Electronic Supplementary Information (ESI)

Influence of Hidden Halogen Mobility on Local Structure of CsSn(Cl_{1-x}Br_x)₃ Mixed-Halide Perovskites by Solid-State NMR

Abhoy Karmakar, Amit Bhattacharya, Diganta Sarkar, Guy M. Bernard, Arthur Mar and Vladimir K. Michaelis*

Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada

*Corresponding Author: vladimir.michaelis@ualberta.ca

Table of Contents	Page(s)
Experimental	S3-S5
Table S1. Elemental analysis of $CsSn(Cl_{1-x}Br_x)_3$ materials measured by EDS.	S5
Table S2. Unit cell constants (a) and direct bandgap values for $CsSn(Cl_{1-x}Br_x)_3$ materials.	S5
Table S3. Room temperature solid-state ¹³³ Cs NMR experimental parameters, chemical shifts, fwhm and spin-	S6
lattice relaxation (T_1) values for CsSn(Cl _{1-x} Br _x) ₃ materials.	
Table S4. Room temperature solid-state ¹¹⁹ Sn NMR experimental parameters, chemical shifts, fwhm and spin-	S6
lattice relaxation (T_1) values for CsSn $(Cl_{1-x}Br_x)_3$ materials.	L
Table S5. Room temperature solid-state ¹¹⁹ Sn NMR experimental parameters ($B_0 = 11.75$ T), chemical shifts,	S7
fwhm and spin-lattice relaxation (T_1) for CsSnBr ₃ materials prepared by the solvent synthesis (SS), high	
temperature (HT) and mechanochemical synthesis (MCS) methods.	
Table S6. Variable temperature ¹¹⁹ Sn NMR parameters for CsSnBr ₃ (SS) at 11.75 T acquired under non-	S 7
spinning sample conditions.	07
Supplementary note 1	S7
Table S7. Solid-state ¹³⁵ Cs NMR acquisition parameters and experimental conditions used for the CsSnBr ₃	S8
areal degradation study. The second study $\frac{1}{12}$	G 0
areal degradation study	58
Figure S1. Poor temperature solid state 133 Cs NMP spectra of CsSn(Cl. Pr.), metariols at 11.75 T with a	50
magic-angle spinning frequency of 13 kHz.	37
Figure S2. Room temperature PXRD (a) and ¹³³ Cs NMR spectra (b) of CsSnCl ₃ materials prepared by the	S9
high-temperature sealed-tube method followed by slow-cooling (5 K/min). PXRD patterns were collected	
within 24 h of synthesis and ¹³³ Cs NMR were acquired at 11.75 T after six days of synthesis. Plot of ¹³³ Cs	
NMR peak area for the cubic CsSnCl ₃ phase as a function of time (up to 72 days) (c).	C10
Figure S3. FESEM image and the corresponding EDS elemental mapping for Cs, Sn, Cl and Br for the $CsSn(Cl_{1-x}Br_x)_3$ materials.	S10
Figure S4. Room temperature experimental and fitted PXRD diagram for the CsSn(Cl _{1-x} Br _x) ₃ series. All the	S11
diffraction data are fitted to a cubic (Pm-3m) space group symmetry.	
Figure S5. Tauc plots showing direct bandgaps of the cubic phases of $CsSn(Cl_{1-x}Br_x)_3$ materials.	S12
Figure S6. Solid-state ¹¹⁹ Sn NMR spectra of CsSnBr ₃ at 7.05 and 11.75 T under non-spinning sample	S13
conditions.	
Figure S7. Solid-state ¹¹⁹ Sn NMR spectra of c-CsSnCl ₃ (a), CsSn(Cl _{0.50} Br _{0.50}) ₃ (b) and CsSnBr ₃ (c) at 11.75 T	S13
acquired with spinning frequencies of 0 and 10 kHz.	
Figure S8. Solid-state ¹¹⁹ Sn NMR spectra of $CsSn(Cl_{0.10}Br_{0.90})_3$ at 11.75 T acquired with spinning frequencies	S14
between 0 to 13 kHz with the Hahn-echo pulse sequence and with various echo-delays.	
Figure S9. Solid-state ¹¹⁹ Sn NMR chemical shifts vs the inverse of direct bandgap values for the	S14
$U_{1-x}Br_{x} = 0$	015
Figure S10. Room temperature PXRD patterns for the CsSnBr ₃ parent material synthesized by the solvent synthesis (SS) high temperature (HT) and mechanochemical synthesis (MCS) methods	815
Figure S11 LIV Via charmtion greater (a) and Toya plate showing direct handgens (h d) for the CoSnDr	S15
parent material synthesized by the solvent synthesis (SS) high temperature (HT) and mechanochemical	515
synthesis (MCS) methods.	
Figure S12. Variable temperature (230-418 K) ¹¹⁹ Sn T_2^* relaxation time as a function of absolute temperature	S16
for the CsSnBr ₃ (SS) material.	
Figure S13. UV-Vis absorption spectra for CsSnBr ₃ that was stored under ambient laboratory conditions over 200 days, prioriting CsSnBr, and CsSnBr	S16
500 days, pristine CS5hB1 ₃ and Cs ₂ ShB1 ₆ .	
Figure S14. Solid-state ¹¹⁹ Sn NMR spectra of for degraded CsSnBr ₃ parent and SnBr ₂ starting precursor at	S17
11.75 T acquired with spinning frequencies of 12 kHz with 2,000,000 scans each.	
Deferences	017
Kelerences	51/

EXPERIMENTAL *Materials*

Starting materials were purchased from the following commercial sources and were used without further modification: CsCl (Terochem Laboratories Ltd. 99.7%), CsBr (Sigma, 99.99%), SnCl₂ (Alfa Aesar, >99%), SnBr₂ (Alfa Aesar, 99.2%), SnBr₄ (Sigma, 99%), HBr (Anachemia, 48%), and H₃PO₂ (Sigma, 50 wt.% in H₂O).

*High-Temperature Synthesis of CsSn(Cl*_{1-x}*Br_x)*₃ ($\theta \le x \le 1$): Various members of the solid solution CsSn(Cl_{1-x}Br_x)₃ were prepared by reactions at high temperature. CsX and SnX₂ (X = Cl, Br) were combined in stoichiometric ratios on a 0.5-g scale, finely ground using an agate mortar and pestle, pressed into pellets, and loaded into fused-silica tubes which were evacuated under a pressure of 10⁻³ mbar and sealed. The tubes were heated at 1.5 K/min to either 673 or 723 K (depending on composition), held at that temperature for 15 h, and then cooled to room temperature at 5 K/min. The samples were stored in glass vials and further characterized under ambient conditions.

Cubic $CsSnCl_3$ was obtained as a metastable phase at room temperature as follows: a sample of $CsSnCl_3$ prepared as described above was heated to 673 K, kept at this temperature for 15 h, cooled to 573 K at 5 K/min, and then quenched in an ice-water bath.

Mechanochemical Synthesis of CsSnBr₃: A mixture of 1.5 mmol each of CsBr and SnBr₂ was ground using an agate mortar and pestle for 10 min. Within an argon-filled glove box, the mixture was transferred to a 50-mL zirconia grinding vessel (containing *ca*. 50 g of zirconia balls with 3–8 mm diameter), which was sealed with parafilm to minimize exposure to air. The sample was ground in a Changsha Deco DECO-PBM-V-0.4L electric planetary ball mill at a rotation frequency of 550 rpm for 0.5 h. The vessel was opened to scratch its inner wall by using a clean spatula and sealed again under an inert atmosphere (Ar glove box). This process was repeated four times for a total of 2.5 h of grinding time.

Solvent Synthesis of CsSnBr₃: A mixture of 1 mmol each of CsBr and SnBr₂ was placed in a 40-mL glass vial to which 4.5 mL of concentrated HBr and 0.5 mL of H_3PO_2 were added. The mixture was heated under a nitrogen atmosphere to 120 °C on a hot plate, with continuous stirring by a magnetic stir bar. A black precipitate formed immediately. After the mixture was heated for 0.5 h, it was cooled over 1 h to room temperature. The precipitate was filtered under reduced pressure, washed with isopropyl alcohol, dried for 0.5 h, and quickly packed into a 4-mm o.d. ZrO_2 rotor for the solid-state NMR experiments.

Solvent Synthesis of Cs_2SnBr_6 : A mixture of CsBr (2 mmol) and SnBr₄ (1 mmol) was placed in a 10-mL glass vial to which 5 mL of concentrated HBr was added. The mixture was heated to 120 °C on a hot plate, with continuous stirring by a magnetic stir bar. A white precipitate formed immediately. After the mixture was heated for 1 h, it was cooled over 1 h to room temperature. The precipitate was filtered using a Buchner funnel, washed with 95% ethanol, dried overnight, and stored in a vial under ambient conditions.

Powder X-ray Diffraction: Powder XRD patterns were collected on a Rigaku Ultima IV diffractometer equipped with a Co $K\alpha$ radiation source ($K_{\alpha 1}$, 1.78900 Å; $K_{\alpha 2}$, 1.79283 Å) operated at 38 kV and 38 mA, and a D/Tex Ultra detector with a Fe filter to eliminate K_{β} radiation (1.62083 Å). The samples were placed on zero background plates. Data were collected in continuous scan mode between 5 and 90° in 2θ with a step size of 0.0200°. Profile fitting was performed using the FullProf suite of software and unit cell parameters were refined.

Energy-dispersive X-ray Spectroscopy and Field Emission Scanning Electron Microscopy: Samples were examined on Zeiss Sigma 300 VP field emission scanning electron microscope equipped with dual silicon drift detectors for energy-dispersive X-ray spectroscopy to determine chemical compositions.

UV-Visible Diffuse Reflectance Spectroscopy: Diffuse reflectance spectra were collected on a Cary 5000 UV-vis-NIR spectrophotometer between 200 and 800 nm and calibrated with a Spectralon (>99%) reflectance standard. The diffuse reflectance spectra were converted to absorption spectra using the Kubelka-Munk function, $\alpha/S = (1-R)^2/2R$, where α is the Kubelka-Munk absorption coefficient, *S* is the scattering coefficient, and *R* is the reflectance. Direct bandgaps were extrapolated from the intercepts in Tauc plots of $(\alpha hv)^2$ vs *E* (eV).

Solid-State Nuclear Magnetic Resonance (NMR) Spectroscopy:

I. <u>Cesium-133 NMR Spectroscopy</u>: Solid-state ¹³³Cs NMR measurements were performed at 11.75 T (¹H, 500 MHz) on a Bruker Avance NEO 500 spectrometer, under magic angle spinning (MAS) conditions using a 4 mm H/X MAS Bruker probe with $\omega_0/2\pi(^{133}Cs) = 65.6$ MHz. All samples were packed into 4 mm o.d. ZrO₂ rotors and NMR data were acquired using a Bloch decay pulse sequence using a short tip angle pulse of 1.38 µs ($\pi/2$ pulse = 5.5 µs, solution $\gamma B_1/2\pi = 45.5$ kHz) with an acquisition time of 100 ms and an optimized recycle delay of 10 to 1800 s. The nuclear spin-lattice relaxation time (T_1) values of ¹³³Cs nuclei for all samples were measured using a three-parameter exponential decay function: $I_{(t)} = I_{(\infty)} + Ae^{-t/T_1}$, where $I_{(t)}$ and $I_{(\infty)}$ are the NMR signal intensities measured at time *t* and at *t* infinity, respectively, and T_1 are *A* are the spin-lattice relaxation time and pre-exponential constant, respectively. All ¹³³Cs NMR spectra discussed here were referenced by setting a 0.1 M CsNO₃ (aq.) solution at (¹³³Cs) = 0.00 ppm.

II. <u>*Tin-119 NMR Spectroscopy:*</u> Solid-state ¹¹⁹Sn NMR measurements were performed at 11.75 T (¹H, 500 MHz) on a Bruker Avance NEO 500 spectrometer under both MAS and non-spinning conditions using a 4 mm H/X MAS Bruker probe with $\omega_0/2\pi$ (¹¹⁹Sn) = 186.5 MHz. All samples were packed into 4 mm o.d. ZrO₂ rotors and NMR data were acquired using a 4.0 µs $\pi/2$ (γ B₁/2 π = 62.5 kHz) either with a Hahn-echo pulse sequence (($\pi/2$)_x - $\tau_1 - (\pi)_y - \tau_2 - ACQ$, where τ represents the interpulse and refocusing delays) or with a Bloch pulse sequence with an acquisition time of 4-5 ms and an optimized recycle delay of 0.01-200 s.

Variable temperature (VT) ¹¹⁹Sn NMR spectra were acquired between 230 and 418 K with the same instrument under non-spinning conditions using a Bruker VT unit and calibrated using the ²⁰⁷Pb chemical shifts of MAPbCl₃.² Dry N₂(g) was used as the VT gas and gas flow rates were adjusted to reach the target temperatures. The ¹¹⁹Sn T_1 values were measured using an inversion recovery pulse sequence as discussed in the ¹³³Cs NMR experimental section. All ¹¹⁹Sn NMR spectra were referenced by setting the ¹¹⁹Sn signal of a tetracyclohexyl-tin(IV) powder to $\delta(^{119}Sn) = -97.35$ ppm, a secondary reference with respect to Sn(CH₃)₄ at $\delta(^{119}Sn) = 0.00$ ppm.

Sample					
(Nominal composition)	Cs	Sn	Cl	Br	%Cl:%Br
CsSnCl ₃	19.3	19.4	61.3	-	100:0
CsSn(Cl _{0.90} Br _{0.10}) ₃	18.9	19.5	54.6	7.0	89:11
CsSn(Cl _{0.67} Br _{0.33}) ₃	18.8	19.4	39.6	22.2	64 : 36
CsSn(Cl _{0.50} Br _{0.50}) ₃	18.8	18.6	29.4	33.2	47 : 53
CsSn(Cl _{0.33} Br _{0.67}) ₃	18.3	19.1	19.0	43.6	30:70
$CsSn(Cl_{0.10}Br_{0.90})_3$	19.4	18.7	6.0	55.9	10:90
CsSnBr ₃	17.3	18.0	-	64.7	0:100

Table S1. Elemental analysis of $CsSn(Cl_{1-x}Br_x)_3$ materials measured by EDS.

Table S2. Unit cell constants (a) and direct bandgap values for $CsSn(Cl_{1-x}Br_x)_3$ materials.

Sample	Unit cell constant, a (Å)	Direct bandgap (eV)
CsSnCl ₃ (cubic)	5.5894(5)	2.83
CsSn(Cl _{0.90} Br _{0.10}) ₃	5.6108(3)	2.71
CsSn(Cl _{0.67} Br _{0.33}) ₃	5.6642(3)	2.42
$CsSn(Cl_{0.50}Br_{0.50})_3$	5.6991(6)	2.26
$CsSn(Cl_{0.33}Br_{0.67})_3$	5.7353(7)	2.10
CsSn(Cl _{0.10} Br _{0.90}) ₃	5.7830(2)	1.87
CsSnBr ₃	5.8031(3)	1.79

Table S3. Room temperature solid-state ¹³³Cs NMR experimental parameters, chemical shifts, fwhm and spin-lattice relaxation (T_1) values for CsSn(Cl_{1-x}Br_x)₃ materials. The ¹³³Cs NMR spectra were acquired at 11.75 T using a Bloch pulse sequence.

Sample	v _{rot} (kHz)	Recycle delay (s)	¹³³ Cs fwhm (Hz) ± 5	δ(¹³³ Cs) (ppm) ± 0.1	$T_1(^{133}Cs)$ (s)
CsSnCl ₃ (cubic)		300	138	64.7	14.8 ± 0.2
$CsSn(Cl_{0.90}Br_{0.10})_3$		60	92	68.6	9.8 ± 0.2
$CsSn(Cl_{0.67}Br_{0.33})_3$		100	82	73.7	15.3 ± 0.4
$CsSn(Cl_{0.50}Br_{0.50})_3$	13.0	60	114	74.7	19.7 ± 0.1
CsSn(Cl _{0.33} Br _{0.67}) ₃		60	149	73.4	25.0 ± 0.1
$CsSn(Cl_{0.10}Br_{0.90})_3$		60	125	67.7	35.3 ± 0.1
CsSnBr ₃		60	70	64.0	34.9 ± 0.1

Table S4. Room temperature solid-state ¹¹⁹Sn NMR experimental parameters, chemical shifts, fwhm and spin-lattice relaxation (T_1) values for CsSn(Cl_{1-x}Br_x)₃ materials. The ¹¹⁹Sn NMR spectra were acquired at 11.75 T using a Hahn-echo ($v_{rf} = 62.5$ kHz).

Sample	v _{rot} (kHz)	Recycle delay (s)	δ(¹¹⁹ Sn) (ppm)	¹¹⁹ Sn fwhm (kHz) ± 0.1	$T_1(^{119}{ m Sn})$ (s)
CsSnCl ₃ (cubic)		10	-562 ± 1	1.8	3.5
CsSn(Cl _{0.90} Br _{0.10}) ₃		1	-544 ± 1	1.4	3.4
$CsSn(Cl_{0.67}Br_{0.33})_3$		1	-510 ± 1	1.7	2.4
$CsSn(Cl_{0.50}Br_{0.50})_3$	10.0	5	-487 ± 1	2.7	3.0×10^{-1}
$CsSn(Cl_{0.33}Br_{0.67})_3$		1	-458 ± 2	4.3	2.7×10^{-2}
$CsSn(Cl_{0.10}Br_{0.90})_3$		0.01	-365 ± 5	17.0	8.0×10 ⁻³
CsSnBr ₃		0.20	-289 ± 5	19.0	5.6×10 ⁻³

Table S5. Room temperature solid-state ¹¹⁹Sn NMR experimental parameters, chemical shifts, fwhm and spin-lattice relaxation (T_1) for CsSnBr₃ materials prepared by the solvent synthesis (SS), high temperature (HT) and mechanochemical synthesis (MCS) methods. The ¹¹⁹Sn NMR spectra were acquired at 11.75 T using a Hahn-echo ($v_{rf} = 62.5$ kHz).

Sample	v _{rot} (kHz)	Recycle delay (s)	δ(¹¹⁹ Sn) (ppm)	δ(¹¹⁹ Sn) ¹¹⁹ Sn fwhm (ppm) (kHz)	
CsSnBr ₃ (SS)		0.05	-386 ± 2	7.5 ± 0.2	0.025 ± 0.001
CsSnBr ₃ (HT)	0.0	0.2	-284 ± 5	21.0 ± 0.5	0.007 ± 0.001
CsSnBr ₃ (MCS)		0.2	-295 ± 10	34.0 ± 1.0	0.003 ± 0.001

Table S6. Variable-temperature ¹¹⁹Sn NMR parameters for CsSnBr₃ (SS) acquired under non-spinning sample conditions at 11.75 T using a 4.0 μ s $\pi/2$ Bloch pulse sequence.

T(set) (K)	T(calibrated) (±2) (K)	δ _{iso} (¹¹⁹ Sn) † (ppm)	Ω (ppm) †	к†	119 Sn <i>fwhm</i> (<i>kHz</i>) ± 0.1	¹¹⁹ Sn T ₂ * (<i>ms</i>)	¹¹⁹ Sn <i>T</i> ₁ (ms)
233	229.5	-393	85	-0.1	14.7	0.068	635(200)
253	250.9	-393	75	-0.1	13.6	0.074	390(85)
273	273.6	-390	75	-0.25	10.6	0.094	123(12)
292.4	295.4	-386	35	-1.0	7.2	0.139	25(1)
313	318.7	-371	0	NA	6.5	0.154	14(1)
333	341.5	-364	0	NA	6.1	0.164	8.8(5)
353	366.4	-350	0	NA	5.7	0.175	4.12(15)
373	385.5	-334	0	NA	6.0	0.167	2.16(9)
393	407.6	-319.6	0	NA	5.4	0.185	1.14(5)
403	417.9	-317.7	0	NA	4.5	0.222	0.92(2)

NA – not applicable; \dagger - δ_{iso} , Ω and κ are isotropic chemical shift, span and skew, respectively,

where
$$\delta_{iso} = \frac{\delta_{11} + \delta_{22} + \delta_{33}}{3}$$
, $\Omega = (\delta_{11} - \delta_{33})$ and $\kappa = 3(\frac{\delta_{22} - \delta_{iso}}{\Omega})$

Supplementary note 1:

The variable temperature ¹¹⁹Sn spin-lattice relaxation time (T_1) is related to the absolute temperature values for CsSnBr₃ (SS) as shown in Table S6. log₁₀[T_1 /s] linearly depends on [1000/T(K)] (i.e., an Arrhenius relationship) within the temperature range of 230 to 418 K. The slope of the Arrhenius fit is related to the activation energy as $E_a = (2303 \cdot \text{R}) \cdot (\text{slope})$, where R = 8.314 J/(mol·K). A slope value of 1.51 ± 0.06 K was obtained from the least-squares Arrhenius fit; hence $E_a = 28.9 \pm 1.2$ kJ/mol or 0.30 ± 0.01 eV **Table S7.** Solid-state ¹³³Cs NMR acquisition parameters and experimental conditions used for the CsSnBr₃ areal degradation study (see Figure 9b in the manuscript). The ¹³³Cs NMR spectra were acquired at 11.75 T using a Bloch pulse sequence.

Material	T_1 (s)	v _{rot} (kHz)	Recycle delay (s)	# of scans	Acquisition time (min)
CsSnBr ₃	-		1800	4	120
(degraded)					
CsSnBr ₃	34.9	5 kHz	60	4	4
Cs ₂ SnBr ₆	170		500	4	33
CsBr	631		300	4	20

Table S8. Solid-state ¹¹⁹Sn NMR acquisition parameters and experimental conditions used for the CsSnBr₃ areal degradation study (see Figure 9c in the manuscript). The ¹¹⁹Sn NMR spectra were acquired at 11.75 T using a Hahn-echo ($v_{rf} = 62.5$ kHz).

Material		T_1 (s)	v _{rot} (kHz)	Recycle delay (s)	# of scans	Acquisition time (min)
	region-1	-	0	0.2	512	1.7
CsSnBr ₃	region-1		10	0.2	512	1.7
(degraded)	region-2	-	10	100	512	853
	region-3	-	10	100	512	853
	region-4	-	12	0.01	2,000,000	736
CsSnBr ₃		0.006	10	0.2	1024	3.4
Cs_2SnBr_6		12.3	10	100	32	53
SnO ₂		3.1 ^{ref.3}	10	30	32	15
SnBr ₄		1.95 ^{ref.4}	0	3	512	25.6
SnBr ₂ SnBr ₂ region		1.12 ^{ref.4}	13	1.5	512	12.8
(trace metal grade) β -Sn region		0.00012 ref.4	12	0.005	2,000,000	537

Figure S1. Room temperature solid-state ¹³³Cs NMR spectra of $CsSn(Cl_{1-x}Br_x)_3$ materials at 11.75 T with a magic angle spinning frequency of 13 kHz. Expansion shows the corresponding spinning side band.

Figure S2. Room temperature PXRD (a) and ¹³³Cs NMR spectra (b) of CsSnCl₃ materials prepared by the high-temperature sealed-tube method followed by slow-cooling (5 K/min). PXRD patterns were collected within 24 h of synthesis and ¹³³Cs NMR spectra were acquired at 11.75 T after six days of synthesis. The asterisks (*) in (b) indicate spinning sidebands for monoclinic CsSnCl₃. Plot of ¹³³Cs NMR peak area for the cubic CsSnCl₃ phase as a function of time (up to 72 days) showing mono-exponential like decay kinetics for the cubic to monoclinic phase transition in CsSnCl₃ (c). The data points between 10 to 72 days are missing because of the sudden institutional lockdown (~ 60 days) during the first wave of COVID-19 pandemic in early 2020.

Figure S3. FESEM images and the corresponding EDS elemental mapping for Cs, Sn, Cl and Br for the $CsSn(Cl_{1-x}Br_x)_3$ materials (top to bottom: x = 0.00, 0.10, 0.33, 0.67 and 1.00).

Figure S4. Room temperature experimental and fitted PXRD diagrams for the $CsSn(Cl_{1-x}Br_x)_3$ series. All the diffraction data are fitted assuming a cubic (Pm-3m) space group symmetry.

Figure S5. Tauc plots showing direct bandgaps of the cubic phases of $CsSn(Cl_{1-x}Br_x)_3$ materials; c-CsSnCl₃ (a), $CsSn(Cl_{0.90}Br_{0.10})_3$ (b), $CsSn(Cl_{0.67}Br_{0.33})_3$ (c), $CsSn(Cl_{0.50}Br_{0.50})_3$ (d), $CsSn(Cl_{0.33}Br_{0.67})_3$ (e), $CsSn(Cl_{0.10}Br_{0.90})_3$ (f) and $CsSnBr_3$ (g).

Figure S6. Solid-state ¹¹⁹Sn NMR spectra of CsSnBr₃ at 7.05 and 11.75 T under non-spinning sample conditions. The scales are vertically normalized.

Figure S7. Solid-state ¹¹⁹Sn NMR spectra of c-CsSnCl₃ (a), $CsSn(Cl_{0.50}Br_{0.50})_3$ (b) and $CsSnBr_3$ (c) at 11.75 *T* acquired with spinning frequencies of 0 and 10 kHz. The scales are vertically normalized.

Figure S8. Solid-state ¹¹⁹Sn NMR spectra of $CsSn(Cl_{0.10}Br_{0.90})_3$ at 11.75 T acquired with spinning frequencies between 0 to 13 kHz with the Hahn-echo pulse sequence and with various echo-delays as indicated. The scales are vertically normalized.

Figure S9. Solid-state ¹¹⁹Sn NMR chemical shifts vs the inverse of direct bandgap values for the $CsSn(Cl_{1-x}Br_x)_3$ series.

Figure S10. Room temperature PXRD patterns for the $CsSnBr_3$ parent material synthesized by the solvent synthesis (SS), high temperature (HT) and mechanochemical synthesis (MCS) methods. The dagger (\dagger) indicates signal from Cs_2SnBr_6 .

Figure S11. UV-Vis absorption spectra (a) and Tauc plots showing direct bandgaps (b-d) for the CsSnBr₃ parent material synthesized by the solvent synthesis (SS), high temperature (HT) and mechanochemical synthesis (MCS) methods.

Figure S12. ¹¹⁹Sn T_2^* (i.e., $\frac{1}{fwhm}$) relaxation time as a function of absolute temperature (230-418 K) for the CsSnBr₃ (SS) material. ¹¹⁹Sn NMR spectra were acquired at 11.75 T under non-spinning sample conditions. The data were fit by a least-squares method with the following equation: $T_2^*/ms = -0.09756(0.02587) + 7.35516(0.77322) \times 10^{-4} \cdot T/K$

Figure S13. UV-Vis absorption spectra for a CsSnBr₃ sample that was stored under ambient laboratory conditions over 300 days (degraded CsSnBr₃), pristine CsSnBr₃ and Cs₂SnBr₆.

Figure S14. Solid-state ¹¹⁹Sn NMR spectra of the degraded $CsSnBr_3$ parent and $SnBr_2$ starting precursor at 11.75 T acquired with spinning frequencies of 12 kHz with 2,000,000 scans each.

References:

- (1) Kubelka, P.; Munk, F. Ein Beitrag Zur Optik Der Farbanstriche. *Z.Tech. Phys. (Leipzig)* **1931**, *12*, 593–601.
- Bernard, G. M.; Goyal, A.; Miskolzie, M.; McKay, R.; Wu, Q.; Wasylishen, R. E.; Michaelis, V. K. Methylammonium Lead Chloride: A Sensitive Sample for an Accurate NMR Thermometer. J. Magn. Reson. 2017, 283, 14–21.
- (3) Cossement, C.; Darville, J.; Gilles, J. -M; Nagy, J. B.; Fernandez, C.; Amoureux, J. -P. Chemical Shift Anisotropy and Indirect Coupling in SnO₂ and SnO. *Magn. Reson. Chem.* **1992**, *30* (3), 263–270.
- Kubicki, D. J.; Prochowicz, D.; Salager, E.; Rakhmatullin, A.; Grey, C. P.; Emsley, L.; Stranks, S. D. Local Structure and Dynamics in Methylammonium, Formamidinium and Cesium Tin(II) Mixed-halide Perovskites from ¹¹⁹Sn Solid–State NMR. *J. Am. Chem. Soc.* 2020, *142*, 7813–7826.