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S1. Machine learning model

In this work, we investigate Gaussian Processes (GPs) and Deep Neural Networks (NNs) as 
machine learning models to fit ab initio quantum calculations of target properties like energies, 
forces, and non-adiabatic couplings (NACs). GPs can predict energies but require further 
modifications to predict vector quantities like forces or NACs from rotational covariant features. 
We initially investigated GPs but found differentiable NNs to perform better and to be the 
method of choice for our purpose. Nonetheless, we intend to conduct further studies on GPs 
in the future. We constructed multilayer feedforward NNs using TensorFlow/Keras (v2.3) API 
for Python. 

S1.1 Gaussian Process. 
Gaussian Processes (GPs) have an inherent uncertainty prediction and are therefore well 
suited for adaptive sampling. We trained a GP using the GPyTorch library (v1.2) and PyTorch 
(v1.6) for the energies using inverse distances as input. In contrast to NNs, a prediction of 
vector quantities from rotational invariant input features is difficult with GPs. To obtain force 
information, we calculated the derivative of the GP mean prediction using PyTorch’s autograd 
module. However, we expect forces to be notably worse, so we did not modify the GP’s 
hyperparameter optimization to incorporate forces error. For the final dataset, we obtain a 
mean absolute error (MAE) of 0.1 eV for energies and about 0.6 eV A–1 for the forces. Since 
the validation error for energies and forces could not outperform NNs, and GPs suffer from 
longer prediction times (1 s on CPU compared to 0.5–1 ms on GPU for NN), we chose NNs 
(see below) over GPs. We do not yet have a proper way to learn NACs with GPs in this way.

S1.2 Neural Network. 
We developed a TensorFlow/Keras implementation to meet the unique requirements of non-
adiabatic molecular dynamics (NAMD) simulation. As described in the main article, the 
machine learning kernel in PyRAI2MD provides tools for active learning, forces, or NACs 
prediction as a derivative from learned potentials, parallel training, and further optimizations 
like feature standardization. The implementation details are given below. 

In Adaptive Sampling, we trained multiple NNs with separate weight initialization and 
different train-test splits, and a different set of hyperparameters for the same target property. 
We used the standard deviation (SD) between an ensemble of NNs (N = 2) to estimate the 
prediction error indicating the uncertain conformational region. The complementary NNs will 
generally disagree in the out-of-training areas (i.e., completely unknown data categories). The 
SD of predicted value Y among N NNs is defined by Eq S1.

𝑆𝐷(𝑌) =
1

𝑁 ‒ 1

𝑁

∑
𝑗

(𝑌𝑗 ‒ �̅�)2#(𝐸𝑞 𝑆1)

All NNs for adaptive sampling were trained in parallel on a CPU cluster. Within the framework, 
it is possible to train both on separate GPUs or in parallel on a single GPU with sufficient 
memory. This accelerates the training phase between trajectory explorations. Each model 
runs a separate training process, which is evenly distributed between cluster nodes. 

Most importantly, differentiable NNs are needed to predict forces for the MD simulation by 
taking the first-order derivative of the NN energy prediction with respect to the input 
coordinates. We chose a smooth activation function for hidden layers (i.e., a shifted or leaky 
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soft plus activation). Forces and energy are jointly trained with combined mean squared error 
loss, proposed by Schütt et al.1 The loss function is balanced by weighting the respective loss 
parts with coefficients 𝜶 and 𝜷 as Eq S2. We used 𝜶 = 1 and 𝜷 = 1 in this work. The summation 
index i runs over N atoms and 3N coordinates. The ground truth  is obtained from quantum �̂�

chemical calculation.

𝐿 =  𝛼 ‖�̂� ‒ 𝐸‖2 + 𝛽 
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A prediction of vector quantities from rotational- and translational invariant input features is 
generally considered possible by modeling the force as a gradient of the NN energy prediction 
as Eq S3. For the NACs, we choose a similar approach motivated by Zhang et al.2  Virtual 
atom-wise potentials are differentiated to arrive at vector quantities that are then trained 
without any loss restriction on the direct NN output. The TensorFlow batch_jacobian() method 
offers a fast implementation to calculate the Jacobian matrix of the model output. As a result, 
a single NN can predict energies for the ground state plus multiple excited states 
simultaneously and have each state differentiated accordingly. We speculate that this may 
improve model performance since the NNs can learn a more versatile underlying 
representation of the molecule that maps the different energy states. We expect the same 
improvement in the training of NACs.

𝐹𝑖,𝑗 =
∂𝐸𝑖

∂𝑥𝑗
 ,𝑖 ∈ (𝑆𝑡𝑎𝑡𝑒𝑠), 𝑗 ∈ (𝐴𝑡𝑜𝑚𝑠) #(𝐸𝑞 𝑆3)

Furthermore, we adopt the approach of a phase-independent (phase-less) loss for training 
the NACs suggested by Westermayr et al.3 We find that a preliminary training period without 
a phase-independent loss improves convergence. Simultaneously, the final error slightly 
benefits from a phase-independent loss  also for phase corrected data. With representing 𝐿 𝑇𝑖𝑗

the NACs between state i and j, the ground truth  and a phase factor , the loss for �̂� 𝜖𝑖 ∈ { ‒ 1, 1}

S states is defined as Eq S4:  

𝐿 = 𝑚𝑖𝑛𝜀𝑖𝑗
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In this loss definition, the relative phase factor requires self-consistency, i.e., if the relative 𝜖𝑖𝑗

phase between states 1, 2, and 2, 3 has been defined, the phase between 1,3 is also fixed.

The feature descriptors must be integrated into the model for differentiation. We use inverse 
distances, bond and dihedral angles as possible geometric descriptors computed from nuclear 
coordinates. To reduce training time, the gradients of the geometric feature representation 
with respect to atomic coordinates were pre-computed beforehand. This was previously 
exploited by Zhang et al. Given potential or energy output , the relation to feature 𝐸 =  𝑁𝑁(𝑓(𝑥))

description , and coordinates is defined as Eq S5.𝑓(𝑥) 𝑥

∂𝐸
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The derivative of the NN output is multiplied with the pre-computed feature gradient matrix of 
the form  so that only  has to be computed during training. The training (∂𝑓𝑖 /∂𝑥𝑗) 𝑗 = 1...𝑁 ∂𝑁𝑁/∂𝑓𝑖

of NACs uses a similar way.

Weight optimization and training are carried out using Adam optimizer with a stepwise 
decrease of the initial learning rate of 1·10–3 on validation error plateaus if no improvement 
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was found. For the initial exploration of MD trajectories, we prefer small NNs, which can be 
retrained quickly and switched to a larger model with a large number of hidden layers for the 
final MD population analysis. 

The feedforward NN is further regularized by dropout and weight regularization directly 
inherited by the Keras API. We also find that the standardization of individual features or a 
general scaling of features within the differentiable model improves training.

S2. Initial training set generation

S2.1 cis-trans isomerization model for trans-1
The initial training set for the cis-trans isomerization model for trans-1 was generated with a 
composite approach, including Wigner sampling, Geometrical Interpolation, and Trajectories. 
The idea is to construct a chemically intuitive sampling in the conformational space. Figure 
S1b illustrates the data distribution from 129 CASSCF(2,2)/cc-pVDZ trajectories of trans-1. It 
represents an “ideal set”, including all necessary data. Our proposed composite approach 
allows us to efficiently generate data to resemble the “ideal set”, shown in Figure S1a
  

Figure S1. The spatial distribution of (a) the initial training set and (b) the 129 reference NAMD 
trajectories with CASSCF(2,2)/cc-pVDZ in the conformation space of 1, defined by the dihedral 
angle ∠H-C-C-H and ∠C-C-C-C. In the initial training set, the Winger sampled geometries of 
reactant and products are in blue; the interpolated geometries and the reaction coordinate are 
in red; the interpolated geometries with Wigner sampled distortions are in grey; the geometries 
from CASSCF(2,2)/cc-pVDZ NAMD trajectories are in black. 

We generated 300 geometries for both trans-1 and cis-1 using Wigner sampling at 300K (600 
in total, blue points in Figure S1a). We interpolated 401 geometries from the optimized trans-1 
to cis-1 via the MECP-trans-1 as the middle point (red points in Figure S1a). We chose 132 
out of 750 CASSCF(2,2)/cc-pVDZ NAMD trajectories, which successfully propagated more 
than 50 fs (~100 steps). We evenly sampled 10 geometries in the first 50 fs (1320 in total) in 
each of the selected trajectories. As shown in Figure S1a (black points), these data points 
have reached the crossing region at ∠H-C-C-H=0–60° and ∠C-C-C-C=150–180°. To 
enumerate the possible pathways after the crossing region, we added the Wigner sampled 
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geometrical distortions to the interpolated reaction coordinate diagram from the MECP-trans-
1 to cis-1 (grey points in Figure S1a). The Wigner sampled geometrical distortions are the 
differences between the equilibrium geometry of trans-1, and the Wigner sampled initial 
conditions. We uniformly took 20 of 200 geometries in each perturbed reaction coordinate 
(2640 in total). Overall, the initial data set for trans-1 has 4961 data points.

S2.2 4π-electrocyclic ring-closing model for 3
We used the same approach to generate the initial data for the 4π-electrocyclic ring-closing 
model for 3. The underlying reactions have two distinct pathways, one bends the 
cyclohexadiene plane upward (syn-4: θ = 120°) the other goes downward (anti-4: θ = 240°). 
Figure S2 shows the data distribution of the initial set of 3.

Figure S2. The spatial distribution of the initial training set of 3, defined by the 1,4-carbon 
distance R and the inversion angle θ. The Winger sampled geometries of reactant and 
products are in blue; the interpolated geometries and the reaction coordinate are in red; the 
interpolated geometries with Wigner sampled distortions are in grey; the geometries from 
CASSCF(4,3)/ANO-S-VDZP NAMD trajectories are in black. 

Wigner sampling at 300K generated 300 geometries for 3, syn-4, and anti-4 (900 in total, blue 
points in Figure S2). We interpolated 200 geometries from the optimized 3 to syn-4 and anti-4 
via the MECP-syn-4 and MECP-anti-4 as the middle point (400 in total, red points in Figure 
S2). We evenly sampled 5 geometries from each of the 250 CASSCF(4,3)/ANO-S-VDZP 
NAMD trajectories in 50 fs simulations (1250 in total). To expand the conformational space 
around the interpolated reaction pathways, we added the Wigner sampled geometrical 
distortions (20) to the interpolated geometries (grey points in Figure S2). We uniformly took 
20 of 200 geometries in each perturbed reaction pathway (800 in total). The total number of 
the initial data for 3 is 3349.

S3. Forces and non-adiabatic couplings

Westermayr et al. have recently described the particular challenge of predicting forces and 
NACs because the vector components are rotationally covariant (i.e., they depend on the 
molecule’s orientation).3 Figure S3 shows a rotation of geometry associated with the 
covariantly revolved force vectors.
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Figure S3. 3D representation of the rotational covariance of forces and NACs. The blue 
arrows represent the same force vectors. The geometry is rotated by 90°, leading to different 
x,y, and z components of force vectors in each orientation.
 
However, typical ML representations (e.g., ML predictions are scalar) are rotationally invariant 
and have no information about the global orientation of the molecule. Thus, it is necessary to 
implement efficient and differentiable NNs that predict forces according to the first-order 
derivatives of the energy with respect to nuclear coordinates. For predicting NACs, 
Westermayr et al. introduced a non-physical, anti-derivative of NACs, and used its first-order 
derivatives to predict NACs.3 We further tested different variants of this idea and decided to 
implement atom-wise virtual potentials for predicting NACs.

NACs depend on two electronic state wavefunctions (i.e., state i and j in Eq S6), where the 
phases of CASSCF wavefunctions do not necessarily cancel out. OpenMolcas computes 
wavefunctions with an arbitrary phase (i.e., sign). The phase change can give the opposite 
NACs values per Eq S7. Westermayr et al. have shown the uncorrected sign of NACs is 
undesired when training ML models.4 Figure S4a demonstrates the frequent and random 
alternations of the NACs along the isomerization reaction coordinate of 1. Figure S4b shows 
the phase-correction NACs.

𝑑𝑖,𝑗 =
⟨Ѱ𝑖|∂𝐻𝑒𝑙

∂𝑅 |Ѱ𝑗⟩
𝐸𝑗–𝐸𝑖

 #(𝐸𝑞 𝑆6)

⟨–Ѱ𝑖|∂𝐻𝑒𝑙

∂𝑅 |Ѱ𝑖⟩ =  –⟨Ѱ𝑖|∂𝐻𝑒𝑙

∂𝑅 |Ѱ𝑖⟩ #(𝐸𝑞 𝑆7)

Figure S4. NAC representation using π- and π*-orbitals as a function of interpolated 
geometries from trans-1 to MECP-trans-1 to cis-1. (a) The phases are randomly assigned, 
resulting in an unsmooth NACs function. The –1 indicates the undesired phase changes if we 
do not apply corrections. (b) The phases of electronic state wavefunctions are corrected, 
leading to a smooth NACs function. The NACs in the equilibrium geometry of trans-1 are the 
reference. 
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We employed a phase correction scheme4-6 based on wavefunction overlap between two 
adjacent geometries along with the interpolated reaction path. The phase correction to the i-th 
state at t+Δt uses a factor pi(t+Δt) computed by the electronic state wavefunction overlap 
between two adjacent geometries, Si(t+Δt) = <Φi(t)|Φi(t+Δt)>. The factor pi(t+Δt) = 1 when 
Si(t+Δt) is close to 1 and pi(t+Δt) = –1 when Si(t+Δt) is close to –1. In CASSCF formalism, the 
electronic state wavefunction is a linear combination of all considered electronic 
configurations, Φk = ∑CkΨk, where Ck is the configuration interaction (CI) coefficient. Due to 
the electronic configurations being orthonormal, the factor becomes the sum of multiplication 
of CI coefficients, pi(t+Δt) = ∑Ci(t)Ci(t+Δt). The magnitude of pi(t+Δt) is usually close to 1 when 
two states are largely separate. At the crossing region, the interstate wavefunction overlap 
Si,j(t+Δt) might be greater than the intrastate overlap Si(t+Δt) as the diabatic contributions 
switching. In this case, the maximum Si,j(t+Δt) will be use to track the phase.

The active orbitals are degenerate, and the order of orbitals does not affect the CASSCF 
calculation results. But it does change the CI coefficients. For instance, in CASSCF(2,2), 
switching the order of orbital 𝜑1 and 𝜑2 in the singly-excited configuration Ψ = 𝜑1,α𝜑2,β – 𝜑2,α𝜑1,β 
 results in an opposite configuration Ψ’ = 𝜑2,α𝜑1,β – 𝜑1,α𝜑2,β = – Ψ. Therefore, phase correction 
based on the CI overlap requires the orbital order unchanged in the active space of adjacent 
geometries. To check if the orbital order flipped, we evaluated the orbital overlap sj(t+Δt) = 
<Ψj(t)|Ψj(t+Δt)> = ∑cj(t)cj(t+Δt) using the natural orbital coefficients, cj. The orbitals remaining 
in the same order give sj(t+Δt) ≈ 1. Otherwise, the CI coefficients must first multiply by –1 to 
correct the CI overlap.

The phase-corrected NACs become the reference for subsequent trajectory points. For 
example, we chose the converged wavefunction of the optimized trans-1 as the reference 
geometry because it is the reactant. Figure S5 illustrates the phase correction scheme. 

Figure S5. The phase correction scheme. The arrow represents the tracking and correcting 
procedures.

We first tracked the phase from trans-1 to MECP-trans-1, then to cis-1 along with the 
interpolated reaction coordinate diagram. Then, we used trans-1 and cis-1 to correct the 
phase in their Wigner sampled initial geometries, respectively, assuming the generated 
geometries are adjacent to the equilibrium. The corrected initial geometries become the 
reference for the subsequent points in the trajectories and the perturbed reaction coordinate. 

The discontinuous nature of NACs near the surface crossings make NNs learning extremely 
difficult; instead of training with the full expression of NACs, we trained NNs with only the 
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numerator, known as interstate coupling.7-10 The ML-NAMD trajectory evaluates NACs on-the-
fly based on the predicted state energy differences and interstate coupling using Eq S6.

In adaptive sampling, our code automatically corrects NACs of the new geometries using the 
most similar geometries in the initial set as the reference by computing their root-mean-square 
difference RMSD of Cartesian coordinates. The RMSD depends on the atom order and the 
molecular alignment. Thus, we implemented the Hungarian algorithm11 to sort and align the 
molecule for more accurate RMSD calculation. 

In the 4π-electrocyclic ring-closing of 3, the phase correction with (4,3) space is more 
challenging to manage because of the increasing combination of the orbital orders and 
configuration state functions. An alternative phase correction scheme directly compute the 
sign of the NACs using the sign of the overlap between the interstate couplings at t and t+Δt 
as Si,j(t+Δt) = ∑hi,j(t)hi,j(t+Δt), where hi,j is the normalized interstate coupling vectors between 
state i and j. A better choice is to do an internal phase correction in the NNs with a phase-less 
loss function proposed by Westermayr et al.3 We only used the phase-corrected NACs in 
developing PyRAI2MD. All results discussed in the main text are obtained with the phase-less 
loss in NNs.

S4. NNs training

We trained NNs on Intel(R) Xeon(R) CPU E5-2680v4@2.40GHz. We shuffled the initial 
training set and split them into training and validation sets in a 9:1 ratio. We performed grid-
search to optimize the NNs hyperparameters. We used a learning rate scheduler to monitor 
the learning efficiency. The learning rate for energies and forces reduces in 2700 epochs as: 
1–1500: 1·10–3, 1501–2500: 1·10–4, 2501–2700: 1·10–5; the learning rate for NACs reduces in 
1,600 epochs as : 1–900: 1·10–3, 901–1400: 1·10–4, 1401–1600: 1·10–5. Table S1 lists the 
explored hyperparameters in the grid-search for the cis-trans isomerization of trans-1 and 4π-
electrocyclic ring-closing of 3.

Table S1. The NNs hyperparameters in grid-search using the initial training set.

Hyperparameters Values

Hidden layers 3, 4, 5, 6, 7, 8

Neurons/layer 300, 400, 500, 600, 700, 800

Batch size 64, 128

Regularization method dropout (5·10–3), L2 (1·10–9)

The grid-search included 864 NNs and many different combinations of hyperparameters have 
achieved a similar accuracy. We select the optimal NNs hyperparameters based on the 
computation time. Table S2 and S3 collect all hyperparameters of the chosen model for the 
cis-trans isomerization of trans-1 and 4π-electrocyclic ring-closing of 3, respectively.
 
Table S2. The NNs hyperparameters and the mean absolute errors with R2 of predicted 
energies (eV), forces (eV Å–1), and interstate coupling term of NACs (eV Å–1) trained on the 
initial set for cis-trans isomerization of trans-1 with 4961 data points.
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Energies, Forces NACsa

Hyperparameters NN1 NN2 NN1 NN2

Activation function leaky soft plus leaky soft plus

Hidden layers 3 5 5 3

Neurons/layer 400 300 300 600

Batch size 64 128 128 128

Epochs 2700 2700 1600 1600

Learning rate 1·10–3 1500 1500 900 900

Learning rate 1·10–4 1000 1000 500 500

Learning rate 1·10–5 200 200 200 200

Dropout Not use Not use 0.005 0.005

L2 1·10–9 1·10–9 Not use Not use

MAE 0.028(0.16)b 0.024(0.14)b 0.188 0.144

R2 0.9978(0.9324)b 0.9985(0.9409)b 0.6660 0.7865
aHere the NAC only represents the interstate coupling term.b The MAE and R2 of forces are 
shown in the parenthesis.

Table S3. The NNs hyperparameters and the mean absolute errors with R2 of predicted 
energies (eV), forces (eV Å–1), and interstate coupling term of NACs (eV Å–1) trained on the 
initial set for the 4π-electrocyclic ring-closing of 3 with 3349 data points.

Energies, Forces NACsa

Hyperparameters NN1 NN2 NN1 NN2

Activation function leaky soft plus leaky soft plus

Hidden layers 3 4 3 4

Neurons/layer 400 300 500 300

Batch size 128 128 128 128

Epochs 2700 2700 1600 1600

Learning rate 1·10–3 1500 1500 900 900

Learning rate 1·10–4 1000 1000 500 500

Learning rate 1·10–5 200 200 200 200

Dropout Not use Not use 0.005 0.005
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L2 1·10–9 1·10–9 Not use Not use

MAE 0.028(0.11)b 0.026(0.12)b 0.062 0.062

R2 0.9993(0.9932)b 0.9995(0.9922)b 0.8014 0.8095

PyRAI2MD trains two sets of NNs for energies+forces and NACs (4 NNs in total) in parallel 
with 28 CPUs, where the cis-trans isomerization model takes 24 minutes and the 4π-
electrocyclic ring-closing model takes 32 minutes. The MAE of energies is notably below the 
chemical accuracy threshold (1 kcal mol–1, 0.043 eV). The MAE of forces is comparable to the 
recently reported values of 0.10–0.15 in SO2 and CH2NH2

+.3

S5. Adaptive sampling

The initial training set provided preliminary information on the conformational space. The 
trained NNs potential becomes less reliable when the trajectory frequently encounters the 
conformations outside the data set. The NNs need to learn these new data to improve the 
fitted potential. We used adaptive sampling4, 12 to expand the initial training set iteratively with 
two sets of NNs. In each iteration, we propagate 250 trajectories from the S1-FC points of the 
initial conditions sampled by Wigner distribution at 300K. In each trajectory, two sets of NNs 
predict the energies, forces, and NACs for the same geometry. The SD measures the 
prediction uncertainty. Note the energy SD is computed per state, and the SD of forces and 
NACs are evaluated per atom per axis. Thus, we chose the maximum SD as the prediction 
uncertainty for each property. We used three thresholds in energies, forces, and NACs to 
determine the uncertain geometry. When a trajectory completes without exceeding all 
thresholds, it will be marked as “converged.” Otherwise, the trajectory stops and records the 
geometries exceeding the thresholds. This procedure helps the trajectory avoid running into 
the unphysical region. The collected geometry would fail the quantum chemical calculations 
or even poison the training data if the quantum chemical calculations return meaningless data. 
After collecting all uncertain geometries, the adaptive sampling workflow automatically 
performs the quantum chemical calculations to compute the energies, forces, and NACs 
explicitly and restart the NNs training, including the new data. To accelerate the adaptive 
sampling, we created 20 threads for trajectories propagation and distributed the single 
quantum chemical calculations on 56 Intel(R) Xeon(R) CPU E5-2680v4@2.40GHz.  The 
training of four NNs sharing the 56 CPUs at the same time. 

Westermayr et al. have suggested some thresholds of adaptive sampling.4 We followed similar 
choices and set the energy threshold to 0.03 Hartree, forces and interstate coupling to 0.25 
Hartree Bohr–1. The QC trajectories have shown that most of the cis-trans isomerization of 1 
completed in less than 300 fs. Thus, the adaptive sampling propagates the NNs trajectories 
in 500 fs. Figure S6a shows the adaptive sampling progress of the cis-trans isomerization of 
trans-1 in terms of numbers of converged trajectories and new geometries found in each 
iteration.
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Figure S6. (a) The adaptive sampling progress of the cis-trans isomerization of trans-1 in 
terms of the numbers converged trajectory (black) and new geometries found in each iteration 
(red). The grey dotted line marks iteration 28. (b) The geometry distribution of the initial training 
set and adaptively sampled data of the cis-trans isomerization of trans-1. The initial data 
points are in black.

The adaptive sampling immediately improved the NNs potential for the cis-trans isomerization 
reaction. 80% of the trajectories have converged in 5 iterations, which found 565 new 
geometries. Up to 28 iterations, 98% of the trajectories have converged and collected in an 
overall 1516 new geometries. The subsequent iterations did not further improve the NNs. 
Thus, we decided to use the data at iteration 28 as the final set, which remains a compact 
data size. 

We characterized the adaptively sampled geometries to learn the NNs’ perceptions in the 
conformational space. Figure S6b plots the geometry distribution of the initial and sampled 
data. At the beginning of adaptive sampling, the NNs explored a broad region in the 
conformational space. The sampled points were largely discrete and even approached the 
plot center (∠H-C-C-H = 90° and ∠C-C-C-C = 90°). As the sampling proceeds, the exploration 
starts to focus on the trans-1 and cis-1, which suggests our initial training set has effectively 
sampled the essential conformational space of the photoreaction paths. A few data collected 
at ∠H-C-C-H = 0–30° and ∠C-C-C-C = 150–180° suggests the final set is sufficient to fit the 
PES at that region.

Since the 4π-electrocyclic ring-closing of 3 has a more complex excited- and ground-state 
PES, we have run the adaptive sampling in 100 iterations with 1000 fs trajectories. We 
increased the simulation temperature to 1200K to speed up the exploration on the PESs, 
ensuring that NNs visit the conformational space of all possible reactions. Figure S7 shows 
the adaptive sampling progress of the 4π-electrocyclic ring-closing of 3.
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Figure S7. The adaptive sampling progress of the 4π-electrocyclic ring-closing of 3 in terms 
of the numbers converged trajectory (black) and new geometries found in each iteration (red). 

The adaptive sampling of the 4π-electrocyclic ring-closing of 3 shows a slower improvement 
of the NNs potentials than that of the cis-trans isomerization of trans-1. The convergence first 
exceeded 80% after 6 iterations. However, it fluctuated in the next 18 iterations. The 
convergence became higher than 90% after 50 iterations and reached 96% at iteration 100. 
Figure S8 plots the geometry distribution of the initial and sampled data.

Figure S8. The geometry distribution of the initial training set and adaptively sampled data of 
the 4π-electrocyclic ring-closing of 3. The initial data points are in black.

In the first 40 iterations, the adaptive sampling only focused on the regions with R > 2.2 Å, 
which correspond to the unexpected intermediates 3a and 3b. The adaptive sampling turned 
to visit the conformational space around syn-4 (R < 1.6 Å and θ < 150°) after 30 iterations. 
The relatively slow progress suggests the low yield of the ring-closing products even at 1200K. 
We choose the data at iteration 100 as the final set because the NNs have sufficiently explored 
the conformational space of all possible reactions.
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S6. The computational cost of ML-NAMD

The ML-NAMD simulations of the cis-trans isomerization of trans-1 and the 4π-electrocyclic 
ring-closing of 3 used 1 Intel(R) Xeon(R) E5-2680v4@2.40GHz CPU per trajectory. Table S4 
collects the wall time of energies, forces, and NACs calculations in one step and the entire 
trajectory.

Table S4. The computational cost of energies, forces, and NACs in a single point calculation 
and a trajectory by quantum chemical and neural networks.

Energies, Forces, and NACs, seconds Trajectory, seconds

QCcis-trans 335.763a 143331.733b

MLcis-trans 0.00991c 22.775(12.642)d

QCring-closing 2497.999e 1436077.054f

MLring-closing 0.0118g 56.027 (37.598)h

a401 CASSCF(2,2)/cc-pVDZ single point calculations. b243 trajectories with CASSCF(2,2)/cc-
pVDZ in 500 fs. c1000 NNs predictions. d5573 NNs FSSH trajectories and 5820 NNs ZNSH 
trajectories (shown in parathesis) in 500 fs. e3350 CASSCF(4,3)/ANO-S-VDZP single point 
calculations. f240 trajectories with CASSCF(4,3)/ANO-S-VDZP in 1000 fs. g1000 NNs 
predictions. h3910 NNs FSSH trajectories and 3954 NNs ZNSH trajectories (shown in 
parathesis) in 1000 fs.

The 10 ns ML-NAMD simulations records concise information every 0.5 fs in the first 1 ps. 
After that, it only outputs every 50 fs for saving disk space. The average cost using the FSSH 
method over 31 trajectories is 86.2 hours (310318.194 seconds). When using the ZNSH 
method, the average cost over 89 trajectories is 50.0 hours (179913.449 seconds).

The 1 ns ML-NAMD simulation of the 4π- ring-closing of 3 records the trajectories every 0.5 
fs in the first 1 ps, and then it only checkpointed the trajectories every 1 ps in the 1–1000 ps. 
The average cost of the 1 ns ML-NAMD simulations over 200 FSSH trajectories is 10.9 hours 
(39361.350 seconds). For comparison, the 1 ns ML-NAMD simulations over 984 ZNSH 
trajectories spent 4.8 hours (17151.537 seconds).

S7. Data and code availability

PyRAI2MD uses the JSON format to store data. We have converted the training data in plain 
text and saved them in cis-trans-data6207.txt and ring-closing-data6267.txt. The data includes 
Cartesian coordinates of nuclear positions in Angstrom, electronic energies for S0 and S1 state 
in Hartree, forces for S0 and S1 state in Hartree Bohr–1, and interstate coupling term of NACs 
in Hartree Bohr–1. We recorded a video for the 10 ns ML-NAMD simulations of the trans-to-cis 
reaction of trans-1, named trans-to-cis-10ns-720p.mp4. The video is fast-forwarded in 10 fs 
per step in the 0–1000 fs, 1 ps per step in the 1–1000 ps, and then 10 ps per step in the 1–10 
ns. The PyRAI2MD code is open-source and free of charge for non-commercial scientific 
research. The NAMD kernel is available on GitHub https://github.com/lopez-lab/PyRAI2MD. 
The ML kernel is available upon request; please contact Pascal Friederich 
(pascal.friederich@kit.edu).

https://github.com/lopez-lab/PyRAI2MD
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S8. Quantum chemical calculations of trans-hexafluoro-2-butene

S8.1 CASSCF calculations
We prepare the reference quantum chemical calculations for trans-1, cis-1, MECP-trans-1, 
and 2 using the complete active space self-consistent field (CASSCF) theory implemented in 
OpenMolcas 19.11.13 We chose the cc-pVDZ basis set14 for all atoms. We did not use the 
diffuse functions for two reasons. 1) the S1 state in trans-1 and cis-1 are mainly ππ* valence 
excited-states. 2) the diffuse functions are overwhelmingly expensive as we have performed 
67133 single points calculations to prepare the smoothly continued training data for NACs 
phase correction. We constructed a (2,2) active space with 2 π-electrons and 2 π-type orbitals 
from the C=C bond. Figure S9 shows the converged orbitals in trans-1 and cis-1. 

Figure S9. The (2,2) active space of trans-1 and cis-1 with CASSCF(2,2)/cc-pVDZ. The 
occupation numbers are averaged over two states. Isosurface value: 0.03.

We optimized the geometries of trans-1 and cis-1 with CASSCF(2,2)/cc-pVDZ. Figure S10 
shows the geometries of trans-1 and cis-1. 

Figure S10. The equilibrium geometries of trans-1 and cis-1 and the minimum energy 
crossing points MECP-trans-1 and MECP-cis-1, optimized with the CASSCF(2,2)/cc-pVDZ. 
Atom colors are white: H; grey: C; green: F.

The geometries are the local minimum, as their vibrational frequencies are positive with the 
CASSCF(2,2)/cc-pVDZ. From the S1 Franck-Condon point of trans-1 and cis-1, we performed 
minimum energy path (MEP) calculations to search for possible S1 minimum. Instead of 
stationary points, we have located two distinct MECPs, MECP-trans-1, and MECP-cis-1 at 
the end of the MEP. The C-H, C-C, C=C bonds in trans-1 and cis-1 are 1.08, 1.50, and 1.34 
Å. The ∠H-C-C-H and ∠C-C-C-C angles are 180° and 0° in trans-1 and cis-1, respectively. In 
MECP-trans-1 and MECP-cis-1, the C=C bond increased to 1.38 Å and showed a 
pyramidalized C-H bond. The resulting angle of ∠H-C-C-H became 59° and 109° in MECP-
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trans-1 and MECP-cis-1, respectively. The ∠C-C-C-C angles are 152° and 38° in MECP-
trans-1 and MECP-cis-1, which are less changed than ∠H-C-C-H angles.

S8.2 Comparison between CASSCF and CASPT2
The CASSCF calculation often overestimates the vertical excitation energies due to the lack 
of dynamic electron correlations. To reveal the influence of dynamic electron correlations on 
the PESs of the cis-trans isomerization of trans-1, we compared the CASSCF(2,2)/cc-pVDZ 
and CASPT2(2,2)/cc-pVDZ using the interpolated reaction coordinate diagram from trans-1 
to cis-1 via MECP-trans-1, shown in Figure S11.

Figure S11. The reaction coordinate diagram from trans-1 to cis-1 via MECP-trans-1 with 
the CASSCF(2,2)/cc-pVDZ and CASPT2(2,2)/cc-pVDZ. The S1 and S0 energies are shown in 
red and black.

The reaction coordinates are interpolated based on the optimized geometries of trans-1 and 
cis-1, and MECP-trans-1 by linearly varying the Z-matrix parameters with equal-spaced 
increments. Figure S11 shows identical PES topology with CASSCF(2,2)/cc-pVDZ and 
CASPT2(2,2)/cc-pVDZ. Thus, we expect that the CASSCF calculations are reliable for 
computing the training data and reference NAMD trajectories of the cis-trans isomerization of 
trans-1.

S8.3 The influence of the NVE ensemble on the NAMD trajectories of trans-1
In the NAMD simulation, we used the thermostat to equilibrate the trajectories at a constant 
temperature (300K). Here we want to address the importance of the thermostat on obtaining 
physically meaningful dynamics results, especially CASSCF dynamics. Without a thermostat, 
the trajectories conserved the total energy representing an NVE ensemble. It is reasonable to 
describe the excited-state dynamics of simple molecules in a short simulation time, where one 
can consider the energy transfer has not happened. However, the overestimated excitation 
energy of CASSCF trajectory would result in excess kinetic energy when the NVE trajectory 
lands on the ground-state, overcoming the thermal-forbidden barrier. To justify this, we 
obtained 604 NAMD trajectories for trans-1 in NVE with CASSCF(2,2)/cc-pVDZ. Figure S12 
plots the trajectories of the trans➝cis isomerization and trans➝trans reversion of trans-1. The 
∠C–C–C–C and ∠H–C–C–H dihedral angles are tracked during the 500 fs simulations. The 
angle changes accumulated in the consecutive clockwise or anti-clockwise rotations.



S16

Figure S12. The ∠C–C–C–C and ∠H–C–C–H dihedral angles in 604 NVE trajectories in 500 
fs simulations with CASSCF(2,2)/cc-pVDZ. The angle changes accumulated in the 
consecutive clockwise or anti-clockwise rotations.

In the trans➝cis isomerization, the ∠C–C–C–C angle vibration is similar to that with a 
thermostat; however, the ∠H–C–C–H angle shows stronger vibrations with increased kinetic 
energy. We noted a few trajectories show accumulated ∠H–C–C–H rotations larger than 270°, 
which seems not very physical (one would expect a rotation about 180° in the cis-trans 
isomerization). We observed a 360° CF3 group rotation in a trans➝trans trajectory; the ∠C–C–
C–C angle changed from 180° to 540° (marked with arrows). In another trajectory, the ∠C–C–
C–C angle first decreased to 0° then returned to 180° (marked with arrows). These suggest 
the kinetic energy in the NVE trajectories unphysically broke the C=C bond in the ground-
state. We can see a stronger effect on the ∠H–C–C–H vibration that more trajectories showed 
a 360° rotation of C–H bonds. 

We expect the overestimation of kinetic energy would be smaller at a higher level of theory 
(e.g., XMS-CASPT2). Thus, it might not be a big issue in the NVE ensemble. In general, using 
a thermostat can avoid the excess or overestimated kinetic energy, especially for the ground-
state portion of the NAMD trajectories.

S8.4 Additional information about CASSCF(2,2)/cc-pVDZ trajectories of trans-1
Here we summarize some additional results from the CASSCF(2,2)/cc-pVDZ trajectories of 
trans-1. We plot the number of hops during the simulation time to compare the QC and NNs 
predicted surface hopping events (Figure S13). 
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Figure S13. The average number of hops of the QC and NNs trajectories of trans-1 over 500 
fs simulation at 300K. The curves average over 1371 trajectories with CASSCF(2,2)/cc-pVDZ, 
5573 NNs FSSH trajectories, and 5820 NNs ZNSH trajectories.

The QC and NNs ZNSH trajectories show similar surface hopping rate as they have close S1 
half-life time. Because the ZNSH requires a local minimum of the state energy gap under the 
threshold (0.5 eV), it tends to avoid the surface hopping if the degenerate region does not 
satisfy the condition, thus most of ZNSH trajectories undergo a single hop to the ground-state 
rather than being hopping back and forth between the states. The final average number of 
ZNSH is 1.03, slightly smaller than the QC trajectories (1.16). The NNs FSSH trajectories 
show a notably smaller slope due to the overestimated S1 lifetime. The errors in predicted 
NACs result in the more frequent surface hopping, thus leading to a larger number of hops 
(1.25).

To compare the NNs predicted geometrical changes with the CASSCF(2,2)/cc-pVDZ 
dynamics, we computed the average value of the ∠C–C–C–C and ∠H–C–C–H dihedral angles 
during the simulation, shown in Figure S14.
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Figure S14. The expectation values of the ∠C–C–C–C and ∠H–C–C–H dihedral angles over 
time by averaging 1371 QC trajectories and 5820 NNs ZNSH trajectories. The plots color-
coded the trans➝cis, trans➝carbene, and trans➝trans pathways in red, yellow, and blue.

The NNs trajectories demonstrate similar geometrical changes to the QC trajectories in all 
three pathways in the 500 fs simulation, which agree with the individual trajectories plot. 
Specifically, the NNs trajectories show a slightly faster reduction of the ∠C–C–C–C dihedral 
than QC trajectories at 100 fs. After that, the NNs and QC trajectories show very similar angles.

S9. Quantum chemical calculations of norbornyl cyclohexadiene

S9.1 CASSCF calculations
The CASSCF calculations for 3, MECP-syn-3, MECP-anti-3, 3a, 3b, syn-4, and anti-4 used 
the ANO-S-VDZP basis set.15-18 This basis set has shown good performance in our previous 
study on the 4π-electrocyclic ring-closing reaction of another similar compound. Since we 
used the phase-less loss to train the NNs, we only performed 3349 single point calculations 
to generate the initial training data. Thus, the ANO-S-VDZP with diffuse functions does not 
make the training data calculation a lot more expensive. We chose an active space of 4 π-
electrons and 3 π-type orbitals. We removed the π*-orbital in A2 symmetry to ensure consistent 
CASSCF state ordering with CASPT2 calculations. Figure S15 illustrates the natural orbitals 
and averaged occupation of 3.

Figure S15. The (4,3) active space of 3 with CASSCF(4,3)/ANO-S-VDZP. The occupation 
numbers are averaged over two states. Isosurface value: 0.03.

We optimized the geometries of 3, MECP-syn-3, MECP-anti-3, 3a, 3b, syn-4*, and anti-4* 
with CASSCF(4,3)/ANO-S-VDZP, shown in Figure S16.

Figure S16. The optimized geometries of 3, MECP-syn-3, MECP-anti-3, 3a, 3b, syn-4’, and 
anti-4’ with CASSCF(4,3)/ANO-S-VDZP. The blue and pink dotted lines highlight the distance 
R between the carbon atoms closing the cyclohexadiene ring and the bending angle θ of the 
cyclohexadiene plane. θ = 0–180° represents a syn-configuration and θ = 180–360° 
represents an anti-configuration. syn-4*, and anti-4* are optimized with R = 1.7 Å. Atom colors 
are white: H; grey: C. 
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The geometry of 3 is optimized to a local minimum (R = 2.86 Å, θ=0°), as the vibrational 
frequencies are positive with the CASSCF(2,2)/ANO-S-VDZP. From the S1 Franck-Condon 
point, we slightly perturb 3 toward syn-4 and anti-4 to search possible S1 minima and MECPs 
along with the MEP. The last MEP geometries are then optimized to MECP-syn-3 (R = 2.32 
Å, θ=138°), and MECP-anti-3 (R = 2.31 Å, θ=225°). The intermediate 3a (R = 2.60 Å, θ=142°) 
and 3b (R = 2.61 Å, θ=220°) are optimized from the non-equilibrium geometry in the NAMD 
simulations. The frequency calculations confirm them as true minima without imaginary 
frequency. The newly formed σ-bond in syn-4 and anti-4 become less active as the 
occupation is getting closer to 2.00. Consequently, the CASSCF(4,3)/ANO-S-VDZP geometry 
optimizations did not converge well. We constrain the σ-bond with R = 1.7 Å to optimize nearby 
geometries, syn-4* and anti-4*, and use them in the Wigner sampling.

S9.2 Comparison between CASSCF and CASPT2
We have compared the CASSCF(4,3)/ANO-S-VDZP and CASPT2(4,3)/ANO-S-VDZP to 
determine the reliability of the CASSCF dynamics for the 4π-electrocyclic ring-closing of 3. 
The reaction coordinate diagram from 3 to syn-4* and anti-4* are shown in Figure S17.

Figure S17. The reaction coordinate diagram from 3 to syn-4’ and anti-4’ via MECP-syn-3 
and MECP-anti-3  with the CASSCF(4,3)/ANO-S-VDZP and CASPT2(2,2)/ANO-S-VDZP. The 
S1 and S0 energies for the syn-pathway are shown in pink and grey; the S1 and S0 energies 
for the syn-pathway are shown in red and black.

The CASSCF(4,3)/ANO-S-VDZP and CASPT2(4,3)/ANO-S-VDZP calculations consistently 
show the syn-pathway is slightly steeper descent than the anti-pathway from the S1-FC point. 
When it is close to the S1/S0 intersection (Step 11), the anti-pathway has lower energy than 
the syn-pathway, leading to a 0.20 eV lower crossing point. Beyond the intersection, both 
methods agree that the S0 PES of the anti-pathway is flat while the syn-pathway shows a 
barrier. Thus, we would expect consistent photodynamics of the 4π-electrocyclic ring-closing 
of 3 with CASSCF and CASPT2.

S9.3 Additional information about CASSCF(4,3)/ANO-S-VDZP trajectories of 3
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Here we summarize some additional results from the CASSCF(4,3)/ANO-S-VDZP trajectories 
of 3. We plot the number of hops during the simulation time in Figure S19 to compare the QC 
and NNs predicted surface hopping events 

Figure S18. The average number of hops of the QC and NNs trajectories of 3 during 1000 fs 
simulation at 300K. The curves average over 240 trajectories with CASSCF(4,3)/ANO-S-
VDZP, 3910 NNs FSSH trajectories, and 3954 NNs ZNSH trajectories.

We observed similar surface hopping rate in the QC and NNs ZNSH trajectories since their S1 
half-life are close. As we have discussed in Section S8.4, the NNs ZNSH trajectories predict 
less frequent surface hopping (1.12) than the QC trajectories (1.23). The number of hops in 
the NNs FSSH trajectories is largely deviated from the QC trajectories. The surface hopping 
rate is slower due to the overestimated S1 lifetime. Because of the errors in the predicted 
NACs, the NNs FSSH trajectories show frequent back and forward hops, thus resulting in 
larger number of hops (1.39) than the QC trajectories.

The NAMD simulations for the 4π-electrocyclic ring-closing of 3 predicted low-yields of syn-4 
and anti-4. The majority of the trajectories reverted to 3 after surface hopping in both QC 
calculations and NNs predictions. Figure S19 plots the non-productive trajectories obtained 
from the 1000 fs simulations with CASSCF(4,3)/ANO-S-VDZP and NNs. 

Figure S19. The non-productive NAMD trajectories of electrocyclic ring-closing of 3 computed 
with (a) CASSCF(4,3)/ANO-S-VDZP and (b) NNs in 1000 fs simulations at 300K. The black 
dots represent the last surface hopping point in each trajectory. 
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Figure S19a shows the 80% QC trajectories bifurcated from the S1-FC regions of 3 to the syn- 
and anti-pathway. 44% of the trajectories moved along with the syn-pathway, and 35% of the 
trajectories went to the anti-pathway. The NNs trajectories in Figure S19b agree that the syn-
pathway is preferred (syn: 53% vs. anti: 31%).

We then compare the QC and NNs trajectories by plotting the yield of 3a, 3b, syn-4, and 
anti-4 during the 1 ps NAMD simulation at 300K, shown in Figure S20.

Figure S20. (a) QC and (b) NNs predicted yield of 3a (dashed red), 3b (dashed blue), syn-4 
(solid red) and anti-4 (solid blue) in 1 ps NAMD simulation at 300K for 3.

The QC trajectories (Figure S20a) show quick conversions from 3a and 3b to 3 in the first 100 
fs. The yields of 3a and 3b reach the first maximum value then dramatically drop around 100 
fs. The second peak of the yield curve of 3a and 3b appears at 200 fs, then gradually reduce 
in 200–500 fs. After that, the yields are nearly unchanged to the end of simulation. The 
formation of anti-4 starts around 150 fs. The NNs trajectories show rather smooth curves in 
because of more trajectories are included (Figure S20b). The NNs predicted yields of 3a and 
3b show similar topology to QC trajectories, which approach the maximum values around 150 
fs and reduce to steady values after 500 fs. The formation of syn-4 and anti-4 begin at 100 
fs. The yield curves of syn-4 and anti-4 in the NNs trajectories suggest the ring-closing 
reactions complete at 200 fs since the yield has not changed in the rest of simulation time, 
which agree with the QC trajectories.

We zoom in the 100-200 fs region to compare the yield of syn-4 and anti-4 in NNs trajectories 
and the experiment. The yields are normalized with respect to anti-4 and the simulation and 
experiment time windows are rescaled to 0–1, shown in Figure S21. The detail experiment 
data are collected in Figure S23.
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Figure S21. Comparison of the yield of syn-4 and anti-4 in the NNs trajectories and 
experiment. The simulation time 100–200 fs and the experiment time 0–4 hours are 
normalized to 0–1. The predicted and measured yields are normalized with respect to anti-4 
ranging from 0 to 1. 

S10. Experimental details for the 4π-electrocyclic ring-closing of norbornyl 
cyclohexadiene.

S10.1 Synthetic methods 
All reagents were obtained from commercial vendors and used as received unless otherwise 
noted. Dry solvent was collected after passing through a bed of activated alumina in a JC 
Meyer Solvent System. Flash column chromatography was performed using F60 silica gel 
(40-63 μm, 230-400 mesh, 60Å) purchased from Silicycle. Analytical thin-layer 
chromatography (TLC) was carried out on 250 μm 60-F254 silica gel plates purchased from 
EMD Millipore, and visualization was affected by observation of fluorescence-quenching with 
ultraviolet light and staining with potassium permanganate as a developing agent. 
 
Solution-state 1H NMR and 13C NMR were recorded on Varian Inova 600, Varian Inova 500, 
or Varian Mercury 400 spectrometers operating respectively at 600, 500, and 400 MHz for 1H 
and at 126, and 101 MHz for 13C. Chemical shifts are reported in parts per million (ppm) 
relative to residual protonated solvent for 1H (CHCl3 = δ 7.26, CD3CN = δ 1.94) and relative to 
carbon resonances of the solvent for 13C (CDCl3 = δ 77.16, CD3CN = δ 118.26). Peak 
multiplicities are annotated as follows: br = broad, s = singlet, d = doublet, t = triplet, q = 
quartet, m = multiplet.

S10.2 Materials
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Ketone SX was prepared from norbornene according to a modified protocol by McCulloch and 
coworkers.19 After silica gel column chromatography (3:7 to 6:4 dichloromethane/hexanes), 
the NMR spectra and melting point of SX agreed with the literature. For convenience, we have 
included the spectral data in CDCl3 below.
Physical properties: white solid, mp = 43 – 44 °C;
Rf = 0.35 (silica gel, 4:6 dichloromethane/hexanes, visualized with UV and permanganate 
stain);
1H NMR (500 MHz, CDCl3): δ 6.36 (t, J = 2.5 Hz, 2H), 3.03 (p, J = 2.4 Hz, 2H), 2.25 (s, 2H), 
2.17 (t, J = 2.0 Hz, 2H), 2.06 (dt, J = 10.4, 2.3 Hz, 1H), 1.44 (dt, J = 7.6, 2.4 Hz, 2H), 1.13 (dd, 
J = 7.3, 2.5 Hz, 2H), 0.72 (d, J = 10.3 Hz, 1H);
13C NMR (126 MHz, CDCl3): δ 201.3, 130.8, 51.7, 43.0, 40.0, 35.8, 31.9.

3
A solution of ketone SX (38 mg, 0.22 mmol, 1.0 equiv.) in hexanes (2.0 mL, 0.11 M) in a 
microwave tube at room temperature under an atmosphere of nitrogen was sealed and heated 
to 73 °C for 20 hours. The reaction was allowed to cool to room temperature and the colorless 
solution was passed through a plug of silica gel. The eluted solution was concentrated by 
rotary evaporation and then high vacuum for 2 mins to yield 3 as a colorless oil (23 mg, 72%). 
The NMR spectra of 3 agreed with the literature.19 For comparison later, we have included the 
spectral data in CD3CN below.
Physical properties: colorless oil;
Rf = 0.73 (silica gel, hexanes, visualized with UV and permanganate stain);
1H NMR (500 MHz, CD3CN): δ 5.59 – 5.53 (m, 2H), 5.43 – 5.39 (m, 2H), 2.48 (s, 2H), 2.02 (t, 
J = 2.3 Hz, 2H), 1.71 (dd, J = 9.5, 2.1 Hz, 1H), 1.55 (d, J = 7.4 Hz, 2H), 1.36 (dd, J = 7.2, 2.2 
Hz, 2H), 1.25 (dt, J = 9.6, 1.6 Hz, 1H);
13C NMR (126 MHz, CD3CN): δ 129.2, 122.0, 46.8, 43.8, 35.2, 30.9.

anti-4 was obtained as the major product of and inseparable mixture of isomers after irradiation 
of 3 (see below for conditions).
Physical properties:
1H NMR (600 MHz, CD3CN): δ 6.17 (d, J = 1.6 Hz, 2H), 2.78 (s, 2H), 2.09 (s, 2H), 1.91 (s, 2H), 
1.76 (dt, J = 10.0, 2.2 Hz, 1H), 1.46 (dt, J = 7.2, 2.4 Hz, 2H), 1.15 (d, J = 10.0 Hz, 1H), 1.05 
(dd, J = 7.2, 2.3 Hz, 2H).
3C NMR (126 MHz, CD3CN): δ 140.3, 48.5, 45.7, 40.2, 33.1, 28.6.

3’
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3’ was prepared according to a protocol by Rye and Wege.20 3 (5.0 mg, mmol, 1 equiv.) was 
sealed in a pyrex tube at 1 mmHg. The tube was then heated in an oven at 300 oC for 1 hour, 
after which time the tube was removed and allowed to cool to room temperature. The tube 
was opened, and deuterated acetonitrile was used to rinse the contents and a 1H NMR 
spectrum in CD3CN determined that both 3 as well as 3’ were present in a ratio of 3.6 to 1. 
These two isomers were found to be inseparable by chromatography, and thus the annotated 
1H NMR spectrum of 3’ was obtained from the mixture and agreed with the literature.20 For 
comparison later, we have included the spectral data in CD3CN below.
Physical properties: 
1H NMR (600 MHz, CD3CN): 5.74 (d, J = 9.6 Hz, 2H), 5.36 (d, J = 9.6 Hz, 2H), 2.71 (s, 2H), 
2.29 (s, 2H), 1.60 – 1.51 (m, 3H), 1.32 – 1.22 (m, 2H), 1.20 (d, J = 9.3 Hz, 1H).

S10.3 Photochemical reaction of norbornyl cyclohexadiene 3
A solution of 3 (20 mg total, 0.14 mmol, 1.0 equiv.) was prepared in deuterated acetonitrile 
(2.0 mL, 64 mM) and divided into five separate quartz NMR tubes (0.4 mL per tube). Irradiation 
took place in a Luzchem photoreactor equipped with ten 254 nm low-pressure mercury lamps. 
Each reaction tube was irradiated for a given time (0, 30, 60, 120, or 240 minutes), after which 
was added 0.2 mL of a stock solution of internal standard (1,4-dinitrobenzene) in deuterated 
acetonitrile and a 1H NMR spectrum was obtained. Yields were determined by relative 
integration compared with the internal standard signal. The products of the reaction were 
obtained as an inseparable mixture, and thus our analysis was performed on the mixture by 
COSY and ROESY NMR spectroscopy. 
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Figure S22. Stacked 1H-NMR spectra after 0, 30, 60, 120 and 240 mins of irradiation of 3 with 
254 nm light. Yields were determined by comparison with internal standard (1,4-
dinitrobenzene). Colored rectangles were added to indicate signals associated with 
compounds 3, anti-4, syn-4, anti-4’ and 3’.
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Figure S23. Comparison of yields of 3, anti-4, syn-4, anti-4’ and 3’ obtained from 1H-NMR 
spectra integration relative to internal standard after 0, 30, 60, 120, or 240 mins of irradiation. 
The top graph includes the decay of 3, and the bottom graph is identical except without 3 for 
ease of the reader.

S10.4 Structural assignment
Due to the products of the irradiation of 3 producing an inseparable mixture of hydrocarbon 
products, characterization was performed using NMR spectroscopy on the crude reaction 
mixture after 240 minutes of irradiation.

Evidence for the anti-stereochemistry of anti-4 and anti-4’ was obtained from the 1H-NMR 
spectra. A much larger splitting of the allylic bridgehead protons was measured for the syn 
isomer (J = 6.4 Hz), while an almost nonexistent splitting was measured for the anti-isomers, 
a phenomenon previously observed by Dauben in a similar ladderene system.21 This other 
system by Dauben, which features a similar electrocyclic closure of a cyclohexadiene to 
produce ladderenes, forms the anti and syn ladderenes as the major photoproducts in 28% 
and 7% yields, respectively. The relative chemical shifts of their 1H spectra are similar to our 
system.
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We then performed a COSY experiment (see below) to fully assign the major anti-4 product 
as well as key correlations within syn-4 and anti-4’. The data we obtained suggest all products 
are ladderenes due to a correlation between alkene protons (6 – 6.5 ppm) and those at the 
bridgehead position (2.8 – 3.2 ppm).

Figure S24. COSY NMR spectrum after 240 minutes of irradiating diene-3. Cross-peaks have 
been added as colored boxes: Black for anti-4, orange for syn-4, and blue for anti-4’. The two 
axes are both the 1H-NMR spectra in CD3CN using a 600 MHz instrument.

Finally, to further confirm which ladderene isomer is the major product, we performed a 
ROESY experiment (see below). We observed a key correlation between the allylic 
bridgehead signal at 2.78 ppm and a nearby norbornyl proton at 1.76 ppm. This interaction 
would not be expected for the other two ladderene isomers (syn-4 or anti-4’).
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Figure S25. ROESY NMR spectrum after 240 minutes of irradiating 3. The key cross-peaks 
have been added as a black box for anti-4. The two axes are both the 1H-NMR spectra in 
CD3CN using a 600 MHz instrument.

S11. Cartesian coordinates of optimized geometries

trans-1
 C     0.14501571     0.02837541    -0.67316180
 C    -0.16110798    -0.02810034     0.62722014
 H     0.49164356    -0.83378859    -1.22301781
 H    -0.50888331     0.83376479     1.17682133
 C     0.03146785     1.28645873    -1.47301940
 F     1.20063722     1.61681414    -1.98773603
 F    -0.81011654     1.12429511    -2.47628136
 F    -0.39308986     2.30984668    -0.75746665
 C    -0.04859882    -1.28642117     1.42682882
 F    -1.21778423    -1.61412548     1.94327935
 F     0.37241108    -2.31069787     0.71044254
 F     0.79487293    -1.12642037     2.42881618

cis-1
 C     0.04077144     0.07479198    -0.73458499
 C    -0.32346501    -0.06483044     0.54932647
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 H     0.22569559    -0.81462113    -1.32066341
 H    -0.41825273    -1.06367973     0.94860682
 C     0.24010371     1.33312220    -1.52154169
 F     1.47063953     1.37107529    -1.99945496
 F    -0.58315558     1.35177692    -2.55376173
 F     0.04451971     2.43412746    -0.83353707
 C    -0.63347314     1.01143242     1.55789245
 F     0.39787299     1.79057523     1.80121482
 F    -1.64699566     1.76842909     1.19761536
 F    -0.96519998     0.43456900     2.70231000

MECP-trans-1
 C    -0.20470118    -0.02115260    -0.76726274
 C    -0.27703368    -0.07213838     0.60936430
 H    -1.35920281     0.01662226    -0.58408741
 H    -0.74122071     0.68702702     1.25086473
 C     0.03751109     1.22419398    -1.54256950
 F     1.33065798     1.45047591    -1.66880676
 F    -0.49018495     1.15226179    -2.74634509
 F    -0.47526727     2.32561139    -0.97375776
 C     0.08290008    -1.31783927     1.40445187
 F    -0.99503077    -2.05725682     1.57389168
 F     1.00493590    -2.03870598     0.83668560
 F     0.51385686    -0.94387291     2.59495659

MECP-cis-1
 C     0.13225747    -0.08322303    -0.76022994
 C    -0.13460097    -0.14343669     0.58836939
 H    -0.99476058     0.24253131    -0.70409076
 H    -0.20691252    -1.10312961     1.10470912
 C     0.82730624     0.98846628    -1.51986816
 F     2.12551584     0.75046285    -1.55202885
 F     0.38612679     1.04763684    -2.76011549
 F     0.69589620     2.22018683    -1.01653305
 C    -0.54678522     1.00328225     1.52551866
 F     0.53896638     1.57651208     1.99099651
 F    -1.28854119     1.90318407     0.93078885
 F    -1.22471886     0.52278557     2.54846739

3
 C    -2.33436914    -0.78047160    -0.34159816
 C    -0.99767719    -1.12503456     0.33922090
 C    -0.99874383     1.12483095     0.33759272
 C    -2.33501538     0.77714084    -0.34285531
 H    -2.40805247    -1.20291855    -1.34293629
 H    -3.17033854    -1.16978114     0.23948855
 H    -2.40837183     1.19724278    -1.34518679
 H    -3.17232655     1.16610873     0.23653020
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 C    -0.87727499     0.00093649     1.37699687
 H     0.07302203     0.00253151     1.90531683
 H    -1.69194025     0.00027925     2.10194503
 C     0.15812983    -0.78394227    -0.63127913
 H    -0.07638436    -1.16331139    -1.62665403
 C     0.15989729     0.78791809    -0.63075217
 H    -0.07765868     1.16219431    -1.62732624
 H    -0.94977217    -2.14294073     0.72311354
 H    -0.95314559     2.14280625     0.72095327
 C     1.46019703    -1.42498616    -0.21511052
 C     2.54387790    -0.72717188     0.12130256
 H     1.49086325    -2.50752935    -0.20379063
 C     2.56553750     0.73545018     0.12957206
 H     3.44673100    -1.25557102     0.40418177
 C     1.46336345     1.43089089    -0.21286233
 H     3.47627320     1.24184393     0.41557931
 H     1.48274848     2.51355448    -0.20452202

MECP-syn-3
 C    -2.29126947    -0.84332691    -0.26896012
 C    -0.87600213    -1.11889337     0.27955618
 C    -0.99759264     1.13958534     0.29644912
 C    -2.35048175     0.71511885    -0.31507047
 H    -2.46510275    -1.30093983    -1.24218318
 H    -3.03995567    -1.23833823     0.41683001
 H    -2.48353456     1.09779324    -1.32699204
 H    -3.17675563     1.09169416     0.28672277
 C    -0.75071718     0.01444728     1.31295026
 H     0.21851583     0.05667789     1.78787432
 H    -1.53231886    -0.04260102     2.07201973
 C     0.09331503    -0.70883237    -0.85285081
 H    -0.26845574    -1.02881006    -1.82857984
 C     0.10678349     0.86028574    -0.73881557
 H    -0.13461198     1.28604349    -1.71067361
 H    -0.72521171    -2.12894435     0.65228984
 H    -0.97791094     2.15767918     0.68317782
 C     1.55156714    -0.97152010    -0.74379494
 C     2.27716850    -0.84303754     0.51281959
 H     2.06626242    -0.94551373    -1.71122655
 C     2.48154052     0.52880925     0.25042601
 H     3.15230627    -1.44043771     0.72057096
 C     1.51219202     1.31452079    -0.36841496
 H     3.44133433     1.00447238     0.44903488
 H     1.74911495     2.35364247    -0.56094926

MECP-anti-3
 C    -2.34807064    -0.81250925    -0.35629347
 C    -1.10950356    -1.08252692     0.51870755
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 C    -1.11224876     1.16029066     0.33441582
 C    -2.33898053     0.73897874    -0.49874152
 H    -2.29281362    -1.32309091    -1.31654918
 H    -3.25212148    -1.15375643     0.14693521
 H    -2.26108391     1.06362017    -1.53517358
 H    -3.24820019     1.17423136    -0.08546571
 C    -1.14833568     0.12634524     1.46877591
 H    -0.30155167     0.19015480     2.14522123
 H    -2.06947596     0.17073835     2.04985209
 C     0.12676471    -0.79424320    -0.34836764
 H     0.09321508    -1.27388228    -1.32682264
 C     0.15456022     0.76670825    -0.45391735
 H     0.08947548     1.13168886    -1.48266058
 H    -1.10133611    -2.06784797     0.98348028
 H    -1.12030778     2.20753777     0.63187123
 C     1.46330549    -1.06598467     0.24853917
 C     2.66325550    -0.74478668    -0.52808140
 H     1.51628036    -1.32201784     1.30618792
 C     2.66197959     0.56783867    -0.02496773
 H     3.56538537    -1.32830931    -0.41396690
 C     1.45314233     1.23923248     0.16807568
 H     3.57098276     1.05111015     0.33399890
 H     1.46919824     2.21536143     0.63619827

3a
 C    -2.31094468    -0.84930322    -0.20853672
 C    -0.90256656    -1.13878339     0.34656685
 C    -0.95033884     1.12001429     0.24954077
 C    -2.30310235     0.70164288    -0.36796833
 H    -2.50759208    -1.36909356    -1.14472704
 H    -3.07145807    -1.15997710     0.50756783
 H    -2.38972090     1.01393004    -1.40818349
 H    -3.12932008     1.15534657     0.17831331
 C    -0.76055315     0.04192246     1.32646761
 H     0.19207441     0.10664020     1.83664355
 H    -1.55609259     0.04961195     2.07219699
 C     0.08437918    -0.82193597    -0.80270002
 H    -0.35850471    -1.12391452    -1.74917208
 C     0.18005379     0.77070875    -0.74290334
 H    -0.02832848     1.19468647    -1.72679912
 H    -0.78782238    -2.13575678     0.76695728
 H    -0.92553215     2.15292528     0.59352586
 C     1.53804074    -1.22629197    -0.77190159
 C     2.24793904    -0.81851502     0.34978111
 H     2.00409324    -0.91087324    -1.70256684
 C     2.57991547     0.62804673     0.17278693
 H     1.89762055    -1.09436469     1.33649111
 C     1.53984102     1.32817687    -0.29829843
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 H     3.49044461     1.10997428     0.50953704
 H     1.61964362     2.41071092    -0.34395612

3b
 C    -2.34771640    -0.69763107    -0.47070676
 C    -1.12173082    -1.13257185     0.35608952
 C    -0.98693745     1.12205413     0.38061618
 C    -2.26197145     0.85719612    -0.44334557
 H    -2.32361408    -1.10154078    -1.48208773
 H    -3.26799744    -1.04484573    -0.00171181
 H    -2.20823392     1.29411645    -1.43959583
 H    -3.13095350     1.28512333     0.05600123
 C    -1.06321968    -0.01374441     1.41178485
 H    -0.20133550    -0.06453416     2.07060064
 H    -1.96546789     0.03460455     2.02192683
 C     0.14556993    -0.87493573    -0.47767348
 H     0.05360875    -1.25486740    -1.49449072
 C     0.23143027     0.72309566    -0.48495868
 H     0.08184484     1.10433906    -1.49821162
 H    -1.18373051    -2.15114778     0.73517321
 H    -0.92822128     2.13275759     0.78042692
 C     1.44884821    -1.29795469     0.15409007
 C     2.54141869    -0.76260327    -0.51599962
 H     1.46997421    -1.13519820     1.22375559
 C     2.73102588     0.62999585    -0.00015659
 H     2.57744568    -0.85498144    -1.59906200
 C     1.57304574     1.30172380    -0.02000005
 H     3.67393244     1.09845490     0.25524327
 H     1.57185823     2.36297971     0.20980206
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