H), 7.08 (s, 1H), 2.41 (s, 6H). The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.83 (d, *J* = 8.0 Hz, 1H), 7.60 (td, *J* = 7.6, 1.3 Hz, 1H), 7.49 – 7.42 (m, 2H), 7.05 (s, 1H), 6.95 (s, 2H), 2.36 (s, 6H). The *para*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 8.28 (d, *J* = 8.9 Hz, 2H), 7.72 (d, *J* = 8.9 Hz, 2H), 7.24 (s, 2H), 7.09 (s, 1H), 2.41 (s, 6H). Their identity was confirmed by comparison with reported data.¹²

3,3',4,5'-Tetramethyl-1,1'-biphenyl (3pb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and 4-fluorotoluene (**1p**, 60 equiv). The title compound was obtained as a colorless oil (53% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.40 (s, 1H), 7.37 (d, *J* = 7.7 Hz, 1H), 7.23 (m, 3H), 7.01 (s, 1H), 2.42 (s, 6H), 2.37 (s, 3H), 2.34 (s, 3H). Its identity was confirmed by comparison with reported data.¹³

2-Fluoro-3',5,5'-trimethyl-1,1'-biphenyl (3qb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and 4-fluorotoluene (**1q**, 6 equiv). The title compound was obtained as a colorless oil (93% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.35 (dd, J = 7.5, 2.1 Hz, 1H), 7.30 (s, 2H), 7.21 – 7.10 (m, 3H), 2.51 (s, 4H), 2.48 (s, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 158.1 (d, J = 244.7 Hz), 137.94, 136.0 (d, J = 1.0 Hz), 133.6 (d, J = 3.7 Hz), 131.3 (d, J = 3.4 Hz), 129.3, 129.2 (d, J = 8.0 Hz), 129.0 (d, J = 13.8 Hz), 127.0 (d, J = 2.7 Hz), 115.8 (d, J = 23.0 Hz), 21.5, 20.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -123.1; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₅F, 214.1158; found, 214.1156.

2-Fluoro-3',4,5'-trimethyl-1,1'-biphenyl (3rb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and 3-fluorotoluene (**1r**, 60 equiv). The title compound was obtained as a colorless oil (92% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.48 (t, *J* = 8.2 Hz, 1H), 7.40 – 7.35 (m, 2H), 7.17 – 7.10 (m, 3H), 2.55 (s, 6H), 2.53 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.7 (d, *J* = 247.2 Hz), 139.3 (d, *J* = 8.0 Hz), 137.9, 135.9, 130.5 (d, *J* = 4.1 Hz), 129.2, 126.9 (d, *J* = 2.8 Hz), 126.4 (d, *J* = 13.6 Hz), 125.1 (d, *J* = 3.2 Hz), 116.6 (d, *J* = 22.7 Hz), 21.4, 21.0 (d, *J* = 1.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -118.8; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₅F, 214.1158; found, 214.1158.

2-Fluoro-5-methoxy-3',5'-dimethyl-1,1'-biphenyl (3sb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and 4-fluoroanisole (**1s**, 6 equiv) for 3 h. The title compound was obtained as a paleyellow oil (87% yield). ¹H NMR (600 MHz, CDCl₃) δ 7.19 (s, 2H), 7.07 (t, *J* = 9.4 Hz, 1H), 7.05 (s, 1H), 6.98 – 6.93 (m, 1H), 6.86 – 6.81 (m, 1H), 3.84 (s, 3H), 2.40 (s, 6H). Its identity was confirmed by comparison with reported data.^{4b}

2-Fluoro-3',5'-dimethyl-5-(trifluoromethyl)-1,1'-biphenyl (3tb)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-dimethylbenzene (**2b**, 0.2 mmol) and 4-fluorobenzotrifluoride (**1t**, 6 equiv) for 3 h. The title compound was obtained as a colorless oil (94% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.71 (dd, J = 6.9, 2.2 Hz, 1H), 7.61 – 7.55 (m, 1H), 7.25 (t, J = 9.2 Hz, 1H), 7.17 (s, 2H), 7.08 (s, 1H), 2.40 (s, 6H); ¹³C NMR (101 MHz, CDCl₃) δ 161.49 (d, J = 251.2 Hz), 138.4, 134.3, 130.4, 130.2, 128.7 – 128.3 (m), 126.9 (d, J = 2.6 Hz), 126.2 – 125.9 (m), 125.3, 122.6, 116.80 (d, J = 24.4 Hz), 21.5; ¹⁹F NMR (376 MHz, CDCl₃) δ -61.9, -112.2; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₂F₄, 268.0875; found, 268.0873.

3'-Ethoxy-2-methyl-1,1'-biphenyl (3ac)

A modification of general procedure was employed for the reaction of 2-bromotoluene (**2c**, 0.2 mmol). The isomeric mixture of compound was obtained as a pale-yellow oil (78% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (500 MHz, CDCl₃) δ 7.35 (t, *J* = 7.8 Hz, 1H), 7.32 – 7.26 (m, 4H), 6.95 – 6.88 (m, 3H), 4.10 (q, *J* = 7.0 Hz, 2H), 2.32 (s, 3H), 1.47 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 158.8, 143.5, 142.0, 135.5, 130.4, 129.8,

129.2, 127.4, 125.8, 121.7, 115.5, 113.1, 77.4, 77.2, 76.9, 63.6, 20.6, 15.0; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₆O, 212.1201; found, 212.1198. The *ortho*-isomer; ¹H NMR (500 MHz, CDCl₃) δ 7.35 (t, *J* = 7.8 Hz, 1H), 7.27 – 7.18 (m, 5H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.99 (d, *J* = 8.2 Hz, 1H), 4.04 (q, *J* = 7.0 Hz, 2H), 2.20 (s, 3H), 1.29 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 156.1, 139.0, 136.9, 131.6, 131.3, 130.2, 129.6, 128.6, 127.2, 125.4, 120.6, 112.3, 64.0, 20.1, 14.9; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₆O, 212.1201; found, 212.1201. The *para*-isomer; ¹H NMR (500 MHz, CDCl₃) δ 7.30 – 7.24 (m, 6H), 6.97 (d, *J* = 8.6 Hz, 2H), 4.11 (q, *J* = 7.0 Hz, 2H), 2.31 (s, 3H), 1.48 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 158.0, 141.7, 135.6, 134.3, 130.4, 130.4, 130.0, 127.1, 125.9, 114.1, 63.6, 20.7, 15.1; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₆O, 212.1201; found, 212.1201; found, 212.1201; found, 212.1201; found, 212.1201.

3-Ethoxy-4'-methyl-1,1'-biphenyl (3ad)

A modification of general procedure was employed for the reaction of 4-bromotoluene (**2d**, 0.2 mmol). The isomeric mixture of compound was obtained as a pale-yellow solid (83% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (500 MHz, CDCl₃) δ 7.53 (d, *J* = 7.9 Hz, 2H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.29 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 7.6 Hz, 1H), 7.16 (s, 1H), 6.91 (dd, *J* = 8.3, 2.6 Hz, 1H), 4.14 (q, *J* = 7.0 Hz, 2H), 2.44 (s, 3H), 1.49 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.4, 142.8, 138.4, 137.3, 129.8, 129.6, 127.2, 119.5, 113.5, 113.1, 63.6, 21.3, 15.1; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₆O, 212.1201; found, 212.1198. The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.49 (d, *J* = 8.0 Hz, 2H), 7.37 – 7.30 (m, 2H), 7.25 (t, *J* = 7.9 Hz, 2H), 7.08 – 6.96 (m, 2H), 4.07 (q, *J* = 7.0 Hz, 2H), 2.42 (s, 3H), 1.38 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 156.0, 147.4, 136.5, 135.8, 131.0, 129.5, 128.8, 128.4, 120.9, 112.8, 64.1, 21.4, 14.9; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₆O, 212.1201; found, 212.1202. The *para*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.55 (d, *J* = 8.7 Hz, 2H), 7.50 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.7 Hz, 2H), 4.10 (q, *J* = 7.0 Hz, 2H), 2.43 (s, 3H), 1.48 (t, *J* = 7.0 Hz, 3H); Identity of the *para*-isomer was confirmed by comparison with reported data.¹⁴

3-Ethoxy-1,1'-biphenyl (3ae)

A modification of general procedure was employed for the reaction of bromobenzene (**2e**, 0.2 mmol). The isomeric mixture of compound was obtained as a colorless oil (81% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 7.61 (d, *J* = 7.1 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 2H), 7.37 (t, *J* = 7.9 Hz, 2H), 7.23 – 7.13 (m, 2H), 6.98 – 6.85 (m, 1H), 4.12 (q, *J* = 7.0 Hz, 2H), 1.47 (t, *J* = 7.0 Hz, 3H). The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.57 (dt, *J* = 8.2, 1.8 Hz, 2H), 7.43 – 7.37 (m, 2H), 7.36 – 7.27 (m, 3H), 7.05 – 6.97 (m, 2H), 4.05 (q, *J* = 7.0 Hz, 2H), 1.35 (t, *J* = 7.0 Hz, 3H). The *para*-isomer; ¹H NMR (300 MHz, CDCl₃)

 δ 7.61 – 7.51 (m, 4H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.36 – 7.29 (m, 1H), 7.04 – 6.94 (m, 2H), 4.10 (q, *J* = 7.0 Hz, 2H), 1.46 (t, *J* = 7.0 Hz, 3H). Their identity was confirmed by comparison with reported data.¹⁴⁻¹⁵

1-(3-Ethoxyphenyl)naphthalene (3af)

A modification of general procedure was employed for the reaction of 1-bromonaphthalene (2f, 0.2 mmol). The isomeric mixture of compound was obtained as a yellow oil (73% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (500 MHz, $CDCl_3$ δ 8.11 (d, J = 8.4 Hz, 1H), 7.97 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 7.9 Hz, 1H), 7.62 – 7.44 (m, 5H), 7.20 (d, J = 7.3 Hz, 2H), 7.07 (dd, J = 7.6, 1.9 Hz, 1H), 4.10 (q, J = 7.0 Hz, 2H), 1.50 (t, J = 7.0 Hz, 2H), 1.50 (t Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 158.9, 142.2, 140.3, 133.9, 131.7, 129.3, 128.3, 127.7, 126.8, 126.1, 126.1, 125.8, 125.4, 122.5, 116.2, 113.5, 63.4, 14.9; HRMS-EI (m/z) [M]⁺ calcd for C₁₈H₁₆O, 248.1201; found, 248.1198. The *ortho*-isomer; ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.73 (d, J = 8.4 Hz, 1H), 7.56 (d, J = 7.5 Hz, 1H), 7.52 - 7.46 (m, 2H), 7.46 -7.40 (m, 2H), 7.37 (dd, J = 7.4, 1.5 Hz, 1H), 7.11 (dt, J = 7.4, 1.0 Hz, 1H), 7.05 (d, J = 8.3 Hz, 1H), 4.03 - 3.90 (m, 2H), 1.10 (t, J = 7.0 Hz, 3H); 13 C NMR (126 MHz, CDCl₃) δ 156.6, 137.3, 133.5, 132.2, 132.1, 130.1, 129.0, 128.1, 127.6, 127.4, 126.7, 125.5, 125.5, 125.4, 120.6, 112.5, 63.9, 14.6; HRMS-EI (m/z) [M]⁺ calcd for C₁₈H₁₆O, 248.1201; found, 248.1199. The *para*-isomer; ¹H NMR (500 MHz, $CDCl_3$ δ 8.00 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H), 7.59 – 7.42 (m, 6H), 7.07 (d, J = 8.5 Hz, 2H), 4.16 (q, J = 7.0 Hz, 2H), 1.52 (t, J = 7.0 Hz, 3H). Identity of the paraisomer was confirmed by comparison with reported data.¹⁶

2-(3-Ethoxyphenyl)naphthalene (3ag)

A modification of general procedure was employed for the reaction of 2-bromonaphthalene (**2g**, 0.2 mmol). The isomeric mixture of compound was obtained as a pale-yellow solid (82% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 8.07 (s, 1H), 7.95 – 7.87 (m, 3H), 7.77 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.56 – 7.48 (m, 2H), 7.42 (t, *J* = 7.8 Hz, 1H), 7.34 – 7.28 (m, 2H), 6.95 (ddd, *J* = 8.1, 2.5, 1.0 Hz, 1H), 4.16 (q, *J* = 7.0 Hz, 2H), 1.50 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.5, 142.7, 138.6, 133.8, 132.8, 130.0, 128.5, 128.3, 127.8, 126.4, 126.1, 126.0, 125.7, 120.0, 113.9, 113.4, 63.7, 15.1; HRMS-EI (m/z) [M]⁺ calcd for C₁₈H₁₆O, 248.1201; found, 248.1199. The *ortho*-isomer; ¹H NMR (500 MHz, CDCl₃) δ 8.03 (s, 1H), 7.93 – 7.86 (m, 3H), 7.78 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.54 – 7.46 (m, 3H), 7.36 (td, *J* = 8.2, 1.7 Hz, 1H), 7.10 (t, *J* = 7.4 Hz, 1H), 7.04 (d, *J* = 8.2 Hz, 1H), 4.09 (q, *J* = 7.0 Hz, 2H), 1.37 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.2, 136.5, 133.6, 132.5, 131.3, 131.0, 128.8, 128.4, 128.3, 128.2,

127.7, 127.1, 126.0, 125.8, 121.1, 112.9, 64.2, 14.9; HRMS-EI (m/z) $[M]^+$ calcd for C₁₈H₁₆O, 248.1201; found, 248.1198. The *para*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 8.00 (s, 1H), 7.91 – 7.84 (m, 3H), 7.73 (dd, J = 8.5, 1.8 Hz, 1H), 7.68 – 7.63 (m, 2H), 7.48 (pd, J = 6.8, 3.4 Hz, 2H), 7.02 (d, J = 8.7 Hz, 2H), 4.11 (q, J = 7.0 Hz, 2H), 1.47 (t, J = 7.0 Hz, 3H). Identity of the *para*-isomer was confirmed by comparison with reported data.¹⁷

3-Ethoxy-4'-methoxy-1,1'-biphenyl (3ah)

A modification of general procedure was employed for the reaction of 4-bromoanisole (**2h**, 0.2 mmol). The isomeric mixture of compound was obtained as a white solid (61% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 7.53 (d, *J* = 8.3 Hz, 2H), 7.32 (t, *J* = 7.8 Hz, 1H), 7.14 – 7.09 (m, 2H), 6.97 (d, *J* = 8.3 Hz, 2H), 6.85 (dd, *J* = 8.2, 2.5 Hz, 1H), 4.10 (q, *J* = 7.0 Hz, 2H), 3.85 (s, 3H), 1.45 (t, *J* = 7.0 Hz, 3H). The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.51 (d, *J* = 8.8 Hz, 2H), 7.32 (dd, *J* = 7.5, 1.8 Hz, 1H), 7.29 – 7.23 (m, 1H), 7.03 – 6.93 (m, 4H), 4.04 (q, *J* = 7.0 Hz, 2H), 3.85 (s, 3H), 1.36 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.2, 155.8, 140.0, 130.8, 130.6, 128.8, 128.7, 122.0, 120.8, 115.1, 112.6, 112.6, 63.9, 55.1, 14.8; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₆O₂, 228.1150; found, 228.1147. The *para*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.49 (d, *J* = 3.7 Hz, 2H), 7.46 (d, *J* = 3.7 Hz, 2H), 6.97 (d, *J* = 2.9 Hz, 2H), 6.94 (d, *J* = 2.7 Hz, 2H), 4.07 (q, *J* = 7.0 Hz, 2H), 3.84 (s, 3H), 1.44 (t, *J* = 7.0 Hz, 3H). Identity of the meta and *para*-isomers was confirmed by comparison with reported data.¹⁸

3-Ethoxy-3'-(trifluoromethyl)-1,1'-biphenyl (3ai)

A modification of general procedure was employed for the reaction of 3-bromobenzotrifluoride (**2i**, 0.2 mmol). The isomeric mixture of compound was obtained as a pale-yellow oil (54% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 7.86 (s, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.61 (d, *J* = 7.7 Hz, 1H), 7.52 (t, *J* = 7.7 Hz, 1H), 7.37 (t, *J* = 7.9 Hz, 1H), 7.20 – 7.12 (m, 2H), 6.98 – 6.90 (m, 1H), 4.10 (q, *J* = 7.0 Hz, 2H), 1.46 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.6, 142.1, 141.3, 131.2 (q, *J* = 32.4 Hz), 130.6, 130.1, 129.3, 124.4 (q, *J* = 272.4 Hz), 124.1 (m), 119.6, 113.9, 113.8, 63.7, 14.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₃F₃O, 266.0918; found, 266.0917. The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.94 (s, 1H), 7.75 (d, *J* = 7.6 Hz, 1H), 7.58 (d, *J* = 7.8 Hz, 1H), 7.50 (t, *J* = 7.7 Hz, 1H), 7.41 – 7.28 (m, 2H), 7.04 (td, *J* = 7.5, 1.0 Hz, 1H), 6.99 (d, *J* = 8.1 Hz, 1H), 4.05 (q, *J* = 7.0 Hz, 2H), 1.36 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.0, 139.5, 132.9, 130.8, 130.3 (q, *J* = 31.9 Hz), 129.5, 129.2, 128.4, 126.7 (q, *J* = 3.9 Hz), 124.6 (q, *J* = 271.79 Hz), 123.5 (q, *J* = 3.8 Hz), 121.1, 112.6, 64.1, 14.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5; HRMS-EI (m/z) [M]⁺ calcd for MHz, CDCl₃) δ -62.5; HRMS-EI (m/z) [M]⁺ calcd for (mathefield for the mathefield for the mathe

C₁₅H₁₃F₃O, 266.0918; found, 266.0917. The *para*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.84 (s, 1H), 7.70 (d, J = 7.6 Hz, 1H), 7.60 – 7.45 (m, 4H), 6.99 (d, J = 8.7 Hz, 2H), 4.06 (q, J = 7.0 Hz, 2H), 1.46 (t, J = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl) δ 159.1, 141.6, 132.0, 131.1 (q, J = 31.5 Hz), 129.9, 129.2, 128.2, 124.3 (q, J = 217.6 Hz), 123.3 (q, J = 3.8 Hz), 123.2 (q, J = 3.8 Hz), 115.0, 63.5, 14.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.6; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₃F₃O, 266.0918; found, 266.0917.

3'-Ethoxy-3,5-bis(trifluoromethyl)-1,1'-biphenyl (3aj)

A modification of general procedure was employed for the reaction of 1-bromo-3,5bis(trifluoromethyl)benzene (2j, 0.2 mmol). The isomeric mixture of compound was obtained as a palevellow oil (69% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (500 MHz, CDCl₃) δ 8.01 (s, 2H), 7.86 (s, 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 7.12 (t, J = 2.1 Hz, 1H), 6.98 (dd, J = 8.3, 2.4 Hz, 1H), 4.12 (q, J = 7.0 Hz, 2H), 1.47 (t, J = 7.0 Hz, 3H); ¹³C NMR (126 MHz, CDCl₃) δ 159.8, 143.4, 139.8, 132.2 (q, J = 33.2Hz), 130.5, 127.4 (m), 123.6 (q, J = 272.2 Hz), 121.2 (m), 119.6, 114.6, 114.0, 63.9, 15.0; ¹⁹F NMR $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -62.9; HRMS-EI (m/z) [M]⁺ calcd for C₁₆H₁₂F₆O, 334.0792; found, 334.0789. The ortho-isomer; ¹H NMR (500 MHz, CDCl₃) δ 8.05 (s, 2H), 7.81 (s, 1H), 7.39 – 7.35 (m, 2H), 7.07 (td, J = 7.6, 0.8 Hz, 1H), 7.01 (d, J = 8.2 Hz, 1H), 4.08 (q, J = 7.0 Hz, 2H), 1.37 (t, J = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 155.9, 140.6, 131.2 (q, J = 33.0 Hz), 130.6, 130.4, 129.9 (m), 127.5, 123.7(d, J = 272.7 Hz), 121.2, 120.5 (q, J = 4.1 Hz), 112.6, 64.2, 14.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9; HRMS-EI (m/z) [M]⁺ calcd for C₁₆H₁₂F₆O, 334.0792; found, 334.0795. The *para*-isomer; ¹H NMR (500 MHz. $CDCl_3$ δ 7.96 (s, 2H), 7.79 (s, 1H), 7.54 (d, J = 8.8 Hz, 2H), 7.01 (d, J = 8.8 Hz, 2H), 4.10 (q, J = 7.0Hz, 2H), 1.46 (t, J = 7.0 Hz, 3H). Identity of the *para*-isomer was confirmed by comparison with reported data.19

3-Chloro-3'-ethoxy-1,1'-biphenyl (3ak)

A modification of general procedure was employed for the reaction of 1-bromo-3-chlorobenzene (**2k**, 0.2 mmol). The isomeric mixture of compound was obtained as a pale-yellow oil (49% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (300 MHz, CDCl₃) δ 7.64 – 7.63 (m, 1H), 7.52 – 7.49 (m, 1H), 7.41 – 7.36 (m, 3H), 7.20 – 7.15 (m, 2H), 6.96 (ddd, J = 8.3, 2.4, 0.8 Hz, 1H), 4.12 (q, J = 7.0 Hz, 2H), 1.50 (t, J = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.5, 143.1, 141.3, 134.7, 130.0, 129.9, 127.4, 127.4, 125.4, 119.5, 113.9, 113.5, 63.6,

14.9; HRMS-EI (m/z) $[M]^+$ calcd for C₁₄H₁₃ClO, 232.0655; found, 232.0658. The *ortho*-isomer ¹H NMR (300 MHz, CDCl₃) δ 7.72 (s, 1H), 7.63 – 7.49 (m, 1H), 7.47 – 7.33 (m, 4H), 7.12 (t, *J* = 7.1 Hz, 1H), 7.06 (d, *J* = 8.3 Hz, 1H), 4.12 (q, *J* = 7.0 Hz, 2H), 1.46 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 155.8, 140.5, 133.7, 130.8, 129.8, 129.4, 129.2, 129.2, 127.8, 126.8, 120.9, 112.6, 64.1, 14.7; HRMS-EI (m/z) $[M]^+$ calcd for C₁₄H₁₃ClO, 232.0655; found, 232.0656. The *para*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.60 (t, *J* = 1.6 Hz, 1H), 7.52 (dt, *J* = 8.8, 3.0 Hz, 2H), 7.46 (dt, *J* = 7.3, 1.7 Hz, 1H), 7.39 – 7.29 (m, 2H), 7.00 (dt, *J* = 8.8, 2.7 Hz, 2H), 4.09 (q, *J* = 7.0 Hz, 2H), 1.49 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 159.0, 142.8, 134.7, 132.1, 130.0, 128.2, 126.8, 126.6, 124.8, 114.9, 63.6, 14.9; HRMS-EI (m/z) $[M]^+$ calcd for C₁₄H₁₃ClO, 232.0655; found, 232.0655.

2'-Ethoxy-[1,1'-biphenyl]-4-carbonitrile (3al)

A modification of general procedure was employed for the reaction of 4-bromobenzonitrile (**21**, 0.2 mmol). The isomeric mixture of compound was obtained as a colorless oil (44% yield) and its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (s, 4H), 7.37 (ddd, *J* = 8.2, 7.4, 1.8 Hz, 1H), 7.32 (dd, *J* = 7.6, 1.8 Hz, 1H), 7.05 (td, *J* = 7.5, 1.1 Hz, 1H), 7.00 (dd, *J* = 8.3, 1.1 Hz, 1H), 4.07 (q, *J* = 7.0 Hz, 2H), 1.37 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 155.8, 143.6, 131.7, 130.7, 130.3, 130.0, 128.7, 121.0, 119.3, 112.5, 110.3, 64.0, 14.8; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₃NO, 223.0997; found, 223.0999. The *meta*-isomer; ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.63 (m, 4H), 7.38 (t, *J* = 8.0 Hz, 1H), 7.15 (ddd, *J* = 7.7, 1.7, 0.9 Hz, 1H), 7.11 – 7.09 (m, 1H), 6.95 (ddd, *J* = 8.3, 2.5, 1.0 Hz, 1H), 4.09 (q, *J* = 7.0 Hz, 2H), 1.45 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.6, 145.6, 140.6, 132.6, 130.2, 127.8, 119.6, 119.0, 114.5, 113.8, 111.1, 63.7, 14.9; ; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₃NO, 223.0997; found, 223.0997; found, 223.0998. The *para*-isomer; ¹H NMR (400 MHz, CDCl₃) δ 7.71 – 7.60 (m, 4H), 7.53 (d, *J* = 8.9 Hz, 2H), 6.99 (d, *J* = 8.9 Hz, 2H), 4.09 (q, *J* = 7.0 Hz, 2H), 1.45 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 7.71 – 7.60 (m, 4H), 7.53 (d, *J* = 8.9 Hz, 2H), 6.99 (d, *J* = 8.9 Hz, 2H), 4.09 (q, *J* = 7.0 Hz, 2H), 1.45 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 159.7, 145.3, 132.7, 131.4, 128.4, 127.2, 119.3, 115.1, 110.1, 63.7, 14.9; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₃NO, 223.0997; found, 223.0998.

2-Chloro-3'-ethoxy-1,1'-biphenyl (3am)

¹H NMR (300 MHz, CDCl₃) δ 7.47 – 7.42 (m, 1H), 7.35 – 7.23 (m, 4H), 7.02 – 6.95 (m, 2H), 6.90 (ddd, J = 8.3, 2.6, 1.0 Hz, 1H), 4.05 (q, J = 7.0 Hz, 2H), 1.41 (t, J = 7.0 Hz, 4H); ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 140.7, 140.5, 131.3, 129.9, 129.1, 128.6, 126.8, 121.7, 115.6, 113.8, 63.5, 14.9; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₃ClO, 232.0652; found, 232.0656. The *ortho*-isomer; ¹H NMR (300 MHz, CDCl₃) δ 7.45 – 7.38 (m, 1H), 7.36 – 7.29 (m, 1H), 7.28 – 7.20 (m, 3H), 7.19 – 7.13 (m, 1H), 6.99 (dt, J = 7.4, 1.0 Hz, 1H), 6.94 (d, J = 8.3 Hz, 1H), 4.00 (q, J = 6.9 Hz, 2H), 1.24 (t, J = 7.0 Hz, 3H); ¹³C NMR (101

MHz, CDCl₃) δ k 131.9, 131.1, 129.4, 129.3, 129.0, 128.5, 126.4, 120.4, 112.3, 64.1, 14.8; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₃ClO, 232.0655; found, 232.0656. The *para*-isomer; ¹H NMR (400 MHz, CDCl₃) δ 7.44 (dd, *J* = 7.5, 1.7 Hz, 1H), 7.36 (d, *J* = 8.2 Hz, 2H), 7.31 (dd, *J* = 7.6, 2.0 Hz, 1H), 7.30 – 7.25 (m, 1H), 7.25 – 7.20 (m, 1H), 6.94 (d, *J* = 8.2 Hz, 2H), 4.07 (q, *J* = 7.0 Hz, 2H), 1.43 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 158.6, 140.3, 132.7, 131.8, 131.5, 130.7, 130.1, 128.3, 126.9, 114.1, 63.6, 15.0; HRMS-EI (m/z) [M]⁺ calcd for C₁₅H₁₃ClO, 232.0655; found, 232.0654.

2-Fluoro-3',5'-bis(trifluoromethyl)-1,1'-biphenyl (3ij)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-trifluoromethylbenzene (**2j**, 0.2 mmol) and fluorobenzene (**1i**, 6 equiv) for 3 h. The isomeric mixture was analyzed by ¹⁹F NMR and GC. Its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (600 MHz, CDCl₃) δ 8.00 (s, 2H), 7.89 (s, 1H), 7.47 (td, *J* = 7.7, 1.7 Hz, 1H), 7.45 – 7.41 (m, 1H), 7.29 (td, *J* = 7.6, 1.2 Hz, 1H), 7.22 (ddd, *J* = 10.7, 8.3, 1.2 Hz, 1H); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9, -118.0. The *meta*-isomer; ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 2H), 7.90 (s, 1H), 7.49 (td, *J* = 8.0, 5.8 Hz, 1H), 7.40 (ddd, *J* = 7.7, 1.8, 1.0 Hz, 1H), 7.31 (ddd, *J* = 9.7, 2.5, 1.7 Hz, 1H), 7.16 (tdd, *J* = 8.3, 2.5, 1.0 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 163.5 (d, *J* = 247.5 Hz), 142.2 (d, *J* = 2.3 Hz), 140.6 (d, *J* = 7.7 Hz), 132.5 (q, *J* = 33.4 Hz), 131.1 (d, *J* = 8.4 Hz), 127.4 (d, *J* = 2.4 Hz), 123.5 (q, *J* = 273.1 Hz), 123.1 (d, *J* = 3.0 Hz), 121.7 (m), 116.0 (d, *J* = 21.1 Hz), 114.5 (d, *J* = 22.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.0, -111.8; HRMS-EI (m/z) [M]⁺ calcd for C₁₄H₇F₇, 308.0436; found, 308.0433. The *para*-isomer; ¹H NMR (600 MHz, CDCl₃) δ -62.9, -112.8. Identity of the ortho and *para*-isomers were confirmed by comparison with reported data.²⁰

2-Chloro-3',5'-bis(trifluoromethyl)-1,1'-biphenyl (3kj)

A modification of general procedure was employed for the reaction of 1-bromo-3,5-trifluoromethylbenzene (**2j**, 0.2 mmol) and chlorobenzene (**1k**, 60 equiv) for 3 h. The isomeric mixture was analyzed by GC. Its identity was confirmed by comparison with NMR and GC spectra of authentic samples. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (s, 3H), 7.58 – 7.53 (m, 1H), 7.44 – 7.37 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 141.4, 137.7, 132.5, 131.7 (q, *J* = 33.9 Hz), 131.3, 130.5, 130.2, 129.9 (m), 127.5, 123.5 (q, *J* = 273.7 Hz), 121.7 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9; HRMS-EI (m/z) [M]⁺ calcd for C₁₄H₇ClF₆, 324.0140; found, 324.0142. The *meta*-isomer; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 2H), 7.90 (s, 1H), 7.60 – 7.58 (m, 1H), 7.51 – 7.46 (m, 1H), 7.46 – 7.43 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 140.2, 135.5, 132.5 (q, *J* = 37.4 Hz), 130.7, 129.1, 127.6, 127.4 (m), 125.6, 123.4 (q, *J* = 276.0 Hz), 121.7 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9; HRMS-EI (m/z) [M]⁺ calcd for

C₁₄H₇ClF₆, 324.0140; found, 324.0142.. The *para*-isomer; ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 2H), 7.88 (s, 1H), 7.55 (dt, J = 8.7, 2.3 Hz, 2H), 7.48 (dt, J = 8.7, 2.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 142.1, 136.6, 135.3, 132.3 (q, J = 32.7 Hz), 129.5, 128.5, 127.0 (m), 123.3 (q, J = 273.5 Hz), 121.2 (m); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.9; HRMS-EI (m/z) [M]⁺ calcd for C₁₄H₇ClF₆, 324.0140; found, 324.0140.

7. Calculation of Proton Affinities of Arenes

7.1. General Methods

The calculations were performed using the Gaussian 09^{21} (DFT) and Gaussian 16^{22} (G3MP2 and G4MP2) program packages. The gas-phase geometries of thirteen aromatic compounds (Figure S22) and their deprotonated counterparts have been fully optimized using a spin-restricted formalism at the density functional theory (DFT) using the B3LYP hybrid functional and the 6-31++G(d,p) basis sets.²³ Single point frequency calculations were then performed to characterize the minimum-energy stationary points. Thermodynamic parameters that include the zero-point energies (ZPE) and thermal corrections at 298.15K were obtained from frequency calculations. G3MP2²⁴ and G4MP2²⁵ calculations were followed with the geometries obtained from the DFT calculations. Proton affinities (PAs) were calculated by the following relation.

 $AH(g) \rightarrow A^{-}(g) + H^{+}(g)$ $PA(A^{-}) = \Delta H^{\circ}(A^{-}) + \Delta H^{\circ}(H^{+}) - \Delta H^{\circ}(AH)$

The value of $\Delta H^{\circ}(H^{+})$ was calculated as 5/2RT according to an ideal gas expression. The calculated PAs are listed in Table S18.

7.2. Calculational results of Proton Affinities

Figure S22. Schematic representation of substituted benzenes and naphthalene with the numbering of deprotonation position.

Compound		\mathbf{DFT}^{a}	G3MP2	G4MP2
Ethoxybenzene	1a			
·	1a ₂	391.9138	391.5291	390.2271
	1a ₃	399.6899	399.1603	398.2309
	1a4	401.7651	401.2260	400.3268
	1a5	400.5596	399.9823	399.0480
	1a6	397.5783	396.9841	396.0748
Anisole	1b			
	$1b_2$	391.7519	391.3861	390.2710
	1b ₃	399.6253	399.0486	398.2040
	1b4	401.6327	401.0710	400.2352
	1b5	400.4297	399.8549	398.9733
	1b ₆	397.4930	396.9458	396.0861
Toluene	1c			
	1c ₂	400.1906	400.0507	400.1555
	1c ₃	401.3214	400.8150	400.1254
	1c4	401.4043	400.9838	400.6098
	1c5	401.3214	400.8200	400.1254
	1c ₆	400.1906	400.0507	400.1555
Ethylbenzene	1d			
	$1d_2$	399.0392	397.7402	398.1054
	1d ₃	400.7981	399.6491	399.5895
	$1d_4$	400.7654	399.8411	399.8505
	1d5	400.7981	399.6378	399.5895
	$1d_6$	400.8671	400.0049	398.1048
Isopropylbenzene	1e			
	1e ₂	397.7070	397.0575	396.6371
	1e ₃	400.6098	399.8650	399.3761
	1e ₄	400.5395	399.9961	399.5707
	1e ₅	400.3268	399.7081	399.1371
	1e ₆	398.7869	397.8990	396.9395
N-Methylacetanilide	1f			
	$1f_2$	384.9930	385.1254	385.4009
	1f ₃	389.5060	389.6887	389.6485
	1f4	390.1499	389.9020	390.4925
	1f5	389.5060	389.6887	389.6485
	1f ₆	384.9930	385.1248	385.1863
Benzene	1g			
	1g ₁	400.8031	400.4486	398.3464
Naphthalene	1h			
	$1h_1$	394.1251	393.4656	392.7076
	1h ₂	395.4429	395.0614	394.3109
Fluorobenzene	1i			
	1i ₂	387.8544	388.3891	387.1999
	1i 3	393.9074	394.2149	393.1977

Table S18. The Calculated Proton Affinities of Arenes with the Numbering of Deprotonation Position

	1i ₄	395.8822	396.1934	395.5941
Benzonitrile	1j			
	1j ₂	382.9624	382.8017	382.2665
	1j ₃	384.8349	385.2741	384.7577
	1j4	384.4427	385.0018	385.0702
Chlorobenzene	1k			
	1k ₂	386.2411	387.3010	387.2263
	1k ₃	390.6713	391.1658	390.6600
	1k4	393.1186	393.1098	392.7013
Trifluoromethoxybenzene	11			
	$1l_2$	381.6936	383.4951	380.7052
	1l ₃	388.4437	389.3197	389.6014
	1l ₄	389.9679	390.7931	391.4858
	11 5	388.4437	389.3165	389.5293
	11 ₆	381.9615	383.5133	383.3853
Trifluoromethylbenzene	1m			
·	1m ₂	386.1332	387.4309	385.0627
	1m ₃	388.9614	390.3218	389.0637
	1m4	388.3935	389.3046	388.8522
	1m5	388.9614	389.7232	389.2387
	$1m_6$	386.1351	386.7563	386.6113
Pivalophenone	1n			
	1n ₂	383.9250	385.3218	385.1737
	1n ₃	393.1952	393.3646	393.2755
	1n4	390.1323	391.5825	391.1966
	1n5	390.7328	391.4664	391.4720
	$1n_6$	383.9250	385.3287	385.1725
Nitrobenzene	10			
	102	380.1913	380.1631	379.6397
	103	382.5382	384.6636	384.2714
	104	381.0654	383.4970	383.2404
1,2-Dimethylbenzene	1p			
	1 p ₃	400.7849	400.2622	399.5795
	1p4	401.9966	401.4752	400.9104
	1p5	401.9966	401.4758	400.9104
	1p ₆	400.7849	400.1831	399.5795
1-Fluoro-4-				
methylbenzene	1q			
	$1q_2$	388.4907	389.5186	389.3034
	1q ₃	393.5516	394.0975	392.9429
	1q5	393.5516	393.6796	392.9103
	1q ₆	388.4907	388.9200	387.3763
1-Fluoro-3-				
methylbenzene	1r			
	$1r_2$	387.5865	388.3226	387.5488
	1r4	395.5389	395.7391	395.5753

	1r5	394.6585	395.4341	394.8901
	1r ₆	388.8139	389.7815	390.0206
1-Fluoro-4-anisole	1 s			
	$1s_2$	387.5702	387.9034	386.8027
	1s ₃	390.8332	390.8922	389.9861
	1s ₅	385.2992	385.5691	384.4314
	1s ₆	386.9847	387.3267	386.2204
1-Fluoro-4-				
trifluoromethylbenzene	1t			
	1t ₂	375.4009	378.2837	378.1964
	1t ₃	379.3322	381.3240	380.2151
	1t ₅	379.3322	380.6331	380.2158
	$1t_6$	375.4009	377.6894	376.9559

^aB3LYP/6-31++G(d,p).

8. Calculation of Reductive Elimination Process

8.1. General Methods

All calculations were carried out using DFT²⁶ as implemented in the Gaussian 09²¹ program packages. Gas phase geometry optimizations were conducted with the B3LYP hybrid functional²⁷ including Grimme's D3 dispersion correction²⁸ and the 6-31G**/LanL2DZ(Pd)²⁹ basis set. The energies of the optimized structures were reevaluated by additional single point calculations using the B3LYP hybrid functional including Grimme's D3 dispersion correction and the 6-311++G**/SDD(Pd) basis set. The integral equation formalism variant of the Polarizable Continuum Model (IEFPCM) was employed as implemented to account for the solvation effects for *N*,*N*-dimethylacetamide (ϵ =37.781). Analytical vibrational frequencies within the harmonic approximation were computed with the 6-31G**/LanL2DZ(Pd) basis set to confirm proper convergence to well-defined minima (no imaginary frequency) or saddle points (one and only one imaginary frequency) on the potential energy surface. All thermal corrections from the vibrational frequency calculations were performed at 120 °C (393.15 K).

8.2. Comparison of the Reductive Elimination Processes

Figure S23. DFT Computed Energy Profiles for Reductive Elimination Processes

]	DFT calculat	ed	Experimental		
Arylation site	ΔG	$\Delta G \qquad \Delta G^{\ddagger} \qquad \Delta \Delta G^{\ddagger b} \qquad \begin{array}{c} \text{\% Selectivity} \\ \text{(o / m / p)} \end{array}$		$\Delta\Delta \mathrm{G}^{\ddagger b}$	%Selectivity (o / m / p)		
Fluorobenzene							
ortho	-5.04	13.27	0		0		
meta	-8.08	12.20	-1.07	(17.8 / 69.9 / 12.3)	1.71	(87.8 / 9.8 / 2.4)	
para	-6.97	13.56	0.29		2.81		
Chlorobenzene							
ortho	-3.32	14.20	0		0		
meta	-5.10	13.89	-0.31	(9.1 / 13.6 / 77.3)	-0.23	(34.2 / 45.7 / 20.2)	
para	-6.80	12.53	-1.67		-0.41		

Table S19. Investigation of Theoretical Selectivity in Reductive Elimination Processes

$$\frac{[\mathbf{A}]}{[\mathbf{B}]} = e^{-\frac{\Delta\Delta G^{\ddagger}}{RT}} \qquad (\Delta\Delta G^{\ddagger} = \Delta G_{A}^{\ddagger} - \Delta G_{B}^{\ddagger})$$

	E(SCF)/(Hartree)	Thermal correction to G /(Hartree)	G(sol)/(kcal/mol)
	6-311++G**/SDD	6-31G**/LanL2DZ	
Pd(DMA)	-415.8457	0.076136	-260899.1356
3ib-o	-641.3715	0.167356	-402361.3459
3ib-m	-641.3735	0.167588	-402362.4893
3ib-p	-641.3731	0.167591	-402362.2454
preRE1-0	-1057.2379	0.272236	-663255.4423
preRE1-m	-1057.2353	0.272717	-663253.5480
preRE1-p	-1057.2338	0.269789	-663254.4133
TS1-0	-1057.2183	0.273792	-663242.1698
TS1-m	-1057.2170	0.273833	-663241.3466
TS1-p	-1057.2151	0.272729	-663240.8479
3kb-o	-1001.7259	0.165703	-628488.0099
3kb-m	-1001.7288	0.165247	-628490.1478
3kb-p	-1001.7286	0.164811	-628490.3188
preRE2-0	-1417.5943	0.269898	-889383.8271
preRE2-m	-1417.5929	0.267948	-889384.1840
preRE2-p	-1417.5906	0.268002	-889382.6549
TS2-0	-1417.5718	0.269988	-889369.6284
TS2-m	-1417.5737	0.270864	-889370.2970
TS2-p	-1417.5723	0.269735	-889370.1230

8.3. DFT-optimized structures' energy components

9. Cartesian Coordinates of Optimized Geometry

1a. Ethoxybenzene

A +				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Nulliber	х	У	Z	х	У	Z	х	У	Z
6	-0.05595	-0.21587	0.00000	-0.05216	-0.21646	0.00000	-0.05272	-0.21546	0.00000
6	-0.94827	-1.30006	0.00000	-0.94384	-1.29664	0.00000	-0.94506	-1.29490	0.00000
6	-2.32111	-1.07202	0.00000	-2.31363	-1.06817	0.00000	-2.31316	-1.06828	0.00000
6	-2.82705	0.23477	0.00000	-2.81299	0.23787	0.00000	-2.81683	0.23397	0.00000
6	-1.93644	1.30726	0.00000	-1.92267	1.30667	0.00000	-1.92867	1.30240	0.00000
6	-0.55171	1.09486	0.00000	-0.54063	1.09259	0.00000	-0.54881	1.09101	0.00000
8	1.27238	-0.54208	0.00000	1.27515	-0.55753	0.00000	1.26818	-0.54182	0.00000
6	2.24444	0.50624	0.00000	2.22550	0.50815	0.00000	2.23101	0.50414	0.00000
6	3.61935	-0.13871	0.00000	3.59469	-0.13197	0.00000	3.60739	-0.13740	0.00000
1	-0.54201	-2.30645	0.00000	-0.53385	-2.30265	0.00000	-0.53641	-2.29902	0.00000
1	-3.00145	-1.91901	0.00000	-2.99626	-1.91440	0.00000	-2.99246	-1.91470	0.00000
1	-3.89837	0.40966	0.00000	-3.88465	0.41630	0.00000	-3.88681	0.40889	0.00000
1	-2.31221	2.32671	-0.00001	-2.29763	2.32739	-0.00001	-2.30375	2.32094	-0.00001
1	0.11783	1.94659	0.00000	0.12933	1.94517	0.00000	0.12111	1.94077	0.00000
1	2.10794	1.13659	-0.88988	2.08303	1.13643	-0.88878	2.09574	1.13890	-0.88731
1	2.10794	1.13660	0.88987	2.08302	1.13644	0.88878	2.09574	1.13890	0.88731
1	4.39406	0.63521	0.00000	4.37223	0.63671	0.00000	4.38269	0.63433	0.00000
1	3.75383	-0.76409	0.88751	3.71898	-0.75667	0.88643	3.73990	-0.76368	0.88644
1	3.75383	-0.76409	-0.88751	3.71898	-0.75668	-0.88642	3.73990	-0.76369	-0.88643

1a₂.

A 4				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Nulliber	х	У	Z	х	У	Z	х	У	Z
6	0.00000	0.18176	0.00000	0.00000	0.18788	0.00000	0.00000	0.18674	0.00000
6	-0.19003	1.57430	0.00000	-0.20978	1.57574	0.00000	-0.21495	1.57017	0.00000
6	-1.49538	2.07794	0.00000	-1.52269	2.04648	0.00000	-1.52490	2.04701	0.00000
6	-2.56968	1.17894	0.00000	-2.57073	1.12280	0.00000	-2.57393	1.12782	0.00000
6	-2.30719	-0.20444	0.00000	-2.27036	-0.25110	0.00000	-2.28170	-0.24403	0.00000
6	-1.01684	-0.78450	0.00000	-0.97466	-0.81933	0.00000	-0.98646	-0.80814	0.00000
8	1.36704	-0.17660	0.00000	1.37987	-0.13250	0.00000	1.37032	-0.14427	0.00000
6	1.66909	-1.56115	0.00000	1.65963	-1.52037	0.00000	1.67177	-1.51901	0.00000
6	3.18836	-1.69415	0.00000	3.17252	-1.64688	0.00000	3.19182	-1.64731	0.00000
1	0.66969	2.24601	0.00000	0.63860	2.26269	0.00000	0.62998	2.25958	0.00000
1	-1.66592	3.15403	0.00000	-1.72096	3.11962	0.00000	-1.71814	3.11867	0.00000
1	-3.59623	1.55291	0.00000	-3.60667	1.47289	0.00000	-3.60685	1.48246	0.00000
1	-3.18289	-0.86528	0.00000	-3.13916	-0.92655	0.00000	-3.15034	-0.91738	0.00000
1	1.22144	-2.04983	0.87598	1.20930	-2.00848	0.87288	1.22493	-2.01839	0.87125
1	1.22144	-2.04983	-0.87598	1.20930	-2.00848	-0.87288	1.22493	-2.01839	-0.87125
1	3.47906	-2.75314	0.00000	3.47797	-2.69963	0.00000	3.49472	-2.70178	0.00000
1	3.62356	-1.21713	-0.88644	3.59454	-1.16173	-0.88462	3.62415	-1.16513	-0.88431
1	3.62356	-1.21713	0.88644	3.59454	-1.16173	0.88462	3.62415	-1.16513	0.88431

1a₃.

A 4				te					
Atomic	DFT			G3MP2			G4MP2		
Nulliber	х	у	Z	х	у	Z	х	у	Z
6	0.00000	0.22133	0.00000	0.00000	0.22197	0.00000	0.00000	0.21888	0.00000
6	-0.21850	1.60394	0.00000	-0.23935	1.59589	0.00000	-0.21019	1.59854	0.00000
6	-1.54176	2.05770	0.00000	-1.56520	2.02605	0.00000	-1.52754	2.05343	0.00000
6	-2.60774	1.14207	0.00000	-2.60522	1.08208	0.00000	-2.58832	1.14210	0.00000
6	-2.44665	-0.26776	0.00000	-2.44635	-0.32782	0.00000	-2.45327	-0.27142	0.00000
6	-1.08157	-0.67443	0.00000	-1.06819	-0.68746	0.00000	-1.08396	-0.66480	0.00000
8	1.35388	-0.15643	0.00000	1.36948	-0.12003	0.00000	1.35038	-0.15934	0.00000
6	1.65835	-1.53567	0.00000	1.66606	-1.49905	0.00000	1.64414	-1.52951	0.00000
6	3.17508	-1.67912	0.00000	3.17730	-1.61999	0.00000	3.16098	-1.67772	0.00000

1	0.63033	2.28387	0.00000	0.60346	2.28569	0.00000	0.64435	2.26973	0.00000
1	-1.73254	3.13533	0.00000	-1.77614	3.10065	0.00000	-1.71051	3.13234	0.00000
1	-3.61849	1.56574	0.00000	-3.62285	1.49890	0.00000	-3.59492	1.58174	0.00000
1	-0.85974	-1.74329	0.00000	-0.81934	-1.75440	0.00000	-0.85264	-1.73469	0.00000
1	1.22615	-2.02680	0.88589	1.23764	-1.99343	0.88395	1.21236	-2.02887	0.88260
1	1.22615	-2.02680	-0.88589	1.23764	-1.99343	-0.88395	1.21236	-2.02887	-0.88260
1	3.45854	-2.73895	0.00000	3.48608	-2.67076	0.00000	3.44872	-2.73522	0.00000
1	3.60764	-1.20302	-0.88673	3.59170	-1.13153	-0.88522	3.59314	-1.19926	-0.88503
1	3.60764	-1.20302	0.88673	3.59170	-1.13153	0.88522	3.59314	-1.19926	0.88503

1a4.

Atomio				Ato	mic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	х	У	Z	Х	у	Z	х	У	Z
6	-0.11061	-0.21841	0.00000	-0.10375	-0.22102	0.00000	-0.10572	-0.21810	0.00000
6	-1.01646	-1.28345	0.00000	-1.00950	-1.28170	0.00000	-1.01176	-1.27758	0.00000
6	-2.39661	-1.01803	-0.00001	-2.38497	-1.00430	-0.00001	-2.38506	-1.00965	-0.00001
6	-2.98634	0.27656	-0.00001	-2.99247	0.28368	-0.00001	-2.99249	0.27696	-0.00001
6	-2.00271	1.29372	-0.00001	-1.98726	1.28248	-0.00001	-1.99489	1.28162	-0.00001
6	-0.60273	1.08912	-0.00001	-0.58830	1.08610	-0.00001	-0.60030	1.08389	-0.00001
8	1.25103	-0.55973	0.00001	1.25601	-0.57688	0.00001	1.25088	-0.56008	0.00001
6	2.19391	0.48909	0.00001	2.17496	0.49210	0.00001	2.17993	0.48696	0.00001
6	3.58548	-0.13016	0.00001	3.56121	-0.12034	0.00001	3.57449	-0.12629	0.00001
1	-0.62555	-2.30256	0.00001	-0.61495	-2.30037	0.00001	-0.61424	-2.29386	0.00001
1	-3.04748	-1.90054	0.00000	-3.03231	-1.89441	0.00000	-3.02735	-1.90205	0.00000
1	-2.31855	2.34417	-0.00001	-2.29239	2.34028	-0.00001	-2.30024	2.33812	-0.00001
1	0.07050	1.94578	-0.00001	0.08646	1.94251	-0.00001	0.07634	1.93734	-0.00001
1	2.06020	1.13051	-0.88657	2.03379	1.13088	-0.88493	2.04864	1.13473	-0.88346
1	2.06019	1.13051	0.88657	2.03379	1.13089	0.88493	2.04863	1.13473	0.88347
1	4.35288	0.65370	0.00001	4.33247	0.65705	0.00001	4.34352	0.65440	0.00001
1	3.72798	-0.75721	0.88662	3.69275	-0.74689	0.88523	3.71623	-0.75483	0.88504
1	3.72799	-0.75722	-0.88659	3.69276	-0.74690	-0.88521	3.71624	-0.75483	-0.88501

1a5.

A				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	х	У	Z	х	У	Z	х	У	Z
6	0.11436	-0.24018	0.00000	0.11149	-0.23650	0.00000	0.11376	-0.23692	0.00000
6	1.00337	-1.32830	0.00001	1.01094	-1.31476	0.00001	1.00451	-1.31642	0.00001
6	2.41430	-1.20772	0.00000	2.42287	-1.21513	0.00000	2.41684	-1.21476	0.00000
6	2.84970	0.14990	-0.00001	2.82408	0.15242	-0.00001	2.83128	0.14991	-0.00001
6	1.98918	1.25318	-0.00001	1.96760	1.25912	-0.00001	1.97763	1.25063	-0.00001
6	0.59363	1.07483	-0.00001	0.57730	1.07736	-0.00001	0.58687	1.07538	-0.00001
6	-2.18629	0.50468	0.00000	-2.16773	0.50215	0.00000	-2.17146	0.49949	0.00000
1	0.53235	-2.31666	0.00001	0.52779	-2.30161	0.00001	0.51806	-2.30057	0.00001
1	3.92410	0.36736	-0.00001	3.89846	0.38816	-0.00001	3.90553	0.38086	-0.00001
1	2.38747	2.27263	-0.00002	2.36357	2.28012	-0.00002	2.37166	2.27150	-0.00002
1	-0.06882	1.93486	-0.00001	-0.08914	1.93623	-0.00001	-0.07874	1.93168	-0.00001
6	-3.58444	-0.09992	0.00001	-3.55938	-0.09854	0.00001	-3.57131	-0.10186	0.00001
1	-2.04778	1.14488	-0.88721	-2.02417	1.14118	-0.88535	-2.03660	1.14636	-0.88404
1	-2.04778	1.14489	0.88721	-2.02417	1.14119	0.88534	-2.03659	1.14637	0.88404
1	-3.73220	-0.72597	0.88636	-3.69475	-0.72452	0.88499	-3.71703	-0.72968	0.88478
1	-4.34487	0.69104	0.00001	-4.32542	0.68430	0.00001	-4.33513	0.68429	0.00001
1	-3.73221	-0.72598	-0.88634	-3.69475	-0.72453	-0.88497	-3.71703	-0.72969	-0.88476
8	-1.25414	-0.55324	0.00001	-1.25755	-0.57216	0.00001	-1.25036	-0.55422	0.00001

1a6.

Atomic Number	Atomic Coordinate DFT G3MP2 G4MP2									
Number	Х	У	Z	Х	У	Z	х	У	Z	
6	-0.10677	-0.30039	0.00000	-0.11317	-0.30565	0.00000	-0.11222	-0.29987	0.00000	
6	-0.94615	-1.42899	0.00000	-0.93216	-1.44845	0.00000	-0.93530	-1.43956	0.00000	

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	-2.31440	-1.09082	0.00000	-2.29539	-1.08170	0.00000	-2.29918	-1.08457	0.00000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	-2.82089	0.22736	-0.00001	-2.80392	0.23253	-0.00001	-2.80731	0.22630	-0.00001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	-1.92614	1.29664	-0.00001	-1.90948	1.29809	-0.00001	-1.91949	1.29435	-0.00001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	-0.54371	1.03576	-0.00001	-0.53273	1.03648	-0.00001	-0.54264	1.03287	-0.00001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	2.19886	0.47415	0.00000	2.17648	0.48033	0.00000	2.18243	0.47300	0.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-3.05854	-1.89696	0.00000	-3.05186	-1.88113	0.00000	-3.05252	-1.88520	0.00000
1 -2.28080 2.32670 -0.00002 -2.26388 2.33026 -0.00002 -2.27391 2.32395 -0.00002 1 0.14214 1.88253 -0.00001 0.15564 1.88107 -0.00001 0.14372 1.87820 -0.00001 6 3.60372 -0.11912 0.00001 3.57363 -0.11117 0.00001 3.58968 -0.11564 0.00001 1 2.06272 1.11872 0.88692 2.03701 1.12400 0.88490 2.05068 1.12506 0.88357 1 2.06272 1.11871 -0.88692 2.03702 1.12399 -0.88489 2.05068 1.12506 -0.88357 1 3.75333 -0.74592 -0.88547 3.71019 -0.73794 -0.88419 3.73855 -0.74384 -0.88409 1 4.36042 0.67644 0.00001 4.33790 0.67430 0.00001 4.34915 0.67562 0.00001 1 3.75332 -0.74591 0.88549 3.71018 -0.73794 0.88422	1	-3.89772	0.41421	-0.00001	-3.88099	0.42343	-0.00001	-3.88345	0.41499	-0.00001
1 0.14214 1.88253 -0.0001 0.15564 1.88107 -0.0001 0.14372 1.87820 -0.0001 6 3.60372 -0.11912 0.0001 3.57363 -0.11117 0.0001 3.58968 -0.11564 0.00001 1 2.06272 1.11872 0.88692 2.03701 1.12400 0.88490 2.05068 1.12506 0.88357 1 2.06272 1.11871 -0.88692 2.03702 1.12399 -0.88489 2.05068 1.12506 -0.88357 1 3.75333 -0.74592 -0.88547 3.71019 -0.73794 -0.88419 3.73855 -0.74384 -0.88409 1 4.36042 0.67644 0.00001 4.33790 0.67430 0.00001 4.34915 0.67562 0.00001 1 3.75332 -0.74591 0.88549 3.71018 -0.73794 0.88422 3.73854 -0.74384 0.88411 8 1.27941 -0.58952 0.00001 1.27866 -0.60036 0.00001 <t< td=""><td>1</td><td>-2.28080</td><td>2.32670</td><td>-0.00002</td><td>-2.26388</td><td>2.33026</td><td>-0.00002</td><td>-2.27391</td><td>2.32395</td><td>-0.00002</td></t<>	1	-2.28080	2.32670	-0.00002	-2.26388	2.33026	-0.00002	-2.27391	2.32395	-0.00002
6 3.60372 -0.11912 0.00001 3.57363 -0.11117 0.00001 3.58968 -0.11564 0.00001 1 2.06272 1.11872 0.88692 2.03701 1.12400 0.88490 2.05068 1.12506 0.88357 1 2.06272 1.11871 -0.88692 2.03702 1.12399 -0.88489 2.05068 1.12506 -0.88357 1 3.75333 -0.74592 -0.88547 3.71019 -0.73794 -0.88419 3.73855 -0.74384 -0.88409 1 4.36042 0.67644 0.00001 4.33790 0.67430 0.00001 4.34915 0.67562 0.00001 1 3.75332 -0.74591 0.88549 3.71018 -0.73794 0.88422 3.73854 -0.74384 0.88411 8 1.27941 -0.58952 0.00001 1.27866 -0.60036 0.00001 1.27535 -0.58642 0.00001	1	0.14214	1.88253	-0.00001	0.15564	1.88107	-0.00001	0.14372	1.87820	-0.00001
1 2.06272 1.11872 0.88692 2.03701 1.12400 0.88490 2.05068 1.12506 0.88357 1 2.06272 1.11871 -0.88692 2.03702 1.12399 -0.88489 2.05068 1.12506 -0.88357 1 3.75333 -0.74592 -0.88547 3.71019 -0.73794 -0.88419 3.73855 -0.74384 -0.88409 1 4.36042 0.67644 0.00001 4.33790 0.67430 0.00001 4.34915 0.67562 0.00001 1 3.75332 -0.74591 0.88549 3.71018 -0.73794 0.88422 3.73854 -0.74384 0.88411 8 1.27941 -0.58952 0.00001 1.27866 -0.60036 0.00001 1.27535 -0.58642 0.00001	6	3.60372	-0.11912	0.00001	3.57363	-0.11117	0.00001	3.58968	-0.11564	0.00001
1 2.06272 1.11871 -0.88692 2.03702 1.12399 -0.88489 2.05068 1.12506 -0.88357 1 3.75333 -0.74592 -0.88547 3.71019 -0.73794 -0.88419 3.73855 -0.74384 -0.88409 1 4.36042 0.67644 0.00001 4.33790 0.67430 0.00001 4.34915 0.67562 0.00001 1 3.75332 -0.74591 0.88549 3.71018 -0.73794 0.88422 3.73854 -0.74384 0.88411 8 1.27941 -0.58952 0.00001 1.27866 -0.60036 0.00001 1.27535 -0.58642 0.00001	1	2.06272	1.11872	0.88692	2.03701	1.12400	0.88490	2.05068	1.12506	0.88357
1 3.75333 -0.74592 -0.88547 3.71019 -0.73794 -0.88419 3.73855 -0.74384 -0.88409 1 4.36042 0.67644 0.00001 4.33790 0.67430 0.00001 4.34915 0.67562 0.00001 1 3.75332 -0.74591 0.88549 3.71018 -0.73794 0.88422 3.73854 -0.74384 0.88411 8 1.27941 -0.58952 0.00001 1.27866 -0.60036 0.00001 1.27535 -0.58642 0.00001	1	2.06272	1.11871	-0.88692	2.03702	1.12399	-0.88489	2.05068	1.12506	-0.88357
1 4.36042 0.67644 0.00001 4.33790 0.67430 0.00001 4.34915 0.67562 0.00001 1 3.75332 -0.74591 0.88549 3.71018 -0.73794 0.88422 3.73854 -0.74384 0.88411 8 1.27941 -0.58952 0.00001 1.27866 -0.60036 0.00001 1.27535 -0.58642 0.00001	1	3.75333	-0.74592	-0.88547	3.71019	-0.73794	-0.88419	3.73855	-0.74384	-0.88409
1 3.75332 -0.74591 0.88549 3.71018 -0.73794 0.88422 3.73854 -0.74384 0.88411 8 1.27941 -0.58952 0.00001 1.27866 -0.60036 0.00001 1.27535 -0.58642 0.00001	1	4.36042	0.67644	0.00001	4.33790	0.67430	0.00001	4.34915	0.67562	0.00001
8 1.27941 -0.58952 0.00001 1.27866 -0.60036 0.00001 1.27535 -0.58642 0.00001	1	3.75332	-0.74591	0.88549	3.71018	-0.73794	0.88422	3.73854	-0.74384	0.88411
	8	1.27941	-0.58952	0.00001	1.27866	-0.60036	0.00001	1.27535	-0.58642	0.00001

1b. Anisole

A +				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Nulliber	х	У	Z	Х	У	Z	х	У	Z
6	-0.45351	-0.27167	0.00000	-0.45451	-0.27129	0.00000	-0.45501	-0.27171	0.00000
6	0.49627	-1.30545	-0.00001	0.49389	-1.30182	-0.00001	0.49498	-1.30034	-0.00001
6	1.85428	-1.00144	-0.00001	1.84913	-0.99909	-0.00001	1.84826	-0.99737	-0.00001
6	2.28695	0.33150	-0.00001	2.27680	0.33221	-0.00001	2.27828	0.33108	-0.00001
6	1.33866	1.35325	0.00000	1.32998	1.35115	0.00000	1.33218	1.34851	0.00000
6	-0.03225	1.06424	0.00000	-0.03844	1.06219	0.00000	-0.03373	1.06013	0.00000
8	-1.76263	-0.67058	0.00000	-1.76126	-0.68417	0.00000	-1.75670	-0.67128	0.00001
1	0.14608	-2.33264	-0.00001	0.13894	-2.32850	-0.00001	0.14277	-2.32558	-0.00001
1	2.58061	-1.80930	-0.00001	2.57679	-1.80689	-0.00001	2.57390	-1.80437	-0.00001
1	3.34696	0.56524	-0.00001	3.33720	0.56848	-0.00001	3.33683	0.56534	-0.00001
1	1.65751	2.39188	0.00000	1.64900	2.39068	0.00000	1.64990	2.38634	0.00000
6	-2.77696	0.32523	0.00001	-2.75428	0.33330	0.00001	-2.76124	0.32388	0.00001
1	-3.72441	-0.21523	0.00001	-3.70864	-0.19182	0.00001	-3.71492	-0.20669	0.00001
1	-2.71892	0.95673	0.89567	-2.68258	0.96201	0.89413	-2.70336	0.95964	0.89308
1	-2.71893	0.95674	-0.89564	-2.68259	0.96201	-0.89410	-2.70336	0.95964	-0.89306
1	-0.74846	1.87726	0.00001	-0.75338	1.87750	0.00001	-0.75053	1.87089	0.00001

$1b_2$

A 4				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	х	У	Z	х	у	Z	х	у	Z
6	0.00000	0.48074	0.00000	0.00000	0.47764	0.00000	0.00000	0.48074	0.00000
6	-1.36004	0.12532	0.00000	-1.36214	0.13798	0.00000	-1.35692	0.13508	0.00000
6	-1.70308	-1.23122	0.00000	-1.70768	-1.21335	0.00000	-1.70689	-1.21442	0.00000
6	-0.68201	-2.19032	0.00000	-0.69009	-2.17047	0.00000	-0.69241	-2.17166	0.00000
6	0.66016	-1.76401	0.00000	0.64964	-1.74252	0.00000	0.64563	-1.75042	0.00000
6	1.07993	-0.41324	0.00000	1.09327	-0.39935	0.00000	1.08325	-0.40745	0.00000
8	0.19461	1.87935	0.00000	0.19070	1.87935	0.00000	0.20136	1.87457	0.00000
1	-2.13052	0.89765	0.00000	-2.12604	0.91785	0.00000	-2.12405	0.91021	0.00000
1	-2.75098	-1.52970	0.00000	-2.75759	-1.51131	0.00000	-2.75539	-1.50871	0.00000
1	-0.93052	-3.25425	0.00000	-0.94175	-3.23467	0.00000	-0.94757	-3.23358	0.00000
1	1.42127	-2.55421	0.00000	1.40359	-2.54433	0.00000	1.39843	-2.55134	0.00000
6	1.53612	2.33060	0.00000	1.54922	2.27277	0.00000	1.54508	2.28846	0.00000
1	1.47609	3.42698	0.00000	1.53231	3.36992	0.00000	1.52269	3.38813	0.00000
1	2.08565	1.97570	0.88107	2.08530	1.89575	0.87709	2.09426	1.91840	0.87584
1	2.08565	1.97570	-0.88107	2.08530	1.89575	-0.87709	2.09426	1.91840	-0.87584

1b3

Atomic		DFT		At	tomic Coordin G3MP2	ate	G4MP2		
Number	х	y	Z	х	у	Z	х	у	Z

6	0.00000	0.47460	0.00000	0.00000	0.47542	0.00000	0.00000	0.47331	0.00000
6	-1.37412	0.20698	0.00000	-1.37018	0.21451	0.00000	-1.37049	0.20884	0.00000
6	-1.78010	-1.13163	0.00000	-1.77997	-1.11771	0.00000	-1.77271	-1.12549	0.00000
6	-0.82690	-2.16431	0.00000	-0.82036	-2.14335	0.00000	-0.82016	-2.14958	0.00000
6	0.57639	-1.95350	0.00000	0.58688	-1.96296	0.00000	0.58696	-1.95902	0.00000
6	0.93372	-0.57397	0.00000	0.92515	-0.57919	0.00000	0.92548	-0.57485	0.00000
8	0.32893	1.84083	0.00000	0.32012	1.84895	0.00000	0.32464	1.83723	0.00000
1	-2.08391	1.03098	0.00000	-2.07294	1.04655	0.00000	-2.07499	1.03616	0.00000
1	-2.85025	-1.36092	0.00000	-2.85125	-1.34504	0.00000	-2.84356	-1.35107	0.00000
1	-1.21445	-3.18950	0.00000	-1.22172	-3.16723	0.00000	-1.21993	-3.17271	0.00000
1	1.99403	-0.31443	0.00000	1.98831	-0.31502	0.00000	1.98542	-0.30139	0.00000
6	1.69593	2.18093	0.00000	1.69510	2.15169	0.00000	1.68287	2.16896	0.00000
1	1.74069	3.27525	0.00000	1.76496	3.24375	0.00000	1.74142	3.26446	0.00000
1	2.21644	1.79871	0.89079	2.20598	1.75749	0.88820	2.21141	1.78682	0.88723
1	2.21644	1.79871	-0.89079	2.20598	1.75749	-0.88820	2.21141	1.78682	-0.88723

1b4

A		Atomic Coordinate										
Atomic		DFT			G3MP2			G4MP2				
Number	х	У	Z	х	у	Z	х	У	Z			
6	0.40425	-0.27146	0.00000	0.40879	-0.27239	0.00000	0.40799	-0.27090	0.00000			
6	-0.55925	-1.28475	0.00000	-0.55258	-1.28313	0.00000	-0.55479	-1.27906	0.00000			
6	-1.92246	-0.94296	-0.00001	-1.91129	-0.93290	-0.00001	-1.91138	-0.93586	-0.00001			
6	-2.43918	0.38252	-0.00001	-2.44956	0.38557	-0.00002	-2.44725	0.38208	-0.00001			
6	-1.40091	1.34353	-0.00001	-1.39262	1.32921	-0.00001	-1.39617	1.33035	-0.00001			
6	-0.01421	1.06121	0.00000	-0.00599	1.05850	0.00000	-0.01440	1.05606	0.00000			
8	1.74448	-0.68735	0.00001	1.74653	-0.70039	0.00001	1.74360	-0.68683	0.00001			
1	-0.22551	-2.32398	0.00000	-0.21291	-2.32137	0.00000	-0.21378	-2.31567	0.00000			
1	-2.62146	-1.78783	-0.00001	-2.60510	-1.78733	-0.00002	-2.60203	-1.79117	-0.00001			
1	-1.65791	2.40989	-0.00001	-1.64080	2.40187	-0.00001	-1.64352	2.40177	-0.00001			
1	0.70587	1.87891	0.00000	0.71267	1.87839	0.00001	0.70808	1.87104	0.00000			
6	2.73257	0.31374	0.00001	2.70840	0.32637	0.00001	2.71641	0.31489	0.00001			
1	3.69734	-0.20389	0.00002	3.68322	-0.16933	0.00002	3.69126	-0.18675	0.00002			
1	2.67050	0.95735	-0.89154	2.62988	0.96675	-0.88921	2.65438	0.96502	-0.88808			
1	2.67049	0.95735	0.89157	2.62988	0.96676	0.88923	2.65436	0.96501	0.88811			

1b5

A		Atomic Coordinate										
Atomic		DFT			G3MP2			G4MP2				
Number	х	у	Z	х	У	Z	х	У	Z			
6	0.40244	-0.28477	0.00000	0.40243	-0.28125	0.00000	0.40118	-0.28265	0.00000			
6	-0.53522	-1.33148	-0.00001	-0.54634	-1.31669	-0.00001	-0.53966	-1.31903	-0.00001			
6	-1.93904	-1.14600	-0.00001	-1.95214	-1.15230	-0.00001	-1.94564	-1.15067	-0.00001			
6	-2.31219	0.23012	-0.00001	-2.29008	0.23230	-0.00001	-2.29517	0.23213	-0.00001			
6	-1.40233	1.29290	0.00000	-1.38353	1.29821	0.00000	-1.39054	1.29127	0.00000			
6	-0.01630	1.05058	0.00000	-0.00300	1.05255	0.00000	-0.00957	1.05034	0.00000			
8	1.75488	-0.65919	0.00000	1.75316	-0.68020	0.00000	1.74844	-0.66412	0.00001			
1	-0.11012	-2.34037	-0.00001	-0.10914	-2.32472	-0.00001	-0.10019	-2.32504	-0.00001			
1	-3.37562	0.49610	-0.00001	-3.35251	0.51726	-0.00001	-3.35736	0.51354	-0.00001			
1	-1.75354	2.32955	0.00000	-1.73201	2.33642	0.00000	-1.73591	2.32964	0.00000			
1	0.68489	1.87933	0.00001	0.70140	1.88056	0.00001	0.69577	1.87423	0.00001			
6	2.72250	0.36140	0.00001	2.69900	0.35928	0.00001	2.70505	0.35309	0.00001			
1	3.69865	-0.13480	0.00001	3.68241	-0.11967	0.00001	3.68915	-0.13034	0.00001			
1	2.64884	1.00361	-0.89214	2.61326	0.99958	-0.88956	2.63354	1.00204	-0.88860			
1	2.64883	1.00360	0.89217	2.61325	0.99958	0.88958	2.63354	1.00203	0.88862			

1b₆

Atomic Number		DFT		Ato	mic Coordinat G3MP2	te		G4MP2	
Number	Х	У	Z	Х	у	Z	Х	У	Z
6	0.00000	0.53772	0.00000	0.00000	0.53313	0.00000	0.00000	0.53195	0.00000
6	-1.40615	0.56157	0.00000	-1.40457	0.60693	0.00000	-1.40502	0.58607	0.00000

6	-1.97448	-0.72782	0.00000	-1.97064	-0.68601	0.00000	-1.96673	-0.70621	0.00000
6	-1.23971	-1.93404	0.00000	-1.26289	-1.90475	0.00000	-1.24795	-1.91474	0.00000
6	0.15331	-1.87838	0.00000	0.12773	-1.87248	0.00000	0.14023	-1.87422	0.00000
6	0.79145	-0.62428	0.00000	0.78434	-0.63422	0.00000	0.78352	-0.62892	0.00000
8	0.61540	1.81220	0.00000	0.63749	1.80294	0.00000	0.62817	1.80113	0.00000
1	-3.06731	-0.82478	0.00000	-3.06760	-0.77666	0.00000	-3.06162	-0.80568	0.00000
1	-1.74942	-2.90085	0.00000	-1.78723	-2.86478	0.00000	-1.76297	-2.87833	0.00000
1	0.75229	-2.78839	0.00000	0.71193	-2.79433	0.00000	0.73223	-2.78820	0.00000
1	1.88088	-0.59931	0.00000	1.87387	-0.62699	0.00000	1.87230	-0.61066	0.00000
6	2.01745	1.87672	0.00000	2.04057	1.81195	0.00000	2.02000	1.84576	0.00000
1	2.28183	2.94026	0.00000	2.34152	2.86474	0.00000	2.31077	2.90434	0.00000
1	2.46364	1.40331	0.89164	2.47019	1.32362	0.88874	2.46984	1.36563	0.88779
1	2.46364	1.40331	-0.89164	2.47019	1.32362	-0.88874	2.46984	1.36563	-0.88779

1c. Toluene

A 4				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Nulliber	х	У	Z	Х	У	Z	х	У	Z
6	0.91577	0.00000	-0.01178	0.91266	-0.00005	0.01633	0.91139	0.00001	-0.01043
6	0.19500	-1.20354	-0.00913	0.19591	-1.20157	0.00831	0.19373	-1.19974	-0.00840
6	-1.20234	-1.20660	0.00212	-1.19839	-1.20494	-0.00201	-1.19859	-1.20268	0.00204
6	-1.90737	0.00000	0.00868	-1.90063	0.00003	-0.00913	-1.90098	0.00000	0.00808
6	-1.20235	1.20659	0.00212	-1.19831	1.20498	-0.00202	-1.19860	1.20268	0.00204
6	0.19499	1.20354	-0.00913	0.19595	1.20154	0.00832	0.19372	1.19974	-0.00840
6	2.42751	0.00000	0.00966	2.41785	-0.00001	-0.01170	2.42081	0.00000	0.00847
1	0.73393	-2.14812	-0.01810	0.73683	-2.14634	0.01803	0.73336	-2.14256	-0.01708
1	-1.73938	-2.15117	0.00177	-1.73678	-2.14962	-0.00300	-1.73502	-2.14620	0.00111
1	-2.99349	-0.00001	0.01433	-2.98760	0.00006	-0.01451	-2.98586	-0.00001	0.01299
1	-1.73939	2.15116	0.00177	-1.73667	2.14969	-0.00302	-1.73504	2.14619	0.00111
1	0.73392	2.14813	-0.01810	0.73693	2.14628	0.01806	0.73335	2.14256	-0.01708
1	2.83477	0.88580	-0.48777	2.82137	0.88506	0.48771	2.82742	0.88571	-0.48846
1	2.80760	-0.00032	1.03926	2.82144	-0.88468	0.48835	2.80550	-0.00032	1.03598
1	2.83477	-0.88549	-0.48832	2.79423	-0.00035	-1.04020	2.82743	-0.88540	-0.48900

1c₂

A 4				Ato	mic Coordina	ite			
Number		DFT			G3MP2			G4MP2	
Nulliber	х	у	Z	х	у	Z	х	у	Z
6	0.90103	0.06941	0.00000	0.88710	0.06613	0.00000	0.88896	0.06803	0.00000
6	0.21767	-1.16063	0.00000	0.20895	-1.16503	0.00000	0.21079	-1.15754	0.00000
6	-1.18520	-1.19962	0.00000	-1.18854	-1.19460	0.00000	-1.18589	-1.19548	0.00000
6	-1.88615	0.00979	0.00000	-1.87714	0.01767	0.00000	-1.87697	0.01337	0.00000
6	-1.17279	1.22417	0.00000	-1.14963	1.22187	0.00000	-1.15999	1.21833	0.00000
6	0.23835	1.33037	0.00000	0.26172	1.34790	0.00000	0.25007	1.34284	0.00000
6	2.42447	0.04786	0.00000	2.40478	0.03355	0.00000	2.41272	0.03726	0.00000
1	0.77379	-2.10317	0.00000	0.76334	-2.11015	0.00000	0.76434	-2.10175	0.00000
1	-1.71165	-2.15376	0.00000	-1.72472	-2.14557	0.00000	-1.71521	-2.14741	0.00000
1	-2.97995	0.00601	0.00000	-2.97199	0.02143	0.00000	-2.97080	0.01030	0.00000
1	-1.77426	2.14157	0.00000	-1.75879	2.13923	0.00000	-1.77190	2.13213	0.00000
1	2.81709	0.57771	0.87795	2.79904	0.55949	0.87711	2.81570	0.56474	0.87517
1	2.83366	-0.97408	0.00001	2.81068	-0.98888	0.00001	2.82405	-0.98357	0.00001
1	2.81709	0.57769	-0.87796	2.79904	0.55946	-0.87712	2.81570	0.56472	-0.87518

1c3

A 4				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2		G4MP2		
Nulliber	х	У	Z	Х	У	Z	х	у	Z
6	0.87538	-0.00210	0.01015	0.87226	-0.00193	0.01807	0.86959	-0.00054	0.00007
6	0.13422	-1.19461	0.00945	0.14334	-1.19543	0.01117	0.13938	-1.19467	0.00007
6	-1.26444	-1.12492	-0.00049	-1.25087	-1.13353	-0.00127	-1.25309	-1.12633	0.00000
6	-1.90936	0.12400	-0.01078	-1.89077	0.11705	-0.01386	-1.89568	0.11754	-0.00009
6	-1.23563	1.37440	-0.00224	-1.24866	1.38529	-0.00320	-1.24554	1.38069	-0.00002

6	0.17715	1.22291	0.01092	0.16094	1.21452	0.01266	0.16546	1.21362	0.00009
6	2.39203	-0.04353	-0.01144	2.38149	-0.03108	-0.01649	2.38423	-0.03376	-0.00008
1	0.64289	-2.16025	0.01813	0.66099	-2.15836	0.02286	0.65347	-2.15637	0.00013
1	-1.84795	-2.05082	0.00269	-1.83124	-2.06232	0.00242	-1.83083	-2.05572	0.00006
1	-3.00603	0.10603	-0.02229	-2.99102	0.08172	-0.02718	-2.99468	0.08204	-0.00019
1	0.80389	2.12491	0.02562	0.79681	2.11593	0.03231	0.80314	2.11204	0.00022
1	2.81325	0.93103	0.26442	2.79793	0.87814	0.43268	2.79467	0.98307	0.00180
1	2.79342	-0.79208	0.68666	2.78367	-0.89102	0.53456	2.79410	-0.55388	0.87881
1	2.78440	-0.29569	-1.00867	2.77644	-0.09348	-1.04015	2.79403	-0.55050	-0.88102
1	2.70440	0.27507	1.00007	2.77044	0.07540	1.04015	2.79403	0.00000	5.00

1c4

Atomio				Ato	Atomic Coordinate										
Number		DFT			G3MP2			G4MP2							
Nulliber	х	у	Z	х	у	Z	х	у	Z						
6	0.87700	-0.00001	0.01392	0.87726	-0.00009	0.02007	0.87496	0.00000	0.01240						
6	0.14181	-1.19494	0.01010	0.14589	-1.19236	0.00954	0.14093	-1.18994	0.00885						
6	-1.26507	-1.17559	-0.00365	-1.25857	-1.16211	-0.00387	-1.25863	-1.16529	-0.00347						
6	-2.06169	0.00000	-0.01156	-2.07778	0.00008	-0.01236	-2.07210	0.00000	-0.01031						
6	-1.26506	1.17560	-0.00365	-1.25841	1.16220	-0.00386	-1.25862	1.16530	-0.00347						
6	0.14181	1.19494	0.01010	0.14602	1.19231	0.00952	0.14093	1.18994	0.00885						
6	2.39168	0.00000	-0.01198	2.38420	-0.00004	-0.01453	2.38648	0.00000	-0.01044						
1	0.67908	-2.15003	0.02149	0.68594	-2.14700	0.02217	0.68335	-2.14189	0.01944						
1	-1.75893	-2.15526	-0.00224	-1.74531	-2.14985	-0.00331	-1.74326	-2.15249	-0.00143						
1	-1.75891	2.15526	-0.00224	-1.74505	2.14999	-0.00332	-1.74325	2.15249	-0.00143						
1	0.67909	2.15003	0.02149	0.68615	2.14691	0.02224	0.68335	2.14189	0.01944						
1	2.80187	0.88622	0.49036	2.79270	0.88513	0.48783	2.79821	0.88550	0.49137						
1	2.80181	-0.88693	0.48916	2.79278	-0.88588	0.48657	2.79814	-0.88618	0.49022						
1	2.79308	0.00068	-1.03771	2.78105	0.00074	-1.03923	2.79977	0.00066	-1.03201						

1c5

Atomic				Ato	mic Coordina	ite			
Number		DFT			G3MP2			G4MP2	
Rumber	Х	У	Z	х	У	Z	Х	У	Z
6	0.87538	0.00210	0.01015	0.87224	0.00186	0.01810	0.86959	0.00054	0.00007
6	0.17715	-1.22291	0.01092	0.16090	-1.21454	0.01266	0.16546	-1.21362	0.00009
6	-1.23563	-1.37440	-0.00224	-1.24869	-1.38522	-0.00320	-1.24554	-1.38069	-0.00002
6	-1.90936	-0.12400	-0.01078	-1.89078	-0.11698	-0.01388	-1.89568	-0.11754	-0.00009
6	-1.26444	1.12492	-0.00049	-1.25081	1.13351	-0.00129	-1.25309	1.12633	0.00000
6	0.13422	1.19461	0.00945	0.14339	1.19538	0.01120	0.13938	1.19467	0.00007
6	2.39203	0.04353	-0.01144	2.38148	0.03108	-0.01652	2.38423	0.03376	-0.00008
1	0.80389	-2.12491	0.02562	0.79669	-2.11598	0.03231	0.80314	-2.11204	0.00022
1	-3.00603	-0.10603	-0.02229	-2.99101	-0.08162	-0.02712	-2.99468	-0.08204	-0.00019
1	-1.84795	2.05082	0.00269	-1.83113	2.06231	0.00233	-1.83083	2.05572	0.00006
1	0.64289	2.16025	0.01813	0.66103	2.15828	0.02294	0.65347	2.15637	0.00013
1	2.79342	0.79208	0.68666	2.78351	0.89116	0.53441	2.79410	0.55388	0.87881
1	2.81325	-0.93103	0.26442	2.79798	-0.87801	0.43282	2.79467	-0.98307	0.00180
1	2.78440	0.29569	-1.00867	2.77653	0.09338	-1.04013	2.79403	0.55050	-0.88102

1c₆

A 4				Ato	mic Coordina	ite			
Atomic		DFT			G3MP2		G4MP2		
INUIIDEI	х	У	Z	Х	у	Z	х	У	Z
6	0.90100	-0.06963	0.00000	0.88710	-0.06612	0.00000	0.88896	-0.06803	0.00000
6	0.23822	-1.33049	0.00000	0.26171	-1.34791	0.00000	0.25007	-1.34284	0.00000
6	-1.17291	-1.22409	-0.00001	-1.14962	-1.22189	-0.00001	-1.15999	-1.21833	-0.00001
6	-1.88612	-0.00962	-0.00001	-1.87715	-0.01766	-0.00001	-1.87697	-0.01337	-0.00001
6	-1.18504	1.19970	-0.00001	-1.18855	1.19459	0.00000	-1.18589	1.19548	0.00000
6	0.21778	1.16052	0.00000	0.20897	1.16503	0.00000	0.21079	1.15754	0.00000
6	2.42445	-0.04786	0.00001	2.40477	-0.03355	0.00001	2.41272	-0.03726	0.00001
1	-1.77454	-2.14138	-0.00001	-1.75878	-2.13924	-0.00001	-1.77190	-2.13213	-0.00001
1	-2.97992	-0.00567	-0.00001	-2.97199	-0.02142	-0.00001	-2.97080	-0.01031	-0.00001
1	-1.71140	2.15390	-0.00001	-1.72474	2.14557	0.00000	-1.71521	2.14741	-0.00001

1	0.77432	2.10284	0.00000	0.76336	2.11016	0.00001	0.76434	2.10175	0.00001
1	2.83300	0.97427	-0.00001	2.81069	0.98888	-0.00002	2.82406	0.98357	-0.00001
1	2.81711	-0.57758	0.87802	2.79902	-0.55945	0.87715	2.81569	-0.56470	0.87520
1	2.81712	-0.57762	-0.87797	2.79902	-0.55952	-0.87708	2.81570	-0.56476	-0.87514

1d. Ethylbenzene

Atomio				At	omic Coordina	ate			
Number		DFT			G3MP2			G4MP2	
Number	Х	У	Z	Х	У	Z	х	У	Z
6	-0.435834	-0.000017	-0.327316	-0.439665	0.000000	-0.343636	-0.433717	0.000000	-0.326775
6	0.270804	-1.203720	-0.184750	0.260245	-1.202342	-0.191883	0.269649	-1.200017	-0.184359
6	1.639636	-1.207054	0.095929	1.624656	-1.205744	0.095359	1.633547	-1.203193	0.095754
6	2.329552	0.000017	0.238530	2.310798	0.000000	0.241757	2.320937	0.000000	0.237434
6	1.639610	1.207072	0.095914	1.624656	1.205744	0.095359	1.633547	1.203192	0.095754
6	0.270779	1.203703	-0.184765	0.260245	1.202342	-0.191882	0.269649	1.200017	-0.184359
6	-1.927478	-0.000021	-0.591338	-1.924486	0.000000	-0.592125	-1.922276	0.000000	-0.592817
1	-0.256243	-2.148359	-0.299572	-0.269176	-2.146741	-0.310389	-0.258466	-2.142691	-0.299116
1	2.167408	-2.151304	0.198351	2.153185	-2.149998	0.202731	2.160818	-2.146331	0.198176
1	3.394303	0.000035	0.453204	3.375117	0.000000	0.462913	3.384404	0.000000	0.452155
1	2.167367	2.151331	0.198323	2.153186	2.149998	0.202732	2.160818	2.146331	0.198176
1	-0.256291	2.148329	-0.299600	-0.269176	2.146741	-0.310388	-0.258466	2.142691	-0.299115
6	-2.768626	0.000015	0.699261	-2.717832	0.000000	0.716329	-2.756955	0.000000	0.699926
1	-2.191194	0.878888	-1.192213	-2.196242	0.879228	-1.187562	-2.187293	0.878560	-1.192337
1	-2.191199	-0.878958	-1.192172	-2.196242	-0.879227	-1.187563	-2.187293	-0.878559	-1.192338
1	-3.839480	0.000015	0.467218	-3.795595	0.000000	0.527477	-3.828437	0.000000	0.475481
1	-2.552670	-0.883967	1.308864	-2.473380	-0.883612	1.312193	-2.536187	-0.883201	1.307788
1	-2.552660	0.884029	1.308813	-2.473380	0.883611	1.312194	-2.536187	0.883200	1.307789

$1d_2$

A				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Nulliber	х	У	Z	Х	У	Z	Х	У	Z
6	-0.41710	-0.05043	-0.30841	-0.41321	-0.12860	-0.28514	-0.39455	-0.23044	0.00000
6	0.34603	-1.21412	-0.09637	0.40541	-1.24609	-0.04901	0.55870	-1.26156	0.00000
6	1.72088	-1.12880	0.16640	1.77099	-1.07170	0.18933	1.92097	-0.97052	0.00000
6	2.31319	0.13743	0.21488	2.28524	0.22514	0.18878	2.31027	0.37031	0.00000
6	1.52299	1.28232	0.00030	1.42200	1.30946	-0.05022	1.33105	1.36870	0.00000
6	0.13430	1.26281	-0.27523	0.03134	1.22461	-0.30388	-0.07130	1.15177	0.00000
6	-1.91276	-0.20513	-0.56515	-1.89746	-0.36270	-0.50714	-1.86455	-0.67402	0.00000
1	-0.12658	-2.20053	-0.13874	-0.01507	-2.25783	-0.05244	0.24143	-2.31000	-0.00001
1	2.31136	-2.03084	0.32463	2.41830	-1.93153	0.37142	2.66023	-1.77047	0.00000
1	3.38479	0.22965	0.41353	3.35220	0.38622	0.37267	3.37398	0.62381	0.00000
1	2.04195	2.24758	0.04653	1.89663	2.30249	-0.03935	1.70491	2.40261	0.00001
6	-2.76649	0.19197	0.65197	-2.71272	0.29234	0.60498	-2.87543	0.47346	0.00000
1	-2.18765	0.44627	-1.40536	-2.18726	0.09260	-1.46315	-2.06033	-1.32108	-0.87245
1	-2.15339	-1.24054	-0.85676	-2.12983	-1.43752	-0.57298	-2.06033	-1.32109	0.87243
1	-3.84384	0.14315	0.43243	-3.79556	0.24951	0.42361	-3.90832	0.09291	0.00000
1	-2.56188	-0.46665	1.50661	-2.50529	-0.19145	1.56616	-2.72126	1.11855	0.86902
1	-2.51099	1.21559	0.94679	-2.38363	1.33280	0.66786	-2.72126	1.11857	-0.86900

1d3

Atomic				Ato	mic Coordina	te				
Number		DFT		G3MP2			G4MP2			
Number	Х	У	Z	х	У	Z	Х	У	Z	
6	0.39140	-0.01356	-0.32807	0.39540	-0.00092	-0.34613	0.36408	0.26326	-0.00001	
6	-0.32242	1.18792	-0.19455	-0.31304	1.19553	-0.19285	-0.61068	1.26985	0.00001	
6	-1.69174	1.13566	0.09568	-1.67545	1.13643	0.10361	-1.95525	0.90947	0.00001	
6	-2.33233	-0.10547	0.25069	-2.30048	-0.11341	0.25060	-2.31784	-0.44318	0.00000	
6	-1.68779	-1.36569	0.12058	-1.67749	-1.38440	0.11351	-1.41232	-1.53508	-0.00002	
6	-0.30615	-1.23105	-0.17700	-0.30094	-1.21696	-0.19058	-0.06377	-1.07326	-0.00002	
6	1.88635	0.00593	-0.58979	1.88320	0.02164	-0.59158	1.82800	0.69240	-0.00002	
1	0.18424	2.14658	-0.31985	0.19465	2.15641	-0.31456	-0.31308	2.31947	0.00002	

1	-2.25598	2.06797	0.19479	-2.24388	2.06568	0.21520	-2.71644	1.69587	0.00002
1	-3.40426	-0.07431	0.48102	-3.37469	-0.07533	0.48777	-3.39870	-0.64424	0.00000
1	0.29529	-2.14087	-0.31192	0.31718	-2.11947	-0.33818	0.73057	-1.82927	-0.00003
6	2.73478	0.03352	0.69704	2.68211	0.01069	0.71400	2.87328	-0.42780	0.00004
1	2.16508	-0.88312	-1.17328	2.16968	-0.85184	-1.19314	2.01834	1.33898	-0.87178
1	2.15015	0.87998	-1.20467	2.16038	0.91110	-1.17611	2.01832	1.33905	0.87169
1	3.81184	0.03434	0.47415	3.76671	0.01603	0.54176	3.89005	-0.01381	0.00004
1	2.50796	0.92604	1.29216	2.42369	0.88549	1.31842	2.76896	-1.06999	0.88034
1	2.51314	-0.84018	1.32010	2.42645	-0.87963	1.29532	2.76899	-1.07005	-0.88023

1**d**4

Atomio				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Nulliber	х	у	Z	х	у	Z	х	У	Z
6	-0.39124	-0.00003	-0.32727	-0.39867	-0.00005	-0.34736	-0.36781	-0.28523	0.00000
6	0.32883	-1.19575	-0.17687	0.31395	-1.19372	-0.18607	0.63079	-1.26801	-0.00001
6	1.70406	-1.17649	0.11634	1.68557	-1.16331	0.11432	1.98317	-0.91882	-0.00001
6	2.48312	0.00004	0.27954	2.48468	0.00005	0.28977	2.50353	0.40615	-0.00001
6	1.70402	1.17652	0.11630	1.68548	1.16337	0.11426	1.43929	1.34332	0.00000
6	0.32878	1.19572	-0.17691	0.31389	1.19370	-0.18615	0.06874	1.04192	0.00000
6	-1.88260	-0.00006	-0.59506	-1.88367	-0.00012	-0.59619	-1.83013	-0.70086	0.00000
1	-0.19569	-2.15064	-0.29714	-0.21361	-2.14770	-0.31042	0.32801	-2.32140	-0.00001
1	2.18945	-2.15554	0.21252	2.16333	-2.15023	0.21333	2.68478	-1.76569	-0.00001
1	2.18937	2.15560	0.21245	2.16319	2.15031	0.21322	1.67586	2.41740	0.00000
1	-0.19577	2.15059	-0.29721	-0.21370	2.14766	-0.31056	-0.66382	1.85215	0.00001
6	-2.74405	0.00004	0.68414	-2.68931	0.00009	0.70567	-2.85904	0.43459	0.00001
1	-2.15082	0.88084	-1.19695	-2.16296	0.88073	-1.19097	-2.03112	-1.34424	-0.87145
1	-2.15081	-0.88106	-1.19680	-2.16298	-0.88118	-1.19067	-2.03112	-1.34424	0.87145
1	-3.81884	0.00002	0.45032	-3.77261	0.00013	0.52623	-3.88207	0.03780	0.00001
1	-2.52620	-0.88309	1.29584	-2.43613	-0.88234	1.30027	-2.74591	1.07493	0.88131
1	-2.52621	0.88327	1.29570	-2.43599	0.88261	1.30008	-2.74591	1.07493	-0.88129

1d5

A 4				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	х	у	Z	х	У	Z	х	У	Z
6	0.39140	-0.01356	0.32807	0.39541	-0.00157	0.34613	0.36168	-0.29121	0.00001
6	-0.30615	-1.23105	0.17700	-0.30145	-1.21722	0.19010	-0.61562	-1.30392	-0.00001
6	-1.68779	-1.36569	-0.12058	-1.67809	-1.38399	-0.11410	-2.02249	-1.13443	-0.00003
6	-2.33233	-0.10547	-0.25069	-2.30055	-0.11274	-0.25067	-2.35413	0.25094	-0.00001
6	-1.69174	1.13566	-0.09568	-1.67499	1.13680	-0.10316	-1.43638	1.30285	0.00001
6	-0.32242	1.18792	0.19455	-0.31259	1.19526	0.19336	-0.06300	1.03963	0.00002
6	1.88635	0.00593	0.58979	1.88322	0.02019	0.59158	1.83501	-0.67919	0.00003
1	0.29529	-2.14087	0.31192	0.31631	-2.12003	0.33732	-0.20997	-2.32903	-0.00003
1	-3.40426	-0.07431	-0.48102	-3.37474	-0.07410	-0.48780	-3.41359	0.54520	-0.00002
1	-2.25598	2.06797	-0.19479	-2.24304	2.06633	-0.21435	-1.77455	2.34347	0.00002
1	0.18424	2.14658	0.31985	0.19540	2.15590	0.31550	0.65064	1.86051	0.00004
6	2.73478	0.03352	-0.69704	2.68218	0.01177	-0.71400	2.85012	0.46846	-0.00002
1	2.15015	0.87998	1.20467	2.16062	0.90839	1.17793	2.03845	-1.32087	0.87102
1	2.16508	-0.88312	1.17328	2.16953	-0.85458	1.19134	2.03845	-1.32094	-0.87091
1	3.81184	0.03434	-0.47415	3.76676	0.01694	-0.54168	3.87925	0.08729	-0.00002
1	2.51315	-0.84018	-1.32010	2.42672	-0.87751	-1.29698	2.73009	1.10779	-0.88184
1	2.50796	0.92604	-1.29216	2.42366	0.88764	-1.31683	2.73011	1.10785	0.88176

$1d_6$

Atomic		DET		At	omic Coordina	ate		C (1) (D)2		
Number		DFT			G3MP2		G4MP2			
rtuinour	Х	у	Z	Х	у	Z	Х	у	Z	
6	-0.417099	0.050423	-0.308429	-0.413196	0.128491	-0.285059	-0.409496	0.127075	-0.271861	
6	0.134301	-1.262816	-0.275222	0.031419	-1.224707	-0.303735	0.050304	-1.221304	-0.293852	
6	1.522992	-1.282311	0.000311	1.422124	-1.309445	-0.050152	1.440669	-1.308221	-0.047277	
6	2.313190	-0.137424	0.214882	2.285341	-0.225056	0.188685	2.295729	-0.221563	0.184077	

6	1.720872	1.128800	0.166397	1.770987	1.071761	0.189276	1.779082	1.072150	0.187554
6	0.346024	1.214112	-0.096366	0.405363	1.246051	-0.048925	0.411023	1.237979	-0.042233
6	-1.912756	0.205117	-0.565157	-1.897435	0.362670	-0.507147	-1.899331	0.363040	-0.505203
1	2.041951	-2.247573	0.046547	1.896808	-2.302459	-0.039204	1.917090	-2.298774	-0.037866
1	3.384795	-0.229633	0.413518	3.352357	-0.386057	0.372434	3.363769	-0.376444	0.360297
1	2.311353	2.030847	0.324624	2.418255	1.931643	0.371315	2.421137	1.933953	0.363708
1	-0.126594	2.200520	-0.138727	-0.015182	2.257778	-0.052286	-0.008613	2.248615	-0.042007
6	-2.766487	-0.191958	0.651968	-2.712936	-0.292315	0.604838	-2.755023	-0.292916	0.588305
1	-2.153384	1.240526	-0.856774	-2.129693	1.437523	-0.572913	-2.129829	1.438151	-0.571598
1	-2.187656	-0.446288	-1.405360	-2.187203	-0.092488	-1.463252	-2.184233	-0.085020	-1.468060
1	-3.843830	-0.143141	0.432448	-3.795759	-0.249014	0.423450	-3.831193	-0.251886	0.365758
1	-2.510993	-1.215580	0.946806	-2.384244	-1.332897	0.667672	-2.435203	-1.337011	0.672925
1	-2.561865	0.466660	1.506613	-2.505341	0.191275	1.566099	-2.590666	0.190988	1.559778

1e. Isopropylbenzene

A 4				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Nulliber	х	у	Z	Х	у	Z	Х	У	Z
6	-0.13843	-0.19461	0.00000	-0.14386	-0.20375	0.00000	-0.13711	-0.19586	0.00000
6	0.75153	-1.27800	0.00000	0.74868	-1.28058	0.00000	0.75085	-1.27453	0.00000
6	2.13589	-1.07996	0.00000	2.12849	-1.07310	0.00000	2.12987	-1.07514	0.00000
6	2.65779	0.21508	0.00000	2.63884	0.22387	0.00000	2.64829	0.21618	0.00000
6	1.78359	1.30656	0.00000	1.76022	1.30838	0.00000	1.77595	1.30292	0.00000
6	0.40240	1.10173	0.00000	0.38331	1.09475	0.00000	0.39982	1.09715	0.00000
6	-1.64419	-0.42791	0.00000	-1.63708	-0.43555	0.00000	-1.63961	-0.42941	0.00000
1	0.35541	-2.29098	0.00000	0.35645	-2.29632	0.00000	0.35545	-2.28650	0.00000
1	2.80339	-1.93734	0.00000	2.80381	-1.92544	0.00000	2.79756	-1.93084	0.00000
1	3.73230	0.37393	0.00000	3.71310	0.39014	0.00000	3.72139	0.37593	0.00000
1	2.17804	2.31906	0.00000	2.14936	2.32388	0.00000	2.16868	2.31479	0.00000
1	-0.25987	1.96361	0.00000	-0.28712	1.95193	0.00000	-0.26446	1.95602	0.00000
6	-2.31451	0.13155	1.27016	-2.28941	0.13296	1.26126	-2.30658	0.13172	1.26887
6	-2.31451	0.13155	-1.27016	-2.28941	0.13296	-1.26126	-2.30658	0.13172	-1.26887
1	-1.79788	-1.51526	0.00000	-1.79755	-1.52218	0.00000	-1.79467	-1.51568	0.00000
1	-3.38417	-0.10719	1.27821	-3.35919	-0.09939	1.28265	-3.37739	-0.09829	1.27674
1	-1.86344	-0.28911	2.17473	-1.82773	-0.28272	2.16121	-1.85886	-0.29318	2.17221
1	-2.21673	1.22182	1.32408	-2.18144	1.22128	1.29770	-2.20038	1.22035	1.32481
1	-3.38417	-0.10719	-1.27821	-3.35919	-0.09939	-1.28265	-3.37739	-0.09829	-1.27674
1	-2.21673	1.22182	-1.32408	-2.18144	1.22128	-1.29770	-2.20038	1.22035	-1.32481
1	-1.86344	-0.28912	-2.17473	-1.82773	-0.28272	-2.16121	-1.85886	-0.29318	-2.17221

1e₂

Atomic		D. 1777		Ato	mic Coordina	ite				
Number		DFT			G3MP2			G4MP2		
	Х	у	Z	Х	у	Z	Х	У	Z	
6	0.12058	0.14314	0.00000	0.12370	0.16839	0.00000	0.11851	0.16301	-0.00002	
6	-0.74844	1.24932	-0.00002	-0.75577	1.26354	-0.00003	-0.75748	1.25414	-0.00007	
6	-2.13885	1.06723	-0.00003	-2.13577	1.04726	-0.00003	-2.13951	1.05151	-0.00007	
6	-2.63947	-0.23872	-0.00001	-2.60363	-0.26748	-0.00001	-2.61500	-0.25813	0.00001	
6	-1.74418	-1.32474	0.00001	-1.68065	-1.32847	0.00002	-1.70577	-1.32496	0.00007	
6	-0.33393	-1.20600	0.00001	-0.27183	-1.19801	0.00002	-0.29821	-1.19690	0.00007	
6	1.63228	0.42038	0.00000	1.62232	0.45000	0.00000	1.62782	0.44189	0.00000	
1	-0.34482	2.26715	-0.00003	-0.36919	2.28877	-0.00005	-0.36894	2.27713	-0.00012	
1	-2.80976	1.92580	-0.00004	-2.83065	1.88895	-0.00005	-2.82447	1.89803	-0.00011	
1	-3.72007	-0.40785	-0.00002	-3.68099	-0.46038	-0.00001	-3.69287	-0.44080	0.00001	
1	-2.19390	-2.32537	0.00002	-2.11871	-2.33791	0.00003	-2.14867	-2.33061	0.00013	
6	2.30277	-0.15224	1.26253	2.25469	-0.15430	1.25209	2.27665	-0.15422	1.26054	
6	2.30277	-0.15230	-1.26250	2.25470	-0.15435	-1.25206	2.27669	-0.15419	-1.26052	
1	1.78456	1.51272	-0.00002	1.79405	1.53950	-0.00002	1.79671	1.53089	0.00002	
1	3.39166	0.00851	1.25140	3.35005	-0.06194	1.25285	3.37301	-0.06753	1.24634	
1	1.89484	0.31375	2.16845	1.86518	0.33131	2.15419	1.90619	0.34346	2.16518	
1	2.09491	-1.22656	1.31735	1.96414	-1.20844	1.28112	1.98873	-1.20975	1.31709	
1	3.39167	0.00845	-1.25137	3.35007	-0.06198	-1.25281	3.37305	-0.06752	-1.24629	
1	2.09491	-1.22662	-1.31726	1.96415	-1.20849	-1.28105	1.98874	-1.20971	-1.31712	
1	1.89485	0.31365	-2.16845	1.86520	0.33123	-2.15418	1.90627	0.34352	-2.16516	

				Ato	mic Coordina	te				
Atomic		DFT			G3MP2			G4MP2		
Number	х	У	Z	х	У	Z	х	У	Z	
6	0.09350	0.17217	-0.00002	0.09978	0.18471	-0.00002	0.09131	0.17553	-0.00002	
6	-0.79749	1.25590	-0.00013	-0.79016	1.26326	-0.00013	-0.79355	1.25740	-0.00013	
6	-2.17672	1.00806	-0.00011	-2.16254	1.00849	-0.00011	-2.16598	1.00601	-0.00010	
6	-2.65269	-0.31282	0.00002	-2.62034	-0.31890	0.00002	-2.63421	-0.31128	0.00003	
6	-1.82236	-1.46720	0.00014	-1.80728	-1.48621	0.00015	-1.82010	-1.47762	0.00014	
6	-0.44132	-1.13494	0.00011	-0.43449	-1.12179	0.00011	-0.44447	-1.12502	0.00010	
6	1.59900	0.43089	-0.00004	1.59298	0.43731	-0.00004	1.59414	0.43208	-0.00004	
1	-0.41559	2.27840	-0.00024	-0.40872	2.28788	-0.00024	-0.40973	2.27811	-0.00023	
1	-2.87417	1.85114	-0.00020	-2.86671	1.84703	-0.00020	-2.86149	1.85051	-0.00018	
1	-3.74218	-0.43867	0.00003	-3.71444	-0.43882	0.00003	-3.72749	-0.42518	0.00004	
1	0.28527	-1.95672	0.00020	0.30960	-1.93489	0.00020	0.29631	-1.93889	0.00018	
6	2.28702	-0.11750	1.26673	2.26064	-0.12284	1.25768	2.27689	-0.12015	1.26550	
6	2.28703	-0.11776	-1.26668	2.26065	-0.12310	-1.25764	2.27691	-0.12042	-1.26546	
1	1.74274	1.52327	-0.00015	1.74898	1.52811	-0.00015	1.74457	1.52269	-0.00016	
1	3.36042	0.12202	1.27391	3.33629	0.09972	1.27992	3.35358	0.10170	1.27569	
1	1.83239	0.30596	2.16913	1.79824	0.30168	2.15382	1.82851	0.31188	2.16609	
1	2.18123	-1.20656	1.32595	2.13337	-1.20836	1.30044	2.15397	-1.20626	1.32790	
1	3.36043	0.12175	-1.27391	3.33630	0.09946	-1.27991	3.35360	0.10143	-1.27568	
1	2.18124	-1.20684	-1.32569	2.13338	-1.20863	-1.30018	2.15400	-1.20655	-1.32762	
1	1.83241	0.30551	-2.16918	1.79826	0.30124	-2.15387	1.82854	0.31141	-2.16615	

1e4

A +				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	Х	у	Z	х	у	Z	х	У	Z
6	-0.09424	-0.18683	0.00000	-0.10359	-0.19694	0.00000	-0.09581	-0.18967	0.00000
6	0.81084	-1.25920	0.00000	0.80338	-1.26229	0.00000	0.80924	-1.25564	0.00000
6	2.19987	-1.03659	0.00000	2.18688	-1.01937	0.00000	2.18999	-1.02636	0.00000
6	2.81626	0.24219	0.00000	2.81832	0.25405	0.00000	2.82244	0.24569	0.00000
6	1.85414	1.28808	0.00000	1.83004	1.27755	0.00000	1.84424	1.27782	0.00000
6	0.46025	1.10424	0.00000	0.43760	1.09579	0.00000	0.45669	1.09758	0.00000
6	-1.59892	-0.42766	0.00000	-1.59538	-0.43628	0.00000	-1.59619	-0.42987	0.00000
1	0.41786	-2.28224	0.00000	0.41319	-2.28738	0.00000	0.41332	-2.27720	0.00000
1	2.83063	-1.93419	0.00000	2.81825	-1.92129	0.00000	2.81466	-1.93116	0.00000
1	2.19964	2.32927	0.00000	2.16075	2.32765	0.00000	2.17846	2.32521	0.00000
1	-0.20006	1.97758	0.00000	-0.23127	1.96431	0.00000	-0.20963	1.96640	0.00000
6	-2.28677	0.12344	1.26652	-2.26102	0.12682	1.25767	-2.27877	0.12475	1.26523
6	-2.28677	0.12344	-1.26652	-2.26102	0.12682	-1.25767	-2.27877	0.12475	-1.26523
1	-1.74670	-1.51813	0.00000	-1.75256	-1.52558	0.00000	-1.74889	-1.51907	0.00000
1	-3.36164	-0.10898	1.27242	-3.33678	-0.09392	1.28134	-3.35664	-0.09090	1.27439
1	-1.83558	-0.30330	2.16888	-1.79779	-0.29649	2.15365	-1.83273	-0.30975	2.16557
1	-2.17744	1.21279	1.32772	-2.13520	1.21312	1.29930	-2.15375	1.21140	1.32985
1	-3.36164	-0.10898	-1.27242	-3.33678	-0.09392	-1.28134	-3.35664	-0.09090	-1.27439
1	-2.17744	1.21279	-1.32772	-2.13520	1.21312	-1.29930	-2.15375	1.21140	-1.32985
1	-1.83558	-0.30330	-2.16888	-1.79779	-0.29649	-2.15365	-1.83273	-0.30975	-2.16557

1e5

A 4				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Nulliber	х	у	Z	х	У	Z	х	У	Z
6	-0.09363	-0.19846	0.00000	-0.09958	-0.20564	0.00000	-0.09103	-0.19883	0.00000
6	0.78822	-1.29987	-0.00002	0.79867	-1.29241	-0.00002	0.79400	-1.28977	-0.00001
6	2.20658	-1.23410	-0.00002	2.21733	-1.23724	-0.00002	2.21225	-1.23847	-0.00001
6	2.67993	0.10475	0.00000	2.64888	0.11637	0.00000	2.66125	0.10933	0.00000
6	1.84979	1.23883	0.00001	1.81678	1.24892	0.00001	1.83545	1.23900	0.00001
6	0.45715	1.09432	0.00001	0.43078	1.09102	0.00001	0.44858	1.09342	0.00001
6	-1.60429	-0.41343	0.00000	-1.59630	-0.42546	0.00000	-1.59789	-0.41801	-0.00001
1	0.30665	-2.28782	-0.00003	0.31281	-2.28310	-0.00003	0.30168	-2.27555	-0.00003
1	3.76066	0.29203	0.00000	3.72914	0.32769	0.00000	3.74148	0.31320	0.00000
1	2.28355	2.24348	0.00002	2.24220	2.25802	0.00003	2.26271	2.24621	0.00002

1	-0.18411	1.97638	0.00002	-0.22402	1.96586	0.00002	-0.19904	1.96999	0.00002
6	-2.28244	0.14732	1.26637	-2.25717	0.14317	1.25736	-2.27307	0.14379	1.26515
6	-2.28244	0.14735	-1.26636	-2.25717	0.14320	-1.25735	-2.27307	0.14382	-1.26514
1	-1.76524	-1.50183	-0.00002	-1.76104	-1.51344	-0.00002	-1.75906	-1.50573	-0.00002
1	-3.35868	-0.07958	1.27828	-3.33437	-0.07111	1.28398	-3.35176	-0.06805	1.27935
1	-1.82984	-0.27864	2.16832	-1.79476	-0.28193	2.15296	-1.82575	-0.28971	2.16525
1	-2.16886	1.23695	1.32365	-2.12712	1.22966	1.29874	-2.14580	1.23078	1.32704
1	-3.35868	-0.07955	-1.27827	-3.33437	-0.07108	-1.28398	-3.35176	-0.06802	-1.27935
1	-2.16887	1.23698	-1.32362	-2.12713	1.22969	-1.29871	-2.14581	1.23081	-1.32701
1	-1.82984	-0.27859	-2.16833	-1.79476	-0.28188	-2.15296	-1.82576	-0.28965	-2.16525

1e₆

Atomio				Ato	omic Coordina	ite			
Number		DFT			G3MP2			G4MP2	
Nulliber	х	у	Z	х	У	Z	х	У	Z
6	-0.10566	-0.25185	-0.00001	-0.10340	-0.25933	-0.00001	-0.09848	-0.24999	-0.00001
6	0.72445	-1.40837	-0.00004	0.70433	-1.43403	-0.00004	0.71216	-1.42152	-0.00003
6	2.11150	-1.11200	-0.00003	2.08561	-1.10391	-0.00003	2.09586	-1.10613	-0.00003
6	2.65138	0.18515	0.00000	2.62734	0.19161	0.00000	2.63795	0.18348	0.00001
6	1.78952	1.28866	0.00003	1.76638	1.29096	0.00003	1.78440	1.28689	0.00003
6	0.40794	1.06084	0.00003	0.39031	1.06014	0.00003	0.40854	1.05914	0.00002
6	-1.62707	-0.44540	-0.00001	-1.61324	-0.44793	-0.00001	-1.61883	-0.44243	-0.00001
1	2.82947	-1.94087	-0.00005	2.81968	-1.92385	-0.00005	2.82374	-1.92961	-0.00004
1	3.73404	0.34037	0.00001	3.71039	0.35047	0.00001	3.72020	0.34003	0.00001
1	2.18175	2.30526	0.00005	2.15844	2.30975	0.00006	2.17828	2.30220	0.00005
1	-0.26253	1.92586	0.00005	-0.28771	1.92083	0.00005	-0.26255	1.92349	0.00004
6	-2.30055	0.11846	1.26667	-2.26832	0.12258	1.25823	-2.29035	0.11997	1.26555
6	-2.30055	0.11853	-1.26665	-2.26832	0.12264	-1.25822	-2.29036	0.12005	-1.26554
1	-1.76508	-1.53394	-0.00004	-1.74743	-1.53680	-0.00004	-1.75312	-1.53120	-0.00004
1	-3.37901	-0.10023	1.27995	-3.34620	-0.09045	1.29160	-3.36993	-0.09058	1.28577
1	-1.85094	-0.31876	2.16546	-1.80230	-0.30814	2.14987	-1.84006	-0.31877	2.16243
1	-2.18177	1.20843	1.33249	-2.14020	1.21009	1.30579	-2.16597	1.20835	1.33452
1	-3.37901	-0.10016	-1.27995	-3.34621	-0.09038	-1.29160	-3.36993	-0.09051	-1.28576
1	-2.18177	1.20851	-1.33242	-2.14021	1.21016	-1.30572	-2.16598	1.20843	-1.33445
1	-1.85094	-0.31864	-2.16547	-1.80230	-0.30803	-2.14988	-1.84008	-0.31864	-2.16245

1f. N-Methylacetanilide

A				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	х	у	Z	х	У	Z	х	У	Z
6	-0.33608	0.24961	0.02387	-0.32758	0.24898	-0.00027	-0.33406	0.25147	0.00014
6	-1.05159	0.34705	-1.17604	-1.01723	0.14043	-1.21140	-1.02830	0.14092	-1.20657
6	-2.42814	0.11007	-1.19258	-2.39103	-0.09641	-1.20863	-2.40066	-0.09467	-1.20572
6	-3.09768	-0.21943	-0.01038	-3.07950	-0.21086	0.00007	-3.08847	-0.21488	-0.00006
6	-2.38693	-0.30754	1.18992	-2.39168	-0.09068	1.20858	-2.40043	-0.09707	1.20571
6	-1.01043	-0.06851	1.20902	-1.01788	0.14614	1.21098	-1.02807	0.13852	1.20677
7	1.07309	0.52298	0.04471	1.07076	0.52318	-0.00052	1.07016	0.52204	0.00023
1	-2.97620	0.18170	-2.12752	-2.92564	-0.18758	-2.15067	-2.93213	-0.18429	-2.14726
1	-4.16761	-0.40470	-0.02428	-4.15052	-0.39528	0.00021	-4.15752	-0.39855	-0.00014
1	-2.90287	-0.55983	2.11175	-2.92680	-0.17740	2.15075	-2.93170	-0.18857	2.14717
1	-0.45073	-0.13041	2.13794	-0.46757	0.24369	2.14406	-0.48247	0.23339	2.13976
6	2.04022	-0.45850	-0.06032	2.02937	-0.46762	0.00085	2.04019	-0.46139	-0.00034
8	3.23950	-0.19239	-0.01151	3.23543	-0.21391	0.00014	3.22889	-0.19483	-0.00006
6	1.55381	-1.88785	-0.23897	1.50469	-1.88735	0.00334	1.54157	-1.89796	-0.00139
1	2.42865	-2.51498	-0.40952	2.36590	-2.55458	0.00515	2.41391	-2.55039	-0.00221
1	1.02876	-2.23964	0.65493	0.88739	-2.08101	0.88413	0.92682	-2.10913	0.87816
1	0.86163	-1.98299	-1.08052	0.88850	-2.08447	-0.87747	0.92624	-2.10766	-0.88088
6	1.47349	1.92081	0.22289	-0.32758	0.24898	-0.00027	1.47397	1.92479	0.00130
1	2.56099	1.96919	0.17458	-1.01723	0.14043	-1.21140	2.56288	1.95443	0.00142
1	1.03962	2.54416	-0.56639	-2.39103	-0.09641	-1.20863	1.09015	2.44017	-0.88648
1	1.13272	2.29936	1.19359	-3.07950	-0.21086	0.00007	1.08999	2.43887	0.88976
1	-0.52263	0.60215	-2.08988	-2.39168	-0.09068	1.20858	-0.48289	0.23765	-2.13947

A +				Ato	mic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	х	у	Z	Х	У	Z	Х	у	Z
6	0.37391	0.26006	0.00705	0.36578	0.21141	-0.04967	0.37574	0.19372	-0.09246
6	1.02630	-0.17500	1.17343	1.14241	0.69722	1.01453	1.12901	0.76617	0.94094
6	2.40322	-0.41910	1.13621	2.51679	0.46062	1.00041	2.50474	0.55064	0.98076
6	3.08663	-0.20571	-0.06822	3.05809	-0.25259	-0.07149	3.07871	-0.24041	-0.01600
6	2.38636	0.24779	-1.19802	2.21607	-0.70976	-1.09855	2.27322	-0.79096	-1.01754
6	0.99203	0.51210	-1.23235	0.81412	-0.50835	-1.17469	0.87174	-0.60855	-1.13644
7	-1.06864	0.50776	0.14033	-1.05240	0.55406	0.02969	-1.05536	0.51947	-0.07226
1	2.92779	-0.76345	2.02585	3.14999	0.82079	1.81174	3.11059	0.98390	1.77358
1	4.16228	-0.39083	-0.11935	4.13294	-0.45081	-0.10051	4.15528	-0.42361	-0.00150
1	2.97619	0.40118	-2.10877	2.71075	-1.26538	-1.90714	2.79033	-1.40393	-1.76624
6	-2.01571	-0.44298	-0.06818	-2.01230	-0.40083	0.17035	-2.03150	-0.39693	0.16691
8	-3.23888	-0.21454	-0.01058	-3.22534	-0.18717	-0.01067	-3.23421	-0.15548	0.04482
6	-1.51072	-1.84378	-0.38826	-1.50424	-1.76243	0.59099	-1.54827	-1.76815	0.61482
1	-2.37967	-2.47943	-0.56840	-2.36697	-2.40055	0.79081	-2.42405	-2.38953	0.81134
1	-0.86295	-1.81847	-1.27005	-0.88881	-2.16066	-0.22011	-0.91828	-2.19444	-0.17226
1	-0.91561	-2.25461	0.43334	-0.86618	-1.69311	1.47593	-0.92706	-1.69823	1.51319
6	-1.46203	1.90470	0.26183	-1.41175	1.79839	-0.62301	-1.42432	1.79491	-0.65655
1	-2.54953	1.97449	0.20750	-2.48797	1.94621	-0.53029	-2.51031	1.89322	-0.62158
1	-1.11366	2.31881	1.21791	-0.87191	2.62561	-0.15202	-0.95623	2.62092	-0.10668
1	-0.99900	2.47161	-0.55433	-1.12906	1.75058	-1.68156	-1.08030	1.84492	-1.69875
1	0.46576	-0.32583	2.09775	0.67689	1.24410	1.83748	0.64686	1.37171	1.70948

1f₃

A 4				Ato	mic Coordina	te		Atomic Coordinate				
Atomic		DFT			G3MP2			G4MP2				
Number	х	у	Z	х	У	Z	х	у	Z			
6	0.38437	0.24437	-0.01807	0.37613	0.24210	-0.00378	0.38373	0.24454	-0.01458			
6	1.09479	0.22713	1.18782	1.07787	0.17656	1.20157	1.08405	0.19669	1.19170			
6	2.47250	-0.01590	1.13220	2.45108	-0.06136	1.13580	2.45743	-0.04161	1.13284			
6	3.10028	-0.22726	-0.10714	3.07121	-0.21326	-0.11611	3.08418	-0.21855	-0.10532			
6	2.43973	-0.21341	-1.36580	2.43579	-0.15093	-1.38759	2.44553	-0.17926	-1.37542			
6	1.04847	0.03926	-1.23925	1.04716	0.09452	-1.22972	1.05516	0.06813	-1.23107			
7	-1.04288	0.52162	0.00816	-1.03980	0.51921	0.02957	-1.04017	0.51858	0.01068			
1	3.04970	-0.03994	2.06038	3.03039	-0.12472	2.06161	3.02838	-0.08783	2.06358			
1	4.18001	-0.41316	-0.07688	4.15428	-0.39827	-0.08115	4.16601	-0.40179	-0.06380			
1	0.41876	0.07714	-2.13600	0.40327	0.17289	-2.11899	0.41695	0.13015	-2.12303			
6	-2.00022	-0.45058	0.03721	-1.99128	-0.45407	0.02092	-2.00060	-0.44853	0.02548			
8	-3.21707	-0.19998	0.01715	-3.21273	-0.21944	0.00132	-3.20648	-0.20393	0.01022			
6	-1.50526	-1.88839	0.10167	-1.45968	-1.87307	0.04797	-1.49085	-1.88335	0.07107			
1	-2.37874	-2.53940	0.16322	-2.31621	-2.54857	0.03885	-2.35707	-2.54654	0.06299			
1	-0.91225	-2.13767	-0.78324	-0.81394	-2.06152	-0.81254	-0.83865	-2.09534	-0.77978			
1	-0.85481	-2.04737	0.96680	-0.85196	-2.04445	0.93965	-0.89203	-2.05807	0.96927			
6	-1.44057	1.92246	-0.09080	-1.43761	1.91276	-0.03974	-1.44075	1.91401	-0.05945			
1	-2.52950	1.98146	-0.06460	-2.52635	1.96093	-0.01331	-2.53039	1.96091	-0.05329			
1	-1.01473	2.49352	0.74289	-1.01407	2.46251	0.80726	-1.03807	2.47155	0.79537			
1	-1.06559	2.35515	-1.02609	-1.06230	2.36325	-0.96454	-1.05112	2.37711	-0.97405			
1	0.57938	0.39270	2.13222	0.55327	0.29952	2.14967	0.56166	0.33887	2.13469			

1f4

Atomio				Ato	omic Coordina	ite			
Number		DFT			G3MP2		G4MP2		
Nulliber	Х	у	Z	Х	у	Z	х	У	Z
6	-0.38081	0.24696	-0.00007	-0.37128	0.24141	0.00011	-0.37747	0.24482	0.00000
6	-1.08468	0.13265	-1.20464	-1.06957	0.13332	-1.20433	-1.08259	0.13013	-1.19972
6	-2.46849	-0.11077	-1.17951	-2.45290	-0.10516	-1.16739	-2.46091	-0.10759	-1.16968
6	-3.25064	-0.24960	-0.00042	-3.25446	-0.24348	-0.00014	-3.25805	-0.24546	0.00001
6	-2.46887	-0.11023	1.17887	-2.45301	-0.10573	1.16724	-2.46089	-0.10762	1.16969
6	-1.08506	0.13320	1.20432	-1.06968	0.13274	1.20443	-1.08257	0.13010	1.19972
7	1.04148	0.52307	0.00009	1.03964	0.52003	0.00024	1.03999	0.51981	-0.00001
1	-2.95822	-0.19582	-2.15618	-2.93761	-0.18682	-2.15070	-2.94253	-0.19015	-2.15296

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-2 95891	-0 19/83	2 15542	-2 93781	-0 18788	2 15047	-2 9/250	-0 19020	2 15297
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	-0 54222	0.12405	2.13342	-0.52021	0.22773	2.13647	-0.53/80	0.22650	2.13227
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1 99839	-0.45131	0.00035	1 99296	-0.45308	-0.00006	2 00160	-0 44743	-0.00001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8	3 21453	-0 20094	0.00033	3 21313	-0.21522	-0.00015	3 20636	-0.20129	0.00001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	1.50258	-1.89040	0.00062	1.46376	-1.87313	-0.00027	1.49418	-1.88381	-0.00001
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	2.37644	-2.54371	0.00094	2.32196	-2.54646	-0.00040	2.36245	-2.54429	-0.00002
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	0.88037	-2.09424	0.87694	0.83718	-2.05550	0.87567	0.86877	-2.08051	0.87465
6 1.44351 1.92687 -0.00019 1.43691 1.91627 0.00032 1.44296 1.91733 0.000 1 2.53295 1.98184 0.00026 2.52596 1.96277 0.00065 2.53260 1.96383 -0.000 1 1.04448 2.43195 -0.88799 1.03759 2.41760 -0.88731 1.04686 2.42879 -0.8857 1 1.04369 2.43249 0.88694 1.03701 2.41760 0.88769 1.04690 2.42877 0.8857 1 0.5154 0.2027 0.4021 0.52057 0.4070 0.58769 1.04690 2.42877 0.8857	1	0.88072	-2.09467	-0.87586	0.83713	-2.05522	-0.87622	0.86874	-2.08050	-0.87464
1 2.53295 1.98184 0.00026 2.52596 1.96277 0.00065 2.53260 1.96383 -0.000 1 1.04448 2.43195 -0.88799 1.03759 2.41760 -0.88731 1.04686 2.42879 -0.8857 1 1.04369 2.43249 0.88694 1.03701 2.41760 0.88769 1.04690 2.42877 0.8857 1 0.5154 0.2027 0.44921 0.52057 0.41700 0.88769 1.04690 2.42877 0.8857	6	1.44351	1.92687	-0.00019	1.43691	1.91627	0.00032	1.44296	1.91733	0.00000
1 1.04448 2.43195 -0.88799 1.03759 2.41760 -0.88731 1.04686 2.42879 -0.885 1 1.04369 2.43249 0.88694 1.03701 2.41760 0.88769 1.04690 2.42877 0.8855 1 0.51154 0.20257 0.41021 0.52057 0.41750 0.52152 0.52152	1	2.53295	1.98184	0.00026	2.52596	1.96277	0.00065	2.53260	1.96383	-0.00002
1 1.04369 2.43249 0.88694 1.03701 2.41760 0.88769 1.04690 2.42877 0.885	1	1.04448	2.43195	-0.88799	1.03759	2.41760	-0.88731	1.04686	2.42879	-0.88579
	1	1.04369	2.43249	0.88694	1.03701	2.41760	0.88769	1.04690	2.42877	0.88582
1 -0.54154 -0.22887 -2.14831 -0.52001 -0.22875 -2.14570 -0.53482 -0.22655 -2.140 -0.52875 -2.14570 -0.53482 -0.22655 -2.140 -0.52875 -0.55875 -0.52875 -0	1	-0.54154	0.22887	-2.14831	-0.52001	0.22875	-2.14570	-0.53482	0.22655	-2.14008

1f5

Atomio				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Nulliber	х	у	Z	Х	у	Z	Х	у	Z
6	-0.38437	0.24437	-0.01807	-0.37613	0.24210	-0.00378	-0.38373	0.24454	-0.01458
6	-1.04847	0.03926	-1.23925	-1.04716	0.09452	-1.22972	-1.05516	0.06813	-1.23107
6	-2.43973	-0.21341	-1.36580	-2.43579	-0.15093	-1.38759	-2.44553	-0.17925	-1.37542
6	-3.10028	-0.22726	-0.10714	-3.07121	-0.21326	-0.11611	-3.08418	-0.21855	-0.10532
6	-2.47250	-0.01590	1.13220	-2.45108	-0.06136	1.13579	-2.45743	-0.04162	1.13285
6	-1.09479	0.22713	1.18782	-1.07787	0.17656	1.20157	-1.08405	0.19669	1.19170
7	1.04288	0.52162	0.00816	1.03980	0.51921	0.02957	1.04017	0.51858	0.01068
1	-4.18001	-0.41316	-0.07688	-4.15428	-0.39827	-0.08115	-4.16601	-0.40179	-0.06380
1	-3.04970	-0.03994	2.06038	-3.03039	-0.12472	2.06160	-3.02838	-0.08783	2.06358
1	-0.57938	0.39270	2.13222	-0.55327	0.29952	2.14967	-0.56166	0.33886	2.13469
6	2.00022	-0.45058	0.03721	1.99128	-0.45407	0.02092	2.00060	-0.44854	0.02548
8	3.21707	-0.19998	0.01715	3.21273	-0.21944	0.00131	3.20648	-0.20393	0.01022
6	1.50526	-1.88839	0.10167	1.45968	-1.87307	0.04797	1.49085	-1.88335	0.07107
1	2.37874	-2.53940	0.16322	2.31621	-2.54857	0.03885	2.35706	-2.54654	0.06298
1	0.85481	-2.04737	0.96680	0.85196	-2.04444	0.93966	0.89202	-2.05807	0.96927
1	0.91225	-2.13767	-0.78324	0.81394	-2.06152	-0.81254	0.83865	-2.09534	-0.77978
6	1.44057	1.92246	-0.09080	1.43761	1.91276	-0.03974	1.44075	1.91401	-0.05945
1	2.52950	1.98146	-0.06460	2.52634	1.96093	-0.01329	2.53039	1.96091	-0.05329
1	1.06559	2.35515	-1.02609	1.06231	2.36324	-0.96455	1.05112	2.37711	-0.97404
1	1.01473	2.49352	0.74289	1.01405	2.46252	0.80724	1.03807	2.47154	0.79537
1	-0.41876	0.07714	-2.13600	-0.40326	0.17289	-2.11898	-0.41695	0.13016	-2.12303

1f₆

				Ato	omic Coordina	nte			
Atomic		DFT			G3MP2			G4MP2	
Number	х	У	Z	х	У	Z	х	У	Z
6	-0.37391	0.26006	0.00705	-0.36578	0.21141	-0.04966	-0.38875	0.26800	0.06018
6	-0.99203	0.51210	-1.23235	-0.81412	-0.50834	-1.17470	-1.09260	1.07572	-0.85210
6	-2.38636	0.24779	-1.19802	-2.21607	-0.70975	-1.09855	-2.47233	0.75562	-0.86252
6	-3.08663	-0.20571	-0.06822	-3.05809	-0.25259	-0.07149	-3.08130	-0.22455	-0.07103
6	-2.40322	-0.41910	1.13621	-2.51679	0.46062	1.00042	-2.31327	-0.96226	0.83020
6	-1.02630	-0.17500	1.17343	-1.14241	0.69722	1.01453	-0.94630	-0.70059	0.90426
7	1.06864	0.50776	0.14033	1.05240	0.55406	0.02969	1.05402	0.49256	0.19791
1	-2.97619	0.40118	-2.10877	-2.71075	-1.26537	-1.90715	-3.13653	1.30579	-1.54087
1	-4.16228	-0.39083	-0.11935	-4.13294	-0.45081	-0.10051	-4.15473	-0.41267	-0.14171
1	-2.92779	-0.76345	2.02585	-3.14999	0.82078	1.81174	-2.76647	-1.71545	1.47094
1	-0.46576	-0.32583	2.09775	-0.67689	1.24409	1.83749	-0.32446	-1.24360	1.61666
6	2.01571	-0.44298	-0.06818	2.01230	-0.40083	0.17035	2.01729	-0.39733	-0.14695
8	3.23888	-0.21454	-0.01058	3.22534	-0.18717	-0.01067	3.22411	-0.18347	-0.00313
6	1.51072	-1.84378	-0.38826	1.50424	-1.76243	0.59098	1.54646	-1.71045	-0.76895
1	2.37967	-2.47943	-0.56840	2.36697	-2.40055	0.79080	2.40694	-2.15392	-1.27427
1	0.91561	-2.25461	0.43334	0.86618	-1.69312	1.47592	1.19001	-2.40849	-0.00581
1	0.86295	-1.81847	-1.27005	0.88881	-2.16066	-0.22011	0.72383	-1.55192	-1.46964
6	1.46203	1.90470	0.26183	1.41175	1.79839	-0.62301	1.44524	1.84102	0.57254
1	2.54953	1.97449	0.20750	2.48797	1.94621	-0.53028	2.49289	1.99523	0.31053
1	0.99900	2.47161	-0.55433	1.12906	1.75058	-1.68156	0.78767	2.52566	0.02663
1	1.11366	2.31881	1.21791	0.87191	2.62561	-0.15202	1.32322	2.00807	1.65332

1g. Benzene

Atomic		DFT		Ato	omic Coordina G3MP2	te	G4MP2		
Number	х	У	Z	х	У	Z	Х	у	Z
6	0.00000	1.39834	0.00000	0.00000	1.39524	0.00000	0.000000	1.393362	0.000000
6	1.21100	0.69917	0.00000	1.20831	0.69762	0.00000	1.206687	0.696681	0.000000
6	1.21100	-0.69917	0.00000	1.20831	-0.69762	0.00000	1.206687	-0.696681	0.000000
6	0.00000	-1.39834	0.00000	0.00000	-1.39524	0.00000	0.000000	-1.393362	0.000000
6	-1.21100	-0.69917	0.00000	-1.20831	-0.69762	0.00000	-1.206687	-0.696681	0.000000
6	-1.21100	0.69917	0.00000	-1.20831	0.69762	0.00000	-1.206687	0.696681	0.000000
1	0.00000	2.48475	0.00000	0.00000	2.48238	0.00000	0.000000	2.478476	0.000000
1	2.15185	1.24237	0.00000	2.14980	1.24119	0.00000	2.146423	1.239238	0.000000
1	2.15185	-1.24237	0.00000	2.14980	-1.24119	0.00000	2.146423	-1.239238	0.000000
1	0.00000	-2.48475	0.00000	0.00000	-2.48238	0.00000	0.000000	-2.478476	0.000000
1	-2.15185	-1.24237	0.00000	-2.14980	-1.24119	0.00000	-2.146423	-1.239238	0.000000
1	-2.15185	1.24237	0.00000	-2.14980	1.24119	0.00000	-2.146423	1.239238	0.000000

1g₁

Atomio				Ato					
Number		DFT			G3MP2		G4MP2		
Nulliber	х	у	Z	х	у	Z	х	у	Z
6	-1.20545	0.65238	0.00000	0.00000	0.00000	1.37124	-1.36981	0.00000	0.00000
6	0.00000	1.36732	0.00000	0.00000	-1.19789	0.65332	-0.64972	1.19588	0.00000
6	1.22583	0.67785	0.00000	0.00000	-1.16448	-0.75169	0.75037	1.16812	0.00000
6	1.36276	-0.73752	0.00000	0.00000	0.00000	-1.56816	1.56187	0.00000	0.00000
6	0.10296	-1.39697	0.00000	0.00000	1.16448	-0.75169	0.75037	-1.16812	0.00000
6	-1.14470	-0.74782	0.00000	0.00000	1.19789	0.65332	-0.64972	-1.19588	0.00000
1	-2.16393	1.17110	0.00000	0.00000	0.00000	2.46299	-2.45922	0.00000	0.00000
1	-0.02028	2.46173	0.00000	0.00000	-2.15155	1.19197	-1.19017	2.14744	0.00000
1	2.13027	1.29910	0.00000	0.00000	-2.15029	-1.24249	1.23972	2.15340	0.00000
1	0.07753	-2.49393	0.00000	0.00000	2.15029	-1.24249	1.23972	-2.15340	0.00000
1	-2.07200	-1.32941	0.00000	0.00000	2.15155	1.19197	-1.19017	-2.14744	0.00000

1h. Naphthalene

				A 4 -		4			
Atomic		DET		Att	omic Coordina	ite		G (1) (D2)	
Number		DFT			G3MP2			G4MP2	
riumoor	Х	у	Z	Х	у	Z	Х	У	Z
6	0.00000	2.43628	-0.70914	0.00000	0.70656	-2.42974	-2.42843	0.70703	0.00000
6	0.00000	1.24589	-1.40386	0.00000	1.40188	-1.24016	-1.24254	1.39923	0.00000
6	0.00000	2.43628	0.70914	0.00000	-0.70656	-2.42974	-2.42843	-0.70703	0.00000
6	0.00000	1.24589	1.40386	0.00000	-1.40188	-1.24016	-1.24254	-1.39923	0.00000
6	0.00000	0.00000	0.71725	0.00000	-0.71550	0.00000	0.00000	-0.71553	0.00000
6	0.00000	0.00000	-0.71725	0.00000	0.71550	0.00000	0.00000	0.71553	0.00000
1	0.00000	1.24424	2.49098	0.00000	-2.49076	-1.23898	-1.23903	-2.48526	0.00000
6	0.00000	-1.24589	1.40386	0.00000	-1.40188	1.24016	1.24254	-1.39923	0.00000
6	0.00000	-1.24589	-1.40386	0.00000	1.40188	1.24016	1.24254	1.39923	0.00000
6	0.00000	-2.43628	-0.70914	0.00000	0.70656	2.42974	2.42843	0.70703	0.00000
6	0.00000	-2.43628	0.70914	0.00000	-0.70656	2.42974	2.42843	-0.70703	0.00000
1	0.00000	-1.24424	2.49098	0.00000	-2.49076	1.23898	1.23903	-2.48526	0.00000
1	0.00000	-1.24424	-2.49098	0.00000	2.49076	1.23898	1.23903	2.48526	0.00000
1	0.00000	-3.38028	-1.24635	0.00000	1.24532	3.37422	3.37186	1.24297	0.00000
1	0.00000	-3.38028	1.24635	0.00000	-1.24532	3.37422	3.37186	-1.24297	0.00000
1	0.00000	1.24424	-2.49098	0.00000	2.49076	-1.23898	-1.23902	2.48526	0.00000
1	0.00000	3.38028	-1.24635	0.00000	1.24532	-3.37422	-3.37186	1.24297	0.00000
1	0.00000	3.38028	1.24635	0.00000	-1.24532	-3.37422	-3.37186	-1.24297	0.00000

$1h_1$

Atomic		DFT		Ato	omic Coordina G3MP2	te	G4MP2		
Number	х	y	Z	х	y y	Z	х	y y	Z
6	2.44827	-0.67611	0.00000	2.42734	-0.67341	0.00000	2.43463	-0.67115	0.00000
6	1.31499	-1.50033	0.00000	1.30880	-1.52082	0.00000	1.31307	-1.51129	0.00000
6	2.41729	0.74634	0.00000	2.40656	0.74701	0.00000	2.40539	0.74521	0.00000
6	1.21499	1.42981	0.00000	1.20738	1.43034	0.00000	1.20982	1.42996	0.00000
6	0.00000	0.69283	0.00000	0.00000	0.69370	0.00000	0.00000	0.69440	0.00000
6	0.07460	-0.75425	0.00000	0.08558	-0.74997	0.00000	0.07997	-0.74937	0.00000
1	1.18174	2.51942	0.00000	1.17317	2.52225	0.00000	1.17391	2.51861	0.00000
6	-1.27161	1.33630	0.00000	-1.26674	1.33447	0.00000	-1.27023	1.33088	0.00000
6	-1.16858	-1.45537	0.00000	-1.15843	-1.44796	0.00000	-1.16071	-1.44704	0.00000
6	-2.39291	-0.81158	0.00000	-2.38066	-0.80824	0.00000	-2.38318	-0.81137	0.00000
6	-2.44431	0.60678	0.00000	-2.43814	0.60609	0.00000	-2.43699	0.60218	0.00000
1	-1.30699	2.42706	0.00000	-1.30393	2.42716	0.00000	-1.30782	2.42090	0.00000
1	-1.10463	-2.54141	0.00000	-1.08666	-2.53539	0.00000	-1.08847	-2.53238	0.00000
1	-3.31813	-1.38570	0.00000	-3.30610	-1.38527	0.00000	-3.30703	-1.38631	0.00000
1	-3.40625	1.11744	0.00000	-3.40218	1.11576	0.00000	-3.39951	1.11016	0.00000
1	3.44394	-1.13422	0.00000	3.43087	-1.12328	0.00000	3.43783	-1.11767	0.00000
1	3.35389	1.31088	0.00000	3.34474	1.31155	0.00000	3.34050	1.31212	0.00000

$1h_2 \\$

A		Atomic Coordinate											
Atomic		DFT			G3MP2			G4MP2					
Nulliber	х	у	Z	х	у	Z	х	у	Z				
6	2.44827	-0.67611	0.00000	-2.61962	-0.66464	0.00000	-2.61292	-0.66384	0.00000				
6	1.31499	-1.50033	0.00000	-1.37920	-1.32090	0.00000	-1.37848	-1.32299	0.00000				
6	2.41729	0.74634	0.00000	-2.42576	0.76238	0.00000	-2.42626	0.76864	0.00000				
6	1.21499	1.42981	0.00000	-1.21338	1.44185	0.00000	-1.21898	1.43727	0.00000				
6	0.00000	0.69283	0.00000	0.00000	0.71821	0.00000	0.00000	0.71563	0.00000				
6	0.07460	-0.75425	0.00000	-0.08991	-0.71548	0.00000	-0.09047	-0.71822	0.00000				
1	1.18174	2.51942	0.00000	-1.17141	2.53635	0.00000	-1.16998	2.52967	0.00000				
6	-1.27161	1.33630	0.00000	1.27965	1.32924	0.00000	1.27786	1.32581	0.00000				
6	-1.16858	-1.45537	0.00000	1.12007	-1.45638	0.00000	1.12444	-1.45502	0.00000				
6	-2.39291	-0.81158	0.00000	2.35537	-0.83820	0.00000	2.35360	-0.83534	0.00000				
6	-2.44431	0.60678	0.00000	2.43542	0.57392	0.00000	2.43446	0.57737	0.00000				
1	-1.30699	2.42706	0.00000	1.33823	2.41965	0.00000	1.33080	2.41387	0.00000				
1	-1.10463	-2.54141	0.00000	1.05533	-2.54642	0.00000	1.06047	-2.54234	0.00000				
1	-3.31813	-1.38570	0.00000	3.26853	-1.43353	0.00000	3.26678	-1.42705	0.00000				
1	-3.40625	1.11744	0.00000	3.40937	1.06296	0.00000	3.40592	1.06577	0.00000				

1	3.44394	-1.13422	0.00000	-1.35650	-2.42302	0.00000	-1.35337	-2.42277	0.00000
1	3.35389	1.31088	0.00000	-3.31943	1.40395	0.00000	-3.32006	1.40699	0.00000

1i. Fluorobenzene

Atomio		Atomic Coordinate										
Number		DFT			G3MP2		G4MP2					
Nulliber	Х	у	Z	х	у	Z	Х	у	Z			
6	0.00000	0.00000	0.92683	0.00000	0.00000	-0.92761	0.00000	0.00000	0.93354			
6	0.00000	-1.21992	0.26109	0.00000	-1.21665	-0.25946	0.00000	-1.21406	0.26064			
6	0.00000	-1.21024	-1.13697	0.00000	-1.20787	1.13518	0.00000	-1.20551	-1.13224			
6	0.00000	0.00000	-1.83751	0.00000	0.00000	1.83412	0.00000	0.00000	-1.83125			
6	0.00000	1.21024	-1.13697	0.00000	1.20787	1.13518	0.00000	1.20551	-1.13224			
6	0.00000	1.21992	0.26109	0.00000	1.21665	-0.25946	0.00000	1.21406	0.26064			
9	0.00000	0.00000	2.28820	0.00000	0.00000	-2.28453	0.00000	0.00000	2.27189			
1	0.00000	-2.14428	0.82855	0.00000	-2.14080	-0.82877	0.00000	-2.13732	0.82781			
1	0.00000	-2.15254	-1.67664	0.00000	-2.15094	1.67512	0.00000	-2.14715	-1.67084			
1	0.00000	0.00000	-2.92300	0.00000	0.00000	2.92040	0.00000	0.00000	-2.91546			
1	0.00000	2.15254	-1.67664	0.00000	2.15094	1.67512	0.00000	2.14715	-1.67084			
1	0.00000	2.14428	0.82855	0.00000	2.14080	-0.82877	0.00000	2.13732	0.82781			

$1i_2$

Atomic	Atomic Coordinate									
Number		DFT			G3MP2		G4MP2			
Rumber	Х	У	Z	х	У	Z	х	У	Z	
6	0.00000	0.90296	0.00000	0.00000	0.89735	0.00000	0.00000	0.90582	0.00000	
6	1.30250	0.43618	0.00000	1.31797	0.45770	0.00000	1.31143	0.44772	0.00000	
6	1.33734	-0.98041	0.00000	1.33370	-0.95874	0.00000	1.32750	-0.96847	0.00000	
6	0.19974	-1.81138	0.00000	0.20789	-1.80476	0.00000	0.19858	-1.80177	0.00000	
6	-1.07649	-1.23562	0.00000	-1.06806	-1.24066	0.00000	-1.07413	-1.23272	0.00000	
6	-1.18400	0.16282	0.00000	-1.18221	0.15240	0.00000	-1.17790	0.16019	0.00000	
9	-0.21788	2.30434	0.00000	-0.24094	2.28502	0.00000	-0.22160	2.27896	0.00000	
1	2.30968	-1.48759	0.00000	2.30726	-1.47128	0.00000	2.29755	-1.48533	0.00000	
1	0.30586	-2.89866	0.00000	0.32242	-2.89217	0.00000	0.30416	-2.88893	0.00000	
1	-1.97242	-1.85473	0.00000	-1.96156	-1.86649	0.00000	-1.96906	-1.85252	0.00000	
1	-2.15672	0.65455	0.00000	-2.15537	0.64502	0.00000	-2.15114	0.65147	0.00000	

1i₃

A 4		Atomic Coordinate										
Atomic		DFT			G3MP2		G4MP2					
Nulliber	х	У	Z	х	у	Z	х	у	Z			
6	0.00000	0.87832	0.00000	0.00000	0.88019	0.00000	0.00000	0.88477	0.00000			
6	1.20669	0.18955	0.00000	1.20640	0.19750	0.00000	1.20453	0.19607	0.00000			
6	1.12272	-1.21169	0.00000	1.13021	-1.19917	0.00000	1.12244	-1.19989	0.00000			
6	-0.13155	-1.84250	0.00000	-0.12448	-1.82767	0.00000	-0.12562	-1.82851	0.00000			
6	-1.38218	-1.16389	0.00000	-1.39151	-1.17920	0.00000	-1.38811	-1.17066	0.00000			
6	-1.24205	0.25209	0.00000	-1.23264	0.23275	0.00000	-1.23040	0.24256	0.00000			
9	0.06726	2.27773	0.00000	0.05277	2.27219	0.00000	0.05710	2.25802	0.00000			
1	2.15239	0.72440	0.00000	2.14902	0.74091	0.00000	2.14686	0.73569	0.00000			
1	2.04514	-1.79987	0.00000	2.05598	-1.78319	0.00000	2.04830	-1.78254	0.00000			
1	-0.12351	-2.93830	0.00000	-0.09816	-2.92678	0.00000	-0.10150	-2.92666	0.00000			
1	-2.12113	0.90289	0.00000	-2.10964	0.89287	0.00000	-2.10460	0.90534	0.00000			

1i4

Atomic Number		DFT		Ato	mic Coordinat G3MP2	te	G4MP2		
	х	У	Z	х	У	Z	х	У	Z
6	0.00000	0.00000	0.88306	0.00000	0.00000	0.88752	0.00000	0.00000	0.89358
6	0.00000	1.21117	0.20734	0.00000	1.20760	0.20890	0.00000	1.20331	0.20764

6	0.00000	1.17772	-1.20397	0.00000	1.16502	-1.19951	0.00000	1.16658	-1.19684
6	0.00000	0.00000	-1.99671	0.00000	0.00000	-2.01323	0.00000	0.00000	-2.00655
6	0.00000	-1.17772	-1.20397	0.00000	-1.16502	-1.19951	0.00000	-1.16658	-1.19684
6	0.00000	-1.21117	0.20734	0.00000	-1.20760	0.20890	0.00000	-1.20331	0.20764
9	0.00000	0.00000	2.27770	0.00000	0.00000	2.27403	0.00000	0.00000	2.26261
1	0.00000	2.14534	0.76994	0.00000	2.14084	0.77466	0.00000	2.13519	0.77437
1	0.00000	2.15558	-1.69886	0.00000	2.15096	-1.68704	0.00000	2.15254	-1.68204
1	0.00000	-2.15558	-1.69886	0.00000	-2.15096	-1.68704	0.00000	-2.15254	-1.68204
1	0.00000	-2.14534	0.76994	0.00000	-2.14084	0.77466	0.00000	-2.13519	0.77437

1j. Benzonitrile

Atomio		Atomic Coordinate										
Number		DFT			G3MP2		G4MP2					
INUIIDEI	х	у	Z	Х	у	Z	Х	у	Z			
6	1.21193	-1.48513	0.00000	0.00000	1.20918	-1.48366	1.20804	-1.48020	0.00000			
6	1.21852	-0.09110	0.00000	0.00000	1.21744	-0.09142	1.21416	-0.09077	0.00000			
6	0.00000	0.61062	0.00000	0.00000	0.00000	0.60335	0.00000	0.60959	0.00000			
6	-1.21853	-0.09110	0.00000	0.00000	-1.21744	-0.09142	-1.21416	-0.09077	0.00000			
6	-1.21194	-1.48513	0.00000	0.00000	-1.20918	-1.48366	-1.20804	-1.48020	0.00000			
6	-0.00001	-2.18275	0.00000	0.00000	0.00000	-2.18078	0.00000	-2.17557	0.00000			
1	2.15276	-2.02672	0.00000	0.00000	2.15074	-2.02621	2.14792	-2.02110	0.00000			
1	2.15377	0.45867	0.00000	0.00000	2.15298	0.46129	2.14747	0.45969	0.00000			
6	0.00000	2.04651	0.00000	0.00000	0.00000	2.03749	0.00000	2.04049	0.00000			
1	-2.15377	0.45868	0.00000	0.00000	-2.15298	0.46129	-2.14747	0.45969	0.00000			
1	-2.15277	-2.02671	0.00000	0.00000	-2.15074	-2.02621	-2.14792	-2.02110	0.00000			
1	-0.00001	-3.26861	0.00000	0.00000	0.00000	-3.26763	0.00000	-3.26027	0.00000			
7	0.00002	3.21046	0.00000	0.00000	0.00000	3.21971	0.00000	3.19823	0.00000			

1j₂

Atomio	Atomic Coordinate									
Number		DFT			G3MP2		G4MP2			
Rumber	х	У	Z	Х	у	Z	Х	у	Z	
6	1.44227	-1.26481	0.00000	1.43545	-1.24668	0.00000	1.43132	-1.25843	0.00000	
6	1.35620	0.15555	0.00000	1.36466	0.17213	0.00000	1.35969	0.16233	0.00000	
6	0.00000	0.59686	0.00000	0.00000	0.58016	0.00000	0.00000	0.59166	0.00000	
6	-1.13862	-0.24735	0.00000	-1.13989	-0.25289	0.00000	-1.13576	-0.24755	0.00000	
6	-0.96242	-1.62843	0.00000	-0.95731	-1.63214	0.00000	-0.96407	-1.62337	0.00000	
6	0.34684	-2.13756	0.00000	0.34708	-2.13267	0.00000	0.34165	-2.12862	0.00000	
1	2.43524	-1.72701	0.00000	2.42877	-1.71573	0.00000	2.42150	-1.73009	0.00000	
6	-0.26660	2.01766	0.00000	-0.27236	2.00198	0.00000	-0.26622	2.00859	0.00000	
1	-2.14251	0.17851	0.00000	-2.14523	0.17373	0.00000	-2.13842	0.17982	0.00000	
1	-1.82218	-2.29565	0.00000	-1.81603	-2.30374	0.00000	-1.82337	-2.28973	0.00000	
1	0.50131	-3.21953	0.00000	0.50894	-3.21439	0.00000	0.49313	-3.21073	0.00000	
7	-0.51970	3.15889	0.00000	-0.52033	3.16011	0.00000	-0.50750	3.14615	0.00000	

1j₃

A 4				Ato	omic Coordina	te			
Atomic		DFT		G3MP2			G4MP2		
Nulliber	х	у	Z	х	у	Z	х	у	Z
6	1.38629	-1.51912	0.00000	1.40040	-1.52835	0.00000	1.39006	-1.52546	0.00000
6	1.24510	-0.10983	0.00000	1.23936	-0.12030	0.00000	1.23577	-0.11796	0.00000
6	0.00000	0.57237	0.00000	0.00000	0.56564	0.00000	0.00000	0.57105	0.00000
6	-1.20545	-0.15889	0.00000	-1.20577	-0.15528	0.00000	-1.20484	-0.15272	0.00000
6	-1.12391	-1.55047	0.00000	-1.12470	-1.54406	0.00000	-1.12542	-1.53885	0.00000
6	0.13217	-2.18596	0.00000	0.13258	-2.17338	0.00000	0.12557	-2.17230	0.00000
1	2.13585	0.52400	0.00000	2.12789	0.52465	0.00000	2.12300	0.52349	0.00000
6	-0.04390	2.00496	0.00000	-0.04135	1.99608	0.00000	-0.03778	1.99813	0.00000
1	-2.16194	0.35725	0.00000	-2.16184	0.36683	0.00000	-2.15735	0.36849	0.00000
1	-2.04390	-2.13912	0.00000	-2.04610	-2.13251	0.00000	-2.04808	-2.12252	0.00000
1	0.11699	-3.28176	0.00000	0.10508	-3.27242	0.00000	0.09561	-3.26984	0.00000
7	-0.05555	3.17446	0.00000	-0.06117	3.18162	0.00000	-0.04476	3.16129	0.00000
Atomic		DFT		Atomic Coordinate G3MP2			G4MP2		
--------	----------	----------	---------	----------------------------	----------	----------	---------	----------	----------
Number	х	У	Z	х	У	Z	х	у	Z
6	1.18256	-1.54570	0.00000	0.00000	1.16776	-1.54431	0.00000	1.17382	-1.53861
6	1.21247	-0.14856	0.00000	0.00000	1.20889	-0.14490	0.00000	1.20657	-0.14835
6	0.00000	0.57518	0.00000	0.00000	0.00000	0.56903	0.00000	0.00000	0.57742
6	-1.21247	-0.14856	0.00000	0.00000	-1.20889	-0.14490	0.00000	-1.20657	-0.14835
6	-1.18256	-1.54570	0.00000	0.00000	-1.16776	-1.54431	0.00000	-1.17382	-1.53861
6	0.00000	-2.34141	0.00000	0.00000	0.00000	-2.35794	0.00000	0.00000	-2.34787
1	2.15647	-2.04661	0.00000	0.00000	2.14966	-2.03719	0.00000	2.15384	-2.03151
1	2.15583	0.39906	0.00000	0.00000	2.15305	0.40467	0.00000	2.14760	0.40245
6	0.00000	2.00262	0.00000	0.00000	0.00000	1.99820	0.00000	0.00000	1.99844
1	-2.15583	0.39906	0.00000	0.00000	-2.15305	0.40467	0.00000	-2.14760	0.40245
1	-2.15647	-2.04661	0.00000	0.00000	-2.14966	-2.03719	0.00000	-2.15384	-2.03151
7	0.00000	3.17255	0.00000	0.00000	0.00000	3.18283	0.00000	0.00000	3.16195

1k. Chlorobenzene

A 4				Ato	mic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Nulliber	х	у	Z	х	у	Z	Х	У	Z
6	1.20860	-1.57552	0.00000	0.00000	-1.20625	-1.56794	0.00000	-1.20494	-1.56957
6	1.21686	-0.17800	0.00000	0.00000	-1.21391	-0.17376	0.00000	-1.21348	-0.17700
6	0.00000	0.50498	0.00000	0.00000	0.00000	0.51013	0.00000	0.00000	0.50378
6	-1.21686	-0.17800	0.00000	0.00000	1.21391	-0.17376	0.00000	1.21348	-0.17700
6	-1.20860	-1.57552	0.00000	0.00000	1.20625	-1.56794	0.00000	1.20494	-1.56957
6	0.00000	-2.27711	0.00000	0.00000	0.00000	-2.26827	0.00000	0.00000	-2.26839
1	2.15228	-2.11302	0.00000	0.00000	-2.15051	-2.10608	0.00000	-2.14747	-2.10640
1	2.15034	0.37407	0.00000	0.00000	-2.14781	0.38035	0.00000	-2.14418	0.37676
17	0.00000	2.26563	0.00000	0.00000	0.00000	2.25032	0.00000	0.00000	2.25638
1	-2.15034	0.37407	0.00000	0.00000	2.14781	0.38035	0.00000	2.14418	0.37676
1	-2.15228	-2.11302	0.00000	0.00000	2.15051	-2.10608	0.00000	2.14747	-2.10640
1	0.00000	-3.36275	0.00000	0.00000	0.00000	-3.35474	0.00000	0.00000	-3.35266

$1k_2$

A 4		Atomic Coordinate									
Atomic		DFT			G3MP2			G4MP2			
Nulliber	х	у	Z	х	У	Z	х	у	Z		
6	1.58377	-1.23930	0.00000	1.56418	-1.21523	0.00000	1.61008	-1.19860	0.00000		
6	1.34180	0.15924	0.00000	1.35627	0.18790	0.00000	1.34350	0.19411	0.00000		
6	0.00000	0.43996	0.00000	0.00000	0.45072	0.00000	0.00000	0.42486	0.00000		
6	-1.07711	-0.45048	0.00000	-1.07990	-0.43919	0.00000	-1.05761	-0.47752	0.00000		
6	-0.77256	-1.81794	0.00000	-0.77897	-1.80234	0.00000	-0.72369	-1.83306	0.00000		
6	0.57209	-2.21375	0.00000	0.55978	-2.19737	0.00000	0.62604	-2.19243	0.00000		
1	2.61803	-1.60177	0.00000	2.59742	-1.59037	0.00000	2.65146	-1.54386	0.00000		
17	-0.56745	2.25146	0.00000	-0.55549	2.21040	0.00000	-0.63174	2.23727	0.00000		
1	-2.10999	-0.10840	0.00000	-2.11327	-0.09398	0.00000	-2.09596	-0.15664	0.00000		
1	-1.57427	-2.55468	0.00000	-1.58317	-2.53885	0.00000	-1.50652	-2.58825	0.00000		
1	0.82488	-3.27633	0.00000	0.81424	-3.26050	0.00000	0.90069	-3.24909	0.00000		

1k3

Atomic	Atomic Coordinate DFT G3MP2 G4MP2								
Runioer	Х	У	Z	Х	У	Z	Х	У	Z
6	1.46269	-1.54584	0.00000	1.45129	-1.57151	0.00000	1.47529	-1.54202	0.00000
6	1.27256	-0.13744	0.00000	1.25601	-0.16527	0.00000	1.26868	-0.13736	0.00000
6	0.00000	0.43376	0.00000	0.00000	0.44699	0.00000	0.00000	0.42712	0.00000

6	-1.17428	-0.31579	0.00000	-1.18362	-0.28292	0.00000	-1.17141	-0.31826	0.00000
6	-1.03055	-1.71069	0.00000	-1.06298	-1.67466	0.00000	-1.02180	-1.70734	0.00000
6	0.25030	-2.28355	0.00000	0.21031	-2.26314	0.00000	0.25689	-2.26926	0.00000
1	2.12961	0.53975	0.00000	2.12058	0.50946	0.00000	2.11655	0.55333	0.00000
17	-0.17850	2.25699	0.00000	-0.13222	2.23451	0.00000	-0.18813	2.25095	0.00000
1	-2.14794	0.16374	0.00000	-2.15049	0.21512	0.00000	-2.14259	0.16227	0.00000
1	-1.92778	-2.33674	0.00000	-1.97075	-2.28591	0.00000	-1.91893	-2.33324	0.00000
1	0.29636	-3.37817	0.00000	0.22241	-3.36219	0.00000	0.29731	-3.36580	0.00000

1k4

Atomio				Ato	omic Coordina	te			
Number		DFT			G3MP2			G4MP2	
Nulliber	х	у	Z	х	у	Z	Х	У	Z
6	1.17583	-1.64753	0.00000	0.00000	-1.16287	-1.63642	0.00000	-1.16697	-1.63978
6	1.21042	-0.23823	0.00000	0.00000	-1.20710	-0.22972	0.00000	-1.20642	-0.23745
6	0.00000	0.44914	0.00000	0.00000	0.00000	0.45849	0.00000	0.00000	0.44865
6	-1.21042	-0.23823	0.00000	0.00000	1.20710	-0.22972	0.00000	1.20642	-0.23745
6	-1.17583	-1.64753	0.00000	0.00000	1.16287	-1.63642	0.00000	1.16697	-1.63978
6	0.00000	-2.44281	0.00000	0.00000	0.00000	-2.45208	0.00000	0.00000	-2.44916
1	2.15521	-2.13949	0.00000	0.00000	-2.14960	-2.12179	0.00000	-2.15278	-2.12372
1	2.15224	0.30965	0.00000	0.00000	-2.14870	0.32145	0.00000	-2.14413	0.31589
17	0.00000	2.25005	0.00000	0.00000	0.00000	2.23270	0.00000	0.00000	2.24385
1	-2.15224	0.30965	0.00000	0.00000	2.14870	0.32145	0.00000	2.14413	0.31589
1	-2.15521	-2.13949	0.00000	0.00000	2.14960	-2.12179	0.00000	2.15278	-2.12372

11. Trifluoromethoxybenzene

A				Ato	mic Coordina	te			
Atomic		DFT			G3MP2		G4MP2		
Number	х	у	Z	х	У	Z	х	У	Z
6	0.49039	-0.00004	-0.44491	0.46629	-0.00006	-0.47525	0.51127	0.36790	-0.00010
6	1.14272	1.21811	-0.27683	1.11082	1.21766	-0.29247	1.49455	1.35316	-0.00007
6	2.49173	1.21081	0.08735	2.45161	1.20912	0.08979	2.83396	0.98346	-0.00001
6	3.16581	0.00004	0.27113	3.12132	0.00006	0.28331	3.19144	-0.36361	0.00001
6	2.49178	-1.21078	0.08737	2.45172	-1.20905	0.08980	2.19604	-1.33514	-0.00003
6	1.14278	-1.21814	-0.27681	1.11090	-1.21773	-0.29241	0.84668	-0.98309	-0.00008
8	-0.85117	-0.00008	-0.88749	-0.86780	-0.00009	-0.92885	-0.79029	0.86410	-0.00017
1	0.60197	2.14524	-0.43089	0.56791	2.14304	-0.45610	1.19166	2.39347	-0.00008
1	3.01418	2.15268	0.22380	2.97287	2.15113	0.23644	3.59837	1.75296	0.00001
1	3.01428	-2.15262	0.22384	2.97305	-2.15102	0.23650	2.46192	-2.38684	-0.00001
1	0.60207	-2.14530	-0.43085	0.56810	-2.14316	-0.45604	0.08695	-1.75108	-0.00012
6	-1.82909	-0.00001	0.04424	-1.80145	-0.00001	0.05280	-1.85800	0.03282	0.00004
9	-3.00609	-0.00013	-0.59389	-3.00159	-0.00020	-0.52777	-2.94452	0.78740	0.00002
9	-1.78660	-1.08592	0.85336	-1.70874	-1.08282	0.85056	-1.89165	-0.76062	-1.07882
9	-1.78669	1.08612	0.85308	-1.70895	1.08309	0.85021	-1.89146	-0.76031	1.07913
1	4.21452	0.00006	0.55194	4.16662	0.00011	0.57952	4.23638	-0.65250	0.00005

 $\mathbf{1l}_{\mathbf{2}}$

				At	omic Coordina	ate			
Atomic		DFT			G3MP2		G4MP2		
Nulliber	Х	у	Z	х	У	Z	Х	У	Z
6	0.60344	0.25609	0.00015	-0.550426	-0.105311	-0.448239	-0.55043	-0.10531	-0.44824
6	1.51018	1.31958	0.00006	-1.116474	1.161194	-0.283733	-1.11647	1.16119	-0.28373
6	2.87279	1.00286	-0.00006	-2.460344	1.207870	0.088613	-2.46034	1.20787	0.08861
6	3.25084	-0.34669	-0.00008	-3.145442	0.004509	0.269824	-3.14544	0.00451	0.26982
6	2.26215	-1.34548	0.00001	-2.471783	-1.212966	0.074451	-2.47178	-1.21297	0.07445
6	0.86550	-1.09975	0.00014	-1.113636	-1.361629	-0.310510	-1.11364	-1.36163	-0.31051
8	-0.77820	0.78941	0.00032	0.857543	-0.021772	-0.920855	0.85754	-0.02177	-0.92086
1	1.16922	2.35399	0.00008	-0.535837	2.068927	-0.440886	-0.53584	2.06893	-0.44089
1	3.61864	1.79551	-0.00013	-2.958516	2.166768	0.231020	-2.95852	2.16677	0.23102
1	4.30967	-0.61341	-0.00018	-4.199033	0.019635	0.559982	-4.19903	0.01964	0.55998
1	2.61530	-2.38292	-0.00002	-3.072998	-2.118936	0.232194	-3.07300	-2.11894	0.23219
6	-1.84976	0.02035	-0.00001	1.774627	-0.019190	0.023960	1.77463	-0.01919	0.02396

9 -2.000	4 -0.77567	-1.09214	1.715125	1.070178	0.854251	1.71513	1.07018	0.85425
9 -2.000	-0.77617	1.09171	1.770067	-1.093536	0.846566	1.77007	-1.09354	0.84657

1	
	2
-	

Atomio				Ato	mic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	х	У	Z	х	У	Z	х	У	Z
6	-0.56631	-0.05354	-0.41879	-0.53762	-0.05077	-0.44890	-0.58948	0.31221	-0.00013
6	-1.18803	1.18243	-0.27695	-1.14857	1.18571	-0.29326	-1.54041	1.32399	-0.00005
6	-2.54277	1.15873	0.08012	-2.49269	1.16399	0.08519	-2.87873	0.93130	0.00003
6	-3.19942	-0.06881	0.26711	-3.14197	-0.06611	0.27818	-3.20561	-0.42696	0.00005
6	-2.59713	-1.34745	0.11814	-2.56782	-1.35846	0.12451	-2.27474	-1.49922	-0.00003
6	-1.22379	-1.26823	-0.24264	-1.20314	-1.26010	-0.25808	-0.92782	-1.03667	-0.00012
8	0.82151	-0.05343	-0.87265	0.83739	-0.05778	-0.91842	0.76195	0.83669	-0.00024
1	-0.64108	2.10585	-0.43891	-0.59670	2.10594	-0.46686	-1.22857	2.36312	-0.00006
1	-3.07656	2.10442	0.20542	-3.02278	2.11076	0.22256	-3.65341	1.70258	0.00009
1	-4.25836	-0.01316	0.54272	-4.19855	0.00389	0.57170	-4.27848	-0.65868	0.00012
1	-0.63481	-2.17569	-0.39801	-0.60629	-2.16412	-0.42761	-0.11538	-1.76440	-0.00019
6	1.78927	0.00230	0.02724	1.76046	0.00025	0.03445	1.81994	0.04507	0.00003
9	2.98699	-0.05182	-0.61777	2.98078	-0.05860	-0.54878	2.92059	0.82150	-0.00002
9	1.80480	1.15260	0.76874	1.73151	1.14872	0.76224	1.91522	-0.75690	1.08046
9	1.78686	-1.01484	0.93177	1.70030	-1.01026	0.93266	1.91545	-0.75732	-1.08008

1l4

A				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	х	У	Z	Х	У	Z	х	У	Z
6	0.55604	-0.00002	-0.42110	0.52884	0.00002	-0.45304	0.57769	0.35126	-0.00037
6	1.21501	1.21225	-0.25527	1.18034	1.21083	-0.27294	1.56134	1.32887	-0.00012
6	2.57525	1.17933	0.10628	2.53337	1.16702	0.10971	2.90372	0.92958	0.00009
6	3.34158	0.00003	0.30939	3.31462	0.00003	0.32992	3.37786	-0.40969	0.00011
6	2.57529	-1.17930	0.10630	2.53333	-1.16703	0.10970	2.28801	-1.31784	-0.00015
6	1.21505	-1.21227	-0.25525	1.18038	-1.21086	-0.27290	0.92041	-0.99340	-0.00040
8	-0.81730	-0.00006	-0.87811	-0.83489	-0.00002	-0.92144	-0.76674	0.85715	-0.00064
1	0.67714	2.14745	-0.40801	0.64027	2.14418	-0.43546	1.25870	2.37573	-0.00010
1	3.05609	2.15582	0.22904	3.00572	2.15066	0.23984	3.62906	1.75401	0.00027
1	3.05616	-2.15578	0.22907	3.00572	-2.15065	0.23985	2.49400	-2.39647	-0.00017
1	0.67721	-2.14749	-0.40798	0.64028	-2.14420	-0.43543	0.15919	-1.76750	-0.00062
6	-1.78715	-0.00001	0.02640	-1.76106	0.00000	0.03436	-1.81171	0.04864	0.00011
9	-2.98105	-0.00014	-0.62367	-2.97751	-0.00041	-0.55624	-2.92352	0.80226	-0.00004
9	-1.79134	-1.08655	0.84987	-1.71499	-1.08265	0.84805	-1.88915	-0.75994	-1.07906
9	-1.79146	1.08674	0.84961	-1.71549	1.08307	0.84750	-1.88854	-0.75871	1.08022

1l₅

Atomio				Ato	omic Coordina	ite			
Number		DFT			G3MP2			G4MP2	
Nulliber	х	у	Z	Х	У	Z	Х	У	Z
6	0.56631	0.05354	-0.41879	0.53757	0.05065	-0.44906	0.59072	0.37641	-0.00050
6	1.22379	1.26823	-0.24264	1.20293	1.26000	-0.25818	1.55834	1.37407	-0.00010
6	2.59713	1.34745	0.11814	2.56763	1.35853	0.12449	2.95551	1.12738	0.00023
6	3.19942	0.06881	0.26711	3.14187	0.06630	0.27827	3.22941	-0.26871	0.00011
6	2.54277	-1.15873	0.08012	2.49271	-1.16391	0.08520	2.27167	-1.28322	-0.00030
6	1.18803	-1.18243	-0.27695	1.14867	-1.18581	-0.29328	0.90662	-0.97604	-0.00064
8	-0.82151	0.05343	-0.87265	-0.83747	0.05751	-0.91855	-0.77339	0.85784	-0.00086
1	0.63481	2.17569	-0.39801	0.60601	2.16397	-0.42779	1.17124	2.39911	-0.00004
1	4.25836	0.01317	0.54272	4.19842	-0.00361	0.57194	4.27478	-0.60326	0.00035
1	3.07656	-2.10442	0.20542	3.02290	-2.11063	0.22265	2.56428	-2.33642	-0.00039
1	0.64108	-2.10585	-0.43891	0.59690	-2.10611	-0.46690	0.15247	-1.75100	-0.00102
6	-1.78927	-0.00230	0.02724	-1.76041	-0.00024	0.03448	-1.80838	0.04043	0.00016
9	-2.98699	0.05182	-0.61777	-2.98078	0.05843	-0.54865	-2.93341	0.77613	-0.00001
9	-1.80480	-1.15260	0.76874	-1.73133	-1.14856	0.76257	-1.87810	-0.77296	-1.07876

9	-1.78687	1.01484	0.93177	-1.70015	1.01048	0.93240	-1.87726	-0.77129	1.08036

- 1	
	1
	 In
	~

A		Atomic Coordinate										
Atomic		DFT			G3MP2			G4MP2				
Nulliber	Х	У	Z	Х	У	Z	Х	У	Z			
6	-0.576271	-0.127356	-0.414684	-0.550384	-0.105166	-0.448346	-0.56019	-0.13317	-0.42985			
6	-1.186800	-1.357980	-0.279086	-1.113520	-1.361558	-0.310633	-1.10762	1.13893	-0.28203			
6	-2.553284	-1.206332	0.079150	-2.471651	-1.213010	0.074396	-2.45210	1.22119	0.07657			
6	-3.198420	0.028490	0.254589	-3.145373	0.004382	0.269964	-3.16329	0.03331	0.26060			
6	-2.483653	1.221427	0.076628	-2.460421	1.207810	0.088697	-2.52285	-1.19718	0.08218			
6	-1.130565	1.146729	-0.271979	-1.116602	1.161266	-0.283819	-1.16208	-1.36785	-0.28599			
8	0.848724	-0.095693	-0.873102	0.857459	-0.021483	-0.920762	0.85477	-0.10054	-0.89174			
1	-3.164755	-2.103462	0.226534	-3.072808	-2.119042	0.232042	-0.51119	2.03470	-0.43835			
1	-4.256068	0.067703	0.524122	-4.198919	0.019408	0.560316	-2.92931	2.18985	0.20597			
1	-2.965132	2.189231	0.202523	-2.958685	2.166659	0.23116	-4.21812	0.07764	0.53898			
1	-0.538283	2.046903	-0.423883	-0.536098	2.069066	-0.441142	-3.14310	-2.08844	0.24040			
6	1.808391	-0.027781	0.016736	1.774622	-0.019162	0.024008	1.79168	-0.02424	0.02314			
9	3.018602	-0.092363	-0.619417	3.004374	0.023324	-0.556532	3.00132	-0.10810	-0.57510			
9	1.836754	1.154898	0.734949	1.714736	1.069521	0.855056	1.79981	1.15498	0.71147			
9	1.817761	-1.006758	0.960846	1.770536	-1.094133	0.845711	1.75690	-0.98413	0.96576			

1m. Trifluoromethylbenzene

A				Ato	omic Coordina	te			
Atomic		DFT			G3MP2			G4MP2	
Number	х	У	Z	х	У	Z	х	У	Z
6	-0.05300	0.00012	-0.03264	-0.04793	0.00017	-0.04247	-0.00021	0.05463	0.00000
6	-0.74812	-1.21404	-0.01986	-0.73712	-1.21330	-0.02539	-1.39105	0.17614	0.00000
6	-2.14376	-1.21050	0.00178	-2.13001	-1.20850	0.00131	-1.97312	1.43803	0.00000
6	-2.84236	-0.00008	0.01299	-2.82737	-0.00009	0.01678	-1.16902	2.57767	0.00000
6	-2.14393	1.21043	0.00178	-2.13025	1.20841	0.00131	0.21711	2.45265	0.00000
6	-0.74827	1.21416	-0.01986	-0.73732	1.21347	-0.02538	0.80526	1.18972	0.00000
6	1.45237	0.00006	-0.00423	1.44590	0.00006	-0.00145	0.60415	-1.32451	0.00000
1	-0.20254	-2.15141	-0.03333	-0.18802	-2.14982	-0.04414	-2.00985	-0.71438	0.00000
1	-2.68384	-2.15229	0.00739	-2.67188	-2.15038	0.00896	-3.05346	1.53390	0.00000
1	-3.92823	-0.00015	0.02795	-3.91403	-0.00020	0.03654	-1.62492	3.56210	0.00000
1	-2.68413	2.15214	0.00739	-2.67228	2.15019	0.00896	0.84452	3.33737	0.00000
1	-0.20282	2.15160	-0.03332	-0.18840	2.15009	-0.04411	1.88280	1.08360	0.00000
9	1.98024	1.09220	-0.61172	1.96902	1.09094	-0.60670	1.94380	-1.29454	0.00000
9	1.93562	-0.00220	1.26987	1.90877	-0.00231	1.27126	0.21711	-2.02987	1.07800
9	1.98013	-1.09009	-0.61547	1.96879	-1.08876	-0.61061	0.21711	-2.02987	-1.07800

$1m_2$

Atomio		Atomic Coordinate										
Number		DFT			G3MP2			G4MP2				
Nulliber	х	У	Z	Х	у	Z	х	у	Z			
6	-0.063753	0.082692	0.000000	-0.05806	0.08433	0.00000	-0.06093	0.08231	0.00000			
6	-1.407036	0.535507	0.000000	-1.41291	0.50281	0.00000	-1.41057	0.51894	0.00000			
6	-1.489819	1.952842	0.000000	-1.48233	1.91933	0.00000	-1.48130	1.93653	0.00000			
6	-0.385861	2.817405	0.000000	-0.38739	2.79743	0.00000	-0.38439	2.80134	0.00000			
6	0.914660	2.293839	0.000000	0.91125	2.28445	0.00000	0.91357	2.28530	0.00000			
6	1.078697	0.906821	0.000000	1.08498	0.90202	0.00000	1.07583	0.90321	0.00000			
6	0.147236	-1.409530	0.000000	0.15086	-1.39520	0.00000	0.15274	-1.40754	0.00000			
1	-2.479478	2.423434	0.000000	-2.47296	2.39555	0.00000	-2.46896	2.41574	0.00000			
1	-0.530335	3.901008	0.000000	-0.54003	3.88078	0.00000	-0.52827	3.88488	0.00000			
1	1.782675	2.950682	0.000000	1.77570	2.94912	0.00000	1.77926	2.94424	0.00000			
1	2.081047	0.482230	0.000000	2.08894	0.47917	0.00000	2.07713	0.47767	0.00000			
9	1.480759	-1.780753	0.000000	1.47590	-1.77363	0.00000	1.47003	-1.77402	0.00000			
9	-0.385861	-2.044891	1.087266	-0.38739	-2.01738	1.08516	-0.38439	-2.02650	1.07699			
9	-0.385861	-2.044891	-1.087266	-0.38739	-2.01738	-1.08516	-0.38439	-2.02650	-1.07699			

A 4				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	х	У	Z	Х	у	Z	Х	У	Z
6	0.09804	-0.01044	-0.03273	-0.00182	0.09336	0.00000	-0.00798	0.09557	0.00000
6	0.78754	-1.24169	-0.02055	-1.29944	0.64452	0.00000	-1.30039	0.64914	0.00000
6	2.20093	-1.37258	0.00323	-1.61208	2.02853	0.00000	-1.60523	2.03471	0.00000
6	2.85393	-0.11094	0.01482	-0.41599	2.79941	0.00000	-0.41113	2.80695	0.00000
6	2.20332	1.13540	0.00204	0.89797	2.30221	0.00000	0.89488	2.30346	0.00000
6	0.80813	1.19946	-0.01883	1.12010	0.92673	0.00000	1.11350	0.92814	0.00000
6	-1.39381	0.00887	-0.00507	0.15867	-1.37717	0.00000	0.15971	-1.38643	0.00000
1	0.17135	-2.14437	-0.03566	-2.12099	-0.08460	0.00000	-2.12282	-0.07601	0.00000
1	3.94955	-0.08285	0.03439	-0.50047	3.89594	0.00000	-0.49213	3.90256	0.00000
1	2.77953	2.06371	0.00700	1.75497	2.98150	0.00000	1.75550	2.97630	0.00000
1	0.28670	2.15193	-0.03039	2.12501	0.51110	0.00000	2.11418	0.50970	0.00000
9	-1.94266	1.20848	-0.38521	1.46052	-1.79423	0.00000	1.45394	-1.79186	0.00000
9	-1.97064	-0.92967	-0.81732	-0.41599	-1.98119	1.08330	-0.41113	-1.98750	1.07588
9	-1.92400	-0.23846	1.24332	-0.41599	-1.98119	-1.08330	-0.41113	-1.98750	-1.07588

1m4

Atomio		Atomic Coordinate								
Number		DFT			G3MP2			G4MP2		
Nulliber	х	У	Z	Х	У	Z	Х	У	Z	
6	-0.09357	0.00003	0.04110	-0.08769	0.00003	0.05368	-0.00606	0.09115	0.00000	
6	-0.81091	-1.20770	0.02153	-0.79742	-1.20467	0.02801	-1.37577	0.38684	0.00000	
6	-2.21109	-1.17959	-0.00604	-2.19797	-1.16589	-0.00560	-1.79429	1.71594	0.00000	
6	-3.00771	-0.00003	-0.02115	-3.01292	-0.00003	-0.02600	-0.94462	2.86007	0.00000	
6	-2.21114	1.17956	-0.00604	-2.19802	1.16586	-0.00560	0.42237	2.46736	0.00000	
6	-0.81095	1.20773	0.02153	-0.79746	1.20470	0.02801	0.90025	1.15549	0.00000	
6	1.39025	0.00002	0.00808	1.38734	0.00001	0.00405	0.44126	-1.32325	0.00000	
1	-0.27074	-2.15457	0.03481	-0.25415	-2.15102	0.04747	-2.09528	-0.43373	0.00000	
1	-2.70889	-2.15542	-0.01310	-2.68882	-2.14915	-0.01407	-2.88182	1.86550	0.00000	
1	-2.70897	2.15538	-0.01310	-2.68890	2.14911	-0.01409	1.19632	3.24605	0.00000	
1	-0.27082	2.15461	0.03481	-0.25423	2.15107	0.04745	1.96827	0.94238	0.00000	
9	1.95423	1.09301	0.61174	1.94807	1.08976	0.60512	1.78474	-1.46640	0.00000	
9	1.95423	-1.09251	0.61260	1.94806	-1.08917	0.60614	-0.00606	-2.03023	1.07500	
9	1.92376	-0.00051	-1.26850	1.89397	-0.00060	-1.26970	-0.00606	-2.03023	-1.07500	

1m5

Atomio				Ato	omic Coordina	ite			
Number		DFT			G3MP2			G4MP2	
Runioer	Х	у	Z	Х	У	Z	Х	У	Z
6	-0.09804	0.01044	-0.03273	-0.09253	0.00508	-0.04468	0.00041	0.10562	0.00000
6	-0.80813	-1.19946	-0.01883	-0.79466	-1.20424	-0.02428	-1.39805	0.18258	0.00000
6	-2.20332	-1.13540	0.00204	-2.18559	-1.14005	0.00129	-1.97573	1.44629	0.00000
6	-2.85393	0.11094	0.01481	-2.82885	0.10908	0.01883	-1.16409	2.58975	0.00000
6	-2.20093	1.37258	0.00323	-2.19833	1.38394	0.00397	0.25468	2.60432	0.00000
6	-0.78754	1.24169	-0.02055	-0.78723	1.23145	-0.02626	0.77019	1.27834	0.00000
6	1.39381	-0.00887	-0.00507	1.38624	-0.00698	-0.00252	0.61872	-1.25129	0.00000
1	-0.28670	-2.15193	-0.03039	-0.26806	-2.15581	-0.03990	-2.00265	-0.72045	0.00000
1	-2.77953	-2.06371	0.00701	-2.76306	-2.06858	0.00840	-3.06481	1.53213	0.00000
1	-3.94955	0.08285	0.03439	-3.92744	0.06882	0.04437	-1.70266	3.54727	0.00000
1	-0.17135	2.14437	-0.03565	-0.15854	2.13057	-0.04773	1.85360	1.13164	0.00000
9	1.97064	0.92966	-0.81733	1.95741	0.92837	-0.81481	1.96616	-1.24096	0.00000
9	1.92400	0.23848	1.24331	1.89686	0.24724	1.24251	0.25468	-2.00309	1.07713
9	1.94266	-1.20848	-0.38519	1.93714	-1.20280	-0.37474	0.25468	-2.00309	-1.07713

1m₆

Atomic		Atomic Coordinate	
Number	DFT	G3MP2	G4MP2

	х	у	Z	х	У	Z	х	у	Z
6	-0.08990	0.05307	0.00002	-0.09079	0.04718	-0.00007	-0.00353	0.14547	0.00000
6	-0.76719	-1.18211	0.00001	-0.76160	-1.18729	0.00000	-1.25496	-0.49755	0.00000
6	-2.16386	-1.19000	0.00000	-2.15520	-1.18501	0.00001	-2.41445	0.26519	0.00000
6	-2.84349	0.03622	0.00000	-2.82373	0.04033	0.00003	-2.28926	1.65913	0.00000
6	-2.12134	1.23817	0.00000	-2.08697	1.23529	0.00000	-1.02402	2.24438	0.00000
6	-0.70459	1.33042	0.00001	-0.67306	1.34054	-0.00007	0.21490	1.54310	0.00000
6	1.41693	0.02735	0.00001	1.40322	0.02174	-0.00002	1.17517	-0.79067	0.00000
1	-0.22250	-2.12460	0.00001	-0.21851	-2.13150	-0.00004	-1.32484	-1.58593	0.00000
1	-2.70890	-2.13224	-0.00001	-2.70836	-2.12459	0.00001	-3.39288	-0.21036	0.00000
1	-3.93663	0.04625	-0.00001	-3.91752	0.05861	0.00003	-3.19157	2.27594	0.00000
1	-2.71013	2.16240	0.00000	-2.68138	2.15969	0.00005	-1.00438	3.34196	0.00000
9	1.98183	0.63444	-1.08736	1.95447	0.63184	-1.08542	2.37083	-0.19741	0.00000
9	1.98187	0.63474	1.08717	1.95443	0.63285	1.08491	1.17517	-1.63662	1.07827
9	1.94950	-1.25034	0.00017	1.94160	-1.24678	0.00058	1.17517	-1.63662	-1.07827

1n. Pivalophenone

Atomic				Ato	omic Coordina	ite			
Number		DFT			G3MP2			G4MP2	
INUIIDEI	Х	у	Z	Х	у	Z	Х	У	Z
6	-0.714236	0.254431	0.077599	-0.69753	0.24411	-0.11474	-0.71647	0.25320	0.00010
6	-1.682167	1.257118	-0.120639	-1.63389	1.25098	0.16501	-1.69893	1.25667	-0.00014
6	-3.036923	0.942405	-0.197972	-2.98727	0.94999	0.27857	-3.04992	0.94069	-0.00024
6	-3.457113	-0.384450	-0.060144	-3.43185	-0.35965	0.09075	-3.45474	-0.39357	-0.00008
6	-2.510633	-1.389292	0.150238	-2.51151	-1.36290	-0.20981	-2.49594	-1.40169	0.00019
6	-1.151008	-1.074806	0.210263	-1.15176	-1.06897	-0.30353	-1.14045	-1.08269	0.00027
6	0.724065	0.716633	0.161807	0.73269	0.68855	-0.23453	0.71916	0.73260	0.00022
6	1.932739	-0.228530	-0.075976	1.91008	-0.23118	0.10906	1.93399	-0.23076	-0.00008
6	3.195150	0.639096	-0.253229	3.13622	0.64696	0.36538	3.21747	0.62030	-0.00035
6	2.142252	-1.128665	1.169155	1.62598	-1.05907	1.36607	1.93902	-1.10251	1.27718
6	1.745555	-1.082205	-1.351727	2.21420	-1.13901	-1.09260	1.93842	-1.10241	-1.27743
8	0.930170	1.898138	0.410223	0.94826	1.84842	-0.59464	0.92070	1.93188	0.00053
1	-1.345777	2.284231	-0.210218	-1.27721	2.26954	0.28686	-1.36638	2.28727	-0.00024
1	-3.765654	1.730908	-0.362063	-3.69860	1.73911	0.50909	-3.78978	1.73435	-0.00046
1	-4.513252	-0.632505	-0.114405	-4.48973	-0.59601	0.17313	-4.51034	-0.64487	-0.00015
1	-2.827714	-2.421410	0.267910	-2.85204	-2.38245	-0.37248	-2.80021	-2.44306	0.00034
1	-0.444677	-1.876509	0.379929	-0.46188	-1.86709	-0.55081	-0.42547	-1.89238	0.00049
1	4.062718	-0.010330	-0.413478	3.99307	0.01228	0.61271	4.09292	-0.03736	-0.00038
1	3.100680	1.307339	-1.114379	3.38099	1.24729	-0.51192	3.26641	1.26540	-0.88038
1	3.379832	1.260931	0.625365	2.95948	1.33170	1.19944	3.26662	1.26562	0.87950
1	3.048681	-1.728950	1.031307	2.52238	-1.62777	1.63445	2.84261	-1.72138	1.29063
1	2.277576	-0.519646	2.069106	1.37696	-0.40772	2.21023	1.95465	-0.47411	2.17365
1	1.314827	-1.818057	1.351497	0.80531	-1.76500	1.23428	1.07936	-1.76919	1.35590
1	2.657570	-1.660631	-1.536830	3.11149	-1.72997	-0.88019	2.84236	-1.72075	-1.29168
1	0.913552	-1.785423	-1.285022	1.40445	-1.83488	-1.32074	1.07909	-1.76960	-1.35545
1	1.574195	-0.445462	-2.226750	2.40702	-0.53537	-1.98473	1.95293	-0.47395	-2.17387

 $1n_2$

A 4				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	х	У	Z	х	У	Z	х	У	Z
6	-0.72455	-0.23307	0.00000	-0.71517	-0.23491	-0.00001	-0.71932	-0.23874	-0.00026
6	-1.03573	1.16048	-0.00001	-0.99930	1.16066	-0.00002	-1.01727	1.15486	-0.00029
6	-2.43264	1.42460	-0.00001	-2.39260	1.41387	-0.00002	-2.41111	1.41745	-0.00008
6	-3.42652	0.44135	0.00000	-3.39689	0.43779	0.00001	-3.40450	0.44161	0.00015
6	-3.06472	-0.91754	0.00001	-3.03968	-0.91475	0.00002	-3.05125	-0.91463	0.00015
6	-1.71519	-1.25050	0.00000	-1.69384	-1.25515	0.00001	-1.70827	-1.25032	-0.00006
6	0.69078	-0.73640	-0.00001	0.69692	-0.73621	-0.00001	0.69050	-0.74489	-0.00055
6	1.91230	0.23506	0.00000	1.89078	0.23815	0.00001	1.90208	0.23692	0.00005
6	1.88336	1.12739	1.26287	1.83692	1.12295	1.25073	1.85795	1.12870	1.26013
6	3.21335	-0.59003	0.00000	3.18912	-0.56571	0.00002	3.20405	-0.58174	-0.00067
6	1.88337	1.12741	-1.26285	1.83696	1.12296	-1.25071	1.85766	1.13047	-1.25877
8	0.93163	-1.95102	-0.00001	0.94798	-1.95363	-0.00004	0.93913	-1.94792	-0.00021
1	-2.77155	2.46667	-0.00001	-2.73668	2.45675	-0.00003	-2.75170	2.45969	-0.00008
1	-4.48382	0.71917	0.00000	-4.45355	0.72033	0.00001	-4.46094	0.71988	0.00032
1	-3.82661	-1.69576	0.00001	-3.80549	-1.69145	0.00004	-3.81691	-1.68796	0.00031

1	-1.40508	-2.29333	0.00001	-1.38230	-2.29872	0.00002	-1.39576	-2.29139	-0.00008
1	2.77836	1.76738	1.28240	2.71683	1.78098	1.27657	2.73677	1.78931	1.28199
1	0.98246	1.74653	1.25054	0.91606	1.71080	1.21538	0.93798	1.72024	1.23780
1	1.88816	0.51589	2.17501	1.84719	0.50791	2.15943	1.87712	0.52021	2.17343
1	4.07432	0.09159	0.00001	4.04306	0.12289	0.00004	4.06742	0.09610	-0.00027
1	3.27939	-1.23616	0.88139	3.25578	-1.20903	0.88170	3.26963	-1.22925	0.87868
1	3.27940	-1.23614	-0.88139	3.25581	-1.20902	-0.88166	3.26946	-1.22799	-0.88097
1	2.77837	1.76740	-1.28237	2.71686	1.78099	-1.27653	2.73651	1.79107	-1.27992
1	1.88817	0.51592	-2.17500	1.84725	0.50792	-2.15942	1.87656	0.52328	-2.17293
1	0.98246	1.74655	-1.25052	0.91610	1.71081	-1.21539	0.93773	1.72204	-1.23536

1n3

Atomio				Ato	mic Coordina	ite			
Number		DFT			G3MP2			G4MP2	
Number	х	у	Z	х	У	Z	х	у	Z
6	-0.75853	0.29912	0.00000	-0.72883	0.27981	0.16247	-0.74160	0.28454	0.13584
6	-1.77559	1.29342	-0.00001	-1.67362	1.26782	-0.22276	-1.70323	1.26824	-0.21483
6	-3.17644	1.05860	-0.00001	-3.06810	1.08309	-0.40357	-3.09828	1.07154	-0.33313
6	-3.48233	-0.32629	0.00000	-3.42535	-0.26527	-0.13363	-3.45101	-0.27830	-0.09269
6	-2.52498	-1.35872	0.00001	-2.54518	-1.29525	0.24213	-2.54604	-1.31247	0.18737
6	-1.16523	-1.05676	0.00001	-1.18625	-1.03299	0.38623	-1.19088	-1.03914	0.31703
6	0.66327	0.75185	0.00000	0.68230	0.69052	0.29157	0.66955	0.71366	0.25312
6	1.88322	-0.24276	0.00000	1.84490	-0.24431	-0.13158	1.86257	-0.24271	-0.10858
6	3.18684	0.58157	0.00000	3.05285	0.62587	-0.48236	3.10070	0.62502	-0.40217
6	1.88679	-1.11655	1.27713	2.22786	-1.13350	1.05853	2.18267	-1.12854	1.11716
6	1.88678	-1.11655	-1.27714	1.48474	-1.09421	-1.35107	1.57282	-1.11083	-1.34768
8	0.94106	1.95393	0.00000	0.98718	1.82197	0.70070	0.95979	1.85833	0.58372
1	-1.41227	2.32048	-0.00002	-1.23730	2.25655	-0.40746	-1.27862	2.25424	-0.42021
1	-4.53281	-0.64146	0.00000	-4.48348	-0.55617	-0.20818	-4.51118	-0.56457	-0.10285
1	-2.83706	-2.40651	0.00002	-2.91630	-2.30528	0.43902	-2.89621	-2.33490	0.34665
1	-0.45225	-1.87172	0.00002	-0.51725	-1.82166	0.72304	-0.51073	-1.83434	0.60252
1	4.04932	-0.09812	-0.00001	3.89805	-0.01002	-0.77275	3.97068	-0.01351	-0.60215
1	3.24899	1.22816	-0.87965	2.81801	1.29406	-1.31636	2.93461	1.26181	-1.27687
1	3.24900	1.22816	0.87964	3.34381	1.24698	0.36578	3.32377	1.28369	0.43852
1	2.78958	-1.74241	1.29557	3.11047	-1.73572	0.80770	3.06401	-1.75203	0.91636
1	1.90109	-0.48338	2.17194	2.47158	-0.51142	1.92605	2.40331	-0.50516	1.99041
1	1.01726	-1.77024	1.35242	1.42317	-1.81439	1.34305	1.35654	-1.79177	1.38210
1	2.78958	-1.74240	-1.29557	2.35846	-1.67866	-1.66750	2.45570	-1.71377	-1.60028
1	1.01725	-1.77024	-1.35242	0.65953	-1.77640	-1.14854	0.72647	-1.78142	-1.19951
1	1.90108	-0.48338	-2.17194	1.18190	-0.45306	-2.18530	1.33987	-0.48098	-2.21318

1n4

A +				Atomic Coordinate					
Atomic		DFT			G3MP2			G4MP2	
Number	х	У	Z	Х	У	Z	Х	У	Z
6	-0.74709	0.26797	0.00000	-0.73323	0.25984	0.00001	-0.74118	0.26560	-0.00036
6	-1.77491	1.24402	0.00000	-1.74396	1.24243	-0.00001	-1.76651	1.23955	-0.00017
6	-3.11971	0.87691	0.00000	-3.09085	0.87736	-0.00003	-3.10466	0.87522	0.00011
6	-3.60691	-0.46517	0.00000	-3.61193	-0.44973	-0.00002	-3.61124	-0.46049	0.00024
6	-2.53611	-1.40522	0.00001	-2.53541	-1.37956	0.00000	-2.53199	-1.39194	0.00004
6	-1.17644	-1.08227	0.00001	-1.16715	-1.08251	0.00001	-1.17679	-1.07897	-0.00024
6	0.65345	0.74523	0.00000	0.66531	0.73509	0.00002	0.65254	0.74545	-0.00067
6	1.88493	-0.22787	0.00000	1.87244	-0.23410	0.00000	1.88022	-0.23083	0.00003
6	3.17716	0.61375	-0.00001	3.15996	0.59071	-0.00002	3.16873	0.61291	-0.00018
6	1.89728	-1.10308	1.27613	1.86905	-1.09668	1.26816	1.88956	-1.10244	1.27509
6	1.89727	-1.10308	-1.27612	1.86901	-1.09668	-1.26816	1.88995	-1.10368	-1.27418
8	0.90721	1.95742	0.00000	0.92562	1.95090	0.00005	0.91220	1.94725	-0.00008
1	-1.47815	2.29103	-0.00001	-1.43603	2.28774	-0.00002	-1.46007	2.28324	-0.00026
1	-3.84374	1.69898	-0.00001	-3.80094	1.71606	-0.00004	-3.82115	1.70643	0.00023
1	-2.77198	-2.47535	0.00001	-2.77162	-2.45315	0.00001	-2.76273	-2.46499	0.00009
1	-0.45569	-1.89539	0.00001	-0.45665	-1.90580	0.00003	-0.45572	-1.89211	-0.00038
1	4.04846	-0.05438	-0.00001	4.02623	-0.08227	-0.00003	4.04591	-0.04682	0.00030
1	3.23064	1.26105	-0.87977	3.21213	1.23522	-0.88025	3.21676	1.26048	-0.87885
1	3.23065	1.26105	0.87976	3.21216	1.23522	0.88021	3.21647	1.26136	0.87786
1	2.80608	-1.72003	1.29421	2.75636	-1.74258	1.28101	2.78121	-1.74337	1.28733
1	1.90424	-0.47121	2.17200	1.90710	-0.45367	2.15430	1.92434	-0.46886	2.16856

1	1.03397	-1.76551	1.34749	0.98178	-1.72240	1.35039	1.00931	-1.73935	1.35925
1	2.80607	-1.72003	-1.29421	2.75633	-1.74257	-1.28105	2.78160	-1.74462	-1.28552
1	1.03396	-1.76552	-1.34748	0.98175	-1.72240	-1.35036	1.00972	-1.74068	-1.35797
1	1.90422	-0.47122	-2.17200	1.90703	-0.45367	-2.15430	1.92500	-0.47098	-2.16825

1n5

Atomio				Ato	omic Coordina	ate			
Neurahau		DFT			G3MP2			G4MP2	
Number	х	У	Z	х	У	Z	х	У	Z
6	-0.75266	0.24603	0.00000	-0.73070	0.24179	-0.12320	-0.74273	0.24697	-0.10191
6	-1.75697	1.24211	0.00000	-1.68915	1.24130	0.13637	-1.72300	1.23902	0.10574
6	-3.09392	0.86147	0.00000	-3.02477	0.87864	0.24268	-3.05427	0.86648	0.18846
6	-3.44293	-0.50472	0.00000	-3.39840	-0.46980	0.09144	-3.41139	-0.48877	0.09407
6	-2.51340	-1.57412	0.00001	-2.52798	-1.54628	-0.22463	-2.51890	-1.55293	-0.17876
6	-1.17065	-1.11288	0.00001	-1.18755	-1.08901	-0.31687	-1.18531	-1.08886	-0.28018
6	0.65788	0.73437	0.00000	0.67151	0.70282	-0.20423	0.66092	0.72361	-0.15892
6	1.89481	-0.22716	0.00000	1.86328	-0.23468	0.09979	1.87730	-0.23225	0.08401
6	3.18102	0.62400	-0.00001	3.08693	0.62898	0.41057	3.12102	0.63322	0.36160
6	1.91088	-1.10216	1.27665	1.58221	-1.13055	1.30866	1.65329	-1.16100	1.29398
6	1.91087	-1.10217	-1.27665	2.18049	-1.07421	-1.14506	2.14736	-1.05284	-1.19815
8	0.89923	1.94731	0.00000	0.93984	1.88164	-0.49687	0.92102	1.90222	-0.38651
1	-1.46260	2.28669	-0.00001	-1.35899	2.27063	0.26088	-1.40562	2.27086	0.21113
1	-3.87020	1.63114	-0.00001	-3.77361	1.64585	0.46002	-3.81324	1.63400	0.35761
1	-4.51566	-0.73146	0.00000	-4.46837	-0.68165	0.23261	-4.47458	-0.71220	0.25437
1	-0.39445	-1.87519	0.00001	-0.43073	-1.82708	-0.59925	-0.42292	-1.82185	-0.55439
1	4.05622	-0.03878	-0.00001	3.94657	-0.01563	0.63043	3.99951	-0.00908	0.50245
1	3.23139	1.27127	-0.88023	3.33196	1.27855	-0.43114	3.31189	1.32374	-0.46172
1	3.23139	1.27128	0.88021	2.90081	1.26896	1.27816	2.98795	1.23631	1.26525
1	2.82239	-1.71499	1.29175	2.46931	-1.73639	1.53429	2.54564	-1.77868	1.46276
1	1.91879	-0.46990	2.17255	1.35783	-0.51820	2.18890	1.48058	-0.57272	2.20257
1	1.04906	-1.76615	1.34611	0.73362	-1.79255	1.14193	0.79394	-1.81726	1.16100
1	2.82238	-1.71499	-1.29175	3.07853	-1.67909	-0.96557	3.04387	-1.67286	-1.06625
1	1.04905	-1.76616	-1.34610	1.36238	-1.74447	-1.41114	1.31477	-1.70971	-1.45427
1	1.91878	-0.46991	-2.17256	2.37670	-0.41598	-1.99830	2.32425	-0.38427	-2.04803

$1n_6$

Atomio				Ato	mic Coordina	ite			
Number		DFT			G3MP2			G4MP2	
Runioer	Х	У	Z	Х	У	Z	Х	У	Z
6	-0.72455	0.23306	0.00000	-0.71517	0.23491	0.00000	-0.71938	0.23873	0.00005
6	-1.71519	1.25050	0.00000	-1.69384	1.25515	-0.00001	-1.70834	1.25023	0.00003
6	-3.06471	0.91754	0.00001	-3.03969	0.91475	0.00001	-3.05136	0.91452	0.00001
6	-3.42652	-0.44135	0.00001	-3.39689	-0.43779	0.00002	-3.40464	-0.44164	0.00000
6	-2.43264	-1.42461	0.00001	-2.39260	-1.41387	0.00002	-2.41121	-1.41748	0.00001
6	-1.03572	-1.16048	0.00000	-0.99930	-1.16066	0.00001	-1.01742	-1.15487	0.00004
6	0.69078	0.73640	-0.00001	0.69692	0.73621	-0.00002	0.69042	0.74482	0.00004
6	1.91230	-0.23506	0.00000	1.89078	-0.23815	0.00000	1.90213	-0.23673	0.00000
6	3.21334	0.59004	0.00000	3.18912	0.56571	0.00001	3.20423	0.58174	-0.00001
6	1.88337	-1.12739	1.26286	1.83693	-1.12295	1.25072	1.85808	-1.12953	1.25940
6	1.88338	-1.12740	-1.26286	1.83695	-1.12295	-1.25072	1.85803	-1.12948	-1.25944
8	0.93160	1.95102	-0.00002	0.94798	1.95363	-0.00005	0.93888	1.94798	-0.00008
1	-1.40507	2.29332	0.00000	-1.38231	2.29872	-0.00002	-1.39602	2.29135	0.00003
1	-3.82662	1.69575	0.00001	-3.80549	1.69145	0.00001	-3.81694	1.68792	0.00000
1	-4.48381	-0.71916	0.00001	-4.45355	-0.72034	0.00003	-4.46106	-0.72001	-0.00002
1	-2.77154	-2.46668	0.00001	-2.73668	-2.45675	0.00003	-2.75186	-2.45968	0.00000
1	4.07431	-0.09158	0.00000	4.04306	-0.12289	0.00002	4.06751	-0.09624	-0.00004
1	3.27939	1.23615	-0.88139	3.25580	1.20903	-0.88167	3.26973	1.22860	-0.87981
1	3.27938	1.23616	0.88139	3.25578	1.20903	0.88169	3.26977	1.22856	0.87983
1	2.77836	-1.76740	1.28238	2.71684	-1.78097	1.27657	2.73677	-1.79034	1.28052
1	1.88819	-0.51590	2.17501	1.84719	-0.50791	2.15942	1.87748	-0.52179	2.17314
1	0.98246	-1.74653	1.25054	0.91608	-1.71081	1.21538	0.93812	-1.72105	1.23662
1	2.77837	-1.76740	-1.28237	2.71685	-1.78099	-1.27654	2.73668	-1.79034	-1.28059
1	0.98247	-1.74654	-1.25053	0.91609	-1.71081	-1.21539	0.93802	-1.72093	-1.23669
1	1.88819	-0.51591	-2.17501	1.84724	-0.50792	-2.15942	1.87748	-0.52170	-2.17316

10. Nitrobenzene

				Ato	mic Coordina	te			
Atomic		DFT			G3MP2		G4MP2		
Number	х	У	Z	х	У	Z	х	У	Z
6	0.00000	-2.51966	0.00000	0.00000	-2.51570	0.00000	0.00000	-2.51127	0.00000
6	0.00000	-1.82337	1.21328	0.00000	-1.81762	1.20897	0.00000	-1.81784	1.20987
6	0.00000	-0.42862	1.22209	0.00000	-0.42427	1.22149	0.00001	-0.42734	1.21790
6	0.00000	0.24434	0.00000	0.00000	0.24157	0.00000	0.00001	0.24338	0.00000
6	0.00000	-0.42862	-1.22209	0.00000	-0.42427	-1.22149	0.00001	-0.42734	-1.21790
6	0.00000	-1.82337	-1.21328	0.00000	-1.81762	-1.20897	0.00000	-1.81784	-1.20987
1	0.00000	-3.60551	0.00000	0.00000	-3.60286	0.00000	0.00000	-3.59606	0.00000
1	0.00000	-2.36519	2.15370	0.00000	-2.35957	2.15122	0.00000	-2.35959	2.14907
1	0.00000	0.13679	2.14566	0.00000	0.14226	2.14613	0.00001	0.14303	2.13664
7	0.00000	1.71956	0.00000	0.00000	1.71163	0.00000	0.00001	1.71762	0.00000
1	0.00000	0.13679	-2.14566	0.00000	0.14226	-2.14613	0.00001	0.14303	-2.13664
1	0.00000	-2.36519	-2.15370	0.00000	-2.35957	-2.15122	0.00000	-2.35959	-2.14907
8	0.00000	2.29382	1.09004	0.00000	2.28773	1.09934	-0.00001	2.28470	1.08503
8	0.00000	2.29382	-1.09004	0.00000	2.28773	-1.09934	-0.00001	2.28470	-1.08503

10₂

Atomic Number		DFT		А	tomic Coordin G3MP2	ate		G4MP2		
Number	х	у	Z	х	У	Z	х	у	Z	
6	-2.52048	-0.00785	-0.00059				-2.51193	-0.01039	-0.00001	
6	-1.83002	-1.22108	-0.08915				-1.82078	-1.21962	0.00000	
6	-0.41259	-1.34844	-0.09569				-0.40471	-1.35600	0.00001	
6	0.20823	-0.09732	-0.00337				0.20274	-0.09676	0.00001	
6	-0.41689	1.16247	0.08571				-0.42043	1.16191	0.00000	
6	-1.80781	1.20118	0.09264				-1.80597	1.20072	0.00000	
1	-3.61289	0.01081	-0.00217				-3.60401	0.00955	-0.00002	
1	-2.43939	-2.12870	-0.15851				-2.43607	-2.12759	0.00000	
7	1.70800	-0.03989	-0.00585				1.70494	-0.03562	0.00002	
1	0.16888	2.07410	0.15368				0.16810	2.07217	0.00001	
1	-2.32960	2.15277	0.17112				-2.32975	2.15366	0.00000	
8	2.36155	-1.05844	0.21546				2.35502	-1.07252	0.00012	
8	2.25525	1.06300	-0.22302				2.24917	1.08032	-0.00014	

103

Atomic		DFT		Atomic Coordinate G3MP2				G4MP2		
Number	х	У	Z	х	у	Z	х	у	Z	
6	-2.52798	-0.11397	-0.03111				-2.51423	-0.10640	0.03302	
6	-1.87023	-1.35658	0.11279				-1.88008	-1.36464	-0.09164	
6	-0.46305	-1.25111	0.15076				-0.47209	-1.24483	-0.12815	
6	0.21265	-0.02256	-0.00640				0.20885	-0.02355	0.00220	
6	-0.48350	1.19451	-0.08326				-0.47657	1.19500	0.06291	
6	-1.87313	1.13677	-0.06901				-1.86159	1.13925	0.05464	
1	-3.61668	-0.09599	-0.14774				-3.60575	-0.06980	0.13715	
1	0.15876	-2.12603	0.33762				0.15887	-2.11989	-0.28626	
7	1.66196	0.01403	-0.02244				1.66142	0.01043	0.01927	
1	0.06163	2.12717	-0.16972				0.07831	2.12125	0.13323	
1	-2.44672	2.06282	-0.14129				-2.42993	2.06953	0.10924	
8	2.28545	-1.03370	-0.27325				2.27851	-1.04084	0.22379	
8	2.24464	1.08513	0.25269				2.23934	1.08546	-0.20205	

104

Atomic				At	omic Coordina	ate				
Number	DFT			G3MP2			G4MP2			
	Х	у	Z	Х	у	Z	Х	у	Z	
6	-2.68015	0.00000	-0.00011				-2.68582	0.00000	-0.00008	

6	-1.88079	1.18483	-0.00009	-1.87422	1.17637	-0.00001
6	-0.48633	1.21748	-0.00003	-0.48565	1.21179	0.00012
6	0.21708	0.00000	0.00001	0.21814	0.00000	0.00020
6	-0.48633	-1.21748	-0.00002	-0.48565	-1.21179	0.00013
6	-1.88079	-1.18483	-0.00008	-1.87422	-1.17637	0.00000
1	-2.38276	2.15708	-0.00011	-2.36897	2.15456	-0.00005
1	0.07138	2.14964	-0.00001	0.07856	2.13906	0.00017
7	1.65633	0.00000	0.00007	1.65627	0.00000	0.00034
1	0.07138	-2.14964	0.00001	0.07856	-2.13906	0.00019
1	-2.38276	-2.15708	-0.00009	-2.36897	-2.15456	-0.00004
8	2.26327	1.08981	0.00009	2.25697	1.08379	-0.00031
8	2.26327	-1.08981	0.00010	2.25697	-1.08379	-0.00030

1p. 1,2-Dimethylbenzene

A				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	х	У	Z	х	У	Z	х	У	Z
6	-0.74662	-1.38550	0.00000	-0.74426	-1.38432	0.00026	-0.74493	-1.38104	0.00003
6	-1.96282	-0.69742	0.00000	-1.95688	-0.69638	-0.00019	-1.95680	-0.69506	-0.00001
6	-1.96282	0.69742	0.00000	-1.95687	0.69640	0.00015	-1.95680	0.69506	0.00000
6	-0.74662	1.38550	0.00000	-0.74424	1.38432	-0.00021	-0.74493	1.38104	-0.00002
6	0.47912	0.70674	0.00000	0.47694	0.70404	0.00013	0.47593	0.70433	0.00001
6	0.47912	-0.70674	0.00000	0.47694	-0.70407	-0.00011	0.47593	-0.70433	0.00001
1	-0.74637	-2.47297	0.00000	-0.74374	-2.47300	-0.00002	-0.74322	-2.46736	0.00004
1	-2.89902	-1.24838	0.00000	-2.89471	-1.24636	0.00020	-2.89206	-1.24512	0.00002
1	-2.89902	1.24838	0.00000	-2.89470	1.24638	-0.00022	-2.89206	1.24512	-0.00004
1	-0.74637	2.47297	0.00000	-0.74370	2.47299	0.00004	-0.74322	2.46735	-0.00002
6	1.77665	1.48152	0.00000	1.77293	1.46862	0.00006	1.77209	1.47694	0.00001
6	1.77665	-1.48152	0.00000	1.77295	-1.46861	-0.00008	1.77209	-1.47694	-0.00002
1	1.59070	2.55906	0.00000	1.58685	2.54556	-0.00008	1.58790	2.55424	-0.00010
1	2.38840	1.24817	-0.88031	2.37957	1.23200	-0.88066	2.38489	1.24261	-0.87881
1	2.38840	1.24817	0.88031	2.37945	1.23222	0.88091	2.38479	1.24278	0.87895
1	2.38840	-1.24817	0.88031	2.37986	-1.23150	0.88031	2.38505	-1.24239	0.87863
1	2.38840	-1.24817	-0.88031	2.37920	-1.23269	-0.88125	2.38463	-1.24300	-0.87913
1	1.59070	-2.55906	0.00000	1.58687	-2.54555	0.00070	1.58791	-2.55424	0.00039

1p₃

A				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	х	У	Z	х	У	Z	х	У	Z
6	0.79033	1.34713	0.00000	0.77757	1.35475	-0.00004	0.78435	1.34922	-0.00002
6	1.98176	0.61375	0.00000	1.96782	0.62827	-0.00017	1.97028	0.61770	-0.00001
6	1.92782	-0.78914	0.00000	1.91264	-0.77423	0.00017	1.91563	-0.77891	0.00003
6	0.72607	-1.53855	0.00000	0.73135	-1.55974	0.00012	0.72754	-1.55303	0.00000
6	-0.45195	-0.74402	0.00000	-0.43493	-0.74143	-0.00003	-0.44064	-0.73937	0.00001
6	-0.44152	0.67466	0.00000	-0.44416	0.67405	-0.00018	-0.43906	0.67313	-0.00003
1	0.81029	2.43804	0.00000	0.79067	2.44779	-0.00022	0.79886	2.43950	-0.00006
1	2.94131	1.13886	0.00000	2.92586	1.15809	-0.00018	2.92714	1.14693	-0.00003
1	2.88750	-1.31927	0.00000	2.88602	-1.28776	0.00036	2.88549	-1.29580	0.00009
6	-1.80211	-1.45155	0.00000	-1.77879	-1.44643	-0.00014	-1.78888	-1.45019	-0.00003
6	-1.72580	1.48356	0.00000	-1.73210	1.46202	0.00018	-1.72391	1.47661	0.00003
1	-1.62385	-2.53022	0.00000	-1.57845	-2.52051	-0.00076	-1.60011	-2.52733	-0.00025
1	-2.41442	-1.19948	-0.88250	-2.39265	-1.20143	-0.88076	-2.40977	-1.20581	-0.87889
1	-2.41442	-1.19948	0.88250	-2.39209	-1.20234	0.88113	-2.40957	-1.20619	0.87909
1	-2.34994	1.26760	0.87925	-2.35214	1.24149	0.87936	-2.35166	1.26134	0.87713
1	-2.34994	1.26760	-0.87925	-2.35321	1.24046	-0.87795	-2.35208	1.26082	-0.87663
1	-1.51409	2.56132	0.00000	-1.53038	2.54063	-0.00056	-1.52016	2.55549	-0.00032

1p4

A		Atomic Coordinate										
Atomic Number		DFT			G3MP2			G4MP2				
INUITIDEI	х	У	Z	х	У	Z	х	У	Z			

6	0.84264	1.32586	0.00000	0.82121	1.33553	0.00012	0.82731	1.32754	0.00000
6	2.02316	0.56403	0.00000	2.00258	0.57744	0.00001	2.00612	0.57498	0.00000
6	2.06033	-0.85435	0.00000	2.08330	-0.84051	-0.00004	2.07602	-0.84274	0.00002
6	0.75640	-1.41307	0.00000	0.77545	-1.39177	-0.00007	0.76880	-1.39457	-0.00003
6	-0.45884	-0.69587	0.00000	-0.45023	-0.69637	0.00001	-0.44927	-0.69614	-0.00001
6	-0.41992	0.71456	0.00000	-0.42858	0.70874	-0.00008	-0.42605	0.71021	-0.00002
1	0.89431	2.42037	0.00000	0.85922	2.43163	-0.00004	0.86461	2.42226	0.00000
1	2.96399	1.12814	0.00000	2.93496	1.16291	0.00014	2.93791	1.15864	0.00003
1	0.65166	-2.50671	0.00000	0.67114	-2.49010	-0.00005	0.65959	-2.49093	-0.00002
6	-1.78555	-1.42988	0.00000	-1.76526	-1.43609	0.00006	-1.76670	-1.44193	0.00001
6	-1.68603	1.54453	0.00000	-1.70252	1.51295	-0.00005	-1.69677	1.52791	0.00000
1	-1.62012	-2.51373	0.00000	-1.58568	-2.51705	0.00003	-1.59059	-2.52392	-0.00001
1	-2.40044	-1.18896	-0.88102	-2.38145	-1.20305	-0.88000	-2.38900	-1.21029	-0.87833
1	-2.40044	-1.18896	0.88103	-2.38125	-1.20303	0.88025	-2.38895	-1.21032	0.87840
1	-2.31804	1.35015	0.88037	-2.32758	1.30707	0.87979	-2.33152	1.33158	0.87811
1	-2.31804	1.35015	-0.88037	-2.32789	1.30664	-0.87956	-2.33174	1.33127	-0.87788
1	-1.44604	2.61476	0.00000	-1.47725	2.58548	-0.00035	-1.46715	2.60019	-0.00021

1p5

A 4				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	х	у	Z	х	У	Z	х	У	Z
6	-0.75640	-1.41307	0.00000	-0.77545	-1.39178	-0.00005	-0.76881	-1.39457	-0.00001
6	-2.06033	-0.85435	0.00000	-2.08329	-0.84050	-0.00004	-2.07602	-0.84274	0.00000
6	-2.02316	0.56403	0.00000	-2.00257	0.57744	0.00001	-2.00612	0.57498	0.00000
6	-0.84264	1.32586	0.00000	-0.82119	1.33551	0.00006	-0.82731	1.32754	0.00001
6	0.41992	0.71456	0.00000	0.42859	0.70871	0.00001	0.42605	0.71021	0.00001
6	0.45884	-0.69587	0.00000	0.45025	-0.69641	0.00008	0.44927	-0.69614	0.00001
1	-0.65166	-2.50671	0.00000	-0.67116	-2.49010	-0.00004	-0.65959	-2.49093	0.00001
1	-2.96399	1.12814	0.00000	-2.93494	1.16292	0.00001	-2.93791	1.15864	-0.00002
1	-0.89431	2.42037	0.00000	-0.85919	2.43161	0.00002	-0.86460	2.42226	0.00001
6	1.68603	1.54453	0.00000	1.70247	1.51304	-0.00005	1.69677	1.52792	-0.00001
6	1.78555	-1.42988	0.00000	1.76527	-1.43614	0.00002	1.76670	-1.44193	0.00000
1	2.31804	1.35015	0.88037	2.32775	1.30709	0.87961	2.33162	1.33144	0.87799
1	1.44604	2.61476	0.00000	1.47709	2.58555	-0.00010	1.46715	2.60019	-0.00003
1	2.31804	1.35015	-0.88037	2.32763	1.30697	-0.87976	2.33163	1.33141	-0.87800
1	2.40044	-1.18896	0.88102	2.38150	-1.20299	0.88002	2.38902	-1.21022	0.87831
1	2.40044	-1.18897	-0.88103	2.38125	-1.20324	-0.88022	2.38892	-1.21039	-0.87842
1	1.62012	-2.51373	0.00000	1.58566	-2.51710	0.00020	1.59060	-2.52392	0.00011

1p6

A +				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	х	У	Z	х	У	Z	х	У	Z
6	-0.72607	-1.53855	0.00000	-0.73135	-1.55975	0.00005	-0.72754	-1.55303	0.00004
6	-1.92782	-0.78914	0.00000	-1.91264	-0.77423	-0.00009	-1.91563	-0.77891	-0.00003
6	-1.98176	0.61375	0.00000	-1.96781	0.62826	0.00004	-1.97028	0.61770	-0.00002
6	-0.79033	1.34713	0.00000	-0.77755	1.35472	-0.00002	-0.78434	1.34922	-0.00001
6	0.44152	0.67466	0.00000	0.44416	0.67403	0.00011	0.43906	0.67313	0.00004
6	0.45195	-0.74402	0.00000	0.43495	-0.74147	0.00009	0.44064	-0.73937	0.00007
1	-2.88750	-1.31927	0.00000	-2.88602	-1.28777	-0.00016	-2.88549	-1.29580	-0.00002
1	-2.94131	1.13886	0.00000	-2.92586	1.15809	-0.00009	-2.92714	1.14694	-0.00004
1	-0.81029	2.43804	0.00000	-0.79063	2.44777	0.00012	-0.79886	2.43950	-0.00002
6	1.72580	1.48356	0.00000	1.73204	1.46211	-0.00005	1.72391	1.47661	0.00000
6	1.80211	-1.45155	0.00000	1.77881	-1.44647	-0.00003	1.78888	-1.45018	-0.00004
1	1.51409	2.56132	0.00000	1.53014	2.54069	0.00016	1.52015	2.55549	0.00012
1	2.34995	1.26760	-0.87925	2.35248	1.24133	-0.87888	2.35179	1.26117	-0.87696
1	2.34994	1.26760	0.87926	2.35278	1.24103	0.87847	2.35195	1.26100	0.87680
1	2.41442	-1.19948	0.88250	2.39238	-1.20203	0.88096	2.40969	-1.20607	0.87895
1	2.41441	-1.19948	-0.88250	2.39236	-1.20169	-0.88092	2.40965	-1.20593	-0.87903
1	1.62385	-2.53022	0.00000	1.57865	-2.52059	-0.00025	1.60012	-2.52733	-0.00012

1q. 1-Fluoro-4-methylbenzene

Atomic		DET		At	omic Coordin	ate		G4MP2		
Number	v	DFI	7	v	USMP2	7	v	04MP2	7	
6	1 42574	y 0.00000	0.00265	1 402716	y 0.000010	0.004016	1 42027	y 0.00000	0.00225	
0	1.42374	0.00000	-0.00303	1.425/10	-0.000010	-0.004016	1.43027	0.00000	-0.00323	
6	0.75477	-1.21567	0.00157	0.751081	-1.213501	0.001826	0.75324	-1.21017	0.00133	
6	-0.64259	-1.20289	0.01003	-0.642794	-1.201277	0.009448	-0.63880	-1.19858	0.00907	
6	-1.36458	0.00000	0.01127	-1.360878	0.000011	0.016141	-1.35822	-0.00002	0.01039	
6	-0.64259	1.20289	0.01003	-0.642768	1.201303	0.009441	-0.63881	1.19856	0.00907	
6	0.75477	1.21567	0.00157	0.751090	1.213505	0.001830	0.75322	1.21016	0.00133	
9	2.78824	0.00000	-0.00851	2.781042	-0.000013	-0.008902	2.76970	0.00002	-0.00787	
1	1.31630	-2.14380	0.00327	1.315488	-2.140869	0.002344	1.31444	-2.13690	0.00349	
1	-1.17802	-2.14881	0.01763	-1.180319	-2.147412	0.017439	-1.17493	-2.14271	0.01613	
6	-2.87645	0.00000	-0.01309	-2.865906	-0.000007	-0.015388	-2.86794	0.00001	-0.01162	
1	-1.17801	2.14881	0.01763	-1.180290	2.147440	0.017423	-1.17496	2.14268	0.01614	
1	1.31630	2.14380	0.00327	1.315520	2.140859	0.002351	1.31442	2.13690	0.00349	
1	-3.28408	-0.88482	0.48548	-3.269937	-0.884322	0.484628	-3.27522	-0.88544	0.48521	
1	-3.25696	-0.00015	-1.04236	-3.241148	-0.000191	-1.044120	-3.25361	0.00120	-1.03885	
1	-3.28408	0.88497	0.48521	-3.269942	0.884471	0.484351	-3.27522	0.88432	0.48724	

$1q_2$

Atomio				At	omic Coordina	ate			
Number		DFT			G3MP2			G4MP2	
Nulliber	х	у	Z	х	у	Z	Х	У	Z
6	1.40251	-0.10265	0.00181	1.392663	-0.106314	0.003477	1.40314	-0.10039	0.00000
6	0.79059	-1.34224	-0.00492	0.799867	-1.362039	-0.005266	0.79756	-1.35225	0.00015
6	-0.61964	-1.21717	-0.01348	-0.606429	-1.210129	-0.014567	-0.60781	-1.20943	0.00016
6	-1.33840	-0.00141	-0.01016	-1.332487	0.000749	-0.017786	-1.32823	0.00107	0.00003
6	-0.60933	1.19674	-0.01163	-0.610258	1.196989	-0.012939	-0.60792	1.19563	-0.00009
6	0.79183	1.15166	-0.00604	0.785544	1.151788	-0.006364	0.78890	1.14780	-0.00011
9	2.81932	-0.03952	0.01496	2.797884	-0.027392	0.016885	2.79138	-0.03425	-0.00004
1	-1.23011	-2.12979	-0.02693	-1.228974	-2.119498	-0.031672	-1.22815	-2.11842	0.00029
6	-2.85443	0.01630	0.01813	-2.840697	0.013165	0.023231	-2.84281	0.01271	-0.00003
1	-1.12340	2.15830	-0.01856	-1.128842	2.158222	-0.022283	-1.12685	2.15340	-0.00018
1	1.38252	2.06767	-0.01185	1.383568	2.063890	-0.012510	1.37874	2.06461	-0.00019
1	-3.24971	0.21894	1.02534	-3.233231	0.039430	1.049116	-3.26133	-0.49930	0.87851
1	-3.26176	-0.95217	-0.29733	-3.249728	-0.885493	-0.452812	-3.26129	-0.49814	-0.87927
1	-3.27023	0.78534	-0.64769	-3.252974	0.884723	-0.500515	-3.24054	1.03543	0.00061

1q₃

Atomic				Ato	omic Coordina	ite			
Number		DFT			G3MP2			G4MP2	
INUILIDEI	Х	У	Z	х	У	Z	х	У	Z
6	1.38714	-0.01595	0.00000	1.38377	-0.01561	0.00000	1.39111	-0.01491	0.00000
6	0.71872	-1.23813	0.00000	0.69996	-1.23045	0.00000	0.71099	-1.22731	0.00000
6	-0.69442	-1.32885	0.00000	-0.71084	-1.34522	0.00000	-0.69956	-1.34025	0.00000
6	-1.35822	-0.06648	0.00000	-1.34314	-0.06504	0.00000	-1.34430	-0.06572	0.00000
6	-0.67514	1.16096	0.00000	-0.66920	1.16647	0.00000	-0.66790	1.15748	0.00000
6	0.72997	1.20393	0.00000	0.73030	1.20419	0.00000	0.73135	1.20181	0.00000
9	2.78682	0.00626	0.00000	2.77585	-0.00215	-0.00001	2.76417	0.00175	0.00000
1	1.33847	-2.13934	0.00000	1.33253	-2.12764	0.00000	1.34486	-2.12237	0.00000
6	-2.88133	-0.04656	0.00000	-2.86001	-0.03934	0.00000	-2.86720	-0.04032	0.00000
1	-1.22499	2.10652	0.00000	-1.22082	2.11243	0.00000	-1.21735	2.10336	0.00000
1	1.28566	2.13753	0.00000	1.29466	2.13448	0.00000	1.28905	2.13338	0.00000
1	-3.27532	-0.57482	0.87810	-3.25271	-0.56574	0.87730	-3.27043	-0.56719	0.87545
1	-3.27532	-0.57480	-0.87811	-3.25271	-0.56571	-0.87731	-3.27043	-0.56716	-0.87546
1	-3.29029	0.97503	0.00002	-3.26868	0.98154	0.00002	-3.28012	0.97956	0.00002

1q5

A 4 a 4 a 1 a 2 a				Ato	mic Coordina	te			
Number DFT					G3MP2		G4MP2		
Number	х	у	Z	х	у	Z	Х	у	Z
6	-1.38714	-0.01595	0.00000	-1.38455	-0.01521	-0.00437	-1.39123	-0.01475	0.00001

6	-0.72997	1.20393	0.00000	-0.72558	1.20364	-0.00022	-0.73129	1.20177	0.00000
6	0.67514	1.16096	0.00000	0.67163	1.16102	0.00825	0.66790	1.15755	-0.00001
6	1.35822	-0.06648	-0.00001	1.34446	-0.07309	0.01298	1.34437	-0.06572	0.00000
6	0.69442	-1.32885	-0.00001	0.70780	-1.34991	0.01204	0.69962	-1.34039	-0.00002
6	-0.71872	-1.23813	0.00000	-0.70531	-1.23028	0.00049	-0.71076	-1.22717	-0.00001
9	-2.78682	0.00626	0.00000	-2.77651	0.00552	-0.00676	-2.76430	0.00159	0.00001
1	-1.28566	2.13753	0.00000	-1.28686	2.13575	0.00464	-1.28877	2.13361	-0.00002
1	1.22499	2.10652	-0.00001	1.22625	2.10565	0.01471	1.21724	2.10345	-0.00003
6	2.88133	-0.04656	0.00001	2.86153	-0.03671	-0.01095	2.86717	-0.04034	0.00001
1	-1.33847	-2.13934	0.00000	-1.33932	-2.12613	0.00089	-1.34492	-2.12219	-0.00001
1	3.29029	0.97503	-0.00017	3.27706	0.79380	0.57769	3.28013	0.97951	-0.00022
1	3.27532	-0.57497	-0.87800	3.25355	0.06703	-1.03296	3.27024	-0.56742	-0.87532
1	3.27531	-0.57466	0.87821	3.23807	-0.98256	0.38655	3.27024	-0.56697	0.87562

1q₆

A 4				Ato	mic Coordina	ite			
Atomic		DFT			G3MP2		G4MP2		
Number	х	У	Z	х	у	Z	х	У	Z
6	-1.40251	-0.10265	-0.00181	-1.39265	-0.10634	-0.00348	-1.40390	-0.10231	-0.00047
6	-0.79183	1.15166	0.00604	-0.78556	1.15180	0.00642	-0.78638	1.14698	0.00114
6	0.60933	1.19674	0.01163	0.61022	1.19703	0.01301	0.60787	1.19563	0.00222
6	1.33840	-0.00141	0.01016	1.33248	0.00080	0.01790	1.32975	-0.00126	0.00180
6	0.61964	-1.21717	0.01348	0.60647	-1.21009	0.01465	0.60741	-1.20846	0.00256
6	-0.79059	-1.34224	0.00492	-0.79983	-1.36204	0.00532	-0.79965	-1.35151	0.00100
9	-2.81932	-0.03952	-0.01497	-2.79788	-0.02744	-0.01701	-2.79243	-0.03157	-0.00286
1	-1.38252	2.06767	0.01185	-1.38362	2.06388	0.01261	-1.37608	2.06404	0.00264
1	1.12340	2.15830	0.01856	1.12881	2.15826	0.02240	1.12450	2.15497	0.00355
6	2.85443	0.01630	-0.01813	2.84068	0.01314	-0.02337	2.84349	0.01210	-0.00338
1	1.23011	-2.12979	0.02693	1.22902	-2.11946	0.03185	1.22881	-2.11690	0.00529
1	3.27023	0.78534	0.64768	3.25305	0.88532	0.49927	3.26376	0.57350	0.84415
1	3.24971	0.21893	-1.02535	3.23298	0.03818	-1.04937	3.26019	0.47044	-0.91302
1	3.26176	-0.95216	0.29733	3.24985	-0.88495	0.45362	3.23908	-1.00892	0.05392

1r. 1-Fluoro-3-methylbenzene

A		Atomic Coordinate										
Atomic		DFT			G3MP2			G4MP2				
Number	х	у	Z	х	У	Z	х	У	Z			
6	-1.20126	-0.37357	0.00110	-1.201812	-0.371724	0.000568	-1.20311	-0.38090	-0.00004			
6	0.04178	-0.99171	-0.00915	0.039758	-0.989771	-0.009265	0.04238	-0.98679	-0.00006			
6	1.20160	-0.20181	-0.01085	1.197393	-0.205341	-0.016427	1.19661	-0.19596	0.00000			
6	1.06235	1.19399	-0.00774	1.065873	1.187820	-0.007702	1.05525	1.19356	0.00007			
6	-0.20207	1.78995	0.00208	-0.193286	1.787325	0.002287	-0.20731	1.78343	0.00008			
6	-1.35877	1.00681	0.00707	-1.349057	1.007865	0.008348	-1.35616	0.99892	0.00003			
9	-2.31505	-1.15798	0.00127	-2.315337	-1.148967	0.001734	-2.29658	-1.15470	-0.00011			
1	0.09653	-2.07600	-0.01665	0.091122	-2.075370	-0.018815	0.10137	-2.06970	-0.00012			
6	2.56613	-0.85135	0.00876	2.554610	-0.855280	0.011793	2.55954	-0.84428	0.00003			
1	1.95085	1.81922	-0.01476	1.958489	1.809352	-0.016712	1.94166	1.81938	0.00011			
1	-0.28954	2.87244	0.00257	-0.278382	2.870847	0.004184	-0.29754	2.86447	0.00013			
1	-2.35206	1.44173	0.01126	-2.342170	1.445403	0.012568	-2.34988	1.42952	0.00003			
1	2.59343	-1.74432	-0.62382	2.548293	-1.805797	-0.528274	2.69704	-1.48193	-0.88046			
1	2.83811	-1.16280	1.02498	2.871536	-1.059778	1.039802	2.69733	-1.48121	0.88100			
1	3.33950	-0.16237	-0.34259	3.308286	-0.209319	-0.445973	3.35606	-0.09608	-0.00039			

1r₂

Atomic		DFT		At	omic Coordin G3MP2	ate	G4MP2		
Number	х	у	Z	Х	У	Z	Х	У	Z
6	-1.14549	-0.41318	0.00000	-1.134413	-0.416827	-0.000003	-1.14460	-0.42074	0.00000
6	0.04242	-1.11204	0.00000	0.047752	-1.138057	0.000003	0.04476	-1.12710	0.00000
6	1.17335	-0.25416	0.00001	1.158338	-0.253389	0.000005	1.16024	-0.24904	0.00001
6	1.07351	1.15225	0.00000	1.070951	1.152644	0.000000	1.06254	1.15155	0.00000
6	-0.18424	1.77133	-0.00001	-0.181628	1.769552	-0.000006	-0.18997	1.76687	-0.00001

6	-1.33282	0.97229	-0.00001	-1.324359	0.968787	-0.000008	-1.32816	0.96277	-0.00001
9	-2.36195	-1.14209	0.00000	-2.351015	-1.126319	-0.000005	-2.33928	-1.13306	0.00000
6	2.56203	-0.88023	0.00001	2.544030	-0.872648	0.000013	2.55368	-0.86552	0.00001
1	1.97294	1.77213	0.00000	1.973547	1.770484	0.000001	1.96044	1.77350	0.00000
1	-0.26883	2.85703	-0.00001	-0.269427	2.856843	-0.000010	-0.27818	2.85161	-0.00001
1	-2.33041	1.40998	-0.00001	-2.326027	1.399673	-0.000013	-2.32763	1.39708	-0.00001
1	2.69349	-1.52514	-0.87854	2.675751	-1.515186	-0.877779	2.69611	-1.51234	-0.87589
1	2.69349	-1.52512	0.87858	2.675755	-1.515157	0.877825	2.69611	-1.51231	0.87593
1	3.36438	-0.12764	0.00001	3.345518	-0.120162	0.000000	3.35578	-0.11283	0.00000

1r4

Atomio				At	omic Coordin	ate			
Number		DFT			G3MP2			G4MP2	
Nulliber	х	у	Z	х	У	Z	Х	у	Z
6	-1.17284	-0.36229	0.00001	-1.171744	-0.362458	0.000010	-1.17583	-0.37177	0.00000
6	0.08295	-0.95631	0.00001	0.079138	-0.954679	-0.000022	0.08199	-0.94818	0.00000
6	1.22325	-0.12394	0.00001	1.215762	-0.118356	-0.000041	1.21521	-0.11291	-0.00001
6	1.16062	1.29713	0.00002	1.186315	1.305408	-0.000037	1.16904	1.30867	0.00000
6	-0.15940	1.80059	-0.00001	-0.147744	1.790685	0.000009	-0.16455	1.78966	0.00000
6	-1.33300	1.01175	0.00000	-1.322335	1.014658	0.000027	-1.32813	1.00449	0.00000
9	-2.30069	-1.18168	-0.00001	-2.299354	-1.168291	-0.000002	-2.28232	-1.17648	0.00000
1	0.15352	-2.04462	0.00003	0.146729	-2.045117	-0.000055	0.15420	-2.03718	0.00000
6	2.58904	-0.79759	-0.00001	2.565483	-0.812180	0.000029	2.57651	-0.79764	0.00000
1	-0.31767	2.88485	0.00000	-0.312522	2.877799	-0.000002	-0.33619	2.87428	0.00000
1	-2.33258	1.44601	-0.00002	-2.323714	1.447375	0.000038	-2.33202	1.42930	0.00000
1	2.52098	-1.89573	0.00006	2.708244	-1.453116	-0.882154	2.72862	-1.44279	-0.88052
1	3.16916	-0.48566	0.87793	2.708701	-1.451975	0.882966	2.72868	-1.44265	0.88062
1	3.16905	-0.48576	-0.87806	3.337502	-0.038822	-0.000631	3.35210	-0.02664	-0.00008

1r5

Atomio				At	omic Coordin				
Number		DFT			G3MP2		G4MP2		
Number	х	У	Z	Х	У	Z	х	у	Z
6	-1.19423	-0.30588	-0.00001	-1.191357	-0.312207	-0.000010	-1.19622	-0.31585	-0.00001
6	0.02589	-0.96828	-0.00001	0.026622	-0.970561	-0.000009	0.02575	-0.96967	0.00000
6	1.18727	-0.17444	0.00000	1.182495	-0.178044	0.000004	1.17891	-0.17234	0.00001
6	1.04505	1.22573	0.00001	1.032726	1.220373	0.000013	1.03073	1.22053	0.00000
6	-0.18746	1.93583	0.00001	-0.185779	1.953685	0.000012	-0.19365	1.94432	0.00000
6	-1.32082	1.07903	0.00000	-1.300636	1.076059	0.000001	-1.31036	1.06743	-0.00001
9	-2.34524	-1.10417	-0.00002	-2.340709	-1.098940	-0.000024	-2.32619	-1.09765	-0.00001
1	0.06228	-2.05547	-0.00002	0.062802	-2.059531	-0.000018	0.06641	-2.05577	0.00000
6	2.55279	-0.83549	0.00002	2.541257	-0.836024	0.000016	2.54579	-0.82551	0.00002
1	1.98077	1.79800	0.00002	1.979472	1.782855	0.000020	1.97508	1.78416	0.00001
1	-2.33656	1.48393	0.00000	-2.325204	1.469245	-0.000002	-2.33567	1.45615	-0.00001
1	2.70125	-1.47388	-0.88310	2.693114	-1.472569	-0.881800	2.70383	-1.46622	-0.88004
1	2.70129	-1.47376	0.88321	2.693161	-1.472441	0.881917	2.70385	-1.46616	0.88011
1	3.34720	-0.08022	-0.00005	3.331080	-0.076783	-0.000058	3.33659	-0.06682	-0.00002

1r₆

A 4		Atomic Coordinate										
Atomic		DFT			G3MP2		G4MP2					
Tunnoer	х	у	Z	Х	У	Z	Х	У	Z			
6	-1.23984	-0.24967	0.00214	-1.234636	-0.249201	0.001975	-1.23909	-0.26189	-0.00003			
6	-0.03150	-0.94974	-0.01174	-0.025340	-0.948214	-0.011064	-0.02637	-0.94572	-0.00004			
6	1.16720	-0.21783	-0.01362	1.165836	-0.213533	-0.019499	1.16468	-0.20931	0.00000			
6	1.06502	1.18007	-0.00839	1.059593	1.179932	-0.008244	1.04957	1.18132	0.00005			
6	-0.19936	1.80310	0.00367	-0.209610	1.788046	0.004213	-0.21639	1.78834	0.00006			
6	-1.43839	1.11908	0.00907	-1.459362	1.121505	0.010120	-1.45727	1.11074	0.00002			
9	-2.37331	-1.10082	0.00248	-2.349136	-1.109873	0.002526	-2.34222	-1.10750	-0.00008			
1	-0.01731	-2.04083	-0.02309	-0.010894	-2.040300	-0.023579	-0.00155	-2.03688	-0.00009			
6	2.50877	-0.92013	0.01170	2.503469	-0.906819	0.014264	2.50942	-0.89892	0.00003			
1	1.97705	1.78333	-0.01705	1.971335	1.785989	-0.018695	1.95988	1.78684	0.00008			

1	-0.19616	2.89969	0.00296	-0.201725	2.888136	0.004398	-0.21204	2.88696	0.00009
1	2.48816	-1.85062	-0.57074	2.476307	-1.851179	-0.541975	2.64982	-1.54470	-0.87931
1	2.81731	-1.19007	1.03326	2.823678	-1.145147	1.037383	2.65006	-1.54421	0.87970
1	3.29934	-0.28336	-0.40462	3.283825	-0.278940	-0.430849	3.32649	-0.16790	-0.00028

1s. 1-Fluoro-4-anisole

Atomio				Ato	mic Coordinat	e			
Number		DFT			G3MP2			G4MP2	
Nulliber	х	у	Z	х	У	Z	х	У	Z
6	0.91318	0.28117	0.00000	0.9137	0.2807	0.0000	0.91300	0.28147	0.00000
6	0.03940	1.38026	0.00000	0.0415	1.3776	0.0000	0.03834	1.37481	0.00000
6	-1.33851	1.18447	-0.00001	-1.3331	1.1832	0.0000	-1.33432	1.17839	-0.00001
6	-1.83100	-0.11771	-0.00001	-1.8265	-0.1176	0.0000	-1.83401	-0.11909	-0.00001
6	-0.99171	-1.21928	0.00000	-0.9848	-1.2158	0.0000	-0.98732	-1.21300	0.00000
6	0.39557	-1.02023	0.00000	0.3999	-1.0187	0.0000	0.39487	-1.01530	0.00000
8	2.24770	0.58570	0.00001	2.2465	0.5975	0.0000	2.24091	0.58649	0.00001
1	0.45985	2.38030	-0.00001	0.4676	2.3765	0.0000	0.46004	2.37312	-0.00001
1	-2.02671	2.02285	-0.00001	-2.0232	2.0212	0.0000	-2.02171	2.01618	-0.00001
9	-3.18104	-0.31141	-0.00001	-3.1705	-0.3117	0.0000	-3.16109	-0.31039	-0.00001
1	-1.41176	-2.21933	0.00000	-1.4078	-2.2157	0.0000	-1.40594	-2.21259	0.00000
6	3.18664	-0.48154	0.00001	3.1617	-0.4909	0.0000	3.16862	-0.47998	0.00001
1	4.17097	-0.01191	0.00001	4.1521	-0.0378	0.0000	4.15912	-0.02202	0.00001
1	3.08250	-1.10678	0.89600	3.0433	-1.1121	0.8945	3.06376	-1.10979	0.89331
1	3.08251	-1.10678	-0.89597	3.0433	-1.1121	-0.8944	3.06376	-1.10979	-0.89329
1	1.04903	-1.88403	0.00001	1.0511	-1.8854	0.0000	1.04853	-1.87742	0.00001

 $1s_2$

A		Atomic Coordinate										
Atomic		DFT			G3MP2			G4MP2				
Nulliber	х	у	Z	Х	у	Z	х	у	Z			
6	0.87587	0.29394	0.00000	0.8739	0.2910	0.0000	0.87169	0.29220	0.00000			
6	0.00805	1.40253	0.00000	-0.0023	1.3921	0.0000	0.00036	1.39202	0.00000			
6	-1.39972	1.30721	-0.00001	-1.4111	1.3242	0.0000	-1.40696	1.31364	-0.00001			
6	-1.82493	-0.01362	-0.00001	-1.8133	-0.0085	0.0000	-1.82351	-0.01596	-0.00001			
6	-1.03789	-1.15849	0.00000	-1.0263	-1.1576	0.0000	-1.03054	-1.15395	0.00000			
6	0.36205	-1.00636	0.00000	0.3680	-1.0078	0.0000	0.36423	-1.00510	0.00000			
8	2.24809	0.57808	0.00001	2.2464	0.5941	0.0000	2.23958	0.58142	0.00001			
1	0.49778	2.38133	-0.00001	0.5016	2.3676	0.0000	0.50195	2.36733	-0.00001			
9	-3.21700	-0.27939	-0.00001	-3.1906	-0.2916	0.0000	-3.18702	-0.28401	-0.00001			
1	-1.48257	-2.15366	0.00000	-1.4786	-2.1500	0.0000	-1.47274	-2.15059	0.00000			
6	3.14256	-0.50680	0.00001	3.1149	-0.5115	0.0000	3.12230	-0.49979	0.00001			
1	4.15072	-0.08001	0.00001	4.1300	-0.1048	0.0000	4.13795	-0.08732	0.00001			
1	3.02350	-1.14181	0.89241	2.9818	-1.1428	0.8899	3.00445	-1.14180	0.88891			
1	3.02351	-1.14182	-0.89239	2.9818	-1.1428	-0.8899	3.00446	-1.14180	-0.88888			
1	0.99932	-1.88458	0.00001	1.0053	-1.8876	0.0000	1.00497	-1.87951	0.00001			

1s₃

Atomio		Atomic Coordinate									
Number		DFT			G3MP2			G4MP2			
INUIIDEI	х	у	Z	х	у	Z	Х	У	Z		
6	0.88254	0.35936	0.00000	0.8730	0.3639	0.0000	0.87366	0.35922	0.00000		
6	0.06611	1.50725	0.00000	0.0775	1.5267	0.0000	0.07057	1.51607	0.00000		
6	-1.31262	1.21495	-0.00001	-1.2959	1.2087	0.0000	-1.30245	1.20456	-0.00001		
6	-1.80218	-0.09356	-0.00001	-1.7963	-0.0953	0.0000	-1.80358	-0.09656	-0.00001		
6	-0.97328	-1.19956	0.00000	-0.9647	-1.1982	0.0000	-0.97035	-1.19723	0.00000		
6	0.41641	-0.96482	0.00000	0.4192	-0.9663	0.0000	0.41353	-0.96103	0.00000		
8	2.27195	0.62255	0.00001	2.2658	0.6291	0.0000	2.26385	0.62063	0.00001		
1	-2.05533	2.01819	-0.00001	-2.0508	2.0053	0.0000	-2.05690	2.00036	-0.00001		
9	-3.18340	-0.31466	-0.00001	-3.1695	-0.3144	0.0000	-3.15901	-0.31051	-0.00001		
1	-1.38308	-2.20552	0.00000	-1.3787	-2.2042	0.0000	-1.37955	-2.20283	0.00000		
6	3.15498	-0.46790	0.00001	3.1233	-0.4817	0.0000	3.13357	-0.46665	0.00001		
1	4.16816	-0.05085	0.00001	4.1427	-0.0832	0.0000	4.15526	-0.06581	0.00001		

1	3.03737	-1.10749	0.89189	2.9937	-1.1185	0.8891	3.01748	-1.11403	0.88802
1	3.03738	-1.10750	-0.89186	2.9937	-1.1185	-0.8890	3.01748	-1.11404	-0.88799
1	1.07880	-1.82972	0.00001	1.0816	-1.8308	0.0000	1.07686	-1.82438	0.00001

- 1	
	C -
	. 35
_	~ .

Atomio		Atomic Coordinate									
Number		DFT			G3MP2			G4MP2			
Nulliber	х	у	Z	х	у	Z	Х	у	Z		
6	0.89537	0.22692	0.00000	0.8892	0.2298	0.0000	0.89074	0.23085	0.00000		
6	0.06254	1.35681	0.00000	0.0606	1.3626	0.0000	0.05930	1.35439	0.00000		
6	-1.32762	1.17790	-0.00001	-1.3229	1.1768	0.0000	-1.32538	1.17348	-0.00001		
6	-1.79605	-0.12908	-0.00001	-1.7870	-0.1308	0.0000	-1.79508	-0.13072	-0.00001		
6	-0.94732	-1.23340	0.00000	-0.9233	-1.2242	0.0000	-0.93431	-1.22274	0.00000		
6	0.46221	-1.10802	0.00000	0.4861	-1.1138	0.0000	0.47306	-1.10768	0.00000		
8	2.26719	0.56110	0.00001	2.2583	0.5794	0.0000	2.25827	0.56775	0.00001		
1	0.48944	2.36030	-0.00001	0.4901	2.3656	0.0000	0.48289	2.35895	-0.00001		
1	-2.01815	2.01656	-0.00001	-2.0220	2.0103	0.0000	-2.01958	2.00816	-0.00001		
9	-3.18241	-0.32069	-0.00001	-3.1634	-0.3306	0.0000	-3.15368	-0.32644	-0.00001		
1	-1.42150	-2.21923	0.00000	-1.4055	-2.2099	0.0000	-1.41583	-2.20750	0.00000		
6	3.17970	-0.52032	0.00001	3.1345	-0.5312	0.0000	3.14649	-0.52075	0.00001		
1	4.17713	-0.06203	0.00001	4.1439	-0.1021	0.0000	4.15689	-0.08692	0.00001		
1	3.05221	-1.16152	0.88149	2.9873	-1.1690	0.8776	3.01180	-1.16890	0.87641		
1	3.05222	-1.16153	-0.88146	2.9873	-1.1690	-0.8776	3.01180	-1.16890	-0.87638		

1s₆

A 4		Atomic Coordinate									
Number	DFT			G3MP2			G4MP2				
Nulliber	Х	у	Z	Х	у	Z	Х	у	Z		
6	0.87643	0.26585	0.00000	0.8745	0.2669	0.0000	0.87279	0.26509	0.00000		
6	0.00949	1.36363	0.00000	0.0126	1.3623	0.0000	0.01057	1.36062	0.00000		
6	-1.36927	1.12129	-0.00001	-1.3614	1.1219	0.0000	-1.36233	1.11631	-0.00001		
6	-1.80287	-0.20458	-0.00001	-1.7900	-0.2077	0.0000	-1.80190	-0.20476	-0.00001		
6	-1.02368	-1.34570	0.00000	-1.0258	-1.3657	0.0000	-1.02700	-1.35569	0.00000		
6	0.36344	-1.04373	0.00000	0.3545	-1.0401	0.0000	0.35490	-1.03716	0.00000		
8	2.24158	0.59183	0.00001	2.2409	0.6055	0.0000	2.23426	0.59171	0.00001		
1	0.41323	2.37272	-0.00001	0.4244	2.3699	0.0000	0.41976	2.36654	-0.00001		
1	-2.07812	1.94934	-0.00001	-2.0765	1.9456	0.0000	-2.06977	1.94617	-0.00001		
9	-3.21457	-0.33967	-0.00001	-3.1914	-0.3277	0.0000	-3.18669	-0.33119	-0.00001		
6	3.16454	-0.47236	0.00001	3.1359	-0.4819	0.0000	3.14429	-0.46968	0.00001		
1	4.15987	-0.01592	0.00001	4.1398	-0.0471	0.0000	4.14763	-0.02672	0.00001		
1	3.06014	-1.10929	0.89111	3.0170	-1.1154	0.8887	3.04246	-1.11362	0.88755		
1	3.06015	-1.10929	-0.89108	3.0170	-1.1154	-0.8886	3.04246	-1.11363	-0.88752		
1	1.07478	-1.87160	0.00001	1.0724	-1.8668	0.0000	1.07561	-1.85999	0.00001		

1t. 1-Fluoro-4-trifluoromethylbenzene

A				Ato	omic Coordina	ite			
Atomic	DFT			G3MP2			G4MP2		
INUITIDEI	х	У	Z	Х	У	Z	х	У	Z
6	-2.40213	0.00000	0.00345	-2.39178	0.00001	0.00432	-2.40228	0.00000	0.00469
6	-1.73548	-1.21991	-0.00574	-1.72273	-1.21691	-0.00917	-1.72891	-1.21449	-0.00554
6	-0.34093	-1.21369	-0.02381	-0.33107	-1.21294	-0.03041	-0.33905	-1.20847	-0.02307
6	0.35603	-0.00003	-0.03521	0.35983	0.00004	-0.04613	0.35703	0.00002	-0.02890
6	-0.34091	1.21365	-0.02381	-0.33108	1.21297	-0.03041	-0.33907	1.20850	-0.02307
6	-1.73545	1.21990	-0.00574	-1.72277	1.21691	-0.00917	-1.72893	1.21449	-0.00554
9	-3.75742	0.00002	0.01879	-3.74441	-0.00002	0.02470	-3.73626	-0.00002	0.01959
1	-2.30035	-2.14533	-0.00161	-2.29060	-2.14165	-0.00323	-2.29348	-2.13885	-0.00431
1	0.20195	-2.15233	-0.03570	0.21525	-2.15077	-0.04752	0.20674	-2.14401	-0.03986
6	1.86020	-0.00001	-0.00219	1.85288	0.00001	0.00120	1.86181	0.00001	-0.00037
1	0.20200	2.15228	-0.03570	0.21521	2.15082	-0.04752	0.20671	2.14405	-0.03985
1	-2.30030	2.14534	-0.00161	-2.29065	2.14164	-0.00323	-2.29351	2.13885	-0.00431
9	2.38758	-1.09184	-0.61004	2.37607	-1.09003	-0.60466	2.37087	-1.08365	-0.60714
9	2.34104	0.00050	1.27247	2.31123	-0.00043	1.27501	2.33781	-0.00037	1.25841

9	2.38755	1.09138	-0.61089	2.37612	1.09042	-0.60394	2.37090	1.08400	-0.60651

1	4
J	τ2

A +				Ato	omic Coordina	ite			
Atomic		DFT			G3MP2			G4MP2	
Number	Х	У	Z	х	У	Z	х	У	Z
6	-2.39095	-0.10293	0.00001	-2.37366	-0.10657	0.00002	-2.38682	-0.10196	0.00001
6	-1.78155	-1.34653	0.00000	-1.77788	-1.36412	0.00001	-1.78324	-1.35427	0.00001
6	-0.37500	-1.22473	-0.00002	-0.37385	-1.21483	0.00000	-0.37925	-1.21569	0.00000
6	0.32100	0.00687	-0.00002	0.32376	0.01400	-0.00001	0.32077	0.00785	-0.00001
6	-0.39120	1.21336	0.00000	-0.38247	1.21834	-0.00001	-0.38595	1.21076	0.00000
6	-1.78754	1.15671	0.00002	-1.77474	1.15621	0.00001	-1.77706	1.15222	0.00001
9	-3.79736	-0.04497	0.00003	-3.77170	-0.03634	0.00003	-3.76734	-0.03821	0.00003
1	0.23786	-2.13027	-0.00003	0.25415	-2.11512	-0.00001	0.24341	-2.11712	-0.00001
6	1.81060	0.00912	-0.00001	1.80145	0.00805	-0.00001	1.81014	0.00868	-0.00001
1	0.12482	2.16787	0.00000	0.13663	2.17324	-0.00001	0.13540	2.16122	-0.00001
1	-2.38308	2.06798	0.00003	-2.37959	2.06250	0.00001	-2.37152	2.06440	0.00001
9	2.35938	-0.62954	-1.08610	2.33613	-0.63113	-1.08317	2.34441	-0.62570	-1.07546
9	2.35937	-0.62934	1.08621	2.33614	-0.63101	1.08322	2.34442	-0.62556	1.07552
9	2.36619	1.26199	-0.00012	2.35867	1.25546	-0.00008	2.35421	1.25013	-0.00009

1t₃

Atomio				Ato	omic Coordina	ite			
Number	DFT			G3MP2			G4MP2		
Nulliber	Х	У	Z	Х	у	Z	Х	У	Z
6	-2.38606	-0.02853	0.00001	-2.37240	-0.02569	0.00001	-2.38306	-0.02694	0.00001
6	-1.71226	-1.24241	0.00002	-1.68144	-1.23349	0.00002	-1.69838	-1.23221	0.00002
6	-0.29568	-1.32336	0.00002	-0.26907	-1.33150	0.00002	-0.28464	-1.32800	0.00002
6	0.32668	-0.04810	0.00000	0.32370	-0.04166	0.00000	0.32509	-0.04509	0.00000
6	-0.34536	1.18781	-0.00001	-0.33933	1.19538	-0.00001	-0.34461	1.18408	-0.00001
6	-1.74283	1.20500	0.00000	-1.73367	1.20514	0.00000	-1.73734	1.20284	0.00000
9	-3.77813	-0.01457	0.00002	-3.75848	-0.02440	0.00002	-3.75008	-0.01866	0.00002
1	-2.32376	-2.14828	0.00004	-2.30255	-2.13667	0.00004	-2.32086	-2.13316	0.00004
6	1.83166	-0.02978	-0.00001	1.81656	-0.02597	-0.00001	1.82837	-0.02455	-0.00001
1	0.19793	2.13084	-0.00002	0.20484	2.13863	-0.00002	0.19993	2.12570	-0.00002
1	-2.31325	2.12861	-0.00001	-2.31195	2.12578	-0.00001	-2.30962	2.12445	-0.00001
9	2.39340	-0.63981	-1.08704	2.36305	-0.63995	-1.08498	2.37391	-0.63607	-1.07654
9	2.39341	-0.63979	1.08703	2.36306	-0.63992	1.08497	2.37392	-0.63605	1.07653
9	2.36712	1.24584	-0.00003	2.35944	1.23971	-0.00003	2.35759	1.23546	-0.00003

1t5

Atomic				Ato	omic Coordina	ite			
Number	DFT				G3MP2			G4MP2	
Number	Х	у	Z	Х	У	Z	Х	У	Z
6	-2.38606	0.02853	0.00000	-2.37246	0.02562	0.00006	-2.38305	0.02694	0.00001
6	-1.74283	-1.20500	0.00000	-1.73350	-1.20499	0.00003	-1.73732	-1.20283	0.00000
6	-0.34536	-1.18781	0.00000	-0.33923	-1.19476	0.00011	-0.34460	-1.18408	-0.00006
6	0.32668	0.04810	0.00000	0.32381	0.04206	-0.00023	0.32509	0.04509	-0.00011
6	-0.29568	1.32336	0.00000	-0.26955	1.33167	0.00008	-0.28464	1.32801	-0.00008
6	-1.71226	1.24241	0.00000	-1.68184	1.23355	0.00014	-1.69838	1.23221	-0.00002
9	-3.77813	0.01457	0.00000	-3.75827	0.02396	-0.00014	-3.75008	0.01866	0.00004
1	-2.31325	-2.12861	0.00000	-2.31139	-2.12567	0.00020	-2.30959	-2.12446	0.00002
1	0.19793	-2.13084	0.00000	0.20510	-2.13776	0.00010	0.19994	-2.12570	-0.00006
6	1.83166	0.02978	0.00000	1.81668	0.02604	-0.00014	1.82836	0.02455	-0.00003
1	-2.32376	2.14828	0.00000	-2.30286	2.13656	0.00048	-2.32087	2.13315	0.00002
9	2.36712	-1.24584	0.00002	2.35887	-1.23979	-0.00143	2.35757	-1.23547	-0.00105
9	2.39341	0.63981	1.08703	2.36340	0.63838	1.08558	2.37381	0.63512	1.07715
9	2.39340	0.63979	-1.08704	2.36329	0.64098	-1.08413	2.37400	0.63701	-1.07594

A				Ato	mic Coordina	ite			
Atomic		DFT		G3MP2			G4MP2		
Nulliber	х	у	Z	х	у	Z	х	у	Z
6	-2.39096	0.10294	0.00001	-2.37447	0.10495	0.00259	-2.38765	0.09950	0.00321
6	-1.78754	-1.15672	-0.00002	-1.76847	-1.15498	-0.01124	-1.76996	-1.15111	-0.01034
6	-0.39120	-1.21335	-0.00007	-0.37702	-1.20926	-0.02944	-0.37936	-1.20077	-0.02699
6	0.32101	-0.00686	-0.00011	0.32435	-0.00079	-0.04802	0.32147	0.00677	-0.03428
6	-0.37500	1.22473	-0.00008	-0.37962	1.22361	-0.03156	-0.38616	1.22548	-0.02920
6	-1.78155	1.34652	-0.00002	-1.78529	1.36431	-0.00950	-1.79169	1.35502	-0.00866
9	-3.79736	0.04497	0.00007	-3.77192	0.02670	0.02890	-3.76709	0.02692	0.02899
1	-2.38304	-2.06801	-0.00001	-2.36826	-2.06448	-0.00607	-2.35889	-2.06686	-0.01115
1	0.12483	-2.16786	-0.00009	0.14691	-2.16160	-0.04258	0.14731	-2.14867	-0.04051
6	1.81060	-0.00910	-0.00001	1.80142	-0.00454	0.00036	1.80956	-0.00337	-0.00059
1	0.23787	2.13027	-0.00011	0.24137	2.12734	-0.05007	0.23011	2.12976	-0.05087
9	2.36618	-1.26199	-0.00095	2.35713	-1.20300	-0.35232	2.35004	-1.17180	-0.43098
9	2.35931	0.62857	1.08672	2.30561	0.27147	1.24277	2.32669	0.18705	1.24541
9	2.35944	0.63030	-1.08561	2.36857	0.92249	-0.82384	2.36639	0.96857	-0.76080

Pd(DMA)

	Ato	Atomic Coordinate								
Atom	Х	У	Z							
Pd	1.98009	0.07404	0.00004							
0	0.17923	0.50299	0.00011							
С	1.14556	0.27789	0.00013							
Ν	2.41968	0.21019	0.00025							
С	3.62443	0.60374	0.00025							
Н	4.23152	0.38543	-0.8883							
Н	-4.2326	0.38475	0.88689							
Н	3.39086	1.66598	0.00032							
С	2.64566	1.65117	0.00001							
Н	3.21711	1.94436	0.88912							
Н	3.21528	1.94447	0.89025							
Н	1.68441	2.16064	0.00099							
С	0.93844	1.78056	0.00011							
Н	-1.3781	2.24743	0.88725							
Н	1.37825	2.24745	0.88739							
Н	0.13997	1.9534	0.0002							

3ib-o

	Atomic Coordinate		
Atom	Х	у	Z
С	-1.01695	1.267764	0.241775
С	-0.26346	0.123494	-0.0585
С	-0.9401	-1.07347	-0.33965
С	-2.33542	-1.13359	-0.33024
С	-3.05809	0.02852	-0.03544

С	-2.41451	1.235941	0.253099
Н	-0.50472	2.193247	0.490691
Н	-0.36943	-1.96618	-0.56981
Н	-4.14555	-0.00981	-0.02599
С	1.218313	0.202966	-0.10037
С	2.044056	-0.81236	0.402196
С	1.87412	1.322245	-0.64314
С	3.430801	-0.74316	0.382349
С	3.264061	1.418053	-0.67581
Н	1.2698	2.118621	-1.06606
С	4.047186	0.383258	-0.16144
Н	3.999415	-1.56757	0.798398
Н	3.733856	2.294945	-1.11014
Н	5.130595	0.446983	-0.18495
С	-3.05185	-2.43577	-0.60182
Н	-3.28038	-2.96	0.334384
Н	-4.00077	-2.27085	-1.12165
Н	-2.44271	-3.10909	-1.21186
С	-3.20991	2.486762	0.545638
Н	-2.67594	3.149204	1.233761
Н	-3.40014	3.056149	-0.37273
Н	-4.18182	2.249761	0.988722
F	1.482033	-1.91659	0.94948

3ib-m

	Ato	mic Coordin	ate
Atom	Х	У	Z
С	1.299128	-1.19942	-0.23768
С	0.467724	-0.11035	0.059915
С	1.057504	1.140142	0.299556
С	2.442776	1.311954	0.243531
С	3.244245	0.203032	-0.05272
С	2.688994	-1.05781	-0.29423
Н	0.853374	-2.16652	-0.45373
Н	0.425893	1.985924	0.557268
Н	4.324629	0.325245	-0.09664
С	-1.00631	-0.27711	0.120692
С	-1.85686	0.721026	-0.38087
С	-1.58247	-1.43056	0.680608
С	-3.23171	0.545778	-0.31086
С	-2.96732	-1.58215	0.736216
Н	-0.93908	-2.1979	1.098125
С	-3.81373	-0.59056	0.238189
Н	-3.39441	-2.47653	1.179788

Н	-4.8936	-0.68113	0.267892
Н	-1.46236	1.616573	-0.84721
С	3.572615	-2.24791	-0.58652
Н	3.853019	-2.76559	0.339233
Н	3.064923	-2.97656	-1.22566
Н	4.499391	-1.94716	-1.08433
С	3.064684	2.669243	0.474494
Н	3.272073	3.173092	-0.47768
Н	2.403272	3.321151	1.052392
Н	4.015112	2.588258	1.011234
F	-4.0331	1.514361	-0.80695

3ib-p

	Ato	mic Coordin	ate
Atom	Х	у	Z
С	1.270515	-1.19192	-0.18255
С	0.553455	0.000001	0.000007
С	1.270516	1.191919	0.18255
С	2.668082	1.207462	0.180289
С	3.351811	0.000002	-1.4E-05
С	2.668079	-1.20746	-0.18031
Н	0.728853	-2.11831	-0.35384
Н	0.72886	2.118312	0.353836
Н	4.439945	-2E-06	-0.00002
С	-0.93095	0.000002	0.000004
С	-1.65422	1.038972	-0.61046
С	-1.65422	-1.03897	0.610466
С	-3.04745	1.047879	-0.61388
С	-3.04745	-1.04788	0.613873
Н	-1.11763	-1.83902	1.110576
С	-3.72313	0	-5E-06
Η	-3.61223	-1.84137	1.090739
Η	-1.11763	1.839028	-1.11056
Η	-3.61222	1.84137	-1.09075
С	3.426151	-2.5037	-0.34701
Η	3.67554	-2.94107	0.627759
Η	2.838012	-3.2448	-0.8963
Η	4.367272	-2.35154	-0.88433
С	3.426154	2.503695	0.34703
Η	3.675644	2.941026	-0.62773
Н	2.837974	3.244817	0.89624
Н	4.367225	2.351535	0.884431
F	-5.07375	0	-1E-06

preRE1-0
prener o

	Δto	mic Coordin	ate
Atom	v Ato	v	7
Pd	0.00100	<u> </u>	0.34707
ru C	-0.00199	-1.0393	-0.34797
C C	-1.05401	1 1031	-0.14042
C C	-2.1229	-1.1031	0.091307
C C	-2.5502	0.073940	-0.91050
C C	-4.09303	-0.8039	0.729252
C C	-3.72024	0.27/0	-0.00373
с н	-5 63157	0.2447	-0.00247
п С	0 577416	0.425010	0.646388
C C	0.377410	1 750516	-0.03026
C C	0.830083	0 560402	-0.03020 2 027248
C C	1 442812	2 864866	0 579161
C C	1.442012	1 664611	2 672572
C C	1 712568	2 817127	1 949147
н	1.712500	3 746667	-0.01842
Н	1 591349	1 624146	3 741652
Н	2 150601	3 678781	2 443897
0	2.007136	-2.09696	-0.68336
C	2.943009	-1 4434	-0 16404
N	3.568727	-0.45923	-0.8448
C	4.439643	0.530944	-0.21996
Н	5.275308	0.757301	-0.88929
Н	3.880549	1.454018	-0.02301
Н	4.844587	0.165851	0.721527
С	3.119065	-0.13669	-2.20022
Н	2.376079	0.665441	-2.18132
Н	3.983047	0.177775	-2.79267
Н	2.667534	-1.02135	-2.64483
С	3.383246	-1.75785	1.249993
Н	4.464283	-1.90158	1.331103
Н	3.084372	-0.94383	1.918323
Н	2.870617	-2.66867	1.557127
Н	-1.68134	1.267629	-1.51847
Н	-2.34283	-1.89899	1.328853
Н	0.580737	-0.32223	2.608276
С	-4.26473	2.107641	-1.74717
Н	-5.11403	2.607195	-1.26951
Н	-3.49924	2.861955	-1.9542
Н	-4.6151	1.725482	-2.71455
С	-5.03169	-1.60941	1.598363
Н	-5.90242	-1.02006	1.902982
Н	-5.40616	-2.49211	1.064358

Н	-4.53133	-1.96718	2.504095
F	0.633281	1.838043	-1.37335

preRE1-m

	Ato	mic Coordin	ate
Atom	Х	у	Z
Pd	0.26119	-1.12938	-0.0943
С	2.114512	-0.44194	0.066941
С	2.892371	-0.24225	-1.0839
С	2.704222	-0.23926	1.323776
С	4.24515	0.113906	-0.99383
С	4.054573	0.118362	1.441073
С	4.808337	0.293266	0.274629
Н	5.853632	0.587003	0.355526
С	-0.40412	0.745688	-0.09975
С	-1.4468	1.036724	0.793081
С	-0.06733	1.690448	-1.08105
С	-2.16906	2.213257	0.632982
С	-0.80154	2.874675	-1.20276
С	-1.87872	3.146037	-0.35348
Н	-0.53908	3.59278	-1.97522
Н	-2.47291	4.049109	-0.43844
0	-1.83466	-2.03519	-0.19871
С	-2.77868	-1.32972	-0.61973
Ν	-3.85933	-1.08497	0.158072
С	-4.89427	-0.10652	-0.16339
Н	-5.87214	-0.50437	0.126268
Н	-4.71263	0.824064	0.387131
Н	-4.91828	0.114592	-1.22796
С	-3.88905	-1.57035	1.535175
Н	-3.81505	-0.72595	2.231182
Н	-4.83216	-2.09471	1.721776
Н	-3.0529	-2.24755	1.693538
С	-2.73129	-0.7282	-2.00924
Н	-3.62883	-0.96105	-2.58941
Н	-2.61992	0.358645	-1.94651
Н	-1.85701	-1.13458	-2.5154
Н	2.109461	-0.34619	2.227584
Н	2.447283	-0.35831	-2.0705
Н	0.76211	1.501529	-1.75284
С	4.688049	0.300282	2.801616
Н	5.48583	1.049663	2.776561
Н	3.951062	0.61492	3.547163
Н	5.133475	-0.63694	3.159197

H5.8925321.002299-2.08735H5.544041-0.66784-2.53949H4.4779630.627657-3.08615H-1.736490.3527381.581956F-3.232752.4323221.457407	С	5.0824	0.282147	-2.24118
H5.544041-0.66784-2.53949H4.4779630.627657-3.08615H-1.736490.3527381.581956F-3.232752.4323221.457407	Н	5.892532	1.002299	-2.08735
H4.4779630.627657-3.08615H-1.736490.3527381.581956F-3.232752.4323221.457407	Н	5.544041	-0.66784	-2.53949
H -1.73649 0.352738 1.581956 F -3.23275 2.432322 1.457407	Н	4.477963	0.627657	-3.08615
F -3.23275 2.432322 1.457407	Н	-1.73649	0.352738	1.581956
	F	-3.23275	2.432322	1.457407

preRE1-p

	Ato	mic Coordin	ate
Atom	Х	у	Z
Pd	0.16498	-1.23886	-0.18611
С	1.974037	-0.43862	-0.06342
С	2.710636	-0.13793	-1.21772
С	2.583711	-0.27891	1.190426
С	4.049894	0.269291	-1.13522
С	3.921051	0.12472	1.299786
С	4.63764	0.396528	0.128164
Н	5.672613	0.726048	0.202406
С	-0.54534	0.622552	-0.16525
С	-0.55273	1.408804	0.996732
С	-1.20139	1.111357	-1.30649
С	-1.25459	2.618339	1.046258
С	-1.90388	2.321964	-1.27402
С	-1.92679	3.050945	-0.09095
Н	-2.41717	2.70739	-2.14935
0	-1.80153	-2.4051	-0.34291
С	-2.83811	-1.70286	-0.35984
Ν	-3.32875	-1.13357	0.763719
С	-4.30211	-0.04519	0.759409
Н	-4.99697	-0.17245	1.595224
Н	-3.78844	0.917793	0.866996
Н	-4.87803	-0.02967	-0.16327
С	-2.64341	-1.34635	2.036633
Н	-1.96282	-0.51554	2.249453
Н	-3.39072	-1.41584	2.832851
Н	-2.06931	-2.26934	1.98614
С	-3.57142	-1.48998	-1.66858
Н	-4.64008	-1.70915	-1.58991
Н	-3.45365	-0.45297	-1.99841
Н	-3.11791	-2.14772	-2.40915
Н	2.018566	-0.46675	2.101648
Н	2.242201	-0.20944	-2.19635
Н	-1.17417	0.550023	-2.23565
С	4.582771	0.245448	2.653489

Н	5.355068	1.021395	2.655361
Н	3.855803	0.489337	3.434858
Н	5.067308	-0.69595	2.942675
С	4.84461	0.550199	-2.39012
Н	5.67168	1.240699	-2.19702
Н	5.277605	-0.37197	-2.79835
Н	4.215142	0.985838	-3.17286
Н	-0.00124	1.085491	1.873546
Н	-1.2728	3.230217	1.942491
F	-2.60843	4.22043	-0.0501

TS1-o

	Ato	mic Coordin	ate
Atom	Х	у	Z
Pd	0.184513	-1.14446	-0.09542
С	-1.5881	-0.14364	0.027739
С	-2.37403	-0.41638	1.163553
С	-2.22948	0.199469	-1.17581
С	-3.76935	-0.39459	1.098078
С	-3.62693	0.230269	-1.26072
С	-4.38058	-0.06423	-0.11959
Н	-5.46701	-0.02611	-0.1746
С	0.119747	0.839675	0.402733
С	0.567753	1.755672	-0.5589
С	0.315827	1.227244	1.74515
С	1.176314	2.965473	-0.25364
С	0.940086	2.429372	2.085099
С	1.369695	3.308019	1.087533
Н	1.494317	3.612705	-1.0649
Н	1.07943	2.683529	3.132157
Н	1.843008	4.250672	1.344106
0	2.117856	-2.30349	-0.2296
С	2.886781	-1.42307	0.23234
Ν	3.540468	-0.56136	-0.58567
С	4.20876	0.638274	-0.08807
Н	4.988643	0.929729	-0.79663
Н	3.499779	1.469132	0.018644
Н	4.683753	0.454871	0.874941
С	3.20323	-0.55967	-2.00974
Н	2.375599	0.130491	-2.21047
Н	4.082177	-0.25414	-2.58386
Н	2.900048	-1.56271	-2.30367
С	3.134613	-1.33353	1.726185
Н	4.198813	-1.41369	1.969749

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Н	2.757114	-0.38337	2.116983
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Н	2.591613	-2.15156	2.197965
H-1.8948-0.642082.112339H-0.037420.5735912.536282C-4.305040.554945-2.57211H-5.289191.007381-2.41475H-3.704681.24581-3.17228H-4.45431-0.35142-3.17236C-4.60763-0.735832.308538H-4.96276-1.772932.26314H-5.49236-0.094022.375929F0.4464011.443685-1.88293	Н	-1.63561	0.463721	-2.04269
H-0.037420.5735912.536282C-4.305040.554945-2.57211H-5.289191.007381-2.41475H-3.704681.24581-3.17228H-4.45431-0.35142-3.17236C-4.60763-0.735832.308538H-4.96276-1.772932.26314H-4.03749-0.625263.235948H-5.49236-0.094022.375929F0.4464011.443685-1.88293	Н	-1.8948	-0.64208	2.112339
C-4.305040.554945-2.57211H-5.289191.007381-2.41475H-3.704681.24581-3.17228H-4.45431-0.35142-3.17236C-4.60763-0.735832.308538H-4.96276-1.772932.26314H-4.03749-0.625263.235948H-5.49236-0.094022.375929F0.4464011.443685-1.88293	Н	-0.03742	0.573591	2.536282
H-5.289191.007381-2.41475H-3.704681.24581-3.17228H-4.45431-0.35142-3.17236C-4.60763-0.735832.308538H-4.96276-1.772932.26314H-4.03749-0.625263.235948H-5.49236-0.094022.375929F0.4464011.443685-1.88293	С	-4.30504	0.554945	-2.57211
H-3.704681.24581-3.17228H-4.45431-0.35142-3.17236C-4.60763-0.735832.308538H-4.96276-1.772932.26314H-4.03749-0.625263.235948H-5.49236-0.094022.375929F0.4464011.443685-1.88293	Н	-5.28919	1.007381	-2.41475
H-4.45431-0.35142-3.17236C-4.60763-0.735832.308538H-4.96276-1.772932.26314H-4.03749-0.625263.235948H-5.49236-0.094022.375929F0.4464011.443685-1.88293	Н	-3.70468	1.24581	-3.17228
C-4.60763-0.735832.308538H-4.96276-1.772932.26314H-4.03749-0.625263.235948H-5.49236-0.094022.375929F0.4464011.443685-1.88293	Н	-4.45431	-0.35142	-3.17236
H-4.96276-1.772932.26314H-4.03749-0.625263.235948H-5.49236-0.094022.375929F0.4464011.443685-1.88293	С	-4.60763	-0.73583	2.308538
H-4.03749-0.625263.235948H-5.49236-0.094022.375929F0.4464011.443685-1.88293	Н	-4.96276	-1.77293	2.26314
H-5.49236-0.094022.375929F0.4464011.443685-1.88293	Н	-4.03749	-0.62526	3.235948
F 0.446401 1.443685 -1.88293	Н	-5.49236	-0.09402	2.375929
	F	0.446401	1.443685	-1.88293

TS1-m

Ato	mic Coordin	ate
Х	у	Z
0.089859	-1.16985	-0.40801
-1.65571	-0.18138	-0.03651
-2.40838	-0.58527	1.079615
-2.32788	0.369564	-1.14115
-3.80385	-0.48735	1.085147
-3.72265	0.477301	-1.15972
-4.4445	0.04965	-0.0385
-5.52838	0.148825	-0.03522
0.128634	0.69683	0.412692
0.490886	1.770163	-0.42309
0.455045	0.781742	1.782845
1.191836	2.84663	0.105829
1.161439	1.875917	2.284918
1.54708	2.928036	1.448725
1.41228	1.914652	3.341791
2.085504	3.79499	1.814416
1.95849	-2.37224	-0.78948
2.743973	-1.71468	-0.06048
3.488765	-0.69918	-0.56339
4.18136	0.269957	0.281435
5.05326	0.652589	-0.25656
3.522404	1.111232	0.531086
4.531292	-0.18881	1.204795
3.255108	-0.26972	-1.94061
2.542428	0.563444	-1.9613
4.201913	0.05347	-2.38272
	x 0.089859 -1.65571 -2.40838 -2.32788 -3.80385 -3.72265 -4.4445 -5.52838 0.128634 0.490886 0.455045 1.191836 1.161439 1.54708 1.41228 2.085504 1.95849 2.743973 3.488765 4.18136 5.05326 3.522404 4.531292 3.255108 2.542428 4.201913	xy 0.089859 -1.16985-1.65571-0.18138-2.40838-0.58527-2.327880.369564-3.80385-0.48735-3.722650.477301-4.44450.04965-5.528380.1488250.1286340.696830.4908861.7701630.4550450.7817421.1918362.846631.1614391.8759171.547082.9280361.412281.9146522.0855043.794991.95849-2.372242.743973-1.714683.488765-0.699184.181360.2699575.053260.6525893.5224041.1112324.531292-0.188813.255108-0.269722.5424280.5634444.2019130.05347

Н	2.843442	-1.10115	-2.50876
С	2.911331	-2.08084	1.402298
Н	3.955442	-2.29322	1.653012
Н	2.55803	-1.26518	2.040657
Н	2.305345	-2.96638	1.589656
Н	-1.76204	0.730756	-1.99602
Н	-1.90442	-0.97075	1.961848
Н	0.152551	-0.01085	2.459387
С	-4.43741	1.027889	-2.37226
Н	-3.80149	1.720789	-2.93196
Н	-4.72622	0.222394	-3.05913
Н	-5.35268	1.558659	-2.09142
С	-4.6063	-0.96896	2.272016
Н	-5.51466	-0.37383	2.409785
Н	-4.91814	-2.01259	2.139341
Н	-4.02368	-0.91832	3.19713
Н	0.235513	1.784348	-1.47628
F	1.549934	3.855234	-0.72385

TS1-p

	Ato	mic Coordin	ate
Atom	Х	у	Z
Pd	-0.01547	-1.28376	0.056019
С	1.68401	-0.15772	0.022724
С	2.397411	-0.10685	-1.18858
С	2.392097	-0.01209	1.22766
С	3.787177	0.044083	-1.20531
С	3.783574	0.1406	1.23676
С	4.464779	0.171986	0.014515
Н	5.544229	0.311474	0.010747
С	-0.13441	0.756571	-0.02038
С	-0.49863	1.441195	1.155757
С	-0.51095	1.326154	-1.25326
С	-1.24518	2.620419	1.110942
С	-1.25945	2.503619	-1.3138
С	-1.61982	3.13257	-0.12698
Н	-1.55627	2.94109	-2.26162
0	-1.83029	-2.62997	-0.00083
С	-2.65841	-1.77645	-0.40729
Ν	-3.41488	-1.05937	0.461533
С	-4.15044	0.138338	0.06419
Н	-4.99871	0.275617	0.740374
Н	-3.50767	1.025998	0.118303
Н	-4.54095	0.045906	-0.94818

С	-3.14066	-1.17698	1.891897
Η	-2.43131	-0.40191	2.207237
Η	-4.07523	-1.05944	2.447771
Η	-2.70866	-2.15478	2.094534
С	-2.86808	-1.56527	-1.89463
Η	-3.91369	-1.71151	-2.18371
Η	-2.56528	-0.55374	-2.18167
Η	-2.24134	-2.28557	-2.41886
Η	1.8569	-0.00388	2.173633
Η	1.864695	-0.17409	-2.13337
Η	-0.21303	0.848987	-2.18145
С	4.536993	0.252064	2.54236
Η	3.921515	0.711174	3.322473
Η	4.841701	-0.73678	2.907477
Η	5.445772	0.851798	2.4305
С	4.54966	0.05475	-2.51027
Η	5.004933	-0.92349	-2.70912
Η	3.895591	0.289432	-3.35551
Н	5.36004	0.791069	-2.49412
Н	-0.19317	1.052849	2.121721
Η	-1.53182	3.147143	2.015448
F	-2.33982	4.277663	-0.17794

3kb-o

	Ato	mic Coordin	ate
Atom	Х	у	Z
С	1.156175	-1.28311	0.416904
С	0.378218	-0.25772	-0.13808
С	1.017823	0.871441	-0.66393
С	2.410053	0.990918	-0.63191
С	3.159949	-0.04697	-0.06764
С	2.550377	-1.19084	0.459394
Н	0.661761	-2.15653	0.833844
Н	0.421947	1.663113	-1.10704
Н	4.244428	0.037802	-0.03771
С	-1.0996	-0.41368	-0.20778
С	-2.02044	0.530707	0.280535
С	-1.63435	-1.57778	-0.78861
С	-3.39851	0.332141	0.18452
С	-3.00624	-1.79085	-0.88954
Н	-0.94029	-2.31498	-1.18021
С	-3.89304	-0.82956	-0.40453
Н	-4.07154	1.084283	0.580601
Н	-3.38012	-2.69984	-1.35054

C 3.085462 2.231123 -1.2	16841 39198
	39198
Н 3.160302 3.002439 -0.3	
Н 4.100585 2.018068 -1.4	51666
Н 2.523632 2.663806 -2.0	00168
C 3.382806 -2.31261 1.0	34759
Н 2.816777 -2.89884 1.7	76465
Н 3.713778 -3.00128 0.24	47408
Н 4.281 -1.93094 1.5	52995
Cl -1.47639 1.999576 1.0)9492

3kb-m

	Ato	mic Coordin	ate
Atom	Х	у	Z
С	1.739586	-1.16546	-0.3012
С	0.815634	-0.18724	0.0953
С	1.284893	1.100135	0.39412
С	2.642934	1.417422	0.299487
С	3.538363	0.417743	-0.09605
С	3.103641	-0.87784	-0.39806
Н	1.384905	-2.15877	-0.56226
Н	0.583274	1.859209	0.729401
Н	4.598111	0.652985	-0.17049
С	-0.62997	-0.51002	0.197516
С	-1.5968	0.422596	-0.21168
С	-1.06282	-1.74676	0.70342
С	-2.94935	0.11183	-0.10686
С	-2.42113	-2.04215	0.797523
Н	-0.32839	-2.46787	1.047168
С	-3.3824	-1.1149	0.393716
Н	-2.73966	-2.99978	1.198364
Н	-4.44173	-1.33304	0.46399
Н	-1.29535	1.374887	-0.63221
С	4.092466	-1.94813	-0.7968
Н	4.522027	-2.43461	0.087721
Н	3.618585	-2.72771	-1.40045
Н	4.923911	-1.53108	-1.37325
С	3.130119	2.816581	0.59486
Н	3.149206	3.425947	-0.31719
Н	2.479128	3.324621	1.312471
Н	4.145485	2.810136	1.002623
Cl	-4.14297	1.296596	-0.63398

	Ato	mic Coordin	ate
Atom	Х	У	Z
С	1.689262	-1.19261	-0.18094
С	0.973051	0.000014	0.000011
С	1.689262	1.192596	0.180973
С	3.086796	1.207858	0.179762
С	3.770025	-4E-06	0.000019
С	3.08676	-1.20789	-0.17971
Н	1.147552	-2.11914	-0.35097
Н	1.147596	2.119152	0.350987
Н	4.858141	-3.6E-05	0.00001
С	-0.51084	0.000003	0.000009
С	-1.23493	1.039213	-0.60718
С	-1.23492	-1.03921	0.607182
С	-2.62779	1.04768	-0.61087
С	-2.62779	-1.04768	0.610868
Н	-0.70062	-1.84144	1.106377
С	-3.31521	-4E-06	-1E-06
Н	-3.17675	-1.85037	1.090362
Н	-0.70062	1.841439	-1.10637
Н	-3.17676	1.850364	-1.09037
С	3.845363	-2.50373	-0.34643
Н	4.101702	-2.93675	0.628431
Н	3.25472	-3.24766	-0.88905
Н	4.78271	-2.35223	-0.89042
С	3.845338	2.503754	0.346362
Н	4.100588	2.937323	-0.62854
Н	3.255098	3.247298	0.889952
Н	4.783267	2.352163	0.889319
Cl	-5.07547	-4E-06	-9E-06

preRE2-0

	Atomic Coordinate		
Atom	Х	у	Z
Pd	0.038694	0.664184	-0.9765
С	1.894206	0.356209	-0.34789
С	2.529101	1.292503	0.480666
С	2.623598	-0.74196	-0.82375
С	3.890006	1.17342	0.791793
С	3.986843	-0.88159	-0.5265
С	4.60197	0.081339	0.281308
Н	5.655719	-0.02927	0.531936
С	-0.52051	-0.21387	0.723639
С	-0.85057	-1.57201	0.808812

С	-0.76137	0.570252	1.865074
С	-1.45839	-2.12262	1.941639
С	-1.37049	0.040375	3.005972
С	-1.72937	-1.30829	3.04165
Н	-1.70488	-3.17928	1.958024
Н	-1.55256	0.678162	3.866789
Н	-2.19754	-1.73395	3.924307
0	-2.01413	1.165553	-1.83702
С	-2.85224	1.284607	-0.91133
Ν	-3.67773	0.271984	-0.57586
С	-4.53356	0.273825	0.606274
Н	-5.46505	-0.25117	0.374185
Н	-4.03287	-0.24131	1.435331
Н	-4.78505	1.285503	0.919002
С	-3.57108	-1.01851	-1.25461
Н	-3.34354	-1.79959	-0.52451
Н	-4.51868	-1.25433	-1.75181
Н	-2.76804	-0.97433	-1.98547
С	-2.94565	2.586084	-0.13991
Н	-3.95579	3.006052	-0.15867
Н	-2.65424	2.426989	0.902654
Н	-2.25401	3.291305	-0.59884
Н	2.130187	-1.50797	-1.41545
Н	1.964763	2.122005	0.901588
Н	-0.46699	1.615687	1.859589
С	4.776116	-2.04689	-1.07801
Н	5.610425	-2.31455	-0.42166
Н	4.144854	-2.93235	-1.20308
Н	5.199403	-1.80764	-2.06197
С	4.579291	2.209681	1.649846
Н	5.388425	1.76786	2.240435
Н	5.022376	3.003146	1.034419
Н	3.878003	2.688158	2.341021
Cl	-0.52619	-2.67148	-0.54173

preRE2-m

	Ato	mic Coordin	ate
Atom	х	у	Z
Pd	-0.4679	-1.17957	-0.28847
С	-2.27923	-0.37583	-0.21233
С	-3.0737	-0.52753	0.935171
С	-2.82768	0.26474	-1.33293
С	-4.4035	-0.087	0.961346
С	-4.15602	0.714626	-1.33247

С	-4.92692	0.534339	-0.17898
Н	-5.95387	0.895788	-0.16354
С	0.291879	0.536525	0.373731
С	1.36158	1.064705	-0.36614
С	-0.03557	1.118383	1.606523
С	2.112203	2.113284	0.165132
С	0.726591	2.17543	2.112668
С	1.818142	2.681466	1.402241
Н	0.470357	2.612729	3.074244
Н	2.418257	3.496664	1.790397
Ο	1.57203	-2.16162	-0.50061
С	2.515869	-1.78431	0.230609
Ν	3.680297	-1.36082	-0.31053
С	4.772163	-0.75907	0.447902
Н	5.725757	-1.17992	0.11181
Н	4.789318	0.324649	0.283547
Н	4.671347	-0.94839	1.513816
С	3.81648	-1.25714	-1.76205
Н	3.87612	-0.20269	-2.05561
Н	4.73225	-1.76467	-2.08322
Н	2.953964	-1.72073	-2.23524
С	2.365858	-1.78149	1.7383
Н	3.186576	-2.3025	2.239068
Н	2.318138	-0.75258	2.10829
Н	1.424907	-2.27488	1.977337
Н	-2.21798	0.431924	-2.21753
Н	-2.65899	-0.99009	1.829074
Н	-0.88354	0.748107	2.171307
С	-4.7457	1.37011	-2.56047
Н	-5.53594	2.080407	-2.29703
Н	-3.98278	1.908104	-3.13204
Н	-5.18903	0.623813	-3.23211
С	-5.2633	-0.29324	2.187411
Н	-5.96502	0.535368	2.329336
Н	-5.85898	-1.21119	2.103735
Н	-4.65571	-0.38119	3.093636
Н	1.634473	0.652592	-1.33009
Cl	3.498274	2.720555	-0.76031

preRE2-p

_

	Atomic Coordinate		
Atom	Х	у	Z
Pd	-0.4727	-1.40127	0.120772
С	-2.1642	-0.36794	0.035849

С	-2.87001	-0.0519	1.205893
С	-2.72744	-0.03994	-1.20568
С	-4.13969	0.538789	1.146203
С	-3.99592	0.550265	-1.29248
С	-4.68558	0.834483	-0.1085
Н	-5.66415	1.308415	-0.16426
С	0.453546	0.359815	0.148821
С	0.627776	1.123736	-1.01426
С	1.100279	0.778598	1.322063
С	1.487352	2.226875	-1.03335
С	1.96088	1.88191	1.320203
С	2.158402	2.587662	0.13448
Н	2.466294	2.193285	2.228722
0	1.333515	-2.80186	0.209524
С	2.431812	-2.21237	0.336965
Ν	3.070985	-1.67295	-0.72352
С	4.171547	-0.71981	-0.60997
Н	4.913415	-0.92361	-1.38824
Н	3.797278	0.303233	-0.73461
Н	4.663099	-0.79355	0.357598
С	2.468426	-1.77251	-2.05117
Н	1.919892	-0.85604	-2.29099
Н	3.260856	-1.92373	-2.79032
Н	1.778267	-2.61342	-2.06942
С	3.069274	-2.10988	1.707383
Н	4.104387	-2.46303	1.711626
Н	3.055511	-1.07108	2.051452
Н	2.475347	-2.71552	2.390804
Н	-2.1793	-0.23872	-2.12465
Н	-2.4301	-0.25459	2.179424
Н	0.945984	0.242716	2.253854
С	-4.61227	0.857207	-2.63815
Н	-5.30083	1.706228	-2.5804
Н	-3.84716	1.092197	-3.38519
Н	-5.18338	-3.8E-05	-3.01696
С	-4.91057	0.838591	2.411463
Н	-5.54547	1.722891	2.29523
Н	-5.56615	0.001229	2.682716
Н	-4.23862	1.012774	3.257706
Н	0.090611	0.865303	-1.92135
Cl	3.264265	3.962554	0.113925
Н	1.629035	2.804198	-1.94114

	Ato	mic Coordin	ate
Atom	X	V	Z
Pd	0.148984	-0.86614	-0.77773
С	-1.62163	-0.1631	-0.02145
С	-2.34816	-1.07366	0.773859
С	-2.33835	0.754794	-0.80829
С	-3.74348	-1.09137	0.771309
С	-3.74024	0.760274	-0.81897
С	-4.42719	-0.15911	-0.02264
Н	-5.51557	-0.15018	-0.01382
С	0.094756	0.435918	0.808982
С	0.573118	1.75575	0.664709
С	0.326215	-0.15075	2.077528
С	1.227142	2.441384	1.692039
С	0.995696	0.508764	3.104219
С	1.446437	1.817851	2.91898
Н	1.569051	3.456234	1.517131
Н	1.156804	0.001838	4.05172
Н	1.954265	2.351973	3.716077
0	2.041083	-1.82473	-1.55016
С	2.804943	-1.4948	-0.60808
Ν	3.583172	-0.38782	-0.69237
С	4.218441	0.21757	0.474904
Н	5.104889	0.770437	0.152285
Н	3.531886	0.910965	0.978335
Н	4.53669	-0.54053	1.189155
С	3.430142	0.485725	-1.85514
Н	2.672741	1.254974	-1.66778
Н	4.389439	0.965767	-2.06771
Н	3.116835	-0.1105	-2.70987
С	2.914174	-2.36595	0.629354
Н	3.948275	-2.66842	0.822668
Н	2.53542	-1.83294	1.506557
Н	2.301331	-3.25086	0.461659
Н	-1.80856	1.474668	-1.41776
Н	-1.82386	-1.77973	1.410699
Н	-0.03236	-1.15827	2.25736
С	-4.48709	1.734191	-1.70148
Н	-3.96743	2.69567	-1.76275
Н	-4.57758	1.348412	-2.72461
Н	-5.50005	1.917763	-1.33022
С	-4.50909	-2.10088	1.595388
Н	-3.87153	-2.56993	2.350682
Н	-5.35671	-1.63551	2.109965
Н	-4.91489	-2.90046	0.963335

	Ato	mic Coordin	ate
Atom	Х	у	Z
Pd	-0.13211	-1.30633	-0.48572
С	-1.77704	-0.17966	-0.04542
С	-2.61697	-0.63688	0.984959
С	-2.33611	0.582282	-1.08531
С	-3.99234	-0.38314	0.962946
С	-3.7092	0.847905	-1.13053
С	-4.52111	0.36363	-0.09769
Н	-5.58691	0.583867	-0.11247
С	0.071423	0.429484	0.560609
С	0.607982	1.525233	-0.14326
С	0.334839	0.332057	1.941837
С	1.423209	2.442172	0.515856
С	1.148466	1.267106	2.582544
С	1.711815	2.334007	1.876902
Н	1.347953	1.16845	3.646501
Н	2.341668	3.068379	2.365402
0	1.656341	-2.59542	-0.96782
С	2.503973	-2.06251	-0.20783
Ν	3.324066	-1.0765	-0.64507
С	4.132314	-0.25957	0.25706
Н	4.99312	0.128882	-0.29339
Н	3.552539	0.58641	0.646047
Н	4.506903	-0.84701	1.094326
С	3.115855	-0.51927	-1.98005
Н	2.529944	0.405083	-1.91726
Н	4.08566	-0.29934	-2.43587
Н	2.575271	-1.24264	-2.58649
С	2.65261	-2.54387	1.222641
Н	3.6737	-2.87346	1.438717
Н	2.389287	-1.74328	1.920991
Н	1.965909	-3.37789	1.361658
Н	-1.6975	0.985485	-1.86693
Н	-2.19674	-1.18905	1.821409
Н	-0.09865	-0.47995	2.516342
С	-4.30617	1.625662	-2.28065
Н	-3.57815	2.315148	-2.71924
Η	-4.6401	0.951857	-3.07967
Η	-5.17639	2.208299	-1.96219
С	-4.89498	-0.9178	2.050943

Н	-5.71553	-0.22577	2.266002
Н	-5.34525	-1.87358	1.754936
Н	-4.34418	-1.09056	2.980657
Н	0.400038	1.662451	-1.19771
Cl	2.134348	3.769848	-0.40905

TS2-p

	Ato	mic Coordin	ate
Atom	Х	у	Z
Pd	-0.34177	-1.45848	0.015627
С	-1.85139	-0.08302	-0.00568
С	-2.54931	0.150097	1.192328
С	-2.52389	0.108397	-1.22532
С	-3.89611	0.527173	1.184787
С	-3.87152	0.483005	-1.25924
С	-4.54059	0.694702	-0.0476
Н	-5.58246	1.009304	-0.06371
С	0.088345	0.534425	0.016685
С	0.547205	1.118319	-1.18054
С	0.563479	1.074945	1.228854
С	1.484216	2.152148	-1.17578
С	1.503445	2.106417	1.248783
С	1.965857	2.633131	0.042544
Н	1.872915	2.500664	2.189825
0	1.308297	-2.99655	0.0807
С	2.263905	-2.26238	0.436778
Ν	3.084568	-1.68706	-0.47493
С	4.016822	-0.61183	-0.14662
Н	4.889874	-0.68076	-0.80202
Н	3.544004	0.367375	-0.28917
Н	4.361951	-0.68743	0.882795
С	2.7624	-1.8254	-1.89342
Н	2.145622	-0.98244	-2.22671
Н	3.690419	-1.84554	-2.47166
Н	2.208275	-2.74925	-2.04606
С	2.547247	-2.04419	1.910857
Н	3.571779	-2.32426	2.175035
Н	2.393934	-0.99414	2.178208
Н	1.846169	-2.65942	2.473525
Н	-1.99279	-0.02484	-2.1642
Н	-2.03652	0.050578	2.145301
Н	0.199775	0.685146	2.17445
С	-4.59575	0.64042	-2.57644
Н	-3.90295	0.881135	-3.38876

Н	-5.11517	-0.28547	-2.85357
Н	-5.34933	1.432939	-2.52739
С	-4.64802	0.735929	2.479144
Η	-3.96804	0.962056	3.306168
Η	-5.36669	1.557803	2.396733
Η	-5.21332	-0.16274	2.756018
Η	0.172538	0.761316	-2.13437
Cl	3.167994	3.922612	0.057397
Н	1.839057	2.581817	-2.10683
10. Reference

- 1. C. Liu, Y. Zhang, N. Liu and J. Qiu, Green Chem., 2012, 14, 2999-3003.
- 2. J. Qiu, L. Wang, M. Liu, Q. Shen and J. Tang, Tetrahedron Lett., 2011, 52, 6489-6491.
- (a) Y. Tan and J. F. Hartwig, J. Am. Chem. Soc., 2011, 133, 3308-3311; (b) K. Endo and R. H. Grubbs, J. Am. Chem. Soc., 2011, 133, 8525-8527.
- (a) K. H. Chung, C. M. So, S. M. Wong, C. H. Luk, Z. Zhou, C. P. Lau and F. Y. Kwong, *Chem. Commun.*, 2012, 48, 1967-1969; (b) J. Cornella, M. Righi and I. Larrosa, *Angew. Chem. Int. Ed.*, 2011, 50, 9429-9432; (c) M. R. Yadav, M. Nagaoka, M. Kashihara, R.-L. Zhong, T. Miyazaki, S. Sakaki and Y. Nakao, *J. Am. Chem. Soc.*, 2017, 139, 9423-9426.
- (a) D.-H. Lee and M.-J. Jin, Org. Lett., 2011, 13, 252-255; (b) T.-H. Park, K. A. Cychosz, A. G. Wong-Foy, A. Dailly and A. J. Matzger, Chem. Commun., 2011, 47, 1452-1454.
- 6. V. Ramakrishna and N. Dastagiri Reddy, Dalton Trans., 2017, 46, 8598-8610.
- 7. J. Yu, J. Liu, G. Shi, C. Shao and Y. Zhang, Angew. Chem. Int. Ed., 2015, 54, 4079-4082.
- D.-H. Li, X.-X. He, C. Xu, F.-D. Huang, N. Liu, D.-S. Shen and F.-S. Liu, *Organometallics*, 2019, 38, 2539-2552.
- 9. (a) P. Anbarasan, H. Neumann and M. Beller, *Chem. Asian J.*, 2010, 5, 1775-1778; (b) Z.-Y. Wang, G.-Q. Chen and L.-X. Shao, *J. Org. Chem.*, 2012, 77, 6608-6614.
- 10. (a) R. Martin and S. L. Buchwald, *J. Am. Chem. Soc.*, 2007, **129**, 3844-3845; (b) N. Schultheiss, C. L. Barnes and E. Bosch, *Synth. Commun.*, 2004, **34**, 1499-1505; (c) J.-C. Wan, J.-M. Huang, Y.-H. Jhan and J.-C. Hsieh, *Org. Lett.*, 2013, **15**, 2742-2745.
- (a) T. Yamada, K. Saito and T. Akiyama, *Adv. Synth. Catal.*, 2016, **358**, 62-66; (b) C. M. So, H. W. Lee, C. P. Lau and F. Y. Kwong, *Org. Lett.*, 2009, **11**, 317-320.
- (a) L. Caron, L.-C. Campeau and K. Fagnou, *Org. Lett.*, 2008, **10**, 4533-4536; (b) P. Chatelain, A. Sau, C. N. Rowley and J. Moran, *Angew. Chem. Int. Ed.*, 2019, **58**, 14959-14963; (c) Y. Macé, B. Raymondeau, C. Pradet, J.-C. Blazejewski and E. Magnier, *Eur. J. Org. Chem.*, 2009, **2009**, 1390-1397.
- 13. L. J. Durak and J. C. Lewis, Organometallics, 2014, 33, 620-623.
- 14. X. Li, J. Zhang, Y. Zhao, X. Zhao, F. Li, T. Li, H. L. Li and L. Chen, *J. Mater. Chem. A*, 2015, **3**, 6265-6270.
- 15. (a) K. Fuchibe, Y. Ohshima, K. Mitomi and T. Akiyama, *J. Fluorine Chem.*, 2007, **128**, 1158-1167;
 (b) W. Susanto, C.-Y. Chu, W. J. Ang, T.-C. Chou, L.-C. Lo and Y. Lam, *J. Org. Chem.*, 2012, **77**, 2729-2742.
- 16. A. Mohan, V. Ramkumar and S. Sankararaman, J. Organomet. Chem., 2015, 799-800, 115-121.
- 17. H. Minami, T. Saito, C. Wang and M. Uchiyama, Angew. Chem. Int. Ed., 2015, 54, 4665-4668.
- 18. (a) P. Lan, D. Berta, J. A. Porco, M. S. South and J. J. Parlow, J. Org. Chem., 2003, 68, 9678-9686;
- (b) S. Keesara, S. Parvathaneni, G. Dussa and M. R. Mandapati, J. Organomet. Chem., 2014, 765,

31-38.

- 19. Q. Zhou, Y.-N. Wang, X.-Q. Guo, X.-H. Zhu, Z.-M. Li and X.-F. Hou, *Organometallics*, 2015, **34**, 1021-1028.
- K. Yamamoto, J. Li, J. A. O. Garber, J. D. Rolfes, G. B. Boursalian, J. C. Borghs, C. Genicot, J. Jacq, M. van Gastel, F. Neese and T. Ritter, *Nature*, 2018, 554, 511-514.
- R. A. Gaussian 09, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- R. C. Gaussian 16, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.
- 23. (a) A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652; (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, 37, 785-789; (c) P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623-11627.
- 24. A. G. Baboul, L. A. Curtiss, P. C. Redfern and K. Raghavachari, J. Chem. Phys., 1999, 110, 7650-7657.
- (a) L. A. Curtiss, P. C. Redfern and K. Raghavachari, J. Chem. Phys., 2007, 126, 084108; (b) L. A. Curtiss, P. C. Redfern and K. Raghavachari, J. Chem. Phys., 2007, 127, 124105.
- 26. J.-L. Calais, Int. J. Quantum Chem., 1993, 47, 101-101.
- 27. (a) J. C. Slater and J. C. Phillips, Phys. Today, 1974, 27, 49-50; (b) S. H. Vosko, L. Wilk and M.

Nusair, *Can. J. Phys.*, 1980, **58**, 1200-1211; (c) A. D. Becke, *Phys. Rev. A Gen. Phys.*, 1988, **38**, 3098-3100; (d) A. D. Becke, *J. Chem. Phys.*, 1993, **98**, 5648-5652; (e) C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B Condens. Matter*, 1988, **37**, 785-789.

- 28. S. Grimme, J. Antony, S. Ehrlich and H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- 29. (a) W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284-298; (b) P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.

3ib-*m* ¹⁹F NMR (376 MHz, CDCl₃)

-113.41

f1 (ppm)

f1 (ppm)

3ij-0 ¹H NMR (600 MHz, CDCl₃)

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

f1 (ppm)

12. X-ray Crystallographic Data

Table S20. Crystal Data and Structure Refinement for 4b

Identification code	4b (CCDC 2000400)	
Empirical formula	$C_{23}H_{40}O_2PClPd$	
Formula weight	521.37	
Temperature	173(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_{1}/n$	
Unit cell dimensions	a = 9.7932(5) Å	$\alpha = 90^{\circ}$
	b = 13.0955(6) Å	$\beta = 93.9044(18)^{\circ}$
	c = 19.8473(10) Å	$\gamma = 90^{\circ}$
Volume	2539.4(2) Å ³	
Z	4	
Density (calculated)	1.364 Mg/m^3	
Absorption coefficient	0.914 mm ⁻¹	
F(000)	1088	
Crystal size	0.157 x 0.112 x 0.087 mm ³	
Theta range for data collection	2.601 to 24.299°.	
Index ranges	-11<=h<=11, -15<=k<=15, -22<=l<=22	
Reflections collected	49846	
Independent reflections	4109 [R(int) = 0.0589]	
Completeness to theta = 24.299°	99.4 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7455 and 0.6665	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	4109 / 0 / 265	
Goodness-of-fit on F ²	1.225	
Final R indices [I>2sigma(I)]	R1 = 0.0604, wR2 = 0.1539	
R indices (all data)	R1 = 0.0629, wR2 = 0.1551	
Largest diff. peak and hole	0.913 and –2.224 e $\cdot {\rm \AA}^{-3}$	