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I. THEORETICAL FRAMEWORK

A. Frequency conversion in quantum optics

The interaction picture Hamiltonian that describes second-order frequency conversion

is obtained by inserting the field operators Ê(r, t) associated with the three waves (ω1,

ω2, ω3) involved, in the classical Hamiltonian density H =
∫
V
d3rPiEi with second-order

polarization density given by Pi = ε0χijkEjEk, where χ
(2)
ijk is the component of the second-

order susceptibility tensor for an up or down conversion process of the form ω3 ↔ ω1 + ω2

[1]. To describe SPDC in a collinear configuration with propagation along the z direction,

we take the pump field at ω3 = ωp to be a classical pulse of the form

E(+)
p (r, t) = A0Ap(r⊥)êp

∫
dωpαp(ωp)e

i(kpz−ωpt), (1)

where |A0|2 = 2P/ε0cnp is the peak field intensity (units of [V/m]2), np is the refractive index

at the pump center frequency, P is the pump power, Ap(r⊥) is the transverse pulse amplitude

normalized to
∫
d2r|A(r⊥)|2 = 1, α(ωp) is a real pump spectral amplitude normalized to∫

dωα2(ω) = 1, and êp is the unit polarization vector. The signal and idler fields at ω1 and

ω2, respectively, are described by quantum field operators of the form

Ê(+)(r, t) = iA(r⊥)

(
2π

LQ

)1/2∑
k

l(ω)ei(kz−ωt)êkâk, (2)

where LQ is the quantization length, A(r⊥) the transverse vacuum field profile, k is the

wavevector along the z-direction, êk the polarization vector, l(ω) = [~ω/πε0n2(ω)] is the

root-mean-square (rms) amplitude of the vacuum fluctuations at ω, and âk the photon

annihilation operator. Ignoring the reconversion of signal and idler into pump photons

(SFG), the field evolution is determined by the non-Hermitian Hamiltonian

ĤI(t) = i~λ
(

2π

LQ

)∫ L

0

dz

∫
dωpαp(ωp)

∑
k1

∑
k2

l(ω1)l(ω2)â†k1 â
†
k2

ei(∆kz−∆ωt), (3)

where the coupling constant is given by

λ = i
2A0deff

~

∫
d2r⊥A

∗
p(r⊥)A1(r⊥)A2(r⊥), (4)

with the effective second-order nonlinearity defined as deff = (ε0/2)χ
(2)
ijkeiejek [2]. The phase

and energy mismatch functions in the exponent of Eq. (3) are given by ∆k = kp(ωp) −

k1(ω1)− k2(ω2) and ∆ω = ωp − ω1 − ω2, respectively.
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Expanding the evolution operator to first order in λ, assuming that both the signal and

idler fields are initially unoccupied, the signal-idler state can be obtained from

|Ψ〉 =

[
1− i

~

∫ t

−∞
ĤI(τ)dτ

]
|0〉1 |0〉2 .

Performing the time integration in the limit t → ∞ and the spatial integration up to the

propagation length L, the photon pair component of the wavefuction can be written as

|Ψ2〉 = λL

∫
dk1

∫
dk2Q(k1, k2) â†k1 â

†
k2
|0〉1 |0〉2 , (5)

with λL� 1. We converted wavevector sums into integrals using quantization length 2π/LQ

in momentum space. The signal-idler entangled photon pair wavefunction is thus determined

by the joint spectral amplitude (JSA)

Q(k1, k2) = l(ω1)l(ω2) sinc(∆kL/2) ei∆kL/2 αp(ω1 + ω2), (6)

where the function sinc(x) = sin(x)/x determines the phase-matching properties of the

frequency conversion process. Perfect phase matching is obtained for ∆k = 0, with ωp =

ω1 + ω2. Linear attenuation due to Fresnel losses, Rayleigh scattering, or linear absorption

can be taken into account for all the waves involved, by setting the wavevectors to be

complex, i.e., k = k′ + ik′′, in the joint spectral function [3].

B. Temporal coherence of entangled photon pairs

The probability of detecting a photon in the far field at the proper time x1 = t1 − r1/c

and a second photon at x2 = t2 − r2/c is given by the second-order correlation function [4]

G(2)(x1, x2) = 〈Ê(−)(x1)Ê(−)(x2)Ê(+)(x2)Ê(+)(x1)〉. (7)

The electric field operator can take into account any spectral filtering done at the detectors

in the wavepacket form Ê(+)(xj) =
∫
dωf(ω)â(ω)eiωxj , where f(ω) is the spectral filter

function and â(ω) satisfies continuum bosonic commutation relations [5]. For the SPDC

output state in Eq. (5), the G(2) function is given by

G(2)(x1, x2) = |〈0|Ê(+)(x2)Ê(+)(x1)|Ψ2〉|2. (8)
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Therefore, knowledge of the joint spectral amplitude Q(k1, k2) and the spectral filter func-

tions of the detectors allows us to compute the coincidence correlation function G(2). Inte-

grating the correlation functions over their time variables give the total coincidence detection

rate, which is proportional to |λ|2 and thus (deff)2. The latter we obtained using state-of-

the-art solid state DFT methods.

The two-point correlation function in Eq. (8) has two non-vanishing contributions corre-

sponding to the either photon in the entangled pair arriving reaching either detector at x1

or x2. If the detectors have equal bandwidths, these two contributions are identical and can

be written as

G(2)(x1, x2) = C

∣∣∣∣∫ dω1dω2Q(ω1, ω2)f(ω1)f(ω2)eiω1x1+iω2x2

∣∣∣∣2 , (9)

where C is a proportionality constant that scales as λ2L2. We evaluate the frequency

integrals by assuming Gaussian filter functions centered at Ωk with spectral width σ given

by f(ω) = f0 exp[−(ω − Ωk)
2/2σ2]. We also introduce a small frequency detuning from

the condition of perfect phase matching by setting ω1 = Ω1 + ν1 and ω2 = Ω2 − ν2, with

Ω1 + Ω2 = ωp. The wavevectors ki(ωi) are expanded up to second order in νi around

Ki = ki(Ωi). In addition, we can evaluate the rms vacuum amplitudes l(ω) in the JSA

by evaluating them at Ω1 and Ω2 and absorb them into the proportionality constant C in

Eq. (9). The expansion of the phase mismatch ∆k(ω1, ω2) up to second order in νi around

perfect phase matching reads

∆k = − 1

u1

ν1 −
1

u2

ν2 −
β1

2
ν2

1 −
β2

2
ν2

2 , (10)

where ui and βi are the group velocity and group velocity dispersion (GVD) of the waves

generated at ωi (i = 1, 2). We obtain these quantities directly from the Sellmeier equations

calculated using solid-state DFT methods. To discuss degenerate SPDC under type-I phase

matching, we have ω1 = ω2 = ωp/2, u1 = u2 and β1 = β2 (signal and idler are degenerate

ordinary waves). The energy conservation constraint ν1 + ν2 = 0 makes the linear term in

Eq. (10) vanish and also reduces the (ν1, ν2)-integral into a single variable integration of the

form

G(2)(x1 − x2) ∝
∣∣∣∣∫ dν sinc

[
(β2L/4) ν2

]
e−ν

2/σ2

eiν(x1−x2)

∣∣∣∣2 . (11)

We evaluate this integral numerically in terms of the dimensionless frequency w = ντL,

where τL =
√
β2L/4 is a characteristic propagation timescale of the signal and idler waves

in a MOF crystal.
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C. Sellmeier equations

The Sellmeier equation describes the dispersive behavior of the propagating light in a

transparent material. It can be written as

n2(λ) = A+
B λ2

λ2 − C
+

B1 λ
2

λ2 − C1

(12)

where n(λ) is the the refractive index in a given propagation direction. The dielectric func-

tion ε = n2 is obtained from DFT. The constants {A,B,C,B1, C1} are the so-called Sellmeier

coefficients, which together give the wavelength-dependence of the dielectric function. From

the Sellmeier coefficients we can know the response of the material along the ordinary (o)

and extraordinary (e) axes at a given wavelength.

For uniaxial materials, the birefringence is given by ∆n = ne − no. If the birefringenceis

too small, it is difficult to satisfy phase-matching requirements (see next section) by com-

pensating the dispersion of refractive indices along different optical axes. An increase in

the birefringence improves the prospects for achieving phase matching in second-order pro-

cesses (SHG, SPDC), but if it is too large, it can induce the loss of intensity due to walk-off

effect. In second-harmonic generation, for example, the angle between wave and intensity

(Poynting) vectors of the second harmonic beam (walk-off angle) is directly related to the

birefringence of the material. Increasing the walk-off angle results in a loss of intensity for

the second harmonic signal [6, 7].

D. Collinear type-I phase matching

Perfect phase matching (PPM) is reached when the phase mismatch between the mixing

waves vanishes (∆k = 0). For SPDC in a collinear configuration, phase matching reduces

to a relation between refractive indices of the form ns(ω) = np(2ω), where ns and np are

the signal and pump refractive indices, respectively. This condition can only be satisfied for

anisotropic optical materials with birefringence, or near-zero index metamaterials [8]. Two

types of phase matching are possible, depending on the polarization of the waves produced

in the wave-mixing process. If the signal waves have the same polarization, we have type-I

phase matching. If the polarizations are orthogonal, we have type-II [2].

The angle between the propagating vector and the optical axis that should be used to

achieve optimal three-wave mixing in type-I, is given for negative uniaxial crystals such as
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MIRO-101 (ne < no) by

sin2 (θm) =

(
ne(2ω)

no(ω)

)2
n2

o(2ω)− n2
o(ω)

n2
o(2ω)− n2

e(2ω)
. (13)

For positive uniaxial crystals (ne > no ), we have

sin2 (θm) =

(
ne(ω)

no(2ω)

)2
n2

o(ω)− n2
o(2ω)

n2
o(ω)− n2

e(ω)
. (14)

II. COMPUTATIONAL CHEMISTRY METHODS

A. BBO, KDP and MOFs atomic coordinates from crystallographic data

KDP and BBO structures were obtained from the Crystallography Open Database (COD)

[9–14]. BBO coordinates were used as retrieved with the original space group, while KDP

were edited due to the presence of duplicated hydrogen atoms, and the calculations continued

with a P1 unit cell, to avoid duplication of atoms during calculations.

The crystal structure of MIRO-101 was downloaded from the CCSD database with space

group assignment (l-42d) [15]. Upon constructing the unit cell for subsequent calculations,

we found that one carbon atom and one nitrogen atom superpose and some hydrogen atoms

are duplicated in the pyridine ring. We correct this ambiguity by fixing the conformation

of the pyridine group by eliminating the superposed and duplicated atoms in the primitive

cell. Using Materials Visualizer module in the software package Material Studio [16], the

new crystal structure generated are recognized within space group 82. We used the atomic

configuration in which the N atoms are in opposite directions as MIRO-101 in the same

plane. We used this corrected configuration in calculations [space group 82 (I-4)]. The

crystal structures of MIRO-102 and MIRO-103 were also obtained from the CCSD database,

and used in calculations without further editing.

B. DFT Methods

1. DFT Functional

We used PBE-GGA functional for all calculations, because the CPHF/KS dynamic cal-

culations necessary for dielectric function at different wavelengths are only available for pure
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functional such as PBE-GGA. For instance, PBE-GGA functional has better agreement with

experimental band gap of MOF-5, while a hybrid functional overestimates it [17, 18]; this

trend is also observed in inorganic crystals. According to the literature, the energy gap cal-

culated can alter the estimation of second order susceptibility component value so we choose

the more precise method [19]. Also two parameters, SHRINK points (K point sampling in

CRYSTAL) and two-electron integral tolerance (TOLINTEG), were tested against total en-

ergy previous to geometry optimization and selected according to the change in energy. The

setting that gives a good energy convergence were selected for optimization and are sum-

marized in Table I for all MOFs considered in this work as well as inorganic crystals KDP

and BBO. DFT-D of Grimme version 4 was added for dispersion correction. (More details

in Table IV,VII,V,VIII,VI and IX). As basis set we employed POB-DZVPP for MIRO-101

and MIRO-102 and POB-TZVP for MIRO-103 due to lack of POB-DZVPP basis set for Cd

in CRYSTAL by default; the parameter were extracted from Laun et al 2018 [20]. In case

KDP, we used the POB-DZVPP basis that is incorporated in CRYSTAL17. For BBO, we

optimized with basis set from Heyd et al 2005 [21], and for SHG we employed POB-DZVP

[22] for O and B and Ba with HAYWSC-31(2df)G of Mahmoud et al 2013 [23].

2. Convergence test

TABLE I: Parameters used in geometry optimization and optical properties estimation on CRYS-

TAL17.

Crystal SHRINK ∆E (meV) TOLINTEG ∆E (meV) Basis Reference Table

BBO 5 5 0 14 14 14 14 20 5 Heyd2005 III and XI

KDP 6 6 0 14 14 14 14 20 0 POB-DZVPP II and X

MIRO-101 3 3 1 12 12 12 12 18 34 POB-DZVPP IV and VII

MIRO-102 6 6 3 10 10 10 10 16 26 POB-DZVPP V and VIII

MIRO-103 3 3 1 8 8 8 8 14 20 POB-TZVP VI and IX
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TABLE II: SHRINK point sampling: KDP

Energy (eV) Energy (Ha) SRHINK Band Gap (eV)

-135257.0570 -4970.6164 3 3 5.7239

-135257.0571 -4970.6164 4 4 5.7188

-135257.0571 -4970.6164 5 5 5.7200

-135257.0571 -4970.6164 6 6 5.7188

-135257.0571 -4970.6164 8 8 5.7189

TABLE III: SHRINK point sampling: BBO

Energy (eV) Energy (Ha) SRHINK Band Gap (eV)

-61445.0340 -2258.0685 3 3 5.5092

-61445.0340 -2258.0685 4 4 5.4709

-61445.0340 -2258.0685 5 5 5.4859

-61445.0340 -2258.0685 6 6 5.4709

-61445.0340 -2258.0685 8 8 5.4709

TABLE IV: SHRINK point sampling: MIRO-101

Energy (eV) Energy (Ha) SRHINK Band Gap

-151657.2624 -5573.299 3 3 2.8621

-151657.2624 -5573.299 4 4 2.8616

-151657.2624 -5573.299 6 6 2.8615

TABLE V: SHRINK point sampling: MIRO-102

Energy (eV) Energy (Ha) SRHINK Band Gap (eV)

-256705.3016 -9433.7414 3 3 3.5643

-256705.3267 -9433.7424 4 4 3.3935

-256705.3295 -9433.7424 6 6 3.3867

-256705.3297 -9433.7424 8 8 3.3935
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TABLE VI: SHRINK point sampling: MIRO-103

Energy (eV) Energy (Ha) SRHINK Band Gap

-136479.8623 -5015.540 3 3 0.8073

-136479.8625 -5015.540 4 4 0.8089

-136479.8625 -5015.540 6 6 0.8074

TABLE VII: TOLINTEG sampling: MIRO-101

Energy (eV) Energy (Ha) SRHINK Band Gap (eV) TOL

-151657.262 -5573.2990 3 3 2.8621 8 8 8 8 14

-151657.228 -5573.2977 3 3 2.8619 10 10 10 10 16

-151657.237 -5573.2981 3 3 2.8620 12 12 12 12 18

TABLE VIII: TOLINTEG sampling: MIRO-102

Energy (eV) Energy (Ha) SRHINK H Band Gap (eV) TOL

-256705.302 -9433.7414 3 3 3.5643 8 8 8 8 14

-256705.349 -9433.7432 3 3 3.5645 10 10 10 10 16

-256705.375 -9433.7441 3 3 3.5644 12 12 12 12 18

TABLE IX: TOLINTEG sampling: MIRO-103

Energy (eV) Energy (Ha) SRHINK Band Gap (eV) TOL

-136479.862 -5015.5400 3 3 0.8073 8 8 8 8 14

-136479.887 -5015.5409 3 3 0.8069 10 10 10 10 16

-136479.866 -5015.5402 3 3 0.8092 12 12 12 12 18
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TABLE X: TOLINTEG sampling: KDP

Energy (eV) Energy (Ha) SRHINK Band Gap (eV) TOL

-135257.0569 -4970.616429 5.6676 8 8 8 8 8 14

-135257.0293 -4970.615413 5.6680 10 10 10 10 16

-135257.0181 -4970.615002 5.6674 12 12 12 12 18

-135257.0231 -4970.615186 5.6677 14 14 14 14 20

-135257.0252 -4970.61526 5.6677 16 16 16 16 20

TABLE XI: TOLINTEG sampling: BBO

Energy (eV) Energy (Ha) SRHINK Band Gap (eV) TOL

-61445.0340 -2258.0685 5.5092 8 8 8 8 8 14

-61445.0172 -2258.0679 5.5102 10 10 10 10 16

-61445.0021 -2258.0673 5.5102 12 12 12 12 18

-61445.0021 -2258.0673 5.5098 14 14 14 14 20

-61445.0059 -2258.0674 5.5100 16 16 16 16 20

3. Geometry Optimization of MOFs

We performed full geometry optimization without allowing changes in the space group.

The minimization energy criteria was set to the default. For the IRMOF-1, we optimized

with parameters similar to those employed by Ryder et al 2018 [24] in their estimation. We

obtain the energy gap of the MOFs as results of this procedure.

4. CPHF/KS for Nonlinear optics

Different methods to estimate dielectric function are available depending on the theory

implemented on a particular computational chemistry package of use. Estimating linear and

non-linear optical properties in CRYSTAL17 can be done by using the Coupled Perturbed

Hartree-Fock/Kohn-Sham method (CPHF/KS), detailed explanation of the methodology
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can be found in Ferrero et al 2008 articles series [25–27]. Briefly, it solves the derivative

between the energy of the system and the applied electric field until the forth term. First, a

unperturbed SCF (Self Consistent Field) energy is done in order to obtain the unperturbed

density and Fock matrix. Then, a perturbed matrix is estimated with the coupled self

consistent cycle (CPHS/KS). In the last step a unitary matrix that relates the eigenvector

of the electric field derivatives and the eigenvector of the unperturbed system is estimated.

As results we can obtain the tensor for polarizabilities and hyper polarizabilities [25–27].

5. Dielectric Function

Dielectric functions were calculated using the same setting of the previous geometry

optimization and convergence test (Table I). The previously optimized coordinates were

employed for dielectric function estimation. For each MOF a CPHF/KS theory calculation

was done for at least 10 wavelengths from the band gap up to 1100 nm. These values are

necessary to fit the Sellmeier equation to the data and get the Sellmeier coefficients.

6. Second-order susceptibility tensors

A CPHF/KS calculation was made until the third term of the expansion for the electric

field, allowing to determinate the second order susceptibility tensors for the three MOFs

studied with a laser pump source of 1064 nm. Tables XVIII, XIX, XX show the values for

the 27 components of the tensor for each MOF.

7. Polarization configuration of collinear type I for tensor contraction

The specific configuration used to estimate the deff is shown in Figure 1, deff for every

MOF in that configuration are included in the Table II.
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FIG. 1: Configuration for the estimation of the deff

The component of the electric field as projection on the ordinary axis are:

E◦1(ω) = sinφEo(ω), Eo
2(ω) = − cosφEo(ω), Eo

3(ω) = 0 (15)

E0
j (ω) = (aj)E

o(ω) (16)

where,

(aj) =


sinφ

− cosφ

0

 (17)

The component of the electric field in the extraordinary axis is given by,
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Ee
1(ω) = − cos θ cosφEe(ω), Ee

2(ω) = − cos θ sinφEe(ω), Ee
3(ω) = + sin θEe(ω) (18)

Ee
j (ω) = (bj)E

e(ω) (19)

where,

(bj) =


− cos θ cosφ

− cos θ sinφ

sin θ

 (20)

For type-I positive uniaxial crystals, deff is calculated as

P o
ee (ω3) = aidijk (ω3, ω2, ω1) bjbkEj (ω2)Ek (ω1) , (21)

and for a negative uniaxial crystal we use

P e
oo (ω3) = bidijk (ω3, ω2, ω1) ajakEj (ω2)Ek (ω1) , (22)

where P (ω) is the dielectric polarization of the crystal. Using a Numpy script [28], we deter-

mine the deff for each MOF in this study by contracting the full second-order polarizability

tensor estimated with CRYSTAL17.

III. RESULTS

A. MOFs optimized coordinates

We provided the optimized coordinates of the MOFs as cif files.

B. BBO and KDP

As we are interested in the calculation related to the intensity to the second harmonic

generation signal, first we tested the performance of two inorganic crystals with known NLO

properties: BBO and KDP. Both materials are used in experiments as reference for the

comparison of SHG signal.

15



1. BBO and KDP basis set analysis

The Table XII shows a resume for the calculations for the two inorganic crystals. First,

we optimized the structure of BBO with basis set from Heyd et al 2005 [21] with parameters

in Table I, which was subjected to a CPHF/KS calculation to estimate birefringence at 512,

1064 nm and second harmonic generation at 1064 nm. The difference being almost 0.9 eV

from the reported band gap for BBO and almost double in magnitude for the respective

component of the tensor, compelled us to change the basis set. We tried two others while

keeping the same optimized geometry. Also we relaxed the TOLINTEG and SHRINK point

values with no major change in band gap and SHG. We tested the ”Basis set I” composed

by: HAYWSC 311(1d) of Piskunov et al 2004 [29] for Ba , 6-21G* of pople [30] for B, and 8

411d11f Mahmoud et al 2013 [23] for O.”Basis set II” treated O and B with POB-DZVP [22]

and Ba with HAYWSC-31(2df)G of Mahmoud et al 2013 [23]. Better result was obtained

with the use of Basis II with good agreement with experimental values. We tested the same

quantities for KDP but using the POB-DZVPP basis that is incorporated in CRYSTAL17.

Band gaps for both materials are underestimated. In the case of KDP, this value is in

accordance with various reported calculations: Lacivita et al.[19] (5.62 eV), Liu et al.[31]

(5.9 eV), and Zhang et al.[32] (5.96 eV). Lin et al.[33] also reported a lower value of 4.178

eV. For BBO, Lin et al. [34] reported a 4.80 eV band gap. Computational methods to

predict birefringence and second harmonic generation are good qualitatively at least to rank

properly a set of structures. Better reproduction of experimental values requires study of

each basis set and methods. For our purposes, we concluded that the POB-DZVPP basis set

work very well for quantitative prediction of second harmonic generation and birefringence

within CPHF/KS methodology.
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TABLE XII: Experimental and predicted band gaps of Inorganic crystals with NLO properties in

eV. Sellmeier coefficient used are from refs [35] para BBO y [36]

Properties BBO KDP

Basis Heyd2005 Basis I Basis II Exp [37] DZVPP Exp [19]

Band Gap 5.51 5.22 6.17 6.43 5.89 7.12

no (512 λ) 1.7222 1.7304 1.5694 1.6749 1.5388 1.5129

ne (512 λ) 1.5566 1.5851 1.3830 1.5555 1.4943 1.4709

∆n (512 λ) 0.1655 0.1454 0.1864 0.1194 0.0445 0.0419

no (1064 λ) 1.6996 1.7090 1.5568 1.6551 1.5275 1.4948

ne (1064 λ) 1.5419 1.5704 1.3775 1.5425 1.4843 1.4604

∆n (1064 λ) 0.1578 0.1386 0.1793 0.1126 0.0432 0.0339

d (1064 λ) 3.986 3.196 1.96 2.2 [35] -0.4794 0.38 [38]

C. MOFs band gaps and dielectric tensors

1. MOFs band gaps

The predicted band gap values of the studied MOFs are reported in Table I in the main

text. They correspond to wide band gap materials ranging from 3.16 eV to 4.1 eV, and also

can be considered for application as a semiconductor or insulator. Our control calculation

with IRMOF-1 agrees very well with the experimental band gap and previous calculations

for the MOF [17, 18, 39]. PBE-GGA functional at least in the case of IRMOF-1 seems to

be in better agreement with experiment that the one calculated by Ryder et al 2018 [24]

of 5.04 eV with B3LYP-D, but with a different basis set. So hybrid DFT methods tend to

overestimate band gap, but it is a methodology consistent overestimation [24]. We conclude

that PBE-GGA is sufficient for a good prediction of our properties of interest for our MOFs.

2. Dielectric function

Calculation for MIRO-101, MIRO-102 and MIRO-103 MOFs dielectric functions in the

400-1100 nm wavelength range are presented in Fig 2 (main text). We confirm with our
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calculations that our MOFs are birefringent and behave as expected for the properties mod-

eled. The non-porous MOFs in this study have a high value for the static dielectric constant

compared to porous MOFs. However, they can still be considered low-k material (k 2 to 5)

[40]. Ryder et al 2018, showed a tendency to such effects by calculating dielectric function

for ZIF MOFs with different pore sizes and static dielectric constant for a different set of

around 50 MOFs [24, 41]. Titov et al 2017 [40], demonstrated experimentally that MIL-53

(Al)Narrow Pore (NP) of 0% porosity has higher values of static dielectric function than the

porous MIL-53(Al) Large Pore (LP). This relation was reproduced in-silico by Ryder et al

2018 [41], with 3.0 for the NP version and 1.86 for the LP. Also, they estimated the value

for the non-porous Zn(OA)2 to be 2.65. Thus, our non-porous MOFs are in the same order

of magnitude as the previous calculations found in the literature.

D. Ab-initio Sellmeier Coefficients for MIRO MOFs

A numerical fitting of the obtained data for dielectric constant was implemented in Python

using the Least Square fitting procedure in the Optimize module implemented in Numpy

[28] in order to obtain the Sellmeier coefficient of Eq. 12; we fit the results up to third term

of the expression. The estimated coefficient are presented in Table XIII. Dielectric function

calculation results are plotted in Figure 2 on the main text.

TABLE XIII: Fitted Sellmeier coefficients for MOFs in this study using DFT. We use the number

notation a× 10b ≡ a [b]

MOFs Component A B C B1 C1

MIRO-101 no 2.1078 2.5100[-2] 1.41489044 [5] 1.0871 5.62150205 [4]

ne 1.7833 8.9000[-3] 1.44323712 [5] 3.6470 [-1] 4.96202890 [4]

MIRO-102 no 2.1385 1.1527 4.77658824 [4] 7.6600 [-2] 1.16666067 [5]

ne 1.7890 5.0300 [-2] 1.07012455 [5] 7.4320 [-1] 3.58417385 [4]

MIRO-103 no 1.9010 5.1430 [-1] 5.12308938 [4] 4.0800 [-2] 1.57385759 [5]

ne 2.0731 1.2882 5.76235328 [4] 1.0700 [-2] 1.59071640 [5]
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E. Angle of type I phase matching

Results are presented for the predicted angle of Type I phase matching θ in Table II on

the main text for 1064 nm laser pump source using the eq. 13. The curves presented can

be used for prediction of this angle for a distinct laser beam in other wave lengths. To the

best knowledge of the authors this is the first attempt to predict such angles in MOFs, but

not in the case of inorganic crystals in the UV range [42].

Figure 3 in the main text presents the predicted PPM angle in function of the wavelength

of the incident field, referred as the angle between the propagating vector of the incident

light and the optical axis for MIRO-101,MIRO-102 and MIRO-103.

F. Second order susceptibility

MOF MIRO-102 has the highest SHG value for d3,3,3 (-1.258 pm/V ), followed by MIRO-

101 ( d2,2,3=0.962 pm/V) and MIRO-103 ( d2,2,2=0.1621 pm/V). The three materials are at

least in the order of the commercial inorganic crystal KDP (0.38 pm/V ) for one component

of the second order susceptibility tensor [38]. Bilian et al 2019 [43] made a SHG performance

ranking of the effect of substitution group in the MIL-125 MOFs and found that NH2-MIL-

125 has the best performance, showing ab-initio methods results can be used for comparison

between materials, at a computational level.

G. Tensor contraction

In Table II in the main text, the predicted deff at phase matching angle θ0 for type-I SHG

at 1064 nm with the configuration represented in 1 are shown. θ0 are taken from Table II.
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1. BBO, KDP and MOFs predicted second-order susceptibility tensors, all components

TABLE XIV: Calculated second-order susceptibility tensor of KDP at 1064 nm pump wavelength

using DZVPP basis set. We use the number notation a× 10b ≡ a [b]

Component β χ(2) d(MKS) d(cgs)

XXX 0.3513E[+00] 0.8487E[-03] 0.8253E[-03] 0.1969E[-04]

XXY -0.1969E[+00] -0.4757E[-03] -0.4625E[-03] -0.1103E[-04]

XXZ 0.6232E[+02] 0.1506E[+00] 0.1464E[+00] 0.3493E[-02]

XYX -0.1969E[+00] -0.4757E[-03] -0.4625E[-03] -0.1103E[-04]

XYY -0.3992E[+00] -0.9646E[-03] -0.9379E[-03] -0.2238E[-04]

XYZ -0.2041E[+03] -0.4931E[+00] -0.4794E[+00] -0.1144E[-01]

XZX 0.6232E[+02] 0.1506E[+00] 0.1464E[+00] 0.3493E[-02]

XZY -0.2041E[+03] -0.4931E[+00] -0.4794E[+00] -0.1144E[-01]

XZZ 0.2071E[+00] 0.5004E[-03] 0.4866E[-03] 0.1161E[-04]

YXX -0.2015E[+00] -0.4869E[-03] -0.4734E[-03] -0.1129E[-04]

YXY -0.4001E[+00] -0.9667E[-03] -0.9400E[-03] -0.2242E[-04]

YXZ -0.2041E[+03] -0.4931E[+00] -0.4794E[+00] -0.1144E[-01]

YYX -0.4001E[+00] -0.9667E[-03] -0.9400E[-03] -0.2242E[-04]

YYY 0.2127E[-01] 0.5140E[-04] 0.4998E[-04] 0.1192E[-05]

YYZ 0.5659E[+02] 0.1367E[+00] 0.1330E[+00] 0.3172E[-02]

YZX -0.2041E[+03] -0.4931E[+00] -0.4794E[+00] -0.1144E[-01]

YZY 0.5659E[+02] 0.1367E[+00] 0.1330E[+00] 0.3172E[-02]

YZZ -0.2769E[-01] -0.6690E[-04] -0.6505E[-04] -0.1552E[-05]

ZXX 0.6241E[+02] 0.1508E[+00] 0.1466E[+00] 0.3498E[-02]

ZXY -0.2035E[+03] -0.4916E[+00] -0.4780E[+00] -0.1140E[-01]

ZXZ 0.2086E[+00] 0.5041E[-03] 0.4902E[-03] 0.1169E[-04]

ZYX -0.2035E[+03] -0.4916E[+00] -0.4780E[+00] -0.1140E[-01]

ZYY 0.5670E[+02] 0.1370E[+00] 0.1332E[+00] 0.3178E[-02]

ZYZ -0.2307E[-01] -0.5574E[-04] -0.5420E[-04] -0.1293E[-05]

ZZX 0.2086E[+00] 0.5041E[-03] 0.4902E[-03] 0.1169E[-04]

ZZY -0.2307E[-01] -0.5574E[-04] -0.5420E[-04] -0.1293E[-05]

ZZZ -0.1038E[+01] -0.2509E[-02] -0.2439E[-02] -0.5819E[-04]20



TABLE XV: Calculated second-order susceptibility tensor of BBO at 1064 nm pump wavelength

using the Basis set I. We use the number notation a× 10b ≡ a [b]

Component β χ(2) d(MKS) d(cgs)

XXX 0.2031E[ 4] 0.3286E[ 1] 0.3196E[ 1] 0.7624E[-1]

XXY 0.1996E[ 0] 0.3230E[-3] 0.3140E[-3] 0.7492E[-5]

XXZ 0.2567E[ 2] 0.4153E[-1] 0.4038E[-1] 0.9634E[-3]

XYX 0.1996E[ 0] 0.3230E[-3] 0.3140E[-3] 0.7492E[-5]

XYY -0.2031E[ 4] -0.3286E[ 1] -0.3195E[ 1] -0.7623E[-1]

XYZ 0.1853E[-2] 0.2999E[-5] 0.2916E[-5] 0.6957E[-7]

XZX 0.2567E[ 2] 0.4153E[-1] 0.4038E[-1] 0.9634E[-3]

XZY 0.1853E[-2] 0.2999E[-5] 0.2916E[-5] 0.6957E[-7]

XZZ 0.4066E[-1] 0.6579E[-4] 0.6397E[-4] 0.1526E[-5]

YXX 0.1995E[ 0] 0.3229E[-3] 0.3140E[-3] 0.7491E[-5]

YXY -0.2031E[ 4] -0.3286E[ 1] -0.3195E[ 1] -0.7623E[-1]

YXZ -0.2693E[-2] -0.4358E[-5] -0.4238E[-5] -0.1011E[-6]

YYX -0.2031E[ 4] -0.3286E[ 1] -0.3195E[ 1] -0.7623E[-1]

YYY -0.2807E[ 0] -0.4543E[-3] -0.4418E[-3] -0.1054E[-4]

YYZ 0.2567E[ 2] 0.4153E[-1] 0.4039E[-1] 0.9635E[-3]

YZX -0.2693E[-2] -0.4358E[-5] -0.4238E[-5] -0.1011E[-6]

YZY 0.2567E[ 2] 0.4153E[-1] 0.4039E[-1] 0.9635E[-3]

YZZ -0.2293E[-1] -0.3711E[-4] -0.3609E[-4] -0.8609E[-6]

ZXX 0.2478E[ 2] 0.4010E[-1] 0.3899E[-1] 0.9302E[-3]

ZXY -0.3569E[-3] -0.5776E[-6] -0.5616E[-6] -0.1340E[-7]

ZXZ 0.3703E[-1] 0.5992E[-4] 0.5826E[-4] 0.1390E[-5]

ZYX -0.3569E[-3] -0.5776E[-6] -0.5616E[-6] -0.1340E[-7]

ZYY 0.2478E[ 2] 0.4010E[-1] 0.3899E[-1] 0.9302E[-3]

ZYZ -0.2098E[-1] -0.3396E[-4] -0.3302E[-4] -0.7877E[-6]

ZZX 0.3703E[-1] 0.5992E[-4] 0.5826E[-4] 0.1390E[-5]

ZZY -0.2098E[-1] -0.3396E[-4] -0.3302E[-4] -0.7877E[-6]

ZZZ -0.7310E[ 2] -0.1183E[ 0] -0.1150E[ 0] -0.2744E[-2]
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TABLE XVI: Calculated second-order susceptibility tensor of BBO at 1064 nm pump wavelength

using Basis set 2. We use the number notation a× 10b ≡ a [b]

Component β χ(2) d(MKS) d(cgs)

XXX 0.1246E[ 4] 0.2016E[ 1] 0.1960E[ 1] 0.4676E[-1]

XXY -0.4264E[-1] -0.6900E[-4] -0.6709E[-4] -0.1601E[-5]

XXZ 0.2757E[ 2] 0.4461E[-1] 0.4338E[-1] 0.1035E[-2]

XYX -0.4264E[-1] -0.6900E[-4] -0.6709E[-4] -0.1601E[-5]

XYY -0.1246E[ 4] -0.2016E[ 1] -0.1960E[ 1] -0.4676E[-1]

XYZ -0.4099E[-3] -0.6633E[-6] -0.6449E[-6] -0.1539E[-7]

XZX 0.2757E[ 2] 0.4461E[-1] 0.4338E[-1] 0.1035E[-2]

XZY -0.4099E[-3] -0.6633E[-6] -0.6449E[-6] -0.1539E[-7]

XZZ 0.3584E[-3] 0.5800E[-6] 0.5640E[-6] 0.1345E[-7]

YXX -0.4286E[-1] -0.6936E[-4] -0.6745E[-4] -0.1609E[-5]

YXY -0.1246E[ 4] -0.2016E[ 1] -0.1960E[ 1] -0.4676E[-1]

YXZ -0.2836E[-4] -0.4589E[-7] -0.4462E[-7] -0.1065E[-8]

YYX -0.1246E[ 4] -0.2016E[ 1] -0.1960E[ 1] -0.4676E[-1]

YYY 0.4165E[-1] 0.6740E[-4] 0.6554E[-4] 0.1563E[-5]

YYZ 0.2757E[ 2] 0.4461E[-1] 0.4338E[-1] 0.1035E[-2]

YZX -0.2836E[-4] -0.4589E[-7] -0.4462E[-7] -0.1065E[-8]

YZY 0.2757E[ 2] 0.4461E[-1] 0.4338E[-1] 0.1035E[-2]

YZZ -0.2237E[-3] -0.3620E[-6] -0.3520E[-6] -0.8397E[-8]

ZXX 0.2740E[ 2] 0.4433E[-1] 0.4311E[-1] 0.1028E[-2]

ZXY -0.3839E[-3] -0.6213E[-6] -0.6041E[-6] -0.1441E[-7]

ZXZ 0.4815E[-3] 0.7792E[-6] 0.7576E[-6] 0.1807E[-7]

ZYX -0.3839E[-3] -0.6213E[-6] -0.6041E[-6] -0.1441E[-7]

ZYY 0.2740E[ 2] 0.4433E[-1] 0.4311E[-1] 0.1028E[-2]

ZYZ -0.5053E[-3] -0.8178E[-6] -0.7952E[-6] -0.1897E[-7]

ZZX 0.4815E[-3] 0.7792E[-6] 0.7576E[-6] 0.1807E[-7]

ZZY -0.5053E[-3] -0.8178E[-6] -0.7952E[-6] -0.1897E[-7]

ZZZ -0.5384E[ 2] -0.8714E[-1] -0.8473E[-1] -0.2021E[-2]
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TABLE XVII: Calculated second-order susceptibility tensor of BBO at 1064 nm pump wavelength

using I basis set. We use the number notation a× 10b ≡ a [b]

Component β χ(2) d(MKS) d(cgs)

XXX 0.2533E[+4] 0.4100E[+1] 0.3986E[+1] 0.9510E[-1]

XXY 0.4825E[-1] 0.7808E[-4] 0.7592E[-4] 0.1811E[-5]

XXZ 0.3499E[+2] 0.5662E[-1] 0.5505E[-1] 0.1313E[-2]

XYX 0.4825E[-1] 0.7808E[-4] 0.7592E[-4] 0.1811E[-5]

XYY -0.2533E[+4] -0.4100E[+1] -0.3986E[+1] -0.9510E[-1]

XYZ -0.3169E[-2] -0.5129E[-5] -0.4987E[-5] -0.1190E[-6]

XZX 0.3499E[+2] 0.5662E[-1] 0.5505E[-1] 0.1313E[-2]

XZY -0.3169E[-2] -0.5129E[-5] -0.4987E[-5] -0.1190E[-6]

XZZ -0.3240E[-4] -0.5243E[-7] -0.5098E[-7] -0.1216E[-8]

YXX 0.5021E[-1] 0.8125E[-4] 0.7901E[-4] 0.1885E[-5]

YXY -0.2533E[+4] -0.4100E[+1] -0.3986E[+1] -0.9510E[-1]

YXZ -0.2776E[-2] -0.4492E[-5] -0.4368E[-5] -0.1042E[-6]

YYX -0.2533E[+4] -0.4100E[+1] -0.3986E[+1] -0.9510E[-1]

YYY -0.5159E[-1] -0.8348E[-4] -0.8118E[-4] -0.1937E[-5]

YYZ 0.3498E[+2] 0.5661E[-1] 0.5504E[-1] 0.1313E[-2]

YZX -0.2776E[-2] -0.4492E[-5] -0.4368E[-5] -0.1042E[-6]

YZY 0.3498E[+2] 0.5661E[-1] 0.5504E[-1] 0.1313E[-2]

YZZ 0.1373E[-3] 0.2223E[-6] 0.2161E[-6] 0.5156E[-8]

ZXX 0.3200E[+2] 0.5178E[-1] 0.5035E[-1] 0.1201E[-2]

ZXY 0.1338E[-2] 0.2165E[-5] 0.2105E[-5] 0.5022E[-7]

ZXZ -0.1014E[-2] -0.1642E[-5] -0.1596E[-5] -0.3808E[-7]

ZYX 0.1338E[-2] 0.2165E[-5] 0.2105E[-5] 0.5022E[-7]

ZYY 0.3199E[+2] 0.5176E[-1] 0.5033E[-1] 0.1201E[-2]

ZYZ 0.6917E[-3] 0.1119E[-5] 0.1088E[-5] 0.2597E[-7]

ZZX -0.1014E[-2] -0.1642E[-5] -0.1596E[-5] -0.3808E[-7]

ZZY 0.6917E[-3] 0.1119E[-5] 0.1088E[-5] 0.2597E[-7]

ZZZ -0.1663E[+2] -0.2691E[-1] -0.2617E[-1] -0.6243E[-3]
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TABLE XVIII: Calculated second-order susceptibility tensor of MIRO-101a at 1064 nm pump

wavelength. We use the number notation a× 10b ≡ a [b]

Component β χ(2) d(MKS) d(cgs)

XXX -0.5640[-3] -0.7656[-6] -0.7444[-6] -0.1776[-7]

XXY -0.1477[-3] -0.2005[-6] -0.1950[-6] -0.4651[-8]

XXZ -0.7288[+3] -0.9894[+0] -0.9620[+0] -0.2295[-1]

XYX -0.1477[-3] -0.2005[-6] -0.1950[-6] -0.4651[-8]

XYY -0.1033[-3] -0.1402[-6] -0.1363[-6] -0.3252[-8]

XYZ 0.2361[+3] 0.3205[+0] 0.3117[+0] 0.7435[-2]

XZX -0.7288[+3] -0.9894[+0] -0.9620[+0] -0.2295[-1]

XZY 0.2361[+3] 0.3205[+0] 0.3117[+0] 0.7435[-2]

XZZ -0.2763[-3] -0.3751[-6] -0.3647[-6] -0.8702[-8]

YXX -0.2693[-3] -0.3657[-6] -0.3555[-6] -0.8482[-8]

YXY -0.1635[-3] -0.2220[-6] -0.2158[-6] -0.5149[-8]

YXZ 0.2361[+3] 0.3205[+0] 0.3117[+0] 0.7435[-2]

YYX -0.1635[-3] -0.2220[-6] -0.2158[-6] -0.5149[-8]

YYY 0.1124[-2] 0.1526[-5] 0.1484[-5] 0.3540[-7]

YYZ 0.7288[+3] 0.9894[+0] 0.9620[+0] 0.2295[-1]

YZX 0.2361[+3] 0.3205[+0] 0.3117[+0] 0.7435[-2]

YZY 0.7288[+3] 0.9894[+0] 0.9620[+0] 0.2295[-1]

YZZ -0.3162[-3] -0.4293[-6] -0.4174[-6] -0.9958[-8]

ZXX -0.7114[+3] -0.9657[+0] -0.9390[+0] -0.2240[-1]

ZXY 0.2643[+3] 0.3588[+0] 0.3488[+0] 0.8322[-2]

ZXZ -0.2903[-3] -0.3941[-6] -0.3832[-6] -0.9141[-8]

ZYX 0.2643[+3] 0.3588[+0] 0.3488[+0] 0.8322[-2]

ZYY 0.7114[+3] 0.9657[+0] 0.9390[+0] 0.2240[-1]

ZYZ -0.2236[-3] -0.3035[-6] -0.2951[-6] -0.7041[-8]

ZZX -0.2903[-3] -0.3941[-6] -0.3832[-6] -0.9141[-8]

ZZY -0.2236[-3] -0.3035[-6] -0.2951[-6] -0.7041[-8]

ZZZ -0.2910[-2] -0.3950[-5] -0.3841[-5] -0.9162[-7]
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TABLE XIX: Calculated second-order susceptibility tensor of MIRO-102 at 1064 nm pump wave-

length. We use the number notation a× 10b ≡ a [b]

Component β χ(2) d(MKS) d(cgs)

XXX -0.8197[+0] -0.1122[-2] -0.1091[-2] -0.2603[-4]

XXY 0.9462[-3] 0.1295[-5] 0.1260[-5] 0.3005[-7]

XXZ 0.2316[ 3] 0.3171[+0] 0.3083[+0] 0.7355[-2]

XYX 0.9462[-3] 0.1295[-5] 0.1260[-5] 0.3005[-7]

XYY -0.3157[+0] -0.4322[-3] -0.4203[-3] -0.1003[-4]

XYZ -0.6384[-3] -0.8740[-6] -0.8498[-6] -0.2027[-7]

XZX 0.2316[ 3] 0.3171[+0] 0.3083[+0] 0.7355[-2]

XZY -0.6384[-3] -0.8740[-6] -0.8498[-6] -0.2027[-7]

XZZ -0.3880[+0] -0.5311[-3] -0.5164[-3] -0.1232[-4]

YXX 0.5632[-3] 0.7710[-6] 0.7497[-6] 0.1788[-7]

YXY -0.3027[+0] -0.4144[-3] -0.4030[-3] -0.9613[-5]

YXZ -0.1047[-2] -0.1434[-5] -0.1394[-5] -0.3326[-7]

YYX -0.3027[+0] -0.4144[-3] -0.4030[-3] -0.9613[-5]

YYY 0.3939[-2] 0.5393[-5] 0.5244[-5] 0.1251[-6]

YYZ 0.1097[ 3] 0.1502[+0] 0.1461[+0] 0.3484[-2]

YZX -0.1047[-2] -0.1434[-5] -0.1394[-5] -0.3326[-7]

YZY 0.1097[ 3] 0.1502[+0] 0.1461[+0] 0.3484[-2]

YZZ -0.4537[-3] -0.6211[-6] -0.6039[-6] -0.1441[-7]

ZXX 0.1366[ 3] 0.1870[+0] 0.1818[+0] 0.4338[-2]

ZXY 0.8432[-4] 0.1154[-6] 0.1122[-6] 0.2678[-8]

ZXZ -0.3457[+0] -0.4732[-3] -0.4601[-3] -0.1098[-4]

ZYX 0.8432[-4] 0.1154[-6] 0.1122[-6] 0.2678[-8]

ZYY 0.6795[ 2] 0.9302[-1] 0.9045[-1] 0.2158[-2]

ZYZ 0.1724[-3] 0.2360[-6] 0.2294[-6] 0.5474[-8]

ZZX -0.3457[+0] -0.4732[-3] -0.4601[-3] -0.1098[-4]

ZZY 0.1724[-3] 0.2360[-6] 0.2294[-6] 0.5474[-8]

ZZZ -0.9453[ 3] -0.1294[ 1] -0.1258[ 1] -0.3002[-1]
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TABLE XX: Calculated second-order susceptibility tensor of MIRO-103 at 1064 nm pump wave-

length. We use the number notation a× 10b ≡ a [b]

Component β χ(2) d(MKS) d(cgs)

XXX 0.1492[-1] 0.9983[-5] 0.9707[-5] 0.2316[-6]

XXY -0.2491[ 3] -0.1667[+0] -0.1621[+0] -0.3867[-2]

XXZ -0.3048[-1] -0.2040[-4] -0.1984[-4] -0.4733[-6]

XYX -0.2491[ 3] -0.1667[+0] -0.1621[+0] -0.3867[-2]

XYY 0.1516[-1] 0.1014[-4] 0.9863[-5] 0.2353[-6]

XYZ 0.2291[ 2] 0.1533[-1] 0.1491[-1] 0.3556[-3]

XZX -0.3048[-1] -0.2040[-4] -0.1984[-4] -0.4733[-6]

XZY 0.2291[ 2] 0.1533[-1] 0.1491[-1] 0.3556[-3]

XZZ 0.2213[-1] 0.1481[-4] 0.1440[-4] 0.3436[-6]

YXX -0.2491[ 3] -0.1667[+0] -0.1621[+0] -0.3867[-2]

YXY 0.4490[-2] 0.3005[-5] 0.2922[-5] 0.6971[-7]

YXZ -0.2290[ 2] -0.1533[-1] -0.1490[-1] -0.3556[-3]

YYX 0.4490[-2] 0.3005[-5] 0.2922[-5] 0.6971[-7]

YYY 0.2491[ 3] 0.1667[+0] 0.1621[+0] 0.3867[-2]

YYZ -0.3367[-1] -0.2253[-4] -0.2191[-4] -0.5227[-6]

YZX -0.2290[ 2] -0.1533[-1] -0.1490[-1] -0.3556[-3]

YZY -0.3367[-1] -0.2253[-4] -0.2191[-4] -0.5227[-6]

YZZ -0.1907[-1] -0.1276[-4] -0.1241[-4] -0.2960[-6]

ZXX -0.1823[-1] -0.1220[-4] -0.1186[-4] -0.2830[-6]

ZXY 0.1497[-2] 0.1002[-5] 0.9742[-6] 0.2324[-7]

ZXZ 0.1851[-1] 0.1238[-4] 0.1204[-4] 0.2873[-6]

ZYX 0.1497[-2] 0.1002[-5] 0.9742[-6] 0.2324[-7]

ZYY -0.1938[-1] -0.1297[-4] -0.1261[-4] -0.3008[-6]

ZYZ -0.1327[-1] -0.8880[-5] -0.8635[-5] -0.2060[-6]

ZZX 0.1851[-1] 0.1238[-4] 0.1204[-4] 0.2873[-6]

ZZY -0.1327[-1] -0.8880[-5] -0.8635[-5] -0.2060[-6]

ZZZ -0.1552[-1] -0.1039[-4] -0.1010[-4] -0.2410[-6]
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[19] V. Lacivita, M. Rérat, B. Kirtman, M. Ferrero, R. Orlando and R. Dovesi, The Journal of

Chemical Physics, 2009, 131, 204509.

[20] J. Laun, D. Vilela Oliveira and T. Bredow, Journal of Computational Chemistry, 2018, 39,

1285–1290.

[21] J. Heyd, J. E. Peralta, G. E. Scuseria and R. L. Martin, The Journal of chemical physics,

2005, 123, 174101.

[22] D. Vilela Oliveira, J. Laun, M. F. Peintinger and T. Bredow, Journal of Computational Chem-

istry, 2019, 40, 2364–2376.

[23] A. Mahmoud, A. Erba, K. E. El-Kelany, M. Rérat and R. Orlando, Phys. Rev. B, 2014, 89,
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