Amide-based second coordination sphere promotes the dimer pathway of Mn-catalyzed CO₂-to-CO reduction at low overpotential

Yong Yang,^a Mehmed Z. Ertem *^b and Lele Duan *^a

^aDepartment of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China

^bChemistry Division, Energy & Photon Sciences, Brookhaven National Laboratory, Upton, NY 11973-5000

Ligand exchange study.

It is well known that the axial bromo ligand of [fac-Mn(N^N)(CO)₃Br] can be partially replaced by CH₃CN in the acetonitrile solution. CVs of [1-Br] in Ar-saturated dry CH₃CN containing 0.10 M of tetrabutylammonium hexafluorophosphate (TBAP) showed three irreversible reduction waves at -1.51, -1.59 and -1.76 V (Figure S20). The ligand exchange reaction was studied using FTIR spectroscopy in the dry CH₃CN (Figure S26b) and the mixed CH₃CN/H₂O (catalytic conditions; Figure S26a), respectively. Apparently, the solvolysis of [1-Br] to [1-MeCN]Br occurs much faster in the mixed acetonitrile/water than in the dry CH₃CN. Nevertheless, a mixture of [1–Br] and [1–MeCN]Br was obtained during the time scale of preparing the CV experiments. Additionally, the CV of complex ([1-MeCN](OTf)) was measured under the same conditions (Figure S24), which displayed only two reduction waves. Accordingly, the first and second reduction waves of [1-Br] are actually corresponding to the one-electron reduction process of [1-MeCN]⁺ and [1-Br], respectively. These two peaks could not be separated clearly by varying the scan rate (Figure S25). After one-electron reduction, the resulting Mn⁰ species undergoes fast bromo dissociation (EC mechanism), forming 5-coordinate [Mn^I(bpy-CONHMe)⁻⁻(CO)₃] ([1]⁰). This [1]⁰ monomer is prone to dimerization to yield $[1_2]^0$ which could be further reduced at E = -1.76 V, leading to the formation of [Mn⁰(bpy-CONHMe)⁻⁻(CO)₃] ([1]⁻) (CEC mechanism; Figure S20).¹⁻⁴ At the reverse scan, the oxidation of $[1]^0$ to $[1]^+$ was observed at -1.46 V while the oxidation wave at -0.76 V assigned as the oxidation of [1₂]⁰ dimer.^{5,6} The scan rate dependence measurements (Figure S25) disclose that although the oxidation waves at -1.46 V (ox1) and -0.76 V (ox2) are both growing upon increasing the scan rate, the ratio of i_{0x1}/i_{0x2} also increased (Table S7) indicating that the dimer formation is inhibited at higher scanning rates. After addition of water to the electrolyte (5.51 M H_2O) under Ar conditions, the reduction wave of [1–Br] to [1-Br]⁰ at -1.59 V disappeared and only the reduction wave of [1-MeCN]⁺ to [1-MeCN]⁰ remained (Figures S20b), due to the fast ligand exchange in the presence of water.

References

(1) M. D. Sampson, A. D. Nguyen, K. A. Grice, C. E. Moore, A. L. Rheingold and C. P. Kubiak, *J. Am. Chem. Soc.*, 2014, **136**, 5460-5471.

(2) F. Franco, M. F. Pinto, B. Royo and J. Lloret-Fillol, Angew. Chem. Int. Ed., 2018, 57, 4603-4606.

(3) D. C. Grills, M. Z. Ertem, M. McKinnon, K. T. Ngo and J. Rochford, *Coord. Chem. Rev.*, 2018, **374**, 173-217.

(4) K. T. Ngo, M. McKinnon, B. Mahanti, R. Narayanan, D. C. Grills, M. Z. Ertem and J. Rochford, *J. Am. Chem. Soc.*, 2017, **139**, 2604-2618.

(5) M. Bourrez, F. Molton, S. Chardon-Noblat and A. Deronzier, *Angew. Chem. Int. Ed.*, 2011, **50**, 9903-9906.

(6) J. M. Smieja, M. D. Sampson, K. A. Grice, E. E. Benson, J. D. Froehlich and C. P. Kubiak, *Inorg. Chem.*, 2013, **52**, 2484-2491.

Figure S1. Synthesis of ligands of bpy-CONHMe and bpy-CONMe₂.

Figure S2. Synthesis of manganese complexes [1–Br] and [2–Br].

Figure S3. ¹H NMR spectrum in DMSO-d₆ of ligand bpy-CONHMe.

Figure S4. ¹H NMR spectrum in CDCI₃ of ligand bpy-CONMe₂.

Figure S5. ¹H NMR spectrum in DMSO-d₆ of complex [1–Br].

Figure S6. ¹H NMR spectrum in CD₃CN of complex [1–Br].

Figure S7. ¹H NMR spectrum in DMSO-d₆ of complex [2–Br].

Figure S8. ¹H NMR spectrum in CD₃CN of complex [2-Br].

Figure S9. ¹H NMR spectrum in DMSO-d₆ of complex [3–Br].

Figure S10. ¹H NMR spectrum in CD₃CN of complex [3–Br].

Figure S11. ATR-IR spectra of complexes [1-Br] and [1-MeCN](OTf).

Figure S12. ATR-IR spectra of complexes [2-Br] and [2-MeCN](OTf).

Figure S13. ATR-IR spectra of complexes [3–Br] and [3–MeCN](OTf).

Figure S14. ¹H NMR spectrum in DMSO-d₆ of complex [1–MeCN](OTf).

Figure S15. ¹H NMR spectrum in CD₃CN of complex [1–MeCN](OTf).

Figure S16. ¹H NMR spectrum in CD₃CN of complex [2–MeCN](OTf).

Figure S17. ¹H NMR spectrum in DMSO-d₆ of complex [3–MeCN](OTf).

Figure S18. ¹H NMR spectrum in CD₃CN of complex [3–MeCN](OTf).

Figure S19. X-ray crystal structure of [2-Br] with ellipsoids at the 50% probability level.

Figure S20. CVs of [1-Br] (1 mM), under Ar (black), CO₂ (red), Ar with 5.51 M H₂O added (blue) and CO₂ with 5.51 M H₂O added in anhydrous CH₃CN with TBAP (0.1 M) as electrolyte. *Note: It took longer time to prepare the CO₂ saturated solution than the Ar saturated solution, so the concentration of the MeCN-bound species would be higher in the CO₂ saturated solution than the Ar saturated solution, leading to the difference in their CVs.*

Figure S21. (a) CVs of [2-Br] (1 mM) in anhydrous CH₃CN with TBAP (0.1 M) as electrolyte under Ar (blue), Ar with 5.51 M H2O added (purple) and CV of and [2-MeCN](OTf) (1 mM) in anhydrous CH₃CN with TBAP (0.1 M) as electrolyte under Ar (green); (b) CVs of [2-Br] (1 mM) in anhydrous CH₃CN with TBAP (0.1 M) as electrolyte under CO₂ (purple), CO2 with 5.51 M H2O added (green).

Figure S22. (a) CVs of [**3**–**Br**] (1 mM) in anhydrous CH₃CN with TBAP (0.1 M) as electrolyte under Ar (blue), Ar with 5.51 M H₂O added (purple) and CV of and [**3–MeCN**](OTf) (1 mM) in anhydrous CH₃CN with TBAP (0.1 M) as electrolyte under Ar (green); (b) CVs of [**3–Br**] (1 mM) in anhydrous CH₃CN with TBAP (0.1 M) as electrolyte under CO₂ (purple), CO₂ with 5.51 M H₂O added (green).

Figure S23. CVs of [1-Br] (1 mM) and [2-Br] (1 mM) in anhydrous CH₃CN with TBAP (0.1 M) as electrolyte under an inter atmosphere (Ar) with the peak integration corresponding to the consumed charges. Due to the steric influence of the amide $-NMe_2$ group, complex [2-Br] under dry conditions displayed a similar electrochemical property to complex $[Mn(mesbpy)(CO)_3Br]^1$ which exhibited a single, two-electron reduction wave (Figure S24). As shown in Figure S23, the consumed charge of the reduction wave at -1.61 V (4.0859 x 10⁻⁵ C) for complex [2-Br] is similar with that of the sum of the first two one-electron processes of [1-Br] (4.0342 x 10⁻⁵ C). We thereby assigned the reduction wave as a two-electron reduction process.

Figure S24. CVs of [1–Br] (1 mM) and [1–MeCN](OTf) (1 mM) in anhydrous CH₃CN with TBAP (0.1 M) as electrolyte under an inter atmosphere (Ar).

Figure S25. (a) CVs of [1-Br] (1 mM) in Ar-saturated CH₃CN with 0.1 M TBAP at different scan rate (0.05 – 1.2 V s⁻¹); (b) The linear plot of i_{0x2} versus $v^{1/2}$ for CVs of [1-Br].

Figure S26. FTIR spectral change versus time plot of complex [1-Br] (1 mM) in (a) CH₃CN solution with 5.51 M H₂O and (b) CH₃CN solution.

Figure S27. (a) FTIR spectral change versus time plot of complex [2–**Br**] (1 mM) in CH₃CN solution with 5.51 M H₂O and FTIR spectrum of complex [2–**MeCN**](OTf) in CH₃CN solution; (b) FTIR spectral change versus time plot of complex [3–**Br**] (1 mM) in CH₃CN solution with 5.51 M H₂O and FTIR spectrum of complex [3–**MeCN**](OTf) in CH₃CN solution.

Figure S28. The plots of v_{CO} absorbance as a function of time for (a) [**1**–**Br**] (1 mM) at 2049 and 2028 cm⁻¹, (b) [**2**–**Br**] (1 mM) at 2049 and 2027 cm⁻¹ and (c) [**3**–**Br**] (1 mM) at 2049 and 2025 cm⁻¹. Reaction conditions: CH₃CN solution with 5.51 M H₂O.

Figure S29. (a) CVs of the [1-Br] (1 mM) in CH₃CN with TBAP (0.1 M) as electrolyte under saturated CO₂ with the addition of H₂O (0.28–5.51 M H₂O); The plots of the catalytic current as a function of the water concentration for the (b) third, (c) second and (d) first catalytic waves.

Figure S30. CVs of [**1–Br**] (1 mM) with 5.51 M H₂O added in anhydrous CH₃CN with TBAP (0.1 M) as electrolyte under Ar (black), CO₂ (red) atmosphere.

Figure S31. (a) Current vs time plots for the CPE and (b) charge passed during CPE of [1-Br] (1 mM) in 0.1 M TBAP/CH₃CN with 5.51 M H₂O at $E_{app} = -1.55$ V under CO₂-saturated atmosphere (black) and under Ar-saturated atmosphere (red).

Figure S32. Current vs time plots for the CPE and (b) charge passed during CPE of [1-Br] (1 mM) in 0.1 M TBAP/CH₃CN with 5.51 M H₂O at $E_{app} = -1.85$ V under CO₂-saturated atmosphere (black) and under Ar-saturated atmosphere (red).

Figure S33. (a) Current vs time plots for the CPE and (b) charge passed during CPE of [1-Br] (1 mM) in 0.1 M TBAP/CH₃CN under CO₂ with 5.51 M H₂O at $E_{app} = -2.05$ V; (c) Faradaic efficiency for CO production over electrolysis time during CPE of [1-Br] (1 mM) in 0.1 M TBAP/CH₃CN under CO₂ with 5.51 M H₂O at $E_{app} = -2.05$ V.

Figure S34. Current vs time plots for the CPE of complexes (a) [**2**–**Br**] and (b) [**3**–**Br**] (1 mM) in 0.1 M TBAP/CH₃CN with 5.51 M H₂O at E_{app} = -1.85 V under CO₂-saturated atmosphere (black) and under Arsaturated atmosphere (red).

Figure S35. (a) Current vs time plots for the CPE and (b) charge passed during CPE of [2-Br] (1 mM) in 0.1 M TBAP/CH₃CN with 5.51 M H₂O at $E_{app} = -2.05$ V under CO₂-saturated atmosphere (black) and under Ar-saturated atmosphere (red).

Figure S36. (a) Current vs time plots for the CPE and (b) charge passed during CPE of [3-Br] (1 mM) in 0.1 M TBAP/CH₃CN with 5.51 M H₂O at $E_{app} = -2.05$ V under CO₂-saturated atmosphere (black) and under Ar-saturated atmosphere (red).

Figure S37. (a) CVs of complex [**1**–**Br**] at various concentrations (0.33–1.71 mM) in CO₂-saturated CH₃CN with 0.1 M TBAP as electrolyte at scan rate 100 mV s⁻¹; The linear plot of i_{cat} versus catalyst concentration of (b) first, (c) second and (d) third catalytic waves for CVs of [**1**–**Br**].

Figure S38. (a) CVs of complex [1-Br] (1 mM) in CO₂-saturated CH₃CN solution with 0.1 M TBAP and 5.51 M H₂O as electrolyte at different scan rates (0.1 to 1.8 V s⁻¹); The plots of TOF versus scan rate for (b) third catalytic wave, (c) second catalytic wave and (d) first catalytic wave, with an inset of i_c/i_p versus inverse square root of the scan rate, highlighting that steady-state conditions are accomplished at high scan rates (1.4–1.8 V s⁻¹).

Figure S39. FTIR-SEC of [1-Br] (5 mM) in CH₃CN solution (0.05 M TBAP, 5.51 M H₂O) under Ar: resting state (black), singly reduced species (red), and doubly reduced species (blue).

Figure S40. FTIR-SEC changes observed during the reaction of [1-Br] (5 mM) in CH₃CN solution (0.05 M TBAP) with 5.51 M H₂O under Ar at applied potential (a) –1.55 V and (b) –1.75 V. Black and red curves describe the starting and the final spectra, respectively.

Figure S41. FTIR-SEC changes observed during the reaction of [**3**–**Br**] (5 mM) in CH₃CN solution (0.05 M TBAP) with 5.51 M H₂O under Ar at applied potential (a) -1.5 V and (b) -1.85 V. Black and red curves describe the starting and the final spectra, respectively.

Figure S42. The v_{CO} stretching bands of FTIR-SEC spectra for complex $[\mathbf{1}_2]^0$ and $[\mathbf{3}_2]^0$ with 5.51 M H₂O added in CH₃CN with TBAP (0.1 M) as electrolyte under Ar.

Figure S43. FTIR-SEC changes observed during the reaction of [2-Br] (5 mM) in CH₃CN solution (0.05 M TBAP) with 5.51 M H₂O under Ar at applied potential (a) –1.45 V and (b) –1.6 V. Black and red curves describe the starting and the final spectra, respectively.

Figure S44. (a) FTIR spectra of [1-Br] (black) and its singly (red) and doubly reduced species (blue) prepared via chemical reduction with KC₈ in THF solutions; (b) The FTIR spectra of $[1]^-$ generated in the chemical reduction experiment without (black) and with (red) TBAP in THF solution.

Figure S45. Differential FTIR-SEC spectra of [1-Br] (5 mM) in CO₂-saturated CH₃CN solution (0.05 M TBAP, 5.51 M H₂O) at the applied potential -1.75 V. Black and red curves describe the starting and the final spectra, respectively.

Figure S46. FTIR-SEC changes observed during the reaction (applied potential -1.75 V) of [**1**–**Br**] (5 mM) in THF solution (0.05 M TBAP, 5.51 M H₂O) under CO₂. Black and red curves describe the starting and the final spectra, respectively.

Figure S47. The HR-MS data of two-electrons reduced species [1]⁻ mixed with CO₂-containing THF solution. Inset: Partial spectrum with mass ratio from 395 to 400.

Figure S48. Experimentally observed (red) and calculated (black) spectra of (a) $[1 + CO_2]^-$ after mixing a CO₂-containing solution with $[1]^-$. Note: (1) the red-star labelled signals represent other unknown species; (2) the eluent used for the HR-MS measurements contains methanol.

Figure S49. Catalyst activation and dimerization pathways for $[fac-Mn(bpy-CONHMe)(CO)_3NCCH_3]^+$ ($[Mn-NCCH_3]^+$ or $[1-NCCH_3]^+$).

Figure S50. Optimized (a) transition state structure for CO_2 binding to [1]⁰, (b) structure for Mn^{II}-COOH species with deprotonated ligand ([(1-H⁺)-CO₂H]⁰) and (c) structure for Mn^{II}-COOH ([1-CO₂H]⁺) with and a water molecule. ΔG^{\ddagger} and ΔG are in units of kcal/mol with respect to separated reactants [1]⁰, H₂O and CO₂.

Figure S51. Optimized structures for $[1_2]^0$ (a-c), (d) deprotonated form of $[1_2]^0$, transition states for CO evolution from (e) $[1_2]^0$ conformer 1 and (f) deprotonated form of $[1_2]^0$ conformer 3. ΔG^{\ddagger} and ΔG are in units of kcal/mol with respect to most stable $[1]^0$ conformer 3 except for last TS for which the reference is deprotonated $[1_2]^-$ conformer 3.

Figure S52. Optimized structures for (a) $[1_2]^0$ -CO where one of the CO molecules has dissociated, (b-f) different conformers of species fromed upon addition of CO₂ and H₂O to $[1_2]^0$ -CO. Δ Gs are in units of kcal/mol with respect to separated reactants $[1_2]^0$, H₂O, CO₂ and CO.

Figure S53. Optimized structures for (a) $[1_2]^0$ conformer 3 with 2 H₂O H-bonded, (b) $[1_2]^-$ Conformer 3 Deprotonated with 2 H₂O, (c) [Mn(bpy-CONMe)(CO)₃] Conformer 1 with 1 H₂O H-bonded and (d) [Mn(bpy-CONMe)(CO)₃] conformer 2 with 1 H₂O H-bonded.

Figure S54. Optimized transition state structures for CO_2 binding to $[1]^-$ (top) and intramolecular proton transfer in $[1-CO_2]^-$ (bottom) with and without assistance of a water molecule.

Figure S55. Optimized transition state structures for C–OH bond cleavage for $[1-CO_2H]^0$ and $[1-CO_2H]^-$ species using H₂O as the weak Brønsted acid.

Figure S56. Optimized transition state structures for C–OH bond cleavage for $[Mn(bpy)(CO)_3CO_2H]^0$ ([**3-CO₂H**]⁰) with 1 (left) and 2 (right) H₂O molecules as the weak Brønsted acid.

	[1-Br]
Mn-C1	1.818
Mn-N1	2.032
N1-C2	1.345
C2-C3	1.382
C3-C4	1.380
C4-C5	1.388
C5-C6	1.391
C6-C7	1.480
C7-C8	1.385
C8-C9	1.381
C9-C10	1.389
C10-C11	1.383
C11-N2	1.351
Mn-N2	2.067
Mn-C13	1.808
Mn-C14	1.818
C1-O1	1.144
C13-O2	1.153
C14-O3	1.109

 Table S1. Representative bond lengths [Å] for [1–Br].

Empirical formula	C1₅H ₁₁ N₃O₄MnBr	
Formula weight	430.93	
Temperature	100 K	
Wavelength	0.71073	
Crystal system	Monoclinic	
Space group	P 21/c	
Unit cell dimensions	$a = 10.650(4) \text{ Å} \qquad \alpha = 90^{\circ}$	
	b = 9.121(4) Å β = 100.266°	
	c = 16.456(14) γ = 90°	
Volume	1572.9(11) Å ³	
Density (calculated)	1.523 mg/m ³	
Absorption coefficient	1.985	
F(000)	856.0	
Crystal size	0.42 x 0.38 x 0.34	
Reflections collected	29067	
Absorption correction	Muti-scan	
Data / restraints / parameters	3618/0/219	
Goodness-of-fit on F2	1.038	
R indices (all data)	R1 = 0.0287 wR2 = 0.0709	

 Table S2. Crystal data and structure refinement for [1–Br].

	[K(18-crown-		
	6)]⁺[1]⁻		
Mn-C1	1.768		
Mn-N1	1.973		
N1-C2	1.370		
C2-C3	1.363		
C3-C4	1.426		
C4-C5	1.340		
C5-C6	1.406		
C6-C7	1.401		
C7-C8	1.417		
C8-C9	1.354		
C9-C10	1.395		
C10-C11	1.372		
C11-N2	1.391		
Mn-N2	2.005		
Mn-C13	1.749		
Mn-C14	1.751		
C1-O1	1.190		
C13-O2	1.181		
C14-O3	1.190		

Table S3. Representative bond lengths [Å] for [K(18-crown-6)]⁺[1]⁻.

$C_{27}H_{35}N_3O_{10}KMn$		
655.13		
100 K		
0.71073		
Monoclinic		
P 21/c		
a = 9.4091(12) Å α = 90°		
b = 15.768(3) Å β = 94.907°		
c = 25.766(5) γ = 90°		
3808.7(11) Å ³		
1.395 mg/m ³		
0.520		
1688		
0.34 x 0.26 x 0.08		
33806		
Muti-scan		
6480/453/643		
1.026		
R1 = 0.0845 wR2 = 0.2382		

Table S4. Crystal data and structure refinement for [K(18-crown-6)]⁺[1]⁻.

	[2-Br]
Mn-C1	1.803
Mn-N1	2.044
N1-C2	1.343
C2-C3	1.384
C3-C4	1.382
C4-C5	1.386
C5-C6	1.391
C6-C7	1.472
C7-C8	1.390
C8-C9	1.384
C9-C10	1.386
C10-C11	1.388
C11-N2	1.349
Mn-N2	2.090
Mn-C13	1.823
Mn-C14	1.809
C1-O1	1.151
C13-O2	1.147
C14-O3	1.131

Table S5. Representative bond lengths [Å] for [2–Br].

Empirical formula	$C_{16}H_{13}N_3O_4MnBr$		
Formula weight	446.13		
Temperature	100 K		
Wavelength	0.71073		
Crystal system	Monoclinic		
Space group	P 21/n		
Unit cell dimensions	a = 10.5955(4) Å α = 90°		
	b = 10.5011(4) Å β = 94.048°		
	c = 15.0027(6) γ = 90°		
Volume	1665.10(11) ų		
Density (calculated)	1.780 mg/m ³		
Absorption coefficient	3.219		
F(000)	888.0		
Crystal size	0.28 x 0.24 x 0.2		
Reflections collected	26780		
Absorption correction	Muti-scan		
Data / restraints / parameters	3848/0/229		
Goodness-of-fit on F2	1.023		
R indices (all data)	R1 = 0.0227 wR2 = 0.0515		

Table S6. Crystal data and structure refinement for [2–Br].

Table S7. The current density of first and second oxidation wave for complex [1-Br] in Ar-saturated CH₃CN with 0.1 M TBAP at different scan rate.

Scan rate (V s⁻¹)	<i>i</i> ₀x1 (mA cm⁻²)	i _{ox2} (mA cm⁻²)	i _{ox1} /i _{ox2}
0.1	0.02	0.11	0.18
0.2	0.05	0.16	0.31
0.4	0.14	0.34	0.41
0.6	0.21	0.28	0.75
0.8	0.31	0.35	0.89
1.0	0.43	0.39	1.10
1.2	0.5	0.42	1.19

Catalyst	Solvent	<i>E</i> ° (V)	E _{eq} (V)	η (V) at catalytic current density –1.0 mA cm ⁻²	Refs.
[1-Br]	CH ₃ CN + 9%				
	(5.51 M) H ₂ O	-1.37	-1.17	0.34	_
[2–Br]	CH ₃ CN + 9%				This
	(5.51 M) H ₂ O	-1.37	-1.17	0.76	work
[3–Br]	CH ₃ CN + 9%				
	(5.51 M) H ₂ O	-1.37	-1.17	0.84	
[Mn(bpy-	CH ₃ CN + 5%	-1.43	-1.23	0.61	a)
^t Bu)(CO) ₃ Br]	H ₂ O				
[Mn(mesbpy)(C	CH ₃ CN + 13%				b)
O) ₃ (MeCN)](H ₂ O	-1.31	-1.11	0.81	
OTf)					
[Mn(((MeO) ₂ Ph) ₂	CH ₃ CN +13%	-1.31	-1.11		c)
bpy)(CO) ₃ (MeC	H ₂ O				
N)](OTf)					
[Mn(dhbpy)(CO)	CH₃CN				d)
₃ Br]					
[Mn(ptbpy)(CO) ₃	CH ₃ CN + 5%	-1.43	-1.23	0.92	e)
Br]	H ₂ O				
[Mn(HOPh-	CH ₃ CN + 5%	-1.43	-1.22	0.37	f)
bpy)(CO)₃Br]	H ₂ O				
[Mn(Me(ImMe)b	CH ₃ CN + 19%	-1.28	-1.08	0.44	g)
py)(bpy)Br](PF ₆)	H ₂ O				
[Mn(Me-Im-	CH ₃ CN + 5%	-1.43	-1.23		h)
Py)(CO)₃Br]	H ₂ O				

Table S8. Catalytic data of selected Mn-based homogeneous catalysts together with the standard CO_2 reduction potentials and electrode equilibrium potentials. All the scan rates are at 100 mV s⁻¹.

a) Smieja, J. M.; Sampson, M. D.; Grice, K. A.; Benson, E. E.; Froehlich, J. D.; Kubiak, C. P. *Inorg. Chem.* 2013, *52*, 2484; b) Sampson, M. D.; Nguyen, A. D.; Grice, K. A.; Moore, C. E.; Rheingold, A. L.; Kubiak, C. P. *J. Am. Chem. Soc.* 2014, *136*, 5460; c) Ngo, K. T.; McKinnon, M.; Mahanti, B.; Narayanan, R.; Grills, D. C.; Ertem, M. Z.; Rochford, J. *J. Am. Chem. Soc.* 2017, *139*, 2604; d) Franco, F.; Cometto, C.; Vallana, F. F.; Sordello, F.; Priola, E.; Minero, C.; Nervi, C.; Gobetto, R. *Chem. Commun.* 2014, *50*, 14670; e) Franco, F.; Cometto, C.; Nencini, L.; Barolo, C.; Sordello, F.; Minero, C.; Fiedler, J.; Robert, M.; Gobetto, R.; Nervi, C. *Chem-Eur. J.* 2017, *23*, 4782; f) Agarwal, J.; Shaw, T. W.; Schaefer, H. F.; Bocarsly, A. B. *Inorg. Chem.* 2015, *54*, 5285; g) Sung, S.; Li, X. H.; Wolf, L. M.; Meeder, J. R.; Bhuvanesh, N. S.; Grice, K. A.; Panetier, J. A.; Nippe, M. *J. Am. Chem. Soc.* 2019, *141*, 6569; h) Agarwal, J.; Shaw, T. W.; Stanton, C. J.; Majetich, G. F.; Bocarsly, A. B.; Schaefer, H. F. *Angew. Chem. Int. Ed.* 2014, *126*, 5252

Complex -	<i>v</i> _{co} (cm ^{−1})		
Complex	Experimental	DFT	
[1 - B r] ⁰	2025, 1932, 1926	2015, 1939, 1929	
[1–MeCN]⁺	2048,1965, 1949	2036, 1965, 1952	
[1] ⁰		1954, 1863, 1852	
[1 ₂] ⁰	1978, 1932, 1865 (br)	1955, 1915, 1864-1880	
[1] ⁻	1917, 1818(br)	1902, 1834, 1823	
[1-CO ₂] [−]		1955, 1871, 1864, 1641	
[1-CO₂] [–] with 1 H₂O H- bonded		1949, 1872, 1860, 1670	
[(1 -H⁺)-CO ₂ H]⁻		1986, 1900, 1893, 1656	
[(1 -H ⁺)-CO ₂ H] [−] with 1 H ₂ O H-bonded		1993, 1913, 1898, 1653	
[1 -CO ₂ H] ⁰		2006, 1924, 1907, 1695	
[1 -CO ₂ H] ⁰ with 1 H ₂ O H- bonded		2002, 1922, 1903, 1672	
[1 -CO ₂ H]⁻		1990, 1901, 1885, 1688	
[1 -CO ₂ H] ⁻ with 1 H ₂ O H- bonded		1990, 1902, 1885, 1688	
[1 -CO] ⁺		2100, 2021, 2007, 1978	
[1 -CO] ⁰		2083, 2001, 1984, 1953	

Table S9. List of computed v_{CO} bands for selected species (scaling factor = 0.957). Experimental values from FTIR-SEC are shown in paranthesis.