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Role of type, amount and distribution of defects 
 
Table S1. References for importance of determination of type, amount and distribution of 
defects. 
 

 

Monte-Carlo simulations: non-uniform surface case 
 

 
Fig. S1. Mask of reactive areas 
 

Area Role of defects Defining characteristic 
of defects 

Ref. 

Electronic devices tune the bandgap, electronic 
properties, and transport properties 

density and distribution 
of defects 

1 

define electronic and mechanical 
properties 

characteristics of grain 
boundaries 

2–4 

define transport ability in the vicinity 
of the Fermi level 

presence localized states 
introduced by grain 
boundaries 

5 

define mechanical strength location, number and 
size of grain boundaries 
and void defects 

6–8 

Carbocatalysts carbocatalysis of hydrogenation type of defects (Stone-
Wales defects) 

9 

carbocatalysis of oxidative coupling 
reaction 

type of defects 
(structural defects) 

10 

carbocatalysis of reductive hydrogen 
atom transfer reactions 

type of defects (localized 
π-edge states) 

11 

Supported 
catalysts 

reduce leaching binding strength 12 

prevention of agglomeration size of the defect, 
binding strength 

12 

provide charge transfer between 
metal and support 

binding strength 12 

define stability of carbon supports amount, distribution and 
type of defects 

13 
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Fig. S2. The initial state of the system 
 

 
Fig. S3. The simulation after 7 iterations 
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Fig. S4. The simulation after 29 iterations 
 

 
Fig. S5. The simulation after 419 iterations 
 

 
Fig. S6. The simulation after 25 000 iterations 
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Fig. S7. The comparison between experimental image and results of the simulation 
 

 
Fig. S8. Experimental image with overlaid simulation results 
 
Video movie reflecting the simulation process is available in the Movie-1.mp4 file. 
 

Monte-Carlo simulations: smooth surface case 
 

 
Fig. S9. The initial state of the system 
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Fig. S10. The simulation after 7 iterations 
 

 
Fig. S11. The simulation after 22 iterations 

 

 
Fig. S12. The simulation after 100 iterations 
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Fig. S13. The comparison between experimental image and results of the simulation 

 

 
Fig. S14. Experimental image with overlaid simulation results 
 
 
Video movie reflecting the simulation process is available in the Movie-2.mp4 file. 
 

Degree of order determination 
 
The degree of order can be determined by finding particle positions first and then checking 
whether these positions were drawn from 2D uniform distribution. This was done using one-
sample two-dimensional Kolmogorov-Smirnov test.14 
 

 
Fig. S15. Two patches of the image of the disordered material showing different degree of 
order 
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Fig. S16. Distribution of p-values for 10 sample patches in multiple ordered and disordered 
images. Top left 750 px, top right 500 px, bottom 250 px. Image names are the same as in 
previously published dataset15 
 
Large variation of the results confirms need for more robust methods for determination of 
degree of order. 

Classification neural network 
Training 
Model was trained on 227x227 patches of the images provided in the dataset.16 

 
Fig. S17. Example of training images 
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Fig. S18. ROC-curves for AlexNet model (left — whole validation dataset, right — human 
evaluation dataset) 
 

 
Fig. S19. ROC-curves for ResNet model (left — whole validation dataset, right — human 
evaluation dataset) 
 

 
Fig. S20. ROC-curves for VGG model (left — whole validation dataset, right — human 
evaluation dataset)  
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Model interpretation 
 

 
Fig. S21. Validation dataset: gradients of loss function with respect to the image. Left — source 
images, middle — gradients, right — absolute value of gradients 
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Human evaluation 
 
 

     
 

 
Fig. S22. Images selected for human evaluation (test images are shown on top). “1” — ordered, 
“0” — disorderd 
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Human training was performed using following images: 
 

  
 
Fig. S23. Images, used to train humans (ordered location of nanoparticles – left; disordered – 
right) 
 
The images were accompanied with a description of what we mean by order, where the 
nanoparticles are, and how to classify properly. 
 
It was assumed, that some people would not read/understand the description and the task 
properly. To identify these answers, we included five very simple cases of images with high 
degree of order. Respondents’ performance in these questions is shown below. In overall, 245 
people were involved. 
 
Table S2. Percentage of people who answered correctly to the test questions 
 

Question / metric Correct answers 

1 87.8% 

2 96.3% 

3 94.7% 

4 93.1% 

5 98.0% 

All test questions 79.6% 

 
Then we calculated percentage of correct answers and classification metrics for all the 
respondents and for the people, who answered all test questions correctly, i.e. passed the test. 
 
Table S3. Poll statistics by question/metric (passing the test means answering correctly each of 
the first five test questions as summarized in Table S1) 
 

Question / metric Correct answers from those 
responders, who did not pass 
test questions 

Correct answers from those 
responders, who passed test 
questions 

6 98.0% 98.5% 

7 78.0% 90.8% 
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8 50.0% 73.3% 

9 80.0% 93.3% 

10 86.0% 94.4% 

11 22.0% 48.7% 

12 62.0% 93.8% 

13 98.0% 97.4% 

14 98.0% 97.4% 

15 78.0% 80.5% 

16 90.0% 95.4% 

17 82.0% 99.5% 

18 68.0% 89.7% 

19 80.0% 94.9% 

20 82.0% 95.4% 

21 96.0% 97.4% 

22 84.0% 93.8% 

23 86.0% 92.3% 

24 62.0% 88.2% 

25 46.0% 76.9% 

Precision score 0.866 0.962 

Accuracy score 0.763 0.896 

Recall score 0.638 0.837 

 
 

 
 
Fig. S24. Distribution of metrics for the poll responders 
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Segmentation neural network 
Training details 
 
Search for the architecture was done, using custom-build wrapper for Segmentation Models 
PyTorch package.17 All network were trained, using Adam optimizer18 with 10-4 learning rate. 
The networks were trained on a single NVIDIA 1080 TI. 
  

 
 
Fig. S25. Learning curves for models, evaluated during grid-search. Metric — ROC AUC score 
 
Then the models were retrained but learning rate with lowered 10-fold every 750 epochs. 
 
 

 
 
Fig. S26. Learning curves for the best models. Metric — ROC AUC score 
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Fig. S27. Other examples of segmentation neural network outputs 
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