Amide-based second coordination sphere promotes the dimer pathway of Mn -catalyzed CO_{2}-to-CO reduction at low overpotential

Yong Yang, ${ }^{\text {a }}$ Mehmed Z. Ertem *b and Lele Duan *a

${ }^{\text {a }}$ Department of Chemistry, Shenzhen Grubbs Institute and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, 518055, China
${ }^{\text {b }}$ Chemistry Division, Energy \& Photon Sciences, Brookhaven National Laboratory, Upton, NY 119735000

Ligand exchange study.

It is well known that the axial bromo ligand of $\left[f a c-\mathrm{Mn}\left(\mathrm{N}^{\wedge} \mathrm{N}\right)(\mathrm{CO})_{3} \mathrm{Br}\right]$ can be partially replaced by $\mathrm{CH}_{3} \mathrm{CN}$ in the acetonitrile solution. CVs of [1-Br] in Ar-saturated dry $\mathrm{CH}_{3} \mathrm{CN}$ containing 0.10 M of tetrabutylammonium hexafluorophosphate (TBAP) showed three irreversible reduction waves at -1.51 , -1.59 and -1.76 V (Figure S20). The ligand exchange reaction was studied using FTIR spectroscopy in the dry $\mathrm{CH}_{3} \mathrm{CN}$ (Figure S 26 b) and the mixed $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{H}_{2} \mathrm{O}$ (catalytic conditions; Figure S 26 a), respectively. Apparently, the solvolysis of $[1-\mathrm{Br}]$ to $[1-\mathrm{MeCN}] \mathrm{Br}$ occurs much faster in the mixed acetonitrile/water than in the dry $\mathrm{CH}_{3} \mathrm{CN}$. Nevertheless, a mixture of $[1-\mathrm{Br}]$ and $[1-\mathrm{MeCN}] \mathrm{Br}$ was obtained during the time scale of preparing the CV experiments. Additionally, the CV of complex ([1-MeCN](OTf)) was measured under the same conditions (Figure S24), which displayed only two reduction waves. Accordingly, the first and second reduction waves of $[1-\mathrm{Br}]$ are actually corresponding to the one-electron reduction process of $[1-\mathrm{MeCN}]^{+}$and $[1-\mathrm{Br}]$, respectively. These two peaks could not be separated clearly by varying the scan rate (Figure S25). After one-electron reduction, the resulting Mn^{0} species undergoes fast bromo dissociation (EC mechanism), forming 5-coordinate $\left[\mathrm{Mn}^{\prime}(\text { bpy-CONHMe })^{-}(\mathrm{CO})_{3}\right]\left([1]^{0}\right)$. This $[1]^{0}$ monomer is prone to dimerization to yield $\left[1_{2}\right]^{0}$ which could be further reduced at $E=-1.76 \mathrm{~V}$, leading to the formation of $\left[\mathrm{Mn}^{0}(\mathrm{bpy}-\mathrm{CONHMe})^{--}(\mathrm{CO})_{3}\right]\left([1]^{-}\right)\left(\mathrm{CEC}\right.$ mechanism; Figure S20). ${ }^{1-4}$ At the reverse scan, the oxidation of [1] ${ }^{0}$ to $[1]^{+}$was observed at -1.46 V while the oxidation wave at -0.76 V assigned as the oxidation of $\left[1_{2}\right]^{0}$ dimer. ${ }^{5,6}$ The scan rate dependence measurements (Figure S25) disclose that although the oxidation waves at $-1.46 \mathrm{~V}(\mathrm{ox} 1)$ and -0.76 V (ox 2) are both growing upon increasing the scan rate, the ratio of $i_{0 \times 1} 1 i_{\text {ox } 2}$ also increased (Table S7) indicating that the dimer formation is inhibited at higher scanning rates. After addition of water to the electrolyte $\left(5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}\right)$ under Ar conditions, the reduction wave of [1-Br] to $[1-\mathrm{Br}]^{0}$ at -1.59 V disappeared and only the reduction wave of $[1-\mathrm{MeCN}]^{+}$to $[1-\mathrm{MeCN}]^{0}$ remained (Figures S20b), due to the fast ligand exchange in the presence of water.

References

(1) M. D. Sampson, A. D. Nguyen, K. A. Grice, C. E. Moore, A. L. Rheingold and C. P. Kubiak, J. Am. Chem. Soc., 2014, 136, 5460-5471.
(2) F. Franco, M. F. Pinto, B. Royo and J. Lloret-Fillol, Angew. Chem. Int. Ed., 2018, 57, 4603-4606.
(3) D. C. Grills, M. Z. Ertem, M. McKinnon, K. T. Ngo and J. Rochford, Coord. Chem. Rev., 2018, 374, 173-217.
(4) K. T. Ngo, M. McKinnon, B. Mahanti, R. Narayanan, D. C. Grills, M. Z. Ertem and J. Rochford, J. Am. Chem. Soc., 2017, 139, 2604-2618.
(5) M. Bourrez, F. Molton, S. Chardon-Noblat and A. Deronzier, Angew. Chem. Int. Ed., 2011, 50, 99039906.
(6) J. M. Smieja, M. D. Sampson, K. A. Grice, E. E. Benson, J. D. Froehlich and C. P. Kubiak, Inorg. Chem., 2013, 52, 2484-2491.

Figure S1. Synthesis of ligands of bpy-CONHMe and bpy-CONMe ${ }_{2}$.

Figure S2. Synthesis of manganese complexes [1-Br] and $[2-B r]$.

Figure S3. ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6} of ligand bpy-CONHMe.

Figure S4. ${ }^{1} \mathrm{H}$ NMR spectrum in CDCl_{3} of ligand bpy-CONMe ${ }_{2}$.

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{DMSO}-\mathrm{d}_{6}$ of complex $[1-\mathrm{Br}]$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ of complex [1-Br].

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6} of complex [2-Br].

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ of complex [2-Br].

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6} of complex $[3-\mathrm{Br}]$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ of complex [3-Br].

Figure S11. ATR-IR spectra of complexes [1-Br] and [1-MeCN](OTf).

Figure S12. ATR-IR spectra of complexes [2-Br] and [2-MeCN](OTf).

Figure S13. ATR-IR spectra of complexes [3-Br] and [3-MeCN](OTf).

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{DMSO}-\mathrm{d}_{6}$ of complex $[1-\mathrm{MeCN}](\mathrm{OTf})$.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ of complex [1-MeCN](OTf).

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ of complex [2-MeCN](OTf).

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum in DMSO- d_{6} of complex [3-MeCN](OTf).

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum in $\mathrm{CD}_{3} \mathrm{CN}$ of complex [3-MeCN](OTf).

Figure S19. X-ray crystal structure of [2-Br] with ellipsoids at the 50% probability level.

Figure S20. CVs of [1-Br] (1 mM), under Ar (black), CO_{2} (red), Ar with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ added (blue) and CO_{2} with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ added in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ with TBAP $(0.1 \mathrm{M})$ as electrolyte. Note: It took longer time to prepare the CO_{2} saturated solution than the Ar saturated solution, so the concentration of the MeCN bound species would be higher in the CO_{2} saturated solution than the Ar saturated solution, leading to the difference in their CVs.

Figure S21. (a) CVs of [2-Br] (1 mM) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ with TBAP (0.1 M) as electrolyte under Ar (blue), Ar with 5.51 M H 2 O added (purple) and CV of and [2-MeCN](OTf) (1 mM) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ with TBAP (0.1 M) as electrolyte under Ar (green); (b) CVs of $[2-\mathrm{Br}](1 \mathrm{mM})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ with TBAP (0.1 M) as electrolyte under CO_{2} (purple), CO 2 with $5.51 \mathrm{M} \mathrm{H2O}$ added (green).

Figure S22. (a) CVs of [3-Br] (1 mM) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ with TBAP (0.1 M) as electrolyte under Ar (blue), Ar with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ added (purple) and CV of and [3-MeCN](OTf) (1 mM) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ with TBAP (0.1 M) as electrolyte under Ar (green); (b) CVs of $[3-\mathrm{Br}](1 \mathrm{mM})$ in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ with $\operatorname{TBAP}(0.1 \mathrm{M})$ as electrolyte under CO_{2} (purple), CO_{2} with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ added (green).

Figure S23. CVs of [1-Br] (1 mM) and [2-Br] (1 mM) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ with TBAP (0.1 M) as electrolyte under an inter atmosphere (Ar) with the peak integration corresponding to the consumed charges. Due to the steric influence of the amide $-\mathrm{NMe}_{2}$ group, complex [2-Br] under dry conditions displayed a similar electrochemical property to complex $\left[\mathrm{Mn}(\text { mesbpy })(\mathrm{CO})_{3} \mathrm{Br}\right]^{1}$ which exhibited a single, two-electron reduction wave (Figure S24). As shown in Figure S23, the consumed charge of the reduction wave at $-1.61 \mathrm{~V}\left(4.0859 \times 10^{-5} \mathrm{C}\right)$ for complex $[2-\mathrm{Br}]$ is similar with that of the sum of the first two oneelectron processes of $[1-\mathrm{Br}]\left(4.0342 \times 10^{-5} \mathrm{C}\right)$. We thereby assigned the reduction wave as a two-electron reduction process.

Figure S24. CVs of [1-Br] (1 mM) and [1-MeCN](OTf) (1 mM) in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ with TBAP (0.1 M) as electrolyte under an inter atmosphere (Ar).

Figure S25. (a) CVs of [1-Br] (1 mM) in Ar-saturated $\mathrm{CH}_{3} \mathrm{CN}$ with 0.1 M TBAP at different scan rate (0.05 $-1.2 \mathrm{~V} \mathrm{~s}^{-1}$); (b) The linear plot of $i_{\mathrm{ox} 2}$ versus $v^{1 / 2}$ for CVs of $[1-\mathrm{Br}]$.

Figure S26. FTIR spectral change versus time plot of complex [1-Br] (1 mM) in (a) $\mathrm{CH}_{3} \mathrm{CN}$ solution with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ and (b) $\mathrm{CH}_{3} \mathrm{CN}$ solution.

Figure S27. (a) FTIR spectral change versus time plot of complex [2-Br] (1 mM) in $\mathrm{CH}_{3} \mathrm{CN}$ solution with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ and FTIR spectrum of complex [2-MeCN](OTf) in $\mathrm{CH}_{3} \mathrm{CN}$ solution; (b) FTIR spectral change versus time plot of complex [3-Br] (1 mM) in $\mathrm{CH}_{3} \mathrm{CN}$ solution with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ and FTIR spectrum of complex [3-MeCN](OTf) in $\mathrm{CH}_{3} \mathrm{CN}$ solution.

Figure S28. The plots of v_{CO} absorbance as a function of time for (a) [1-Br] (1 mM) at 2049 and 2028 cm^{-1}, (b) [2-Br] (1 mM) at 2049 and $2027 \mathrm{~cm}^{-1}$ and (c) [3-Br] (1 mM) at 2049 and $2025 \mathrm{~cm}^{-1}$. Reaction conditions: $\mathrm{CH}_{3} \mathrm{CN}$ solution with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$.

Figure S29. (a) CVs of the [1- Br$](1 \mathrm{mM})$ in $\mathrm{CH}_{3} \mathrm{CN}$ with TBAP (0.1 M) as electrolyte under saturated CO_{2} with the addition of $\mathrm{H}_{2} \mathrm{O}\left(0.28-5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}\right)$; The plots of the catalytic current as a function of the water concentration for the (b) third, (c) second and (d) first catalytic waves.

Figure S30. CV s of [1-Br] (1 mM) with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ added in anhydrous $\mathrm{CH}_{3} \mathrm{CN}$ with $\operatorname{TBAP}(0.1 \mathrm{M})$ as electrolyte under Ar (black), CO_{2} (red) atmosphere.

Figure S31. (a) Current vs time plots for the CPE and (b) charge passed during CPE of [1-Br] (1 mM) in $0.1 \mathrm{M} \mathrm{TBAP} / \mathrm{CH}_{3} \mathrm{CN}$ with $5.51 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ at $E_{\text {app }}=-1.55 \mathrm{~V}$ under CO_{2}-saturated atmosphere (black) and under Ar-saturated atmosphere (red).

Figure S32. Current vs time plots for the CPE and (b) charge passed during CPE of [1-Br] (1 mM) in 0.1 M TBAP/ $\mathrm{CH}_{3} \mathrm{CN}$ with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ at $E_{\text {app }}=-1.85 \mathrm{~V}$ under CO_{2}-saturated atmosphere (black) and under Ar-saturated atmosphere (red).

Figure S33. (a) Current vs time plots for the CPE and (b) charge passed during CPE of [1-Br] (1 mM) in $0.1 \mathrm{M} \mathrm{TBAP} / \mathrm{CH}_{3} \mathrm{CN}$ under CO_{2} with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ at $E_{\text {app }}=-2.05 \mathrm{~V}$; (c) Faradaic efficiency for CO production over electrolysis time during CPE of $[1-\mathrm{Br}](1 \mathrm{mM})$ in 0.1 M TBAP/ $\mathrm{CH}_{3} \mathrm{CN}$ under CO_{2} with 5.51 $\mathrm{M} \mathrm{H}_{2} \mathrm{O}$ at $E_{\text {app }}=-2.05 \mathrm{~V}$.

Figure S34. Current vs time plots for the CPE of complexes (a) [2-Br] and (b) [3-Br] (1 mM) in 0.1 M TBAP/ $/ \mathrm{CH}_{3} \mathrm{CN}$ with $5.51 \mathrm{M}_{2} \mathrm{O}$ at $E_{\text {app }}=-1.85 \mathrm{~V}$ under CO_{2}-saturated atmosphere (black) and under Ar saturated atmosphere (red).

Figure S35. (a) Current vs time plots for the CPE and (b) charge passed during CPE of [2-Br] (1 mM) in 0.1 M TBAP $/ \mathrm{CH}_{3} \mathrm{CN}$ with $5.51 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ at $E_{\text {app }}=-2.05 \mathrm{~V}$ under CO_{2}-saturated atmosphere (black) and under Ar-saturated atmosphere (red).

Figure S36. (a) Current vs time plots for the CPE and (b) charge passed during CPE of [3- Br] (1 mM) in $0.1 \mathrm{M} \mathrm{TBAP} / \mathrm{CH}_{3} \mathrm{CN}$ with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ at $E_{\text {app }}=-2.05 \mathrm{~V}$ under CO_{2}-saturated atmosphere (black) and under Ar-saturated atmosphere (red).

Figure S37. (a) CVs of complex [1- Br] at various concentrations ($0.33-1.71 \mathrm{mM}$) in CO_{2}-saturated $\mathrm{CH}_{3} \mathrm{CN}$ with 0.1 M TBAP as electrolyte at scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$; The linear plot of $i_{\text {cat }}$ versus catalyst concentration of (b) first, (c) second and (d) third catalytic waves for CVs of [1-Br].

Figure S38. (a) CVs of complex [1-Br] (1 mM) in CO_{2}-saturated $\mathrm{CH}_{3} \mathrm{CN}$ solution with 0.1 M TBAP and $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ as electrolyte at different scan rates (0.1 to $1.8 \mathrm{~V} \mathrm{~s}^{-1}$); The plots of TOF versus scan rate for (b) third catalytic wave, (c) second catalytic wave and (d) first catalytic wave, with an inset of $i_{d} i_{p}$ versus inverse square root of the scan rate, highlighting that steady-state conditions are accomplished at high scan rates (1.4-1.8 $\mathrm{V} \mathrm{s}^{-1}$).

Figure S39. FTIR-SEC of [1-Br] (5 mM) in $\mathrm{CH}_{3} \mathrm{CN}$ solution (0.05 M TBAP, $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$) under Ar: resting state (black), singly reduced species (red), and doubly reduced species (blue).

Figure S40. FTIR-SEC changes observed during the reaction of [1-Br] (5 mM) in $\mathrm{CH}_{3} \mathrm{CN}$ solution (0.05 M TBAP) with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ under Ar at applied potential (a) -1.55 V and (b) -1.75 V . Black and red curves describe the starting and the final spectra, respectively.

Figure S41. FTIR-SEC changes observed during the reaction of [3-Br] (5 mM) in $\mathrm{CH}_{3} \mathrm{CN}$ solution (0.05 M TBAP) with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ under Ar at applied potential (a) -1.5 V and (b) -1.85 V . Black and red curves describe the starting and the final spectra, respectively.

Figure S42. The v_{CO} stretching bands of FTIR-SEC spectra for complex $\left[\mathbf{1}_{2}\right]^{0}$ and $\left[\mathbf{3}_{2}\right]^{0}$ with $5.51 \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ added in $\mathrm{CH}_{3} \mathrm{CN}$ with TBAP $(0.1 \mathrm{M})$ as electrolyte under Ar.

Figure S43. FTIR-SEC changes observed during the reaction of [2-Br] (5 mM) in $\mathrm{CH}_{3} \mathrm{CN}$ solution (0.05 M TBAP) with $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$ under Ar at applied potential (a) -1.45 V and (b) -1.6 V . Black and red curves describe the starting and the final spectra, respectively.

Figure S44. (a) FTIR spectra of [1-Br] (black) and its singly (red) and doubly reduced species (blue) prepared via chemical reduction with KC_{8} in THF solutions; (b) The FTIR spectra of [1]- generated in the chemical reduction experiment without (black) and with (red) TBAP in THF solution.

Figure S45. Differential FTIR-SEC spectra of [1-Br] (5 mM) in CO_{2}-saturated $\mathrm{CH}_{3} \mathrm{CN}$ solution $(0.05 \mathrm{M}$ TBAP, $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$) at the applied potential -1.75 V . Black and red curves describe the starting and the final spectra, respectively.

Figure S46. FTIR-SEC changes observed during the reaction (applied potential -1.75 V) of [1-Br] (5 mM) in THF solution (0.05 M TBAP, $5.51 \mathrm{M} \mathrm{H}_{2} \mathrm{O}$) under CO_{2}. Black and red curves describe the starting and the final spectra, respectively.

FTMS - p EST Full ms

FTMS + p ESI Full ms

Figure S47. The HR-MS data of two-electrons reduced species [1]- mixed with CO_{2}-containing THF solution. Inset: Partial spectrum with mass ratio from 395 to 400 .

Figure S48. Experimentally observed (red) and calculated (black) spectra of (a) [1+CO2] $\left.\mathbf{C O}_{2}\right]^{-}$after mixing a CO_{2}-containing solution with [1] ${ }^{-}$. Note: (1) the red-star labelled signals represent other unknown species; (2) the eluent used for the HR-MS measurements contains methanol.

Figure S49. Catalyst activation and dimerization pathways for [fac-Mn(bpy-CONHMe)(CO) $\left.{ }_{3} \mathrm{NCCH}_{3}\right]^{+}$ $\left(\left[\mathrm{Mn}-\mathrm{NCCH}_{3}\right]^{+}\right.$or $\left.\left[1-\mathrm{NCCH}_{3}\right]^{+}\right)$.

Figure S50. Optimized (a) transition state structure for CO_{2} binding to $[1]^{\circ}$, (b) structure for $\mathrm{Mn}{ }^{11}-\mathrm{COOH}$ species with deprotonated ligand $\left(\left[\left(1-\mathrm{H}^{+}\right)-\mathrm{CO}_{2} \mathrm{H}\right]^{0}\right)$ and (c) structure for Mn " $-\mathrm{COOH}\left(\left[1-\mathrm{CO}_{2} \mathrm{H}\right]^{+}\right)$with and a water molecule. $\Delta \mathrm{G}^{\ddagger}$ and $\Delta \mathrm{G}$ are in units of $\mathrm{kcal} / \mathrm{mol}$ with respect to separated reactants $[1]^{0}, \mathrm{H}_{2} \mathrm{O}$ and CO_{2}.

Figure S51. Optimized structures for $\left[\mathbf{1}_{2}\right]^{0}(\mathrm{a}-\mathrm{c})$, (d) deprotonated form of $\left[\mathbf{1}_{2}\right]^{0}$, transition states for CO evolution from (e) $\left[\mathbf{1}_{2}\right]^{0}$ conformer 1 and (f) deprotonated form of $\left[\mathbf{1}_{2}\right]^{0}$ conformer 3. ΔG^{\ddagger} and ΔG are in units of $\mathrm{kcal} / \mathrm{mol}$ with respect to most stable [1] ${ }^{0}$ conformer 3 except for last TS for which the reference is deprotonated $\left[\mathbf{1 1}_{2}\right]^{-}$conformer 3.

[12] ${ }^{0}$-CO Conformer 1 ($\Delta \mathbf{G}=22.2 \mathrm{kcal} / \mathrm{mol}$) Mn1 - Mn2: $3.07 \AA$	$\left[1_{2}\right]^{0}-\mathrm{CO}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \text { Conformer } 1$ ($\Delta \mathrm{G}=63.6 \mathrm{kcal} / \mathrm{mol}$)
$\left[1_{2}\right]^{0}-\mathrm{CO}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ Conformer 2 ($\Delta \mathrm{G}=55.3 \mathrm{kcal} / \mathrm{mol}$) Mn1-C1: $1.96 \AA$ Mn1-01: $2.07 \AA$ Mn1 - Mn2: $3.68 \AA$	$\left[1_{2}\right]^{0}-\mathrm{CO}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ Conformer 3 ($\Delta \mathrm{G}=58.1 \mathrm{kcal} / \mathrm{mol}$) Mn1-C1: $1.93 \AA$ Mn1-01: $2.05 \AA$ Mn1 - Mn2: $3.75 \AA$
$\left[1_{2}\right]^{0}-\mathrm{CO}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ Conformer 4 ($\Delta \mathrm{G}=56.8 \mathrm{kcal} / \mathrm{mol}$)	$\left[1_{2}\right]^{0}-\mathrm{CO}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ Conformer 5 ($\Delta \mathrm{G}=58.7 \mathrm{kcal} / \mathrm{mol}$)

Figure S52. Optimized structures for (a) [1 $\left.\mathbf{1}^{2}\right]^{0}-\mathbf{C O}$ where one of the CO molecules has dissociated, (b-f) different conformers of species fromed upon addition of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ to [12] ${ }^{0}-\mathrm{CO}$. $\Delta \mathrm{Gs}$ are in units of $\mathrm{kcal} / \mathrm{mol}$ with respect to separated reactants $\left[\mathbf{1}_{2}\right]^{0}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}$ and CO .

Figure S53. Optimized structures for (a) [1 $\left.1_{2}\right]^{0}$ conformer 3 with $2 \mathrm{H}_{2} \mathrm{OH}$-bonded, (b) [1 $\left.1_{2}\right]^{-}$Conformer 3 Deprotonated with $2 \mathrm{H}_{2} \mathrm{O}$, (c) [$\mathrm{Mn}\left(\right.$ bpy-CONMe) $\left.(\mathrm{CO})_{3}\right]$ Conformer 1 with $1 \mathrm{H}_{2} \mathrm{O} \mathrm{H}$-bonded and (d) $\left[\mathrm{Mn}(\mathrm{bpy}-\mathrm{CONMe})(\mathrm{CO})_{3}\right]$ conformer 2 with $1 \mathrm{H}_{2} \mathrm{O} \mathrm{H}$-bonded.

Figure S54. Optimized transition state structures for CO_{2} binding to [1]- (top) and intramolecular proton transfer in $\left[1-\mathrm{CO}_{2}\right]^{-}$(bottom) with and without assistance of a water molecule.

[1- $\left.\mathrm{CO}_{2} \mathrm{H}\right]^{0} \mathrm{C}-\mathrm{OH}$ bond clevage TS with $1 \mathrm{H}_{2} \mathrm{O}$ Assisted by Amide Group $\begin{gathered} \mathrm{C}-\mathrm{O} 1: 2.34 \AA \quad \mathrm{O} 1-\mathrm{H} 1: 1.10 \AA \\ \mathrm{H} 1-\mathrm{O} 2: 1.36 \AA \quad \mathrm{O} 2-\mathrm{H} 2: 1.56 \AA \\ \mathrm{H} 2-\mathrm{N}: 1.08 \AA \end{gathered}$	[$1-\mathrm{CO}_{2} \mathrm{H}$]- C-OH bond clevage TS with $1 \mathrm{H}_{2} \mathrm{O}$ Assisted by Amide Group $\begin{gathered} \mathrm{C}-\mathrm{O} 1: 2.29 \AA \quad \mathrm{O} 1-\mathrm{H} 1: 1.11 \AA \\ \mathrm{H} 1-\mathrm{O} 2: 1.35 \AA \quad \mathrm{O} 2-\mathrm{H} 2: 1.54 \AA \\ \mathrm{H} 2-\mathrm{N}: 1.09 \AA \end{gathered}$
[1-CO2 H$]^{0} \mathrm{C}-\mathrm{OH}$ bond clevage TS with $1 \mathrm{H}_{2} \mathrm{O}$ $\begin{array}{ll} \mathrm{C}-\mathrm{O} 1: 2.38 \AA & \mathrm{O} 1-\mathrm{H} 1: 1.22 \AA \\ \mathrm{H} 1-\mathrm{O}: 1.20 \AA & \mathrm{O} 2-\mathrm{C}: 2.34 \AA \end{array}$	[$1-\mathrm{CO}_{2} \mathrm{H}$]- $\mathrm{C}-\mathrm{OH}$ bond clevage TS with $1 \mathrm{H}_{2} \mathrm{O}$
[1- $\left.\mathrm{CO}_{2} \mathrm{H}\right]^{0} \mathrm{C}-\mathrm{OH}$ bond clevage TS with $2 \mathrm{H}_{2} \mathrm{O}$ $\begin{array}{ll} \mathrm{C}-\mathrm{O} 1: 2.29 \AA & \mathrm{O} 1-\mathrm{H} 1: 1.13 \AA \\ \mathrm{H} 1-\mathrm{O}: 1.31 \AA & \mathrm{O} 2-\mathrm{C}: 2.82 \AA \end{array}$	[1- $\mathrm{CO}_{2} \mathrm{H}$] $\mathbf{C -}-\mathrm{OH}$ bond clevage TS with $2 \mathrm{H}_{2} \mathrm{O}$ $\begin{array}{ll} \mathrm{C}-\mathrm{O} 1: 2.44 \AA & \mathrm{O} 1-\mathrm{H} 1: 1.10 \AA \\ \mathrm{H} 1-\mathrm{O} 2: 1.38 \AA & \mathrm{O} 2-\mathrm{C}: 3.41 \AA \end{array}$

Figure S55. Optimized transition state structures for $\mathrm{C}-\mathrm{OH}$ bond cleavage for $\left[1-\mathrm{CO}_{2} \mathrm{H}\right]^{0}$ and $\left[1-\mathrm{CO}_{2} \mathrm{H}\right]^{-}$ species using $\mathrm{H}_{2} \mathrm{O}$ as the weak Brønsted acid.

Figure S56. Optimized transition state structures for $\mathrm{C}-\mathrm{OH}$ bond cleavage for $\left[\mathrm{Mn}(\mathrm{bpy})(\mathrm{CO})_{3} \mathrm{CO}_{2} \mathrm{H}\right]^{0}([3-$ $\left.\mathrm{CO}_{2} \mathrm{H}\right]^{0}$) with 1 (left) and 2 (right) $\mathrm{H}_{2} \mathrm{O}$ molecules as the weak Brønsted acid.

Table S1. Representative bond lengths $[\AA \AA]$ for $[1-\mathrm{Br}]$.

	$[1-\mathrm{Br}]$
$\mathrm{Mn}-\mathrm{C} 1$	1.818
$\mathrm{Mn}-\mathrm{N} 1$	2.032
$\mathrm{~N} 1-\mathrm{C} 2$	1.345
$\mathrm{C} 2-\mathrm{C} 3$	1.382
$\mathrm{C} 3-\mathrm{C} 4$	1.380
$\mathrm{C} 4-\mathrm{C} 5$	1.388
$\mathrm{C} 5-\mathrm{C} 6$	1.391
$\mathrm{C} 6-\mathrm{C} 7$	1.480
$\mathrm{C} 7-\mathrm{C} 8$	1.385
$\mathrm{C} 8-\mathrm{C} 9$	1.381
$\mathrm{C} 9-\mathrm{C} 10$	1.389
$\mathrm{C} 10-\mathrm{C} 11$	1.383
$\mathrm{C} 11-\mathrm{N} 2$	1.351
$\mathrm{Mn}-\mathrm{N} 2$	2.067
$\mathrm{Mn}-\mathrm{C} 13$	1.808
$\mathrm{Mn}-\mathrm{C} 14$	1.818
$\mathrm{C} 1-\mathrm{O} 1$	1.144
$\mathrm{C} 13-\mathrm{O} 2$	1.153
$\mathrm{C} 14-\mathrm{O} 3$	1.109

Table S2. Crystal data and structure refinement for [1-Br].

Empirical formula	$\mathbf{C 1}_{5} \mathbf{H}_{11} \mathbf{N}_{3} \mathbf{O}_{4} \mathbf{M n B r}$
Formula weight	430.93
Temperature	100 K
Wavelength	0.71073
Crystal system	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c}$
Unit cell dimensions	$\mathrm{a}=10.650(4) \AA \quad \mathrm{a}=90^{\circ}$
	$\mathrm{b}=9.121(4) \AA \quad \mathrm{C}=100.266^{\circ}$
V $16.456(14) \quad \mathrm{Y}=90^{\circ}$	
Volume	$1572.9(11) \AA^{3}$
Density (calculated)	$1.523 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	1.985
F(000)	856.0
Crystal size	$0.42 \times 0.38 \times 0.34$
Reflections collected	29067
Absorption correction	Muti-scan
Data / restraints / parameters	$3618 / 0 / 219$
Goodness-of-fit on F2	1.038
R indices (all data)	$\mathrm{R} 1=0.0287 \mathrm{wR2}=0.0709$

Table S3. Representative bond lengths $[\AA]$ for $[K(18-c r o w n-6)]^{+}[1]^{-}$.

	$[\mathrm{K}(18-\mathrm{crown}-$ $6)]^{+}[1]^{-}$
$\mathrm{Mn}-\mathrm{C} 1$	1.768
$\mathrm{Mn}-\mathrm{N} 1$	1.973
$\mathrm{~N} 1-\mathrm{C} 2$	1.370
$\mathrm{C} 2-\mathrm{C} 3$	1.363
$\mathrm{C} 3-\mathrm{C} 4$	1.426
$\mathrm{C} 4-\mathrm{C} 5$	1.340
$\mathrm{C} 5-\mathrm{C} 6$	1.406
$\mathrm{C} 6-\mathrm{C} 7$	1.401
$\mathrm{C} 7-\mathrm{C} 8$	1.417
$\mathrm{C} 8-\mathrm{C} 9$	1.354
$\mathrm{C} 9-\mathrm{C} 10$	1.395
$\mathrm{C} 10-\mathrm{C} 11$	1.372
$\mathrm{C} 11-\mathrm{N} 2$	1.391
$\mathrm{Mn}-\mathrm{N} 2$	2.005
$\mathrm{Mn}-\mathrm{C} 13$	1.749
$\mathrm{Mn}-\mathrm{C} 14$	1.751
$\mathrm{C} 1-\mathrm{O} 1$	1.190
$\mathrm{C} 13-\mathrm{O} 2$	1.181
$\mathrm{C} 14-\mathrm{O} 3$	1.190

Table S4. Crystal data and structure refinement for $[\mathrm{K}(18-\mathrm{crown}-6)]^{+}[1]^{-}$.

Empirical formula	$\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{10} \mathrm{KMn}$
Formula weight	655.13
Temperature	100 K
Wavelength	0.71073
Crystal system	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{c} \quad$
Unit cell dimensions	$\mathrm{a}=9.4091(12) \AA \quad \mathrm{a}=90^{\circ}$
	$\mathrm{b}=15.768(3) \AA \quad \mathrm{C}=94.907^{\circ}$
Volume	$35.766(5) \quad \mathrm{Y}=90^{\circ}$
Density (calculated)	$3808.7(11) \AA^{3}$
Absorption coefficient	$1.395 \mathrm{mg} / \mathrm{m}^{3}$
F(000)	0.520
Crystal size	1688
Reflections collected	$0.34 \times 0.26 \times 0.08$
Absorption correction	33806
Data / restraints / parameters	Muti-scan
Goodness-of-fit on F2	$6480 / 453 / 643$
R indices (all data)	1.026

Table S5. Representative bond lengths $[\AA$] for $[\mathbf{2}-\mathbf{B r}]$.

	$[2-\mathrm{Br}]$
$\mathrm{Mn}-\mathrm{C} 1$	1.803
$\mathrm{Mn}-\mathrm{N} 1$	2.044
$\mathrm{~N} 1-\mathrm{C} 2$	1.343
$\mathrm{C} 2-\mathrm{C} 3$	1.384
$\mathrm{C} 3-\mathrm{C} 4$	1.382
$\mathrm{C} 4-\mathrm{C} 5$	1.386
$\mathrm{C} 5-\mathrm{C} 6$	1.391
$\mathrm{C} 6-\mathrm{C} 7$	1.472
$\mathrm{C} 7-\mathrm{C} 8$	1.390
$\mathrm{C} 8-\mathrm{C} 9$	1.384
$\mathrm{C} 9-\mathrm{C} 10$	1.386
$\mathrm{C} 10-\mathrm{C} 11$	1.388
$\mathrm{C} 11-\mathrm{N} 2$	1.349
$\mathrm{Mn}-\mathrm{N} 2$	2.090
$\mathrm{Mn}-\mathrm{C} 13$	1.823
$\mathrm{Mn}-\mathrm{C} 14$	1.809
$\mathrm{C} 1-\mathrm{O} 1$	1.151
$\mathrm{C} 13-\mathrm{O} 2$	1.147
$\mathrm{C} 14-\mathrm{O} 3$	1.131

Table S6. Crystal data and structure refinement for [2-Br].

Empirical formula	$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{MnBr}$
Formula weight	446.13
Temperature	100 K
Wavelength	0.71073
Crystal system	Monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
Unit cell dimensions	$\mathrm{a}=10.5955(4) \AA \quad \mathrm{a}=90^{\circ}$
	$\mathrm{b}=10.5011(4) \AA \quad \mathrm{A}=94.048^{\circ}$
V $=15.0027(6) \quad \mathrm{Y}=90^{\circ}$	
Volume	$1665.10(11) \AA^{3}$
Density (calculated)	$1.780 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	3.219
F(000)	888.0
Crystal size	$0.28 \times 0.24 \times 0.2$
Reflections collected	26780
Absorption correction	Muti-scan
Data / restraints / parameters	$3848 / 0 / 229$
Goodness-of-fit on F2	1.023
R indices (all data)	$\mathrm{R} 1=0.0227 \quad \mathrm{wR2}=0.0515$

Table S7. The current density of first and second oxidation wave for complex [1-Br] in Ar-saturated $\mathrm{CH}_{3} \mathrm{CN}$ with 0.1 M TBAP at different scan rate

Scan rate $\left(V_{~ s^{-1}}\right)$	$i_{\mathrm{ox} 1}\left(\mathrm{~mA} \mathrm{~cm}^{-2}\right)$	$\boldsymbol{i}_{\mathrm{ox} 2}\left(\mathrm{~mA} \mathrm{~cm}^{-2}\right)$	$\boldsymbol{i}_{\mathrm{ox} 1} / i_{\mathrm{ox} 2}$
0.1	0.02	0.11	0.18
0.2	0.05	0.16	0.31
0.4	0.14	0.34	0.41
0.6	0.21	0.28	0.75
0.8	0.31	0.35	0.89
1.0	0.43	0.39	1.10
1.2	0.5	0.42	1.19

Table S8. Catalytic data of selected Mn-based homogeneous catalysts together with the standard CO_{2} reduction potentials and electrode equilibrium potentials. All the scan rates are at $100 \mathrm{mV} \mathrm{s}^{-1}$.

Catalyst	Solvent	$E^{\circ}(\mathrm{V})$	$E_{\text {eq }}(\mathrm{V})$	$\eta(\mathrm{V})$ at catalytic current density -1.0 $\mathrm{mA} \mathrm{cm}{ }^{-2}$	Refs.
[1-Br]	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CN}+9 \% \\ & (5.51 \mathrm{M}) \mathrm{H}_{2} \mathrm{O} \end{aligned}$	-1.37	-1.17	0.34	
[2-Br]	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CN}+9 \% \\ & (5.51 \mathrm{M}) \mathrm{H}_{2} \mathrm{O} \end{aligned}$	-1.37	-1.17	0.76	This work
[3-Br]	$\begin{aligned} & \mathrm{CH}_{3} \mathrm{CN}+9 \% \\ & (5.51 \mathrm{M}) \mathrm{H}_{2} \mathrm{O} \end{aligned}$	-1.37	-1.17	0.84	
$\begin{gathered} {[\mathrm{Mn}(\mathrm{bpy}-} \\ \left.\mathrm{tBu})(\mathrm{CO})_{3} \mathrm{Br}\right] \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}+5 \% \\ \mathrm{H}_{2} \mathrm{O} \\ \hline \end{gathered}$	-1.43	-1.23	0.61	a)
$\begin{gathered} \hline[\mathrm{Mn}(\text { mesbpy })(\mathrm{C} \\ \left.\mathrm{O})_{3}(\mathrm{MeCN})\right](\\ \mathrm{OTf}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{CH}_{3} \mathrm{CN}+13 \% \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	-1.31	-1.11	0.81	b)
$\begin{gathered} \hline\left[\mathrm { Mn } \left(\left((\mathrm{MeO})_{2} \mathrm{Ph}\right)_{2}\right.\right. \\ \mathrm{bpy})(\mathrm{CO})_{3}(\mathrm{MeC} \\ \mathrm{N})](\mathrm{OTf}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}+13 \% \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	-1.31	-1.11	---	c)
$\begin{gathered} {[\mathrm{Mn}(\mathrm{dhbpy})(\mathrm{CO})} \\ \left.{ }_{3} \mathrm{Br}\right] \end{gathered}$	$\mathrm{CH}_{3} \mathrm{CN}$				d)
$\begin{gathered} {\left[\mathrm{Mn}(\mathrm{ptbpy})(\mathrm{CO})_{3}\right.} \\ \mathrm{Br}] \end{gathered}$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}+5 \% \\ \mathrm{H}_{2} \mathrm{O} \\ \hline \end{gathered}$	-1.43	-1.23	0.92	e)
$\begin{aligned} & {[\mathrm{Mn}(\mathrm{HOPh}-} \\ & \left.\mathrm{bpy})(\mathrm{CO})_{3} \mathrm{Br}\right] \end{aligned}$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}+5 \% \\ \mathrm{H}_{2} \mathrm{O} \\ \hline \end{gathered}$	-1.43	-1.22	0.37	f)
$[\mathrm{Mn}(\mathrm{Me}(\mathrm{ImMe}) \mathrm{b}$ py)(bpy) Br$]\left(\mathrm{PF}_{6}\right)$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}+19 \% \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	-1.28	-1.08	0.44	g)
[Mn (Me-Im- $\left.\mathrm{Py})(\mathrm{CO})_{3} \mathrm{Br}\right]$	$\begin{gathered} \mathrm{CH}_{3} \mathrm{CN}+5 \% \\ \mathrm{H}_{2} \mathrm{O} \end{gathered}$	-1.43	-1.23	---	h)

a) Smieja, J. M.; Sampson, M. D.; Grice, K. A.; Benson, E. E.; Froehlich, J. D.; Kubiak, C. P. Inorg. Chem. 2013, 52, 2484; b) Sampson, M. D.; Nguyen, A. D.; Grice, K. A.; Moore, C. E.; Rheingold, A. L.; Kubiak, C. P. J. Am. Chem. Soc. 2014, 136, 5460; c) Ngo, K. T.; McKinnon, M.; Mahanti, B.; Narayanan, R.; Grills, D. C.; Ertem, M. Z.; Rochford, J. J. Am. Chem. Soc. 2017, 139, 2604; d) Franco, F.; Cometto, C.; Vallana, F. F.; Sordello, F.; Priola, E.; Minero, C.; Nervi, C.; Gobetto, R. Chem. Commun. 2014, 50, 14670; e) Franco, F.; Cometto, C.; Nencini, L.; Barolo, C.; Sordello, F.; Minero, C.; Fiedler, J.; Robert, M.; Gobetto, R.; Nervi, C. Chem-Eur. J. 2017, 23, 4782; f) Agarwal, J.; Shaw, T. W.; Schaefer, H. F.; Bocarsly, A. B. Inorg. Chem. 2015, 54, 5285; g) Sung, S.; Li, X. H.; Wolf, L. M.; Meeder, J. R.; Bhuvanesh, N. S.; Grice, K. A.; Panetier, J. A.; Nippe, M. J. Am. Chem. Soc. 2019, 141, 6569; h) Agarwal, J.; Shaw, T. W.; Stanton, C. J.; Majetich, G. F.; Bocarsly, A. B.; Schaefer, H. F. Angew. Chem. Int. Ed. 2014, 126, 5252

Table S9. List of computed v_{CO} bands for selected species (scaling factor $=0.957$). Experimental values from FTIR-SEC are shown in paranthesis.

Complex	$v_{\text {co }}\left(\mathrm{cm}^{-1}\right)$	
	Experimental	DFT
$[1-\mathrm{Br}]^{0}$	2025, 1932, 1926	2015, 1939, 1929
[1-MeCN] ${ }^{+}$	2048,1965, 1949	2036, 1965, 1952
[1] ${ }^{0}$		1954, 1863, 1852
$[12]^{0}$	1978, 1932, 1865 (br)	1955, 1915, 1864-1880
[1] ${ }^{-}$	1917, 1818(br)	1902, 1834, 1823
[1- $\left.\mathrm{CO}_{2}\right]^{-}$	---	1955, 1871, 1864, 1641
$\left[1-\mathrm{CO}_{2}\right]^{-}$with $1 \mathrm{H}_{2} \mathrm{OH}$ - bonded	---	1949, 1872, 1860, 1670
[(1-H+)-CO2 $\left.{ }^{2}\right]^{-}$	---	1986, 1900, 1893, 1656
$\left[\left(1-\mathrm{H}^{+}\right)-\mathrm{CO}_{2} \mathrm{H}\right]^{-}$with $1 \mathrm{H}_{2} \mathrm{O}$ H-bonded	---	1993, 1913, 1898, 1653
$\left[1-\mathrm{CO}_{2} \mathrm{H}\right]^{0}$	---	2006, 1924, 1907, 1695
$\left[1-\mathrm{CO}_{2} \mathrm{H}\right]^{0} \text { with } 1 \mathrm{H}_{2} \mathrm{OH} \mathrm{H}-$ bonded	---	2002, 1922, 1903, 1672
[1-CO2H] ${ }^{-}$	---	1990, 1901, 1885, 1688
$\begin{aligned} & {\left[1-\mathrm{CO}_{2} \mathrm{H}\right]^{-} \text {with } 1 \mathrm{H}_{2} \mathrm{OH}-} \\ & \text { bonded } \\ & \hline \end{aligned}$	---	1990, 1902, 1885, 1688
[1-CO] ${ }^{+}$	---	2100, 2021, 2007, 1978
[1-CO] ${ }^{0}$	---	2083, 2001, 1984, 1953

