# Ligand-enforced intimacy between a gold cation and a carbenium ion: Impact on stability and reactivity 

Elishua D. Litle, Lewis C. Wilkins and François P. Gabbaï*<br>Department of Chemistry, Texas A\&M University, College Station, TX 77843, USA<br>E-mail: francois@tamu.edu

Supporting Information

## Contents

1 Experimental ..... 2
1.1 General experimental .....  2
1.2 Syntheses .....  2
2 NMR spectra ..... 8
2.1 NMR spectra of products ..... 8
2.2 Catalytic studies ..... 27
3 Computational studies ..... 36
3.1 General methods ..... 36
3.2 Geometry optimized structures ..... 36
3.3 Atoms-in-molecules (AIM) ..... 38
3.4 Cartesian coordinates of geometry optimized structures ..... 39
4 X -ray diffraction analysis. ..... 46
4.1 Experimental details ..... 46
4.2 Table showing the compounds characterized by X-ray diffraction and their corresponding CCDC numbers ..... 46
4.3 Solid-state structures ..... 47
5 References ..... 50

### 1.1 General experimental

All reactions and manipulations were carried out under an atmosphere of dry, $\mathrm{O}_{2}$-free nitrogen using standard double-manifold techniques with a rotary oil pump unless otherwise stated. A nitrogen-filled glove box was used to manipulate solids, store air-sensitive starting materials, carry out room temperature reactions, recover reaction products and prepare samples for analysis. All solvents were dried by passing through an alumina column (pentane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) or by refluxing under $\mathrm{N}_{2}$ over $\mathrm{Na} / \mathrm{K}\left(\mathrm{Et}_{2} \mathrm{O}\right.$ and THF ) and stored under a nitrogen atmosphere over $3 \AA$ molecular sieves. Deuterated solvents were distilled and/or dried over molecular sieves before use. Chemicals were purchased from commercial suppliers and used as received. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{11} \mathrm{~B},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded on a Bruker Avance II 400 and a Bruker Avance 500 cold probe. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are expressed as parts per million (ppm, $\delta$ ) downfield of tetramethylsilane (TMS) and are referenced to $\mathrm{CDCl}_{3}(7.26 / 77.16 \mathrm{ppm})$ or $\mathrm{CD}_{2} \mathrm{Cl}_{2}(5.32 / 53.84 \mathrm{ppm})$ as internal standards. NMR spectra were referenced to $\mathrm{CFCl}_{3}\left({ }^{(19} \mathrm{F}\right), \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O} / \mathrm{CDCl}_{3}\left({ }^{11} \mathrm{~B}\right)$ and $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$. Abbreviations used for signal description include: $s$ for singlet, $d$ for doublet, t for triplet, m for multiplet and br . for broad. All coupling constants are absolute values and are expressed in Hertz (Hz). Mass spectrometry analyses were performed in-house at the Center for Mass Spectrometry using a Thermo Scientific Q Exactive Focus instrument. Elemental analyses were performed by Atlantic Microlab (Norcross, GA). The starting materials $\mathrm{PPh}_{3} \mathrm{AuCl}^{2}$, [1], [2], [1-AuCl]BF ${ }_{4}$ and [2-AuCl]BF ${ }_{4}$ were synthesized according to the literature with spectral analyses being consistent with previously established values. ${ }^{1}$

### 1.2 Syntheses


(2-Bromophenyl)diphenylphosphane ( $0.5 \mathrm{~g}, 1.47 \mathrm{mmol}$ ) was placed in a 150 mL Schlenk tube and dissolved in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ under nitrogen. After cooling the solution to $-78^{\circ} \mathrm{C}$, a solution of BuLi in hexanes $(2.5 \mathrm{M}, 0.7 \mathrm{~mL}$, 1.76 mmol ) was added dropwise. After stirring for 2 hours at $-78^{\circ} \mathrm{C}$, this reaction was treated with 4,4'bis(dimethylamino)benzophenone ( $0.472 \mathrm{~g}, 1.76 \mathrm{mmol}$ ) which was added as a solid in four portions, under a positive flow of nitrogen. The mixture was allowed to warm to room temperature then stirred for an additional 12 h. The reaction mixture was treated distilled $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ and subsequently vacuum filtered yielding a white precipitate. The precipitate was washed with Hexanes ( $3 \times 20 \mathrm{~mL}$ ) yielding 3-OH. Yield: $0.504 \mathrm{~g}, 63.4 \%$. Colorless, block-like single crystals were obtained by layering pentane on a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of $3-\mathrm{OH} .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) ठ/ppm: $7.29-7.04$ (m, 10H, Ar-H), 7.03 - 6.92 (m, 4H, Ar-H), $6.90-6.82$ (m, 4H, ArH), 6.71 (td, J=5.4, 4.7, $2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), 6.41 (d, J = $8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), 5.71 (d, J = $18.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), 2.79 (s, 12H, Me); OH signal not observed. ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\mathrm{\delta} / \mathrm{ppm}$ : 155.06 (d, J = 21.3 Hz ), 149.45 (s), 137.62 (d, J = 2.2 Hz ), 136.40 (d, J = 6.4 Hz ), 135.81 ( s ), 135.39 ( s ), 135.28 ( s$), 133.33$ (s), 133.18 (s), 129.82 (d, J = 7.2 Hz ), 128.87 (s), 128.29 (s), 128.18 (s), 128.10 (s), 128.04 (s), 126.89 (s), 126.63 (s), 111.42 (s), 83.19 (d, J = 2.4 Hz ), 40.27 (s). ${ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\mathrm{\delta} / \mathrm{ppm}$ : -15.9 (s). Elemental Analysis calculated: C: 79.2; H: 6.6; $\mathrm{N}: 5.3$ found: C: 78.9; H: 6.5; $\mathrm{N}: 5.3$.

## Synthesis of $4-\mathrm{OH}$ <br> 

(2-bromophenyl)diphenylphosphane ( $0.5 \mathrm{~g}, 1.47 \mathrm{mmol}$ ) was placed in a 150 mL Shlenck tube and dissolved in 20 mL of $\mathrm{Et}_{2} \mathrm{O}$ under nitrogen while stirring. The flask was cooled to $-78^{\circ} \mathrm{C}$ where a solution of 2.5 M BuLi in Hexanes ( $0.7 \mathrm{~mL}, 1.76 \mathrm{mmol}$ ) was added dropwise. After stirring for 2 hours, 4-(Dimethylamino)benzophenone ( $0.397 \mathrm{~g}, 1.76 \mathrm{mmol}$ ) was then added in portions. The mixture was then Stirred for an additional 12 h before adding 30 mL of distilled $\mathrm{H}_{2} \mathrm{O}$ and extracted with pentane. The pentane/ $\mathrm{Et}_{2} \mathrm{O}$ solution was allowed to slowly evaporate allowing for a white powder to precipitate out of solution. The precipitate was then vacuum filtered and washed with a minimal amount of pentane to yield a white powder. $328.7 \mathrm{mg}(46 \%)$. Single crystals were obtained by slow evaporation of an $\mathrm{Et}_{2} \mathrm{O}$ pentane solution. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 7.29$ 7.03 (m, 13H, Ar-H), 6.98 (dt, J = 14.5, 7.9 Hz, 4H, Ar-H), $6.89-6.80(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 6.67(\mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-$ H ), $6.44-6.35(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.80(\mathrm{dd}, \mathrm{J}=17.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 2.79(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, $298 \mathrm{~K}) ~ \delta / p p m: 155.03(\mathrm{~d}, \mathrm{~J}=21.4 \mathrm{~Hz}$ ), 150.16 (s), 148.41 (s), 138.42 (d, J = 2.1 Hz ), $137.03(\mathrm{~d}, \mathrm{~J}=6.1 \mathrm{~Hz})$, 136.48 (d, J = 5.6 Hz ), 135.99 ( s$), 135.89$ ( s$), 135.81$ ( s$), 134.02$ (s), 133.85 (d, J = 4.2 Hz ), 133.69 (s), 130.50 (d, J = 7.3 Hz ), 129.49 (s), 129.07 (s), 128.93 (s), 128.84 (s), 128.81 (s), 128.75 (s), 128.70 (s), 128.07 (s), 127.74 (s), 127.34 (s), 112.05 (s), 84.05 (d, J = 2.2 Hz ), 40.81 (s). ${ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) ठ/ppm: 16.0 (s). Elemental Analysis calculated: C: 81.3; H: 6.2; N: 2.9. found: C: 80.8; H: 6.2; N: 2.9.


Compound [1][OTf] was synthesized by treating compound $1-\mathrm{OH}(49.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with TMSOTf ( $33.3 \mathrm{mg}, 0.15 \mathrm{mmol}$ ). After stirring for $10 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added to the solution leading to the precipitation of [1]OTf as an orange powder. Yield: $59.1 \mathrm{mg}, 94 \%$. Single crystals were obtained by vapor diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution of [1][OTf], forming both yellow plates and orange needles shown to be different ploymorphes of [1]OTf. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 8.54(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.28$ (ddd, J = 9.3, 6.7, 1.6 Hz, 2H, Ar-H), $7.77-7.70$ (m, 4H, Ar-H), 7.61 (ddd, J = 8.7, 6.7, 0.9 Hz, 2H, Ar-H), 7.49 (ddd, J = 6.4, 4.5, 3.1 Hz, 2H, Ar-H), 7.43 (ddd, J = 5.6, 4.3, 3.1 Hz, 2H, Ar-H), 7.33-7.26 (m, 2H, Ar-H), 7.22 (td, J = 7.2, 1.4 Hz, 4H, Ar-H), 7.02 (td, J = 8.1, 1.3 Hz, 4H, Ar-H), $4.81(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) .{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$, $298 \mathrm{~K}) ~ \delta / \mathrm{ppm}: 162.65(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 142.25(\mathrm{~s}), 140.15(\mathrm{~d}, \mathrm{~J}=31.3 \mathrm{~Hz}), 139.66(\mathrm{~s}), 138.86(\mathrm{~d}, \mathrm{~J}=14.2 \mathrm{~Hz})$, 135.85 (d, $J=9.6 \mathrm{~Hz}$ ), 135.42 ( s$), 134.58(\mathrm{~d}, J=20.5 \mathrm{~Hz}$ ), 131.53 ( s$), 131.15(\mathrm{~s}), 131.08(\mathrm{~d}, J=5.9 \mathrm{~Hz}), 130.70$ (s), $130.29(\mathrm{~s}), 129.69(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}), 128.58(\mathrm{~s}), 127.53(\mathrm{~d}, \mathrm{~J}=2.6 \mathrm{~Hz}), 119.39(\mathrm{~s}), 39.80(\mathrm{~s}) .{ }^{31} \mathrm{P}$ NMR (162 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}:-14.3$ (s). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}$ : -79.3 (s). HRMS (ESI ${ }^{+}$) m/z calculated for $[\mathrm{M}]^{+}\left[\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{AuNP}\right]^{+}$: 454.1719 , found: 454.1711.

Synthesis of [2]OTf

[2]OTf
Compound [2][OTf] was synthesized by treating compound 2-OH ( $46.0 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with TMSOTf ( $33.3 \mathrm{mg}, 0.15 \mathrm{mmol}$ ). After stirring for $10 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added to the solution leading to the precipitation of [1]OTf as a red powder. 34.5 mg ( $59.6 \%$ ). Single crystals were obtained by vapor diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 7.95-7.89(\mathrm{~m}, 1 \mathrm{H}), 7.86$ (tdd, $\mathrm{J}=7.1,2.9$, $1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.78-7.64(\mathrm{~m}, 7 \mathrm{H}), 7.62-7.34(\mathrm{~m}, 9 \mathrm{H}), 7.27(\mathrm{dt}, J=8.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.14(\mathrm{~m}, 3 \mathrm{H}), 5.26$ (d, J = $3.1 \mathrm{~Hz}, 1 \mathrm{H}$ ). ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 151.50(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}$ ), 151.22 (s), 137.23 (d, J
$=3.1 \mathrm{~Hz}), 136.82(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 135.81(\mathrm{~s}), 135.47(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 134.88(\mathrm{~d}, J=9.2 \mathrm{~Hz}), 134.49(\mathrm{~d}, J=11.5$ Hz ), 131.89 (s), 131.64 (d, J = 13.3 Hz ), 131.43 (d, J = 13.6 Hz ), 131.01 (s), 130.89 (s), 129.15 (s), 129.05 (s), 128.85 (d, J = 8.6 Hz ), 127.91 (d, J = 9.1 Hz ), 126.75 (d, $J=7.9 \mathrm{~Hz}$ ), 124.56 (s), 123.76 (d, J = 2.8 Hz ), 122.98 (s), 120.39 (s), 119.69 (s), 119.23 (s), 118.55 (s), 118.45 (s), 114.54 (s), 38.94 (d, J = 13.1 Hz ). ${ }^{31}$ P NMR (162 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 8.4$ (s). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}:-79.3$ (s). HRMS (ESI ${ }^{+}$m/z calculated for $[\mathrm{M}]^{+}\left[\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{OP}\right]^{+}: 441.1403$, found: 441.1397.

[3]OTf
Compound [3][OTf] was synthesized by treating compound $3-\mathrm{OH}(53.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with TMSOTf ( $33.3 \mathrm{mg}, 0.15 \mathrm{mmol}$ ). After stirring for $10 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added to the solution leading to the precipitation of [1]OTf as a green powder. $51.8 \mathrm{mg}(77.4 \%)$. Single crystals were obtained by vapor diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 7.83-7.71$ (m,3H, Ar-H), $7.64-7.45$ (m, 6H, Ar-H), $7.45-7.28$ (m, 6H, Ar-H), $7.17-7.07$ (m, 1H, Ar-H), 6.61 (dd, J = 15.3, 2.8 Hz, 1H, Ar-H), 6.36 -6.18 (m, 4H, Ar-H), 5.63 (d, J = $1.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}-\mathrm{H}$ ), 2.81 (s, 6H, Me), 2.67 (s, 6H, Me). ${ }^{13} \mathrm{C}$ NMR ( 126 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 150.70(\mathrm{~d}, J=14.5 \mathrm{~Hz}), 147.69(\mathrm{~s}), 136.49(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 135.77$ (d, $\left.J=2.5 \mathrm{~Hz}\right), 135.60$ (d, J=11.2 Hz), 135.41 (d, $J=11.1 \mathrm{~Hz}), 134.55(\mathrm{~d}, J=9.0 \mathrm{~Hz}), 133.77(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 133.16(\mathrm{~d}, J=11.8 \mathrm{~Hz})$, 132.35 (d, $J=9.7 \mathrm{~Hz}$ ), 131.02 (d, $J=13.2 \mathrm{~Hz}$ ), 130.82 (d, $J=13.2 \mathrm{~Hz}$ ), 130.24 (s), 129.58 (d, $J=12.4 \mathrm{~Hz}$ ), 125.15 (s), 122.60 (s), 120.05 (s), 119.01 (d, $J=13.1 \mathrm{~Hz}$ ), 118.30 (d, $J=15.5 \mathrm{~Hz}$ ), 117.65 (s), 117.51 (s), 117.21 (s), 116.46 (d, $J=12.3 \mathrm{~Hz}$ ), 115.72 ( s$), 115.36$ (d, $J=11.6 \mathrm{~Hz}$ ), 51.58 (d, $J=9.2 \mathrm{~Hz}$ ), 40.43 (s). ${ }^{31}$ P NMR (162 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}$ : 3.4 (s). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}:-79.35$ (s). HRMS (ESI ${ }^{+}$) m/z calculated for $[\mathrm{M}]^{+}\left[\mathrm{C}_{35} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{P}\right]^{+}: 513.2454$, found: 513.2448.

## Synthesis of [4]OTf


[4]OTf
Compound [4][OTf] was synthesized by treating compound $4-\mathrm{OH}(48.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ with TMSOTf ( $33.3 \mathrm{mg}, 0.15 \mathrm{mmol}$ ). After stirring for $10 \mathrm{~min}, \mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ was added to the solution leading to the precipitation of [1]OTf as an a light orange powder. 21.1 mg ( $34 \%$ ). Single crystals were obtained by layering $\mathrm{Et}_{2} \mathrm{O}$ onto a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\mathrm{\delta} / \mathrm{ppm}$ : $8.10(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.99-7.81(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.79 - 7.36 (m, 13H, Ar-H), 6.95 (t, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), 6.87 (t, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), 6.56 (d, J = $7.7 \mathrm{~Hz}, 2 \mathrm{H}$, Ar-H), 6.09 (s, 1H, C-H), 3.26 (s, 6H, Me). ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}$ : 147.17 (d, J = 6.3 Hz ), $139.88(\mathrm{~d}, \mathrm{~J}=1.9 \mathrm{~Hz}), 136.86(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 136.18(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 135.77(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 135.52(\mathrm{~d}, J=11.7$ $\mathrm{Hz}), 134.83(\mathrm{~d}, ~ J=10.3 \mathrm{~Hz}), 134.64(\mathrm{~d}, J=9.5 \mathrm{~Hz}), 134.08(\mathrm{~d}, J=11.3 \mathrm{~Hz}), 132.52(\mathrm{~d}, J=9.8 \mathrm{~Hz}), 131.35(\mathrm{~d}, J$ $=13.6 \mathrm{~Hz}), 130.92(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}), 129.77(\mathrm{~d}, J=12.8 \mathrm{~Hz}), 129.27,128.44,128.06,124.97,122.43,120.00$, 119.88, 119.30, 118.01, 117.34, 117.26 (d, $J=5.2 \mathrm{~Hz}$ ), 116.52, 115.61, 114.90, 52.90 (d, J=8.7 Hz). ${ }^{31}$ P NMR ( $162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 3.9$ (s). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}:-79.33$ (s). HRMS (ESI $\left.{ }^{+}\right)$ $\mathrm{m} / \mathrm{z}$ calculated for $[\mathrm{M}]^{+}\left[\mathrm{C}_{33} \mathrm{H}_{29} \mathrm{NP}\right]^{+}: 470.2032$, found: 470.2025.

Synthesis of [3-AuCl][BF ${ }_{4}$ ]


Compound $3-\mathrm{OH}(53.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was combined (tht)AuCl ( $32 \mathrm{mg}, 0.1 \mathrm{mmol}$ ) to afford a solution which was stirred at ambient temperature. After stirring for 15 min , the volatiles were removed under vacuum and the residue was dissolved in acetonitrile to afford a solution that was treated with an $\mathrm{Et}_{2} \mathrm{O}$ (3 mL ) solution containing $\mathrm{HBF}_{4}(0.2 \mathrm{mmol})$. After stirring for an additional 15 min , the solution was brought to dryness under vacuum yielding crude $\left[3-\mathrm{AuCl}_{3}\left[\mathrm{BF}_{4}\right]\right.$ as a dark blue residue. $\left[3-\mathrm{AuCl}_{3}\left[\mathrm{BF}_{4}\right]\right.$ was purified by washing with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL} \times 3)$ and dried under vacuum. Yield: $65.8 \mathrm{mg}, 79 \%$ yield. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) ठ/ppm: 7.65 (tt, J = 7.5, 1.5 Hz, 1H, Ar-H), 7.59 (tt, J = 7.6, 1.6 Hz, 1H, Ar-H), 7.48 - 7.40 (m, 2H, Ar-H), 7.39 7.23 (m, 10H, Ar-H), 7.16 (s, 4H, Ar-H), 6.59 (s, 4H, Ar-H), 3.12 (s, 12H, Me). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298$ K) $\delta /$ ppm: 172.60 (s), 157.61 (s), 145.36 (d, J = 15.0 Hz ), 140.67 (s), 135.99 (d, J = 5.1 Hz ), 134.64 (s), 134.53 (s), 133.80 (d, J = 8.2 Hz ), 132.58 (d, J = 2.7 Hz ), 132.36 (d, J = 2.3 Hz ), 132.23 (s), 131.75 (s), 131.38 (d, J = 8.6 Hz ), 129.84 (s), 129.74 (s), 129.00 (s), 128.50 (s), 128.03 (s), 114.50 (s), 40.99 (s). ${ }^{31}$ P NMR ( 162 MHz , $\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 25.9$ (s). ${ }^{11} \mathrm{~B}$ NMR ( $128 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}:-1.18$ (s). ${ }^{19} \mathrm{~F}$ NMR ( 376 MHz , $\mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}$ : -151.83 (s). Elemental Analysis calculated: C: 50.5, H: 4.1, N: 3.4. found: C: 50.6, H: 4.1, N: 3.5.

Synthesis of [4-AuCl][BF ${ }_{4}$ ]

[4-AuCI] $\mathrm{BF}_{4}$ ]
Compound $4-\mathrm{OH}(48.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was combined (tht) $\mathrm{AuCl}(32 \mathrm{mg}, 0.1 \mathrm{mmol})$ to afford a solution which was stirred at ambient temperature. After stirring for 15 min , the volatiles were removed under vacuum and the residue was dissolved in acetonitrile to afford a solution that was treated with an $\mathrm{Et}_{2} \mathrm{O}$ (3 mL ) solution containing $\mathrm{HBF}_{4}(0.2 \mathrm{mmol})$. After stirring for an additional 15 min , the solution was brought to dryness under vacuum yielding crude [4-AuCl] $\left[\mathrm{BF}_{4}\right]$ as a dark red residue. $[4-\mathrm{AuCl}]\left[\mathrm{BF}_{4}\right]$ was purified by washing with $\mathrm{Et}_{2} \mathrm{O}(1 \mathrm{~mL} \times 3)$ and dried under vacuum. Yield: $74.0 \mathrm{mg}, 85.5 \% .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right) \mathrm{\delta} / \mathrm{ppm}$ : $7.88-7.76(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.74-7.66(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.62(\mathrm{td}, \mathrm{J}=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.55-7.22(\mathrm{~m}, 18 \mathrm{H}$, Ar-H), 7.10 (dd, $J=10.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), 6.71 (dd, $J=9.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}$ ), 3.54 (s, $3 \mathrm{H}, \mathrm{Me}$ ), 3.45 (s, 3H, Me). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 171.41$ (d, $J=5.8 \mathrm{~Hz}$ ), 161.45 (s), $143.52(\mathrm{~d}, J=15.0 \mathrm{~Hz})$, 142.40 (d, $J=10.6 \mathrm{~Hz}$ ), 137.13 ( s), 135.82 (d, $J=5.0 \mathrm{~Hz}$ ), 134.54 (s), 134.17 (d, $J=14.0 \mathrm{~Hz}$ ), 133.90 (d, $J=$ 14.1 Hz ), 133.52 ( s ), 133.01 ( $\mathrm{d}, \mathrm{J}=8.3 \mathrm{~Hz}$ ), $132.20(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 132.03(\mathrm{~d}, J=2.4 \mathrm{~Hz}), 131.98(\mathrm{~d}, J=2.7$ Hz ), 131.93 (s), 130.92 (d, $J=8.5 \mathrm{~Hz}$ ), 130.42 ( s$), 129.95$ (s), 129.35 (d, $J=12.1 \mathrm{~Hz}), 129.05(\mathrm{~d}, J=12.3 \mathrm{~Hz})$, 128.89 (s), 128.59 (s), 128.08 (s), 126.84 (s), 126.33 (s), 118.85 (s), 118.22 (s), 43.05 (s), 42.97 (s). ${ }^{31}$ P NMR ( $162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}$ : 25.8 (s). ${ }^{11} \mathrm{~B}$ NMR ( $128 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}:-1.19$ (s). ${ }^{19} \mathrm{~F}$ NMR (376 $\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}$ : -151.87 (s). Elemental Analysis calculated: $\mathrm{C}: 50.2, \mathrm{H}: 3.7, \mathrm{~N}: 1.8$, found: $\mathrm{C}: 50.0$, H: 3.6, N: 1.8.

Synthesis of [1-Au(tht)][BF $\left.{ }_{4}\right]_{2}$
$\mathrm{Me} 2 \mathrm{BF}_{4}^{-}$

$[1-\mathrm{Au}(\mathrm{tht})]\left[\mathrm{BF}_{4}\right]_{2}$
$\mathrm{AgBF}_{4}(21 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added to a solution of [1-AuCl] $\left[\mathrm{BF}_{4}\right](77 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After filtration of the grey precipitate, the solution was evaporated to dryness, at which point evacuation of the vessel containing the residue was stopped (Note: overexposure to vacuum leads to decomposition presumably because of the vacuum-induced decomplexation of the tetrahydrothiophene ligand from the gold atom). Yield: 86 mg , $94 \%$. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 8.63(\mathrm{~d}, \mathrm{~J}=9.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.31$ (ddd, J = 9.1, 6.6, 1.5 Hz , $2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.90\left(\mathrm{dt}, \mathrm{J}_{\mathrm{PH}}=30.2, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}\right), 7.48-7.61$ (m, 8H, Ar-H), 7.42 (td, J = 7.7, $2.9 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-$ H ), 7.34 (dd, $J=13.7,7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.99(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.09(\mathrm{t}, J=6.5 \mathrm{~Hz}, 4 \mathrm{H}$, tetrahydrothiophene), 1.92$1.98\left(\mathrm{~m}, 4 \mathrm{H}\right.$, tetrahydrothiophene). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 141.8$ (s), 139.7 (s), 138.23 (d, J $=13.9 \mathrm{~Hz}), 135.1(\mathrm{~d}, J=15.6 \mathrm{~Hz}), 133.4(\mathrm{~d}, J=9.1 \mathrm{~Hz}), 132.4(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=8.6 \mathrm{~Hz}), 130.3(\mathrm{~d}, J$ $=12.2 \mathrm{~Hz}$ ), 129.7 (s), 128.8 (s), 127.1 (s), 119.6 (s), 39.8 (s), 37.9 (s), 31.4 (s). ${ }^{31}$ P NMR ( $162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298$ K) $\delta / \mathrm{ppm}$ : 27.9 (s). ${ }^{11} \mathrm{~B}$ NMR ( $128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}:-1.2(\mathrm{~s}) .{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) ठ/ppm: -151.6 (s). HRMS (ESI ${ }^{+}$m/z calculated for [M/2] ${ }^{+}\left[\mathrm{C}_{36} \mathrm{H}_{33} A \mathrm{ANPS} / 2\right]^{+}: 369.5863$, found: 369.5868.

Synthesis of [2-Au(tht)][BF $\left.{ }_{4}\right]_{2}$

[2-Au(tht)][BF $]_{2}$
$\mathrm{AgBF}_{4}(21 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added to a solution of $[2-\mathrm{AuCl}]\left[\mathrm{BF}_{4}\right](76 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After filtration of the grey precipitate, the solution was evaporated to dryness, at which point evacuation of the vessel containing the residue was stopped (Note: overexposure to vacuum leads to decomposition presumably because of the vacuum-induced decomplexation of the tetrahydrothiophene ligand from the gold atom). Yield: 82 mg , $91 \%$. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}$ : 8.46 (ddd, J = 8.5, $6.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 8.38 (dd, J = $8.9,1.1 \mathrm{~Hz}$, 2 H ), 7.86 (dtt, J = 23.7, $7.7,1.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.67 (ddd, J = 8.0, 6.8, 1.1 Hz, 2H), 7.59 (dd, J = 8.5, $1.6 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.57 - $7.45(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.30(\mathrm{~m}, 8 \mathrm{H}), 3.16-3.06(\mathrm{~m}, 4 \mathrm{H}$, tetrahydrothiophene), $2.00-1.92(\mathrm{~m}, 4 \mathrm{H}$, tetrahydrothiophene). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}:{ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}$ : 171.46 (d, J = 5.4 Hz ), 158.17 (s), 145.31 (s), 135.02 (s), 134.99 (s), 134.92 (s), 134.88 (s), 133.32 (d, J = 2.7 Hz ), 132.68 (d, J = 2.6 Hz ), 132.19 (d, J = 8.9 Hz ), 131.00 (d, J = 8.1 Hz ), 130.71 (s), 130.07 ( s$), 130.01$ (d, J = 10.1 Hz ), 128.25 (s), 127.81 (s), 125.04 (s), 124.54 (s), 124.45 (s), 120.70 (s), 30.87 (s). ${ }^{31} \mathrm{P}$ NMR ( 162 MHz , $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 28.9$ (s). ${ }^{11} \mathrm{~B}$ NMR ( $128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}:-1.2$ (s). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, 298 K ) $\delta / \mathrm{ppm}$ : -151.9 (s). HRMS (ESI ${ }^{+}$m/z calculated for [M/2] ${ }^{+}\left[\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{AuOPS} / 2\right]^{+}: 363.0705$, found: 363.0697.

Synthesis of $\underset{\mathrm{NMM}_{2}}{[3-\mathrm{Au}-\overline{4}}$ (tht) $]\left[\mathrm{BF}_{4}\right]_{2}$

$[3-\mathrm{Au}(\mathrm{tht})]\left[\mathrm{BF}_{4}\right]_{2}$
$\mathrm{AgBF}_{4}(21 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added to a solution of $[3-\mathrm{AuCl}]\left[\mathrm{BF}_{4}\right](83 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After filtration of the grey precipitate, the solution was evaporated to dryness, at which point evacuation of the vessel containing the residue was stopped (Note: overexposure to vacuum leads to decomposition presumably because of the vacuum-induced decomplexation of the tetrahydrothiophene ligand from the gold atom). Yield: 68 mg , $71 \% .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 7.69(\mathrm{tt}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{tt}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53$ -7.43 (m, 2H), 7.39 (tdd, J = 6.1, 3.1, 1.2 Hz, 4H), $7.35-7.21$ (m, 6H), $7.22-6.50(\mathrm{~m}, 6 \mathrm{H}), 3.21$ (s, 11H), 3.19 -3.11 ( $\mathrm{m}, 4 \mathrm{H}$ tetrahydrothiophene), $2.07-1.96$ ( $\mathrm{m}, 4 \mathrm{H}$ tetrahydrothiophene). ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298$
K) $\delta /$ ppm: 171.47 (s), 157.63 (s), 144.99 (d, J = 14.8 Hz ), 140.28 (s), 136.03 (d, J = 5.4 Hz ), 134.88 (d, J = 14.1 Hz ), 133.76 (d, J = 8.0 Hz ), 133.02 ( s ), 133.00, 131.85 (d, J = 8.6 Hz ), 131.37 ( s ), 130.90 (s), 130.17 (d, J = 12.2 Hz ), 127.87 (s), 127.21 (s), 126.71 (s), 115.34 (s), 41.62 (s), 39.50 (s), 31.52 (s). ${ }^{31}$ P NMR ( $162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, $298 \mathrm{~K}) ~ \delta / p p m: 29.5$ (s). ${ }^{11} \mathrm{~B}$ NMR ( $128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) ठ/ppm: -1.2 (s). ${ }^{19}$ F NMR ( $376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) ठ/ppm: -151.6 (s). HRMS (ESI ${ }^{+}$m/z calculated for [M/2] ${ }^{+}\left[\mathrm{C}_{39} \mathrm{H}_{42} \mathrm{AuN}_{2} \mathrm{PS} / 2\right]^{+}$: 399.1230, found: 399.1229.

Synthesis of $[4-\mathrm{Au}(\mathrm{tht})]\left[\mathrm{BF}_{4}\right]_{2}$
$\mathrm{AgBF}_{4}(21 \mathrm{mg}, 0.11 \mathrm{mmol})$ was added to a solution of $[4-\mathrm{AuCl}]\left[\mathrm{BF}_{4}\right](79 \mathrm{mg}, 0.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. After filtration of the grey precipitate, the solution was evaporated to dryness, at which point evacuation of the vessel containing the residue was stopped (Note: overexposure to vacuum leads to decomposition presumably because of the vacuum-induced decomplexation of the tetrahydrothiophene ligand from the gold atom). Yield: 83 mg , $89 \%$. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}$ : $7.83(\mathrm{dd}, J=10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{tt}, J=7.6,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{tt}, \mathrm{J}=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 6 \mathrm{H}), 7.49-7.26(\mathrm{~m}, 12 \mathrm{H}), 6.87(\mathrm{dd}, \mathrm{J}=10.0$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 6.57 (dd, J = 9.9, $2.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.65(\mathrm{~s}, 3 \mathrm{H}), 3.49(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.18$ (m, 4H, tetrahydrothiophene), $2.10-2.01$ (m, 4H, tetrahydrothiophene). ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) ठ/ppm: $169.89(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz})$, $161.31,144.26$ (d, $J=14.8 \mathrm{~Hz}$ ), 142.19 (s), 141.61 (s), 137.93 (s), 136.35 (d, $J=5.7 \mathrm{~Hz}$ ), 135.78 (d, $J=14.5$ Hz ), 135.12 ( s ), 134.74 ( s$), 134.37$ (d, $J=13.8 \mathrm{~Hz}$ ), 133.66 (d, $J=8.1 \mathrm{~Hz}$ ), 133.55 (s), 133.35 (s), 133.14 (s), 132.83 (s), 132.02 (d, $J=8.6 \mathrm{~Hz}$ ), 130.60 (d, $J=12.3 \mathrm{~Hz}$ ), 130.33 (s), 130.29 (s), 130.23 (s), 130.19 (s), 129.72 (s), 127.00 (d, J = 35.2 Hz ), 126.50 (d, J = 35.5 Hz ), 121.12 ( s ), 118.49 ( s$), 43.89$ ( s$), 43.63$ (s), 39.34 (s), 31.53 (s). ${ }^{31}$ P NMR ( $162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 29.6$ (s). ${ }^{11} \mathrm{~B}$ NMR ( $128 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}:-1.2$ (s). ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}$ : -151.6 (s). HRMS (ESI $) \mathrm{m} / \mathrm{z}$ calculated for [M/2] ${ }^{+}\left[\mathrm{C}_{37} \mathrm{H}_{37} \mathrm{AuNPS} / 2\right]^{+}$: 377.6019, found: 377.6016.

### 2.1 NMR spectra of products

Figure $\mathrm{S} 1 .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of 3-OH


Figure S2. ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of $3-\mathrm{OH}$


Figure S3. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of $3-\mathrm{OH}$


Figure S4. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of 4-OH


Figure $\mathrm{S} 5 .{ }^{13} \mathrm{C}$ NMR ( $162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of $4-\mathrm{OH}$


Figure S6. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of 4-OH


Figure S7. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) spectrum of [1]OTf


Figure S8. ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) spectrum of [1]OTf



Figure S9. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ spectrum of [1]OTf


Figure S10. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) spectrum of [2]OTf


Figure $\mathrm{S} 11 .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of [2]OTf


Figure $\mathrm{S} 12 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ spectrum of [2]OTf
$\overrightarrow{+}$
$\dot{\infty}$
1


Figure $\mathrm{S} 13 .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of [3]OTf


Figure $\mathrm{S} 14 .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of [3]OTf


Figure S15. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) spectrum of [3]OTf



Figure S16. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) spectrum of [4]OTf


Figure $\mathrm{S} 17 .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of [4]OTf


Figure S18. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) spectrum of [4]OTf


Figure S19. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) spectrum of [3-AuCl][BF $\left.{ }_{4}\right]$


Figure $\mathrm{S} 20 .{ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) spectrum of spectrum of [3-AuCl][BF 4 ]


Figure S21. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}\right)$ spectrum of $[3-\mathrm{AuCl}]\left[\mathrm{BF}_{4}\right]$


Figure S22. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) spectrum of [4-AuCI][BF $\left.{ }_{4}\right]$


Figure S23. ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of [4-AuCl][ $\left.\mathrm{BF}_{4}\right]$


Figure S24. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ( $162 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}, 298 \mathrm{~K}$ ) spectrum of [4-AuCI][BF $\left.{ }_{4}\right]$


Figure S25. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of [1-Au(tht)][BF $\left.{ }_{4}\right]_{2}$


Figure S26. ${ }^{13} \mathrm{C}$ NMR ( $101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of [1-Au(tht)][BF $\left.\mathrm{BF}_{4}\right]_{2}$


[^0]Figure S27. ${ }^{31} \mathrm{P}$ NMR ( $162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of [1-Au(tht) $)\left[\mathrm{BF}_{4}\right]_{2}$



Figure S28. ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of $[\mathbf{2}-\mathrm{Au}($ tht $)]\left[\mathrm{BF}_{4}\right]_{2}$


Figure S29. ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of $[2-\mathrm{Au}($ tht $)]\left[\mathrm{BF}_{4}\right]_{2}$


Figure S30. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of $[2-\mathrm{Au}($ tht $)]\left[\mathrm{BF}_{4}\right]_{2}$

Figure $\mathrm{S} 31 .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of $[3-\mathrm{Au}($ tht $)]\left[\mathrm{BF}_{4}\right]_{2}$



Figure S33. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}\right)$ spectrum of $\left[3-\mathrm{Au}(\right.$ tht $)\left[\mathrm{BF}_{4}\right]_{2}$


Figure S35. ${ }^{13} \mathrm{C}$ NMR ( $126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) spectrum of $[4-\mathrm{Au}(\mathrm{tht})]\left[\mathrm{BF}_{4}\right]_{2}$




Figure $\quad \mathrm{S} 36 . \quad{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR} \quad\left(162 \mathrm{MHz}, \quad \mathrm{CD}_{2} \mathrm{Cl}_{2}, \quad 298 \mathrm{~K}\right) \quad$ spectrum of $\quad[4-\mathrm{Au}(\mathrm{tht})]\left[\mathrm{BF}_{4}\right]_{2}$



For the catalytic studies, the model propargyl amide $5(35 \mathrm{mg}, 0.2 \mathrm{mmol})$ and 1.6 mg of $\mathrm{AgBF}_{4}(1.6 \mathrm{mg}, 8 \mu \mathrm{~mol}$, $4 \mathrm{~mol} \%$ ) were loaded into an NMR tube. The freshly crystallized pre-catalysts ( $4 \mu \mathrm{~mol}, 2 \mathrm{~mol} \%$ ) were then weighed out and dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{ml})$ with hexamethyl disiloxane ( $1.8 \mathrm{mg}, 0.01 \mathrm{mmol}$ ) added as an internal standard. The mixture was then added to the NMR tube in the NMR room. Reaction progress was monitored in situ via ${ }^{1} \mathrm{H}$ NMR. Spectra were collected every 5 minutes. Final conversion of the reaction was measured based on the integrated ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{2}{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 7.97$ (ddd, $\mathrm{J}=$ $10.0,5.2,2.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.08-7.14(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 4.80\left(\mathrm{q}, \mathrm{J}=3.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right), 4.63(\mathrm{t}, \mathrm{J}=2.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2}\right), 4.36\left(\mathrm{q}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}_{2}\right) .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta / \mathrm{ppm}:-107.2(\mathrm{tt}, J=8.4,5.5 \mathrm{~Hz})$. The results of these catalysis experiments are presented in Table 2 of the main text. While these reactions were conducted with 2 equiv. of $\mathrm{AgBF}_{4}$ with respect to the catalyst concentration, we have also verified that 1 equiv. suffices. Indeed, we have repeated this reaction using [3-AuCI][BF $\left.{ }_{4}\right]$ and one equivalent of $\mathrm{AgBF}_{4}$. The resulting activity is essentially the same as that with 2 equiv.

Figure S37. Stacked ${ }^{1} \mathrm{H}$ NMR spectra ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) collected in situ during the reaction corresponding to entry 1 in Table 2 of the main text.


Figure S38. Stacked ${ }^{1} \mathrm{HNMR}$ spectra ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) collected in situ during the reaction corresponding to entry 2 in Table 2 of the main text.


Figure S39. Stacked ${ }^{1} \mathrm{HNMR}$ spectra ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) collected in situ during the reaction corresponding to entry 3 in Table 2 of the main text.


Figure S40. Stacked ${ }^{1} \mathrm{HNMR}$ spectra ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) collected in situ during the reaction corresponding to entry 4 in Table 2 of the main text.


Figure S41. Stacked ${ }^{1} \mathrm{HNMR}$ spectra ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) collected in situ during the reaction corresponding to entry 5 in Table 2 of the main text.


Figure S42. Stacked ${ }^{1} \mathrm{HNMR}$ spectra ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) collected in situ during the reaction corresponding to entry 6 in Table 2 of the main text.


Figure S43. Stacked ${ }^{1} \mathrm{HNMR}$ spectra ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) collected in situ during the reaction corresponding to entry 7 in Table 2 of the main text.


Figure S44. Stacked ${ }^{1} \mathrm{HNMR}$ spectra ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) collected in situ during the reaction corresponding to entry 8 in Table 2 of the main text.


Figure S45. Stacked ${ }^{1} \mathrm{HNMR}$ spectra ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) collected in situ during the reaction corresponding to entry 9 in Table 2 of the main text.


Figure S46. Stacked ${ }^{1} \mathrm{HNMR}$ spectra ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) collected in situ during the reaction corresponding to entry 10 in Table 2 of the main text.
m

Figure S47. Stacked ${ }^{1} \mathrm{HNMR}$ spectra ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) collected in situ during the reaction corresponding to entry 11 in Table 2 of the main text.
30 120 min

Figure S48. Stacked ${ }^{1} \mathrm{HNMR}$ spectra ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) collected in situ during the reaction corresponding to entry 12 in Table 2 of the main text.
m


For the catalytic studies, the propargyl ether $7(17.4 \mathrm{mg}, 17 \mu \mathrm{l}, 0.1 \mathrm{mmol})$ was loaded into an NMR tube. The freshly crystallized pre-catalyst ( $1 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%$ ) was then weighed out and dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ ( 0.6 ml ). The solution was then added to the NMR tube in the NMR room. Reaction progress was monitored in situ via ${ }^{1} \mathrm{H}$ NMR. Spectra were collected every 5 minutes. Final conversion of the reaction was measured based on the integrated ${ }^{1} \mathrm{H}$ NMR spectra. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm} 6.62-6.52(\mathrm{~m}, 2 \mathrm{H}), 5.66$ (ddt, J = 4.6, $3.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dt}, J=4.6,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{q}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H})$.

As explained in the main text, we also tested this reaction with $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mathrm{tht})\right]\left[\mathrm{BF} \mathrm{F}_{4}\right]$ as a catalyst (loading 1 $\mathrm{mol} \%)$. This catalyst was generated by combining $\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{AuCl}(0.1 \mathrm{mmol}, 49.5 \mathrm{mg})$ with one equivalent of tht $(0.1 \mathrm{mmol}, 8.8 \mathrm{mg})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ followed by addition of $\mathrm{AgBF}_{4}(0.1 \mathrm{mmol}, 19.5 \mathrm{mg})$. The resulting catalyst stock-solution was briefly shaken. Within 30 s , an aliquot of this solution ( $20 \mu \mathrm{~L}$ ) was transferred to an NMR tube containing the reaction substrate in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S49. ${ }^{1} \mathrm{HNMR}$ spectra ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) collected in situ during the reaction corresponding to Scheme 5 (top) in the main text.

120 min



For the catalytic studies, the eneyne $9(23.8 \mathrm{mg}, 25 \mu \mathrm{l}, 0.1 \mathrm{mmol})$ was loaded into an NMR tube. The freshly crystallized pre-catalyst ( $1 \mu \mathrm{~mol}$, $1 \mathrm{~mol} \%$ ) was then weighed out and dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ ( 0.6 ml ). The solution was then added to the NMR tube in the NMR room. Reaction progress was monitored in situ via ${ }^{1} \mathrm{H}$ NMR. Spectra were collected every 5 minutes. Final conversion of the reaction was measured based on the integrated ${ }^{1} \mathrm{H}$ NMR spectra. 10a: ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}: 6.19$ (d, J=9.9 Hz, 1H), $5.91-5.76$ (m, 1H), $5.02-4.94(\mathrm{~d}, J=16.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.15(\mathrm{~m}, 4 \mathrm{H}), 2.85(\mathrm{t}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{dd}, J=4.4,2.1 \mathrm{~Hz}, 4 \mathrm{H}), 1.22(\mathrm{~m}$, $6 \mathrm{H}) .10 \mathrm{~b}:{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) $\delta / \mathrm{ppm}$ : 6.55 (dd, $\left.J=17.6,10.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.62(\mathrm{t}, \mathrm{J}=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.16-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.15(\mathrm{~m}, 4 \mathrm{H}), 3.08(\mathrm{dt}, J=11.2,2.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.22(\mathrm{~m}, 6 \mathrm{H})$.

As explained in the main text, we also tested this reaction with $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right) \mathrm{Au}(\mathrm{tht})\right]\left[\mathrm{BF}_{4}\right]$ as a catalyst (loading 1 $\mathrm{mol} \%)$. This catalyst was generated by combining ( $\mathrm{Ph}_{3} \mathrm{P}$ ) $\mathrm{AuCl}(0.1 \mathrm{mmol}, 49.5 \mathrm{mg})$ with one equivalent of tht $(0.1 \mathrm{mmol}, 8.8 \mathrm{mg})$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ followed by addition of $\mathrm{AgBF}_{4}(0.1 \mathrm{mmol}, 19.5 \mathrm{mg})$. The resulting catalyst stock-solution was briefly shaken. Within 30 s , an aliquot of this solution ( $20 \mu \mathrm{~L}$ ) was transferred to an NMR tube containing the reaction substrate in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$.

Figure S50. ${ }^{1} \mathrm{HNMR}$ spectra ( $500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 298 \mathrm{~K}$ ) collected in situ during the reaction corresponding to Scheme 5 (bottom) in the main text.


### 3.1 General methods

The structures of $[3-\mathrm{AuCl}]^{+}$and $[4-\mathrm{AuCl}]^{+}$were optimized using DFT methods as implemented in Gaussian 16 using the MPW1PW91 functional and a mixed basis set defined as follows: Au cc-pVTZ-PP; P/CI 6-31G(d',p'); C/N/O 6-31G(d'); H 6-31G. Frequency calculations, performed using the same level of theory on the optimized geometries, found no imaginary frequencies. NBO analysis was performed at the same level of theory using the NBO 6.0 program. ${ }^{3}$ The resulting NBOs were visualized using the Avogadro program. ${ }^{4}$ Because no significant interaction were observed, no NBO pictures are shown in this document. QTAIM calculations were carried out on the wave functions derived from the optimized structures using the AIMAll program. ${ }^{5}$

### 3.2 Geometry optimized structures

Figure S51. Optimized structure of [1] ${ }^{+}$. Hydrogen atoms omitted for clarity.


Figure S52. Optimized structure of $[3-\mathrm{AuCl}]^{+}$(left) and $[4-\mathrm{AuCl}]^{+}$(right). Hydrogen atoms omitted for clarity.


Figure S53. Optimized structure of $[1-\mathrm{Au}(\mathrm{tht})]^{2+}($ left $)$ and $[2-A u(\text { tht })]^{2+}$ (right). Hydrogen atoms omitted for clarity.


Figure S54. Optimized structure of $[3-\mathrm{Au}(\mathrm{tht})]^{2+}$ (left) and $[4-\mathrm{Au}(\text { tht })]^{2+}$ (right). Hydrogen atoms omitted for clarity.


### 3.3 Atoms-in-molecules (AIM)

Figure S55. . AIM output for compound $[3-\mathrm{AuCl}]^{+}$(left) and $[4-\mathrm{AuCl}]^{+}$(right) with relevant bond paths and their associated electron densities $\left(\rho(r)=\right.$ e.bohr ${ }^{-3}$ ) at given bond critical points.


### 3.4 Cartesian coordinates of geometry optimized structures

Table S 1. Cartesian coordinates for compound [1] ${ }^{+}$.

| Atom | Coordinates |  |  |
| :---: | :---: | :---: | :---: |
| Number | X | Y | Z |
| P1 | -1.24381 | -0.17796 | -0.56824 |
| N2 | 3.61992 | -0.16265 | -1.02746 |
| C3 | 2.05175 | -1.59195 | 0.14071 |
| C4 | 3.15017 | -1.42439 | -0.75784 |
| C5 | 2.08058 | 0.79796 | 0.57795 |
| C6 | 3.73470 | -2.56902 | -1.34532 |
| C7 | 0.32887 | -0.63023 | 1.69687 |
| C8 | 1.48270 | -0.46302 | 0.76754 |
| C9 | 3.18173 | 0.93215 | -0.32629 |
| C10 | -0.99534 | -0.56180 | 1.22224 |
| C11 | 3.79668 | 2.19571 | -0.47022 |
| C12 | -2.03772 | -0.80350 | 2.12502 |
| C13 | -1.92023 | 2.37142 | 0.57815 |
| C14 | 1.55249 | -2.90187 | 0.38046 |
| C15 | 3.22785 | -3.81993 | -1.07372 |
| C16 | -1.48931 | 1.64374 | -0.53957 |
| C17 | 1.60673 | 1.95176 | 1.26299 |
| C18 | 3.31563 | 3.28097 | 0.22814 |
| C19 | 2.12129 | -3.99538 | -0.21621 |
| C20 | 0.58768 | -0.89035 | 3.04704 |
| C21 | -1.77850 | -1.07541 | 3.46634 |
| C22 | -0.46579 | -1.11058 | 3.93063 |
| C23 | -2.07893 | 3.75395 | 0.50356 |
| C24 | 4.60424 | 0.02026 | -2.09687 |
| C25 | -2.92433 | -0.84190 | -0.88389 |
| C26 | 2.20508 | 3.17090 | 1.09079 |
| C27 | -4.09416 | -0.07422 | -0.83330 |
| C28 | -1.81457 | 4.42640 | -0.68854 |
| C29 | -1.21851 | 2.33271 | -1.73012 |
| C30 | -1.38739 | 3.71288 | -1.80686 |


| Atom | Coordinates |  |  |
| :--- | :--- | :--- | :--- |
| Number | X | Y | Z |
| C31 | -5.32994 | -0.65849 | -1.10551 |
| C32 | -3.01506 | -2.19861 | -1.22759 |
| C33 | -5.41150 | -2.01135 | -1.42754 |
| C34 | -4.25126 | -2.78199 | -1.48731 |
| H35 | 4.60794 | -2.48771 | -1.97941 |
| H36 | 4.67372 | 2.32333 | -1.09129 |
| H37 | -3.06293 | -0.78229 | 1.76536 |
| H38 | -2.13921 | 1.85707 | 1.51051 |
| H39 | 0.71369 | -3.01348 | 1.05837 |
| H40 | 3.70180 | -4.68740 | -1.52368 |
| H41 | 0.76043 | 1.83836 | 1.93029 |
| H42 | 3.81314 | 4.23969 | 0.11358 |
| H43 | 1.73732 | -4.99140 | -0.02172 |
| H44 | 1.61430 | -0.93653 | 3.40161 |
| H45 | -2.60295 | -1.25901 | 4.14945 |
| H46 | -0.25744 | -1.32135 | 4.97543 |
| H47 | -2.41930 | 4.30563 | 1.37599 |
| H48 | 5.62669 | -0.06687 | -1.71589 |
| H49 | 4.46111 | 0.99764 | -2.55395 |
| H50 | 4.43337 | -0.72255 | -2.87394 |
| H51 | 1.83636 | 4.04445 | 1.61771 |
| H52 | -4.04116 | 0.98274 | -0.58804 |
| H53 | -1.94469 | 5.50354 | -0.74640 |
| H54 | -0.87762 | 1.78143 | -2.60382 |
| H55 | -1.18354 | 4.23171 | -2.73955 |
| H56 | -6.23119 | -0.05277 | -1.06671 |
| H57 | -2.11060 | -2.79944 | -1.29888 |
| H58 | -6.37631 | -2.46296 | -1.64058 |
| H59 | -4.30889 | -3.83490 | -1.74910 |
|  |  |  |  |

Table S 2. Cartesian coordinates for compound $[3-\mathrm{AuCl}]^{+}$.

| Atom <br> Number | Coordinates |  |  |
| :---: | :---: | :---: | :---: |
|  | X | Y | Z |
| Au1 | 0.31859 | 0.61600 | -1.44033 |
| Cl 2 | 1.94737 | -0.12183 | -2.86664 |
| P3 | -1.28310 | 1.28140 | 0.00084 |
| N4 | 6.34565 | -0.24188 | 0.18961 |
| N5 | -2.29444 | -5.09545 | -0.10760 |
| C6 | -0.74108 | 1.27823 | 1.76413 |
| C7 | 0.24800 | 0.39012 | 2.25953 |
| C8 | 0.68256 | 0.52338 | 3.58910 |
| C9 | 0.13250 | 1.48053 | 4.43898 |
| C10 | -0.84399 | 2.34857 | 3.95679 |
| C11 | -1.26008 | 2.25510 | 2.62862 |
| C12 | -2.80936 | 0.28384 | -0.05137 |
| C13 | -3.14911 | -0.35690 | -1.25290 |
| C14 | -4.33917 | -1.07772 | -1.35230 |
| C15 | -5.19701 | -1.16906 | -0.25470 |
| C16 | -4.86147 | -0.54137 | 0.94700 |
| C17 | -3.67311 | 0.18153 | 1.05077 |
| C18 | -1.82061 | 2.99929 | -0.30388 |
| C19 | -3.16087 | 3.40160 | -0.20141 |
| C20 | -3.51429 | 4.72908 | -0.44888 |
| C21 | -2.53806 | 5.66240 | -0.79839 |
| C22 | -1.20329 | 5.26702 | -0.90989 |
| C23 | -0.84523 | 3.94207 | -0.67071 |
| C24 | 0.87748 | -0.69644 | 1.45424 |
| C25 | 2.27480 | -0.60899 | 1.20719 |
| C26 | 3.08350 | -1.75126 | 0.93082 |
| C27 | 4.41493 | -1.63992 | 0.62400 |
| C28 | 5.04656 | -0.36201 | 0.55054 |
| C29 | 4.26438 | 0.78162 | 0.89355 |
| C30 | 2.93973 | 0.65425 | 1.22085 |
| C31 | 0.07425 | -1.80186 | 1.03947 |
| C32 | 0.39677 | -2.59153 | -0.10433 |
| C33 | -0.37803 | -3.65921 | -0.48676 |
| C34 | -1.53523 | -4.03106 | 0.25790 |
| C35 | -1.87925 | -3.23105 | 1.38663 |
| C36 | -1.11277 | -2.14892 | 1.74375 |
| C37 | 6.99140 | 1.07116 | 0.15226 |


| Atom Coordinates <br> Number  | X | Y | Z |
| :--- | :--- | :--- | :--- |
| C38 | 7.11690 | -1.41680 | -0.21927 |
| C39 | -1.90659 | -5.93096 | -1.2437 |
| C40 | -3.52739 | -5.41094 | 0.61224 |
| H41 | 1.45197 | -0.14678 | 3.95417 |
| H42 | 0.47442 | 1.55303 | 5.46398 |
| H43 | -1.26945 | 3.10801 | 4.60114 |
| H44 | -1.98072 | 2.97041 | 2.25087 |
| H45 | -2.48211 | -0.29112 | -2.10562 |
| H46 | -4.59700 | -1.56085 | -2.28705 |
| H47 | -6.12673 | -1.71985 | -0.33708 |
| H48 | -5.52654 | -0.60814 | 1.79999 |
| H49 | -3.41974 | 0.66138 | 1.98922 |
| H50 | -3.92973 | 2.68219 | 0.05321 |
| H51 | -4.55243 | 5.02979 | -0.37555 |
| H52 | -2.81678 | 6.69058 | -0.99479 |
| H53 | -0.44507 | 5.98540 | -1.19667 |
| H54 | 0.18829 | 3.63336 | -0.78690 |
| H55 | 2.64888 | -2.73872 | 1.01964 |
| H56 | 4.99165 | -2.53792 | 0.45601 |
| H57 | 4.70668 | 1.76681 | 0.86991 |
| H58 | 2.36554 | 1.54480 | 1.44346 |
| H59 | 1.22055 | -2.28914 | -0.74047 |
| H60 | -0.12200 | -4.18926 | -1.39290 |
| H61 | -2.75218 | -3.47172 | 1.97563 |
| H62 | -1.39495 | -1.56909 | 2.61388 |
| H63 | 6.51344 | 1.72554 | -0.58328 |
| H64 | 8.03423 | 0.94637 | -0.12911 |
| H65 | 6.96022 | 1.55384 | 1.13315 |
| H66 | 7.24862 | -2.11614 | 0.61240 |
| H67 | 8.10126 | -1.09739 | -0.55287 |
| H68 | 6.62813 | -1.93593 | -1.04836 |
| H69 | -1.95508 | -5.37503 | -2.18594 |
| H70 | -2.58629 | -6.77733 | -1.31160 |
| H71 | -0.89274 | -6.32036 | -1.11624 |
| H72 | -3.32382 | -5.67948 | 1.65382 |
| H73 | -4.01271 | -6.25807 | 0.13294 |
| H74 | -4.22058 | -4.56453 | 0.59378 |
|  |  |  |  |
|  |  |  |  |

Table S 3. Cartesian coordinates for compound [4-AuCl] ${ }^{+}$.

| Atom <br> Number | Coordinates |  |  |
| :---: | :---: | :---: | :---: |
|  | X | Y | Z |
| Au1 | 0.40564 | 0.61571 | -1.52734 |
| Cl 2 | -0.62749 | 1.94658 | -3.06664 |
| P3 | 1.35092 | -0.71332 | 0.02880 |
| N4 | -4.88102 | -2.12488 | 0.01004 |
| C5 | 1.34910 | 0.00830 | 1.72971 |
| C6 | 0.40623 | 0.97728 | 2.16627 |
| C7 | 0.57422 | 1.57797 | 3.42792 |
| C8 | 1.60847 | 1.19943 | 4.27870 |
| C9 | 2.52648 | 0.23940 | 3.85899 |
| C10 | 2.40493 | -0.32958 | 2.59129 |
| C11 | 3.10877 | -1.05733 | -0.31473 |
| C12 | 3.89644 | -0.01694 | -0.83624 |
| C13 | 5.24508 | -0.22924 | -1.11376 |
| C14 | 5.81749 | -1.48266 | -0.88648 |
| C15 | 5.03806 | -2.52450 | -0.38267 |
| C16 | 3.68803 | -2.31675 | -0.09617 |
| C17 | 0.56201 | -2.35227 | 0.18326 |
| C18 | 0.57169 | -3.08365 | 1.38175 |
| C19 | -0.00306 | -4.35392 | 1.43488 |
| C20 | -0.58953 | -4.90603 | 0.29373 |
| C21 | -0.60398 | -4.18379 | -0.90146 |
| C22 | -0.03413 | -2.91187 | -0.95796 |
| C23 | -0.76279 | 1.43794 | 1.37317 |
| C24 | -1.79132 | 0.54495 | 1.01890 |
| C25 | -2.7065 | 0.82424 | -0.05169 |
| C26 | -3.70695 | -0.04552 | -0.38627 |
| C27 | -3.89051 | -1.26858 | 0.33338 |
| C28 | -2.97615 | -1.56264 | 1.39502 |
| C29 | -1.96070 | -0.70061 | 1.70386 |
| C30 | -0.83094 | 2.86026 | 1.08072 |
| C31 | 0.35909 | 3.59208 | 0.85624 |
| C32 | 0.30822 | 4.94507 | 0.55241 |
| C33 | -0.92365 | 5.60558 | 0.50138 |

Atom Coordinates

| Number | X | Y | Z |
| :--- | :--- | :--- | :--- |
| C34 | -2.10704 | 4.90830 | 0.76160 |
| C35 | -2.06619 | 3.54943 | 1.04549 |
| C36 | -5.00056 | -3.42238 | 0.68164 |
| C37 | -5.85101 | -1.79013 | -1.03797 |
| H38 | -0.08325 | 2.31449 | 3.72841 |
| H39 | 1.69472 | 1.62696 | 5.21401 |
| H40 | 3.29460 | -0.05013 | 4.48444 |
| H41 | 3.10895 | -1.01636 | 2.27870 |
| H42 | 3.47430 | 0.90779 | -1.01431 |
| H43 | 5.82176 | 0.54058 | -1.48771 |
| H44 | 6.81694 | -1.63829 | -1.09116 |
| H45 | 5.46125 | -3.45181 | -0.22134 |
| H46 | 3.11522 | -3.08996 | 0.27673 |
| H47 | 1.00561 | -2.68009 | 2.22666 |
| H48 | 0.00516 | -4.88647 | 2.31882 |
| H49 | -1.01179 | -5.84684 | 0.33377 |
| H50 | -1.03714 | -4.59192 | -1.74457 |
| H51 | -0.05082 | -2.38006 | -1.84223 |
| H52 | -2.60658 | 1.70385 | -0.58210 |
| H53 | -4.33897 | 0.18343 | -1.16931 |
| H54 | -3.08480 | -2.43605 | 1.93388 |
| H55 | -1.29732 | -0.95525 | 2.45226 |
| H56 | 1.27238 | 3.11566 | 0.91901 |
| H57 | 1.17992 | 5.46434 | 0.36395 |
| H58 | -0.95906 | 6.61089 | 0.27090 |
| H59 | -3.01206 | 5.40390 | 0.74271 |
| H60 | -2.94323 | 3.03857 | 1.23213 |
| H61 | -4.22683 | -3.51723 | 1.41461 |
| H62 | -4.90683 | -4.20726 | -0.03953 |
| H63 | -5.95528 | -3.48975 | 1.16005 |
| H64 | -5.63283 | -0.81818 | -1.42862 |
| H65 | -6.83815 | -1.79525 | -0.62512 |
| H66 | -5.78970 | -2.51275 | -1.82471 |
|  |  |  |  |
| H5 |  |  |  |

Table S 4. Cartesian coordinates for compound [1-Au(tht)] $]^{2+}$.

| Atom <br> Number | Coordinates |  |  |
| :---: | :---: | :---: | :---: |
|  | X | Y | Z |
| Au1 | 0.48949 | 1.16388 | -0.29821 |
| S2 | -0.16481 | 3.38814 | -0.77900 |
| P3 | 1.27317 | -0.96763 | 0.11022 |
| N4 | -3.88797 | 0.35614 | -0.29514 |
| C5 | 0.52220 | -1.86369 | 1.52672 |
| C6 | -0.86136 | -1.85950 | 1.80825 |
| C7 | -2.52679 | -1.63895 | -0.07016 |
| C8 | 1.12704 | -2.07015 | -1.32635 |
| C9 | -1.88753 | -1.08144 | 1.05202 |
| C10 | -3.55804 | -0.89899 | -0.73886 |
| C11 | 3.04378 | -0.81364 | 0.50373 |
| C12 | 0.90330 | -1.53142 | -2.59928 |
| C13 | -2.33065 | 0.16072 | 1.55193 |
| C14 | -3.37277 | 0.86712 | 0.86874 |
| C15 | 1.37352 | -2.62871 | 2.33757 |
| C16 | -2.19926 | -2.94243 | -0.54288 |
| C17 | -2.85422 | -3.49199 | -1.61047 |
| C18 | -0.48581 | -3.38535 | 3.66522 |
| C19 | 1.30202 | -3.45442 | -1.17887 |
| C20 | 3.42247 | 0.03673 | 1.55476 |
| C21 | -1.34466 | -2.62282 | 2.87787 |
| C22 | 0.81356 | 4.50086 | 0.33363 |
| C23 | 0.87801 | -3.38616 | 3.39534 |
| C24 | 4.02235 | -1.49106 | -0.23135 |
| C25 | -3.88221 | -2.76080 | -2.24621 |
| C26 | -1.78403 | 0.72376 | 2.74173 |
| C27 | -4.22988 | -1.49575 | -1.82968 |
| C28 | -2.26114 | 1.90202 | 3.25041 |
| C29 | 0.74848 | 3.89996 | -2.31169 |
| C30 | 0.85706 | -2.36618 | -3.71294 |
| C31 | 1.03266 | -3.74029 | -3.56183 |
| C32 | 4.76645 | 0.19231 | 1.87338 |
| C33 | -3.86163 | 2.07198 | 1.42573 |
| C34 | 5.74080 | -0.48598 | 1.13900 |
| C35 | -4.83118 | 1.16551 | -1.07698 |
| C36 | 5.36870 | -1.32186 | 0.08965 |
| C37 | 2.00873 | 4.96317 | -0.49227 |

Atom Coordinates

| Number | X | Y | Z |
| :---: | :---: | :---: | :---: |
| C38 | 1.25495 | -4.28330 | -2.29592 |
| C39 | 1.50263 | 5.16771 | -1.91743 |
| C40 | -3.31920 | 2.56617 | 2.59004 |
| H41 | 0.77243 | -0.51402 | -2.71233 |
| H42 | 2.38762 | -2.63012 | 2.14617 |
| H43 | -1.45545 | -3.48093 | -0.07193 |
| H44 | -2.59949 | -4.43309 | -1.94878 |
| H45 | -0.86003 | -3.94741 | 4.44566 |
| H46 | 1.46546 | -3.85758 | -0.24305 |
| H47 | 2.70283 | 0.54638 | 2.09086 |
| H48 | -2.35536 | -2.62027 | 3.08645 |
| H49 | 1.14314 | 3.96611 | 1.19984 |
| H50 | 0.22855 | 5.32765 | 0.67872 |
| H51 | 1.52071 | -3.94620 | 3.97700 |
| H52 | 3.74901 | -2.11338 | -1.0079 |
| H53 | -4.38440 | -3.18509 | -3.04171 |
| H54 | -1.01589 | 0.23525 | 3.22788 |
| H55 | -4.98230 | -0.98226 | -2.31467 |
| H56 | -1.85137 | 2.30177 | 4.10908 |
| H57 | 0.06302 | 4.10240 | -3.10798 |
| H58 | 1.40717 | 3.13299 | -2.66208 |
| H59 | 0.69271 | -1.96709 | -4.65035 |
| H60 | 0.99822 | -4.35767 | -4.38808 |
| H61 | 5.04397 | 0.80919 | 2.65277 |
| H62 | -4.62715 | 2.58184 | 0.95772 |
| H63 | 6.73861 | -0.36761 | 1.37433 |
| H64 | -5.13227 | 0.62086 | -1.94739 |
| H65 | -4.35765 | 2.07810 | -1.37338 |
| H66 | -5.69095 | 1.38736 | -0.47993 |
| H67 | 6.09253 | -1.81844 | -0.45302 |
| H68 | 2.77768 | 4.21928 | -0.47700 |
| H69 | 2.42367 | 5.86688 | -0.09727 |
| H70 | 1.38469 | -5.30138 | -2.18770 |
| H71 | 0.84673 | 6.01220 | -1.95645 |
| H72 | 2.31598 | 5.35137 | -2.58798 |
| H73 | -3.69342 | 3.44101 | 2.98959 |

Table S 5. Cartesian coordinates for compound [2-Au(tht) $]^{2+}$.

| Atom | Coordinates |  |  |
| :--- | :--- | :--- | :--- |
| Number | X | Y | Z |
| Au1 | -2.03433 | -0.37468 | -0.00940 |
| S2 | -3.87687 | -1.85111 | 0.07219 |
| P3 | -0.19734 | 1.02652 | -0.02245 |
| O4 | 4.15001 | -2.31370 | -0.62663 |
| C5 | 0.66155 | 0.95091 | 1.60517 |
| C6 | 1.85905 | 0.26699 | 1.90266 |
| C7 | 2.37824 | 0.32236 | 3.20581 |
| C8 | 1.71662 | 1.00902 | 4.21765 |
| C9 | 0.51865 | 1.65859 | 3.93708 |
| C10 | 0.00608 | 1.63063 | 2.64488 |
| C11 | -0.68393 | 2.76581 | -0.23307 |
| C12 | 0.06822 | 3.82348 | 0.29807 |
| C13 | -0.30160 | 5.13926 | 0.03434 |
| C14 | -1.41492 | 5.40905 | -0.76044 |
| C15 | -2.16342 | 4.36151 | -1.29348 |
| C16 | -1.80282 | 3.04324 | -1.03032 |
| C17 | 0.95938 | 0.66365 | -1.37952 |
| C18 | 1.86919 | 1.63762 | -1.81535 |
| C19 | 2.70757 | 1.37297 | -2.89353 |
| C20 | 2.63795 | 0.14386 | -3.55018 |
| C21 | 1.72439 | -0.82300 | -3.13111 |
| C22 | 0.88295 | -0.56324 | -2.05267 |
| C23 | 2.62646 | -0.60227 | 0.96895 |
| C33 | 1.50553 | -4.59563 | 0.18673 |
| C24 | 3.86187 | -0.17512 | 0.43510 |
| C25 | 4.60129 | -1.07842 | -0.37753 |
| C26 | 5.83065 | -0.73128 | -0.94041 |
| C27 | 6.33767 | 0.52705 | -0.68381 |
| C28 | 5.63134 | 1.45340 | 0.11884 |
| C29 | 4.41768 | 1.11504 | 0.66214 |
| C30 | 2.20199 | -1.93043 | 0.72751 |
| C31 | 3.00759 | -2.76366 | -0.09364 |
| C32 | 2.66129 | -4.08729 | -0.37237 |
| C30264 | -2.49830 | 1.29160 |  |
|  |  |  |  |

Atom Coordinates

| Number | X | Y | Z |
| :---: | :---: | :---: | :---: |
| C36 | -4.83345 | -1.67457 | -1.50506 |
| C37 | -6.00217 | -0.75105 | -1.17811 |
| C38 | -6.44647 | -1.08864 | 0.24259 |
| C39 | -5.19625 | -1.07462 | 1.11882 |
| H40 | 3.30411 | -0.20112 | 3.42896 |
| H41 | 2.13637 | 1.02933 | 5.21870 |
| H42 | -0.01360 | 2.19467 | 4.71684 |
| H43 | -0.91746 | 2.16379 | 2.43509 |
| H44 | 0.93043 | 3.62752 | 0.92954 |
| H45 | 0.27930 | 5.95564 | 0.45312 |
| H46 | -1.70108 | 6.43720 | -0.96106 |
| H47 | -3.03176 | 4.57045 | -1.91101 |
| H48 | -2.38968 | 2.22980 | -1.45114 |
| H49 | 1.90555 | 2.61093 | -1.33447 |
| H50 | 3.40131 | 2.13516 | -3.23579 |
| H51 | 3.28011 | -0.05146 | -4.40430 |
| H52 | 1.65117 | -1.76953 | -3.65891 |
| H53 | 0.15791 | -1.31116 | -1.73915 |
| H54 | 6.36177 | -1.45637 | -1.54780 |
| H55 | 7.29924 | 0.80804 | -1.10347 |
| H56 | 6.05827 | 2.43368 | 0.30448 |
| H57 | 3.87154 | 1.81830 | 1.28148 |
| H58 | 3.31134 | -4.68586 | -1.00173 |
| H59 | 1.22997 | -5.62781 | -0.00879 |
| H60 | -0.20043 | -4.23750 | 1.47114 |
| H61 | 0.41712 | -1.89258 | 1.95458 |
| H62 | -4.17324 | -1.30479 | -2.29172 |
| H63 | -5.16456 | -2.68416 | -1.76417 |
| H64 | -5.68340 | 0.29660 | -1.23925 |
| H65 | -6.80815 | -0.89576 | -1.90478 |
| H66 | -6.91161 | -2.08071 | 0.26891 |
| H67 | -7.17836 | -0.37186 | 0.62847 |
| H68 | -5.28654 | -1.67561 | 2.02654 |
| H69 | -4.88791 | -0.06139 | 1.38430 |

Table S 6. Cartesian coordinates for compound [3-Au(tht)] $]^{2+}$.

| Atom <br> Number | Coordinates |  |  |
| :---: | :---: | :---: | :---: |
|  | X | Y | Z |
| Au1 | -0.08300 | 1.02783 | -0.94640 |
| S2 | -1.62932 | 1.21938 | -2.72849 |
| P3 | 1.46710 | 0.94992 | 0.75872 |
| N4 | 2.27892 | -5.04768 | -1.57060 |
| C5 | -6.41428 | -0.98419 | 0.98654 |
| C6 | 1.56565 | -4.13135 | -0.89152 |
| C7 | -2.92817 | -0.13815 | 1.73137 |
| C8 | 2.02204 | 2.65797 | 1.07504 |
| C9 | -4.37815 | -2.22465 | 0.58529 |
| C10 | -3.01358 | -2.31059 | 0.66652 |
| C11 | 1.43271 | 4.94994 | 1.58238 |
| C12 | 1.95668 | -3.70076 | 0.41062 |
| C13 | 4.47166 | -0.87726 | -1.32673 |
| C14 | 5.32563 | -1.32557 | -0.32038 |
| C15 | 4.99612 | -1.12049 | 1.01947 |
| C16 | 3.81572 | -0.46402 | 1.35581 |
| C17 | 2.95642 | -0.00770 | 0.34693 |
| C18 | 3.28933 | -0.22025 | -0.99587 |
| C19 | 2.78173 | 5.30515 | 1.53202 |
| C20 | 0.39012 | -3.54191 | -1.44946 |
| C21 | -4.29021 | -0.02623 | 1.63445 |
| C22 | -2.21866 | -1.26965 | 1.23086 |
| C23 | -0.35819 | -2.64560 | -0.73210 |
| C24 | -2.35760 | 2.91858 | -2.62973 |
| C25 | 1.82137 | -5.53693 | -2.86320 |
| C26 | -0.08236 | -0.37892 | 4.92918 |
| C27 | 0.92163 | 0.57357 | 4.79630 |
| C28 | 1.36009 | 0.94183 | 3.52631 |
| C29 | 0.83677 | 0.34231 | 2.37285 |
| C30 | -0.18187 | -0.63201 | 2.50487 |
| C31 | -0.63705 | -0.95759 | 3.79179 |
| C32 | -0.80561 | -1.37305 | 1.37519 |
| C33 | 0.00422 | -2.23845 | 0.58542 |
| C34 | 3.51656 | -5.58022 | -1.01765 |
| C35 | -5.07461 | -1.07085 | 1.05681 |
| C36 | 1.21396 | -2.78166 | 1.10366 |
| C37 | 3.37285 | 3.01730 | 1.02484 |
| C38 | 1.05138 | 3.63394 | 1.34907 |
| C39 | 3.74652 | 4.34155 | 1.25228 |
| C40 | -7.19616 | -2.04813 | 0.37061 |
| C41 | -7.11616 | 0.14909 | 1.57398 |
| C42 | -1.22366 | 2.89707 | -4.79618 |
| C43 | -1.53980 | 3.77572 | -3.58905 |

Atom Coordinates

| Number | X | Y | Z |
| :---: | :---: | :---: | :---: |
| C44 | -0.64884 | 1.58798 | -4.25954 |
| H45 | -2.36921 | 0.67695 | 2.18131 |
| H46 | -4.93249 | -3.07470 | 0.20618 |
| H47 | -2.53671 | -3.23864 | 0.36817 |
| H48 | 0.67919 | 5.70064 | 1.80198 |
| H49 | 2.84008 | -4.11728 | 0.87843 |
| H50 | 4.73027 | -1.03068 | -2.37045 |
| H51 | 6.25409 | -1.82668 | -0.57953 |
| H52 | 5.66357 | -1.46400 | 1.80455 |
| H53 | 3.56919 | -0.30649 | 2.40235 |
| H54 | 2.62708 | 0.13239 | -1.78311 |
| H55 | 3.07814 | 6.33463 | 1.71009 |
| H56 | 0.08844 | -3.78705 | -2.46092 |
| H57 | -4.77094 | 0.86833 | 2.01185 |
| H58 | -1.22615 | -2.19441 | -1.20418 |
| H59 | -3.39829 | 2.81922 | -2.95151 |
| H60 | -2.33588 | 3.25970 | -1.59316 |
| H61 | 2.46204 | -6.35891 | -3.18120 |
| H62 | 1.86671 | -4.75245 | -3.62889 |
| H63 | 0.79583 | -5.91585 | -2.79893 |
| H64 | -0.44180 | -0.66757 | 5.91232 |
| H65 | 1.35548 | 1.04417 | 5.67343 |
| H66 | 2.10997 | 1.72205 | 3.43333 |
| H67 | -1.42276 | -1.70052 | 3.89353 |
| H68 | 4.21903 | -4.77306 | -0.78299 |
| H69 | 3.98517 | -6.23242 | -1.75401 |
| H70 | 3.32892 | -6.16763 | -0.11082 |
| H71 | 1.52560 | -2.51076 | 2.10746 |
| H72 | 4.13398 | 2.27423 | 0.80781 |
| H73 | -0.00199 | 3.36340 | 1.39057 |
| H74 | 4.79627 | 4.61653 | 1.21121 |
| H75 | -6.84303 | -2.25549 | -0.64486 |
| H76 | -8.23734 | -1.73378 | 0.30565 |
| H77 | -7.15288 | -2.97101 | 0.96183 |
| H78 | -6.88276 | 0.24899 | 2.63976 |
| H79 | -8.18999 | -0.00751 | 1.47815 |
| H80 | -6.86131 | 1.08438 | 1.06155 |
| H81 | -0.50549 | 3.36874 | -5.47445 |
| H82 | -2.13668 | 2.69857 | -5.36928 |
| H83 | -2.10480 | 4.67047 | -3.87007 |
| H84 | -0.61367 | 4.10470 | -3.10240 |
| H85 | 0.40430 | 1.68217 | -3.98730 |
| H86 | -0.77292 | 0.74221 | -4.93967 |

Table S 7. Cartesian coordinates for compound [4-Au(tht)] $]^{2+}$.

| Atom <br> Number | Coordinates |  |  |
| :---: | :---: | :---: | :---: |
|  | X | Y | Z |
| Au1 | -0.39690 | -1.27416 | -0.08943 |
| Cl 2 | 0.82929 | -3.22704 | -0.61931 |
| P3 | -1.68005 | 0.54126 | 0.52507 |
| N4 | 6.60387 | 0.24721 | 0.77097 |
| C5 | -2.20176 | -0.64405 | 2.98636 |
| C6 | 0.53724 | 2.37504 | 0.83474 |
| C7 | 0.74255 | 1.80854 | -1.61906 |
| C8 | -3.97954 | 0.74716 | -2.84409 |
| C9 | 1.14293 | 3.45108 | 1.50707 |
| C10 | 7.06136 | 0.03318 | 2.14151 |
| C11 | 4.91480 | 0.93041 | -0.81341 |
| C12 | 3.62457 | 1.28957 | -1.06940 |
| C13 | -3.31314 | 2.44676 | -0.73044 |
| C14 | -3.00864 | -1.09658 | 4.02368 |
| C15 | 2.63204 | 1.36256 | -0.03489 |
| C16 | 3.07545 | 1.03716 | 1.29106 |
| C17 | -2.75380 | 1.16326 | -0.80048 |
| C18 | -4.53387 | 2.02368 | -2.77071 |
| C19 | -0.79326 | 3.75788 | 2.89479 |
| C20 | -2.77767 | -0.02113 | 1.86805 |
| C21 | -4.20048 | 2.87186 | -1.71480 |
| C22 | -1.39954 | 2.67058 | 2.26540 |
| C23 | 7.57983 | 0.10193 | -0.30614 |
| C24 | 4.35659 | 0.65243 | 1.55656 |
| C25 | -0.76834 | 1.97973 | 1.22519 |
| C26 | 0.48369 | 4.14938 | 2.51430 |
| C27 | -4.16643 | 0.13051 | 1.79492 |
| C28 | -3.09100 | 0.31601 | -1.86269 |
| C29 | 1.31602 | 1.78870 | -0.28064 |
| C30 | -4.39408 | -0.94304 | 3.94827 |
| C31 | 5.33904 | 0.59013 | 0.51337 |
| C32 | -4.96917 | -0.33353 | 2.83664 |
| C33 | 0.52702 | 0.87373 | -3.85421 |
| C34 | -0.59576 | 2.94494 | -3.29889 |
| C35 | -0.10481 | 2.86827 | -2.00300 |
| C36 | -0.12988 | -5.69954 | -0.15773 |
| C37 | 1.04289 | 0.80528 | -2.56859 |
| C38 | -0.28434 | 1.94925 | -4.22499 |
| C39 | -0.93941 | -5.14032 | -1.32446 |

Atom Coordinates

| Number | X | Y | Z |
| :---: | :---: | :---: | :---: |
| C40 | -0.06645 | -4.08527 | -1.99472 |
| C41 | 0.37981 | -4.50633 | 0.64730 |
| H42 | -1.12226 | -0.76740 | 3.05104 |
| H43 | -4.24196 | 0.08511 | -3.66401 |
| H44 | 2.13554 | 3.76567 | 1.19889 |
| H45 | 8.14767 | -0.04852 | 2.14345 |
| H46 | 6.64420 | -0.89096 | 2.55819 |
| H47 | 6.78617 | 0.87781 | 2.77969 |
| H48 | 5.63703 | 0.96303 | -1.62008 |
| H49 | 3.36475 | 1.61126 | -2.07230 |
| H50 | -3.06077 | 3.11522 | 0.08819 |
| H51 | -2.55923 | -1.57170 | 4.89078 |
| H52 | 2.35539 | 1.05413 | 2.10296 |
| H53 | -5.23001 | 2.35742 | -3.53474 |
| H54 | -1.31958 | 4.28343 | 3.68588 |
| H55 | -4.63607 | 3.86498 | -1.65457 |
| H56 | -2.37898 | 2.34768 | 2.60579 |
| H57 | 8.47369 | -0.37967 | 0.08893 |
| H58 | 7.86430 | 1.07779 | -0.71697 |
| H59 | 7.18338 | -0.52899 | -1.10636 |
| H60 | 4.62403 | 0.37573 | 2.56916 |
| H61 | 0.97182 | 4.99020 | 2.99763 |
| H62 | -4.62528 | 0.60358 | 0.93218 |
| H63 | -2.66328 | -0.68222 | -1.92054 |
| H64 | -5.02380 | -1.30158 | 4.75716 |
| H65 | -6.04696 | -0.21577 | 2.77556 |
| H66 | 0.75726 | 0.09309 | -4.57331 |
| H67 | -1.22180 | 3.78258 | -3.58945 |
| H68 | -0.33322 | 3.65522 | -1.29095 |
| H69 | 0.71515 | -6.28918 | -0.53142 |
| H70 | -0.72850 | -6.35294 | 0.48495 |
| H71 | 1.65836 | -0.04065 | -2.27496 |
| H72 | -0.67470 | 2.00894 | -5.23683 |
| H73 | -1.86842 | -4.68482 | -0.96080 |
| H74 | -1.20978 | -5.91817 | -2.04595 |
| H75 | -0.62058 | -3.34908 | -2.57998 |
| H76 | 0.70817 | -4.53132 | -2.62509 |
| H77 | 1.27912 | -4.71993 | 1.22943 |
| H78 | -0.38783 | -4.09324 | 1.30464 |

## 4 X-ray diffraction analysis

### 4.1 Experimental details

The crystallographic measurements were performed at 110(2) K using a three circle (Quest; Mo Ka radiation, $\lambda$ $=0.71073 \AA$ Á) and kappa (Venture; Cu Ka radiation, $\lambda=1.54178 \AA$ ) Bruker-AXS with I $\mu$ S source and a Photon III area detector diffractometer. In each case, a specimen of suitable size and quality was selected and mounted onto a nylon loop and cooled to 110(2) K in a cold nitrogen stream (OXFORD Crysosystems). The structure data was collected and reduced using Bruker AXS APEX 3 software ${ }^{6}$ and solved by direct methods. Semiempirical absorption corrections were applied using SADABS. ${ }^{7}$ Subsequent refinement using a difference map on $\mathrm{F}^{2}$ using the SHELXTL/PC package (version $6.1 \& \mathrm{OLEX}^{2}$ ). ${ }^{8,9}$ Thermal parameters were refined anisotropically for all non-hydrogen atoms to convergence. H atoms were added at idealized positions using a riding model. In the case of [1]OTf, two polymorphs were obtained and each were independently characterized. The structure shown in the main text is that obtained for crystals belonging the $P 2_{1} / \mathrm{c}$ space group. The other polymorph belongs to the $P n a 2_{1}$ space group. It is shown in Figure S86. The results of these X-ray measurements are provided as CIF files. CCDC 2039023, 2039025, 2039028, 2039030-2039034, 2039036 and 2039040-2039043 contain the supplementary crystallographic data for this paper.

### 4.2 Table showing the compounds characterized by X-ray diffraction and their corresponding CCDC

 numbers.| Compound | CCDC |
| :--- | :--- |
| $3-\mathrm{OH}$ | 2039023 |
| $4-\mathrm{OH}$ | 2039025 |
| $[1] \mathrm{OTf}$ | 2039028 |
| $[1] \mathrm{OTf}$ | 2039030 |
| $[2] \mathrm{OTf}$ | 2039031 |
| $[3] \mathrm{OTf}$ | 2039032 |
| $[4] \mathrm{OTf}$ | 2039033 |
| $[3-\mathrm{AuCl}]\left[\mathrm{BF}_{4}\right]$ | 2039034 |
| $[4-\mathrm{AuCl}]\left[\mathrm{BF}_{4}\right]$ | 2039036 |
| $[1-\mathrm{Au}($ tht $)][\mathrm{BF}$ | $4]_{2}$ |
| $[2-\mathrm{Au}($ tht $)]\left[\mathrm{BF}_{4}\right]_{2}$ | 2039040 |
| $[3-\mathrm{Au}($ tht $)]\left[\mathrm{BF}_{4}\right]_{2}$ | 2039041 |
| $[4-\mathrm{Au}($ tht $)]\left[\mathrm{BF}_{4}\right]_{2}$ | 2039042 |

### 4.3 Solid-state structures

Figure S56. Solid-state structure of $3-\mathrm{OH}$. Thermal ellipsoids drawn at $50 \%$ probability.


Figure S57. . Solid-state structure of [4-OH]. Thermal ellipsoids drawn at 50\% probability.


Figure S58. Solid-state structure of [1]OTf. Thermal ellipsoids drawn at 50\% probability. OTf- counterion omitted for clarity.


Figure S59. Solid-state structure of [2]OTf. Thermal ellipsoids drawn at 50\% probability. OTf ${ }^{-}$counterion omitted for clarity.


Figure S60. Solid-state structure of [3]OTf. Thermal ellipsoids drawn at 50\% probability. OTf- counterion omitted for clarity.


Figure S61. Solid-state structure of [4]OTf. Thermal ellipsoids drawn at 50\% probability. OTf ${ }^{-}$counterion omitted for clarity.


1. L. Wilkins, Y. Kim, E. Litle and F. P. Gabbai, Angew. Chem. Int. Ed., 2019, 0.
2. J. K. Mali, B. S. Takale and V. N. Telvekar, RSC Advances, 2017, 7, 2231-2235.
3. , NBO 6.0 E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bochmann, C. M. Morales, C. R. Landis and F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2013, http://nbo2016.chem.wisc.edu/.
4. M. D. Hanwell, D. E. Curtis, D. C. Lonie, T. Vandermeersch, E. Zurek and G. R. Hutchison, J. Cheminformatics, 2012, 4, 17.
5. M. Kinoshita, H. Kita and Y. Shirota, Adv. Funct. Mater., 2002, 12, 780-786.
6. Bruker, 2019, APEX3 (v2019.2011-2010), Bruker AXS Inc., Madison, Wisconsin, USA.
7. G. M. Sheldrick, 2016.
8. G. M. Sheldrick, Acta Crystallographica Section A, 2015, 71, 3-8.
9. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339-341.

[^0]:    

