Supplementary Information

Molecular engineering enabling reversible transformation between helical and planar conformations by cyclization of alkynes

Lipeng Yan, Weixin Ma, Jingbo Lan,* Hu Cheng, Zhengyang Bin, Di Wu, and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, People's Republic of China

Table of Contents

I. General Remarks							
II. Synthesis of N-acetyl-2-(pyridin-2-yl)aniline derivatives							
II. Rh-catalyzed C–H activation/cyclization of 2-(pyridin-2-yl)aniline with							
diphenylacetyleneS4							
V. Optimization of Rh-catalyzed dual C–H activation/cyclization of							
N-acetyl-2-(pyridin-2-yl)aniline with diphenylacetylene							
V. General procedure for Rh-catalyzed dual C–H activation/cyclization and the							
subsequent anion exchange reaction							
VI. Synthesis of 6a							
VII. Photophysical properties and calculation of pK_a values of 5							
VIII. Fluorescence spectra of 5a and 6a in solid state							
IX. Cell experiments							
X. Preparation and characterization of the described compounds							
KI. ReferencesS32							
XII. Copies of ¹ H, ¹³ C and ¹⁹ F NMR spectraS33							

I. General Remarks

Unless otherwise noted, all reagents were obtained from commercial suppliers and used without further purification. Diarylacetylene were synthesized by literature procedures.¹

NMR spectra were obtained on an Agilent 400-MR DD2 or a Bruker AV II-400 MHz spectrometer. ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃ or DMSO-*d*₆ as the internal reference (CDCl₃: δ = 7.26 ppm; DMSO-*d*₆: δ = 2.50 ppm). ¹³C NMR (100 MHz) chemical shifts were measured relative to CDCl₃ or DMSO-*d*₆ as the internal reference (CDCl₃: δ = 77.16 ppm; DMSO-*d*₆: δ = 39.52 ppm). High-resolution mass spectra (HRMS) were obtained with a Shimadzu LCMS-IT-TOF (ESI) spectrometer. X-ray single crystal diffraction data were collected on an Agilent Gemini Plus single crystal diffractometer. Absorption and fluorescence spectra were obtained using a HITACHI U-2910 spectrometer and a Horiba Fluorolog-3 fluorescence spectrometer, respectively. Absolute quantum yields were collected with a calibrated integrating sphere system. Confocal fluorescence imaging measurements were conducted on a LSM 780 (Zeiss) confocal fluorescent microscope. Cytotoxicity experiments were carried out by CellTiler 96^{*} AQueous One Solution Cell Proliferation Assay.

II. Synthesis of N-acetyl-2-(pyridin-2-yl)aniline derivatives

Suzuki reaction: A mixture of 2-bromopyridine derivative (5 mmol), arylboronic acid (7 mmol), Pd(PPh₃)₄ (0.25 mmol), Na₂CO₃ (25 mmol), ethanol (6 mL), toluene (30 mL) and water (30 mL) was stirred at 100 °C overnight under N₂. Then, the mixture was poured into brine and extracted with ethyl acetate three times. The organic phase was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The

residue was purified by column chromatography on silica gel to give the 2-arylpyridine derivative.

Amination:² A mixture of 2-arylpyridine derivative (2 mmol), trimethylsilyl azide (4 mmol), copper trifluoroacetate (2 mmol), trifluoroacetic acid (2 mmol) and anhydrous 1,2-dichlorobenzene (20 mL) was stirred at 115 °C for 24 h under N₂. After the mixture was cooled to room temperature, 1 mL of ammonia was added and stirred for another 10 min. Then, the mixture was diluted in ethyl acetate (50 mL), and washed with saline three times. The organic phase was dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the 2-(pyridin-2-yl)aniline derivative.

Acetylation: Acetyl chloride (1.5 mmol) was added to a solution of 2-(pyridin-2-yl)aniline derivative (1 mmol), K₂CO₃ (3 mmol), ethyl acetate (10 mL) and water (5 mL). The resulting mixture was stirred at room temperature for 2 h. Then, the mixture was diluted in ethyl acetate (50 mL), and washed with saline three times. The organic phase was dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the *N*-acetyl-2-(pyridin-2-yl)aniline derivative.

III. Rh-catalyzed C–H activation/cyclization of 2-(pyridin-2-yl)aniline with diphenylacetylene

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with 2-(pyridin-2-yl)aniline **1a** (17.0 mg, 0.1 mmol), diphenylacetylene **2a** (35.6 mg, 0.2 mmol), [Cp*RhCl₂]₂ (3.1 mg, 5 mol%), AgOTf (30.8 mg, 0.12 mmol) and 2-methylbutan-2-ol (*t*-AmOH, 1.5 mL) under O₂. The resulting mixture was stirred at

120 °C for 24 h and then diluted with 10 mL of dichloromethane. The results of detection by thin-layer chromatography (TLC) indicated that this reaction delivered no annulated product **3***a*, **3***b* and **4***a*.

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with 2-(pyridin-2-yl)aniline **1a** (17.0 mg, 0.1 mmol), diphenylacetylene **2a** (35.6 mg, 0.2 mmol), [Cp*RhCl₂]₂ (3.1 mg, 5 mol%), AgOTf (30.8 mg, 0.12 mmol), acetic anhydride (47 μ L, 0.5 mmol) and 2-methylbutan-2-ol (*t*-AmOH, 1.5 mL) under O₂. The resulting mixture was stirred at 120 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. Then the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give **3c** as a grayish-white solid (dichloromethane/methanol = 10/1, v/v, 36.7 mg, 68% yield) and **4a** as a yellow solid (dichloromethane/methanol = 30/1, v/v, 15.5 mg, 23% yield).

IV. Optimization of Rh-catalyzed dual C–H activation/cyclization of *N*-acetyl-2-(pyridin-2-yl)aniline with diphenylacetylene

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with *N*-acetyl-2-(pyridin-2-yl)aniline **1b** (21.2 mg, 0.1 mmol), diphenylacetylene **2a** (35.6 mg, 0.2 mmol), [Cp*RhCl₂]₂, silver salt, oxidant, additive and 2-methylbutan-2-ol (*t*-AmOH) under N₂. The resulting mixture was stirred at 120-140 °C for 24 h and then

diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. Then the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (dichloromethane/methanol = 30/1, v/v) to give the isolated yield of **4a**.

Entry	[Rh]	[Ag]	Oxidant	Additive	Solvent	Yield (%) ^b
1 ^c	[Cp*RhCl ₂] ₂	AgOTf	Oxygen (1 atm)	—	t-AmOH	27
2	[Cp*RhCl ₂] ₂	AgOTf	Oxygen (1 atm)	TfOH	t-AmOH	N.D.
3	[Cp*RhCl ₂] ₂	AgOTf	Cu(OAc) ₂ ·H ₂ O	TfOH	t-AmOH	39
4	[Cp*RhCl ₂] ₂	$AgSbF_6$	Cu(OAc) ₂ ·H ₂ O	TfOH	t-AmOH	46
5 ^{<i>d</i>}	[Cp*RhCl ₂] ₂	$AgSbF_6$	Cu(OAc) ₂ ·H ₂ O	TfOH	t-AmOH	57
6 ^e	[Cp*RhCl ₂] ₂	$AgSbF_6$	Cu(OAc) ₂ ·H ₂ O	TfOH	t-AmOH	60
7 ^{<i>f</i>}	[Cp*RhCl ₂] ₂	$AgSbF_6$	Cu(OAc) ₂ ·H ₂ O	TfOH	t-AmOH	69
8 ^{<i>g</i>}	[Cp*RhCl ₂] ₂	$AgSbF_6$	Cu(OAc) ₂ ·H ₂ O	TfOH	t-AmOH	82
9 ^{<i>h</i>}	[Cp*Co(CO)I ₂]	$AgSbF_6$	Cu(OAc) ₂ ·H ₂ O	TfOH	t-AmOH	N.D.

Table S1. Optimization of reaction conditions.^a

^{*a*}Reactions were carried out by using **1b** (0.1 mmol), **2a** (0.2 mmol), $[Cp*RhCl_2]_2$ (5 mol%), [Ag] (20 mol%), oxidant (0.2 mmol) and additive (0.1 mmol) in 2-methylbutan-2-ol (*t*-AmOH, 1.5 mL) at 120 °C for 24 h under an N₂ atmosphere. ^{*b*}Isolated yields. ^{*c*}AgOTf (0.12 mmol). ^{*d*}Cu(OAc)_2·H₂O (0.3 mmol). ^{*e*}Cu(OAc)_2·H₂O (0.3 mmol). ^{*f*}Cu(OAc)_2·H₂O (0.3 mmol). ^{*f*}Cu(OAc)_2·H₂O (0.3 mmol), TfOH (0.15 mmol). ^{*f*}Cu(OAc)_2·H₂O (0.3 mmol), TfOH (0.15 mmol). ^{*g*}Cu(OAc)_2·H₂O (0.3 mmol), Cu(OAc)_2·H₂O (0.3 mmol), TfOH (0.15 mmol), 140 °C. ^{*h*}Ca (0.3 mmol), [Cp*Co(CO)I₂] (10 mol%), Cu(OAc)_2·H₂O (0.3 mmol), TfOH (0.15 mmol), 140 °C. AgOTf = silver trifluoromethanesulfonate. TfOH = trifluoromethanesulfonic acid. N.D. = not detected.

V. General procedure for Rh-catalyzed dual C-H activation/cyclization

and the subsequent anion exchange reaction

A 25 mL Schlenk sealed tube with a magnetic stir bar was charged with *N*-acetyl-2-(pyridin-2-yl)aniline derivative **1** (0.1 mmol), diarylacetylene **2** (0.3 mmol),

mol%), AgSbF₆ (20 mol%), $[Cp*RhCl_2]_2$ (5 $Cu(OAc)_2 \cdot H_2O$ (0.3 mmol), trifluoromethanesulfonic acid (0.15 mmol) and 2-methylbutan-2-ol (t-AmOH) under an N_2 atmosphere. The resulting mixture was stirred at 140 °C for 24 h and then diluted with 10 mL of dichloromethane. The mixture was filtered through a celite pad and washed with 20 mL of dichloromethane. Then the filtrate was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (dichloromethane/methanol = 30/1, v/vto give the trifluoromethanesulfonate product 4.

Compound **4** was dissolved in ethanol and water (3:1, v/v), and eluted via column chromatography on chlorine-ion exchange resin. The resulting solution was concentrated under reduced pressure. The residue was dissolved in dichloromethane, washed with diluted hydrochloric acid, dried over Na₂SO₄, filtered. The filtrate was concentrated under reduced pressure, and the residue was purified by column chromatography on silica gel (dichloromethane/methanol = 20/1, v/v) to give the desired product **5**.

VI. Synthesis of 6a

2 M of NaOH solution (1 mL) was added to the dichloromethane solution (5 mL) of compound **5a** (50.0 mg, 89 μ mol). After stirred at room temperature for 5 min, the resulting mixture was stratified and separated. The organic phase was dried over Na₂SO₄, and filtered. Dichloromethane was removed under reduced pressure to give product **6a** as a dark red solid in nearly 100% yield (46.4 mg).

VII. Photophysical properties and calculation of pK_a values of 5

7.1 Absorption and emission spectra of 5 in dichloromethane

Fig. S1 Absorption and emission spectra of **5** in dichloromethane $(1 \times 10^{-5} \text{ M})$. (a) **5a**, 9%; (b) **5b**, 4%; (c) **5c**, 4%; (d) **5d**, 6%; (e) **5e**, 3%; (f) **5f**, 9%; (g) **5g**, 27%; (h) **5h**, 8%; (i) **5i**, 16%; (j) **5j**, 1%; (k) **5k**, 2%. The absolute quantum yields of **5a**-**5k** in CH₂Cl₂ $(1 \times 10^{-5} \text{ M})$, which are collected with an integrating sphere system, are shown after the identifiers of corresponding compounds.

7.2 Fluorescence spectra of 5 in phosphate-buffered saline with different pH values

Fig. S2 Fluorescence spectra of **5** in phosphate-buffered saline with different pH values $(2 \times 10^{-5} \text{ M})$. (a) **5b**, DMSO/H₂O = 1:9, v/v; (b) **5c**, DMSO/H₂O = 1:9, v/v; (c) **5d**, DMSO/H₂O = 1:9, v/v; (d) **5e**, DMSO/H₂O = 1:9, v/v; (e) **5f**, DMSO/H₂O = 1:9, v/v; (f) **5g**, DMSO/H₂O = 1:9, v/v; (g) **5h**, DMSO/H₂O = 1:9, v/v; (h) **5i**, DMSO/H₂O = 1:1, v/v; (i) **5j**, DMSO/H₂O = 1:9, v/v; (j) **5k**, DMSO/H₂O

= 1:9, v/v.

7.3 Calculation of pKa values of 5

The analysis on fluorescence intensities of compound **5** with different pH values by using Henderson-Hasselbach equation

$$LOG [(I_{max} - I)/(I - I_{min})] = pK_a - pH$$

where I represents the fluorescence intensity at a certain wavelength, I_{max} and I_{min} are corresponding maximum and minimum limiting values of I, respectively.³

Fig. S3 (a) Relative fluorescence intensities of **5a** at 538 nm in phosphate-buffered saline with different pH values (2×10^{-5} M, pH = 1.14-9.64, DMSO/H₂O = 1:9, v/v). Inset: The linear relationship between relative fluorescence intensity of **5a** at 538 nm and pH value ranging from 4.99 to 6.80. (b) Linear relationship between LOG [(I_{max} -I)/(I-I_{min})] and pH values. Based on the pH titration results, the pK_a value of **5a** was calculated to be 5.72 in DMSO–water buffer system.

Fig. S4 (a) Relative fluorescence intensities of **5b** at 551 nm in phosphate-buffered saline with different pH values (2×10^{-5} M, pH = 1.61-9.96, DMSO/H₂O = 1:9, v/v). Inset: The linear relationship between relative fluorescence intensity of **5b** at 551 nm and pH value ranging from 4.96 to 6.98. (b) Linear relationship between LOG [(I_{max} -I)/(I-I_{min})] and pH values. Based on the pH titration results, the pK_a value of **5b** was calculated to be 5.83 in DMSO–water buffer system.

Fig. S5 (a) Relative fluorescence intensities of **5c** at 540 nm in phosphate-buffered saline with different pH values (2×10^{-5} M, pH = 1.37-7.88, DMSO/H₂O = 1:9, v/v). Inset: The linear relationship between relative fluorescence intensity of **5c** at 540 nm and pH value ranging from 2.76 to 5.23. (b) Linear relationship between LOG [(I_{max} -I)/(I-I_{min})] and pH values. Based on the pH titration results, the pK_a value of **5c** was calculated to be 4.18 in DMSO–water buffer system.

Fig. S6 (a) Relative fluorescence intensities of **5d** at 513 nm in phosphate-buffered saline with different pH values (2×10^{-5} M, pH = 2.95-8.77, DMSO/H₂O = 1:9, v/v). Inset: The linear relationship between relative fluorescence intensity of **5d** at 513 nm and pH value ranging from 4.63 to 6.55. (b) Linear relationship between LOG [(I_{max} -I)/(I-I_{min})] and pH values. Based on the pH titration results, the pK_a value of **5d** was calculated to be 5.39 in DMSO–water buffer system.

Fig. S7 (a) Relative fluorescence intensities of **5e** at 525 nm in phosphate-buffered saline with different pH values (2×10^{-5} M, pH = 4.97-12.64, DMSO/H₂O = 1:9, v/v). Inset: The linear

relationship between relative fluorescence intensity of **5e** at 525 nm and pH value ranging from 7.07 to 10.54. (b) Linear relationship between LOG [$(I_{max}-I)/(I-I_{min})$] and pH values. Based on the pH titration results, the pK_a value of **5e** was calculated to be 8.76 in DMSO–water buffer system.

Fig. S8 (a) Relative fluorescence intensities of **5f** at 540 nm in phosphate-buffered saline with different pH values (2×10^{-5} M, pH = 3.36-9.33, DMSO/H₂O = 1:9, v/v). Inset: The linear relationship between relative fluorescence intensity of **5f** at 540 nm and pH value ranging from 4.97 to 6.55. (b) Linear relationship between LOG [(I_{max} -I)/(I-I_{min})] and pH values. Based on the pH titration results, the pK_a value of **5f** was calculated to be 5.84 in DMSO–water buffer system.

Fig. S9 (a) Relative fluorescence intensities of **5g** at 510 nm in phosphate-buffered saline with different pH values (2×10^{-5} M, pH = 3.36-10.60, DMSO/H₂O = 1:9, v/v). Inset: The linear relationship between relative fluorescence intensity of **5g** at 510 nm and pH value ranging from 5.27 to 6.85. (b) Linear relationship between LOG [(I_{max} -I)/(I-I_{min})] and pH values. Based on the pH titration results, the pK_a value of **5g** was calculated to be 6.11 in DMSO–water buffer system.

Fig. S10 (a) Relative fluorescence intensities of **5h** at 546 nm in phosphate-buffered saline with different pH values (2×10^{-5} M, pH = 1.61-9.96, DMSO/H₂O = 1:9, v/v). Inset: The linear relationship between relative fluorescence intensity of **5h** at 546 nm and pH value ranging from 4.96 to 6.72. (b) Linear relationship between LOG [(I_{max} -I)/(I-I_{min})] and pH values. Based on the pH titration results, the pK_a value of **5h** was calculated to be 5.67 in DMSO–water buffer system.

Fig. S11 (a) Relative fluorescence intensities of **5i** at 563 nm in phosphate-buffered saline with different pH values (2×10^{-5} M, pH = 5.62-10.89, DMSO/H₂O = 1:1, v/v). Inset: The linear relationship between relative fluorescence intensity of **5i** at 563 nm and pH value ranging from 6.96 to 8.19. (b) Linear relationship between LOG [(I_{max} -I)/(I-I_{min})] and pH values. Based on the pH titration results, the pK_a value of **5i** was calculated to be 7.74 in DMSO–water buffer system.

Fig. S12 (a) Relative fluorescence intensities of **5j** at 505 nm in phosphate-buffered saline with different pH values (2×10^{-5} M, pH = 3.36-12.15, DMSO/H₂O = 1:9, v/v). Inset: The linear

relationship between relative fluorescence intensity of **5j** at 505 nm and pH value ranging from 4.97 to 9.90. (b) Linear relationship between LOG $[(I_{max}-I)/(I-I_{min})]$ and pH values. Based on the pH titration results, the pK_a value of **5j** was calculated to be 7.43 in DMSO–water buffer system.

Fig. S13 (a) Relative fluorescence intensities of **5k** at 488 nm in phosphate-buffered saline with different pH values (2×10^{-5} M, pH = 4.15-9.51, DMSO/H₂O = 1:9, v/v). Inset: The linear relationship between relative fluorescence intensity of **5k** at 488 nm and pH value ranging from 5.58 to 8.34. (b) Linear relationship between LOG [(I_{max} -I)/(I-I_{min})] and pH values. Based on the pH titration results, the pK_a value of **5k** was calculated to be 6.96 in DMSO–water buffer system.

VIII. Fluorescence spectra of 5a and 6a in solid state

Fig. S14 Fluorescence spectra of 5a (black) and 6a (red) in solid state.

IX. Cell experiments

9.1 Cell culture

HepG2 cells were incubated in Dublecco's Modified Eagle's Medium (DMEM) supplemented with 10% (v/v) fetal bovine serum (FBS), 100 mg/mL of streptomycin and 100 units/mL of penicillin at 37 °C in humidified atmosphere containing 5% CO_2 .

9.2 Confocal fluorescent imaging experiments

Confocal fluorescent imaging experiments incubated with 5: HepG2 cells were incubated with **5** (2 μ M) in DMEM containing 1‰ DMSO for 20 min at 37 °C. Then, HepG2 cells were washed twice with phosphate buffered saline (PBS solution, 1 mL × 2), and covered with 1 mL of DMEM before imaging. The cells were observed with a Zeiss LSM 780 confocal fluorescent microscope.

Confocal fluorescent imaging experiments incubated with 5c and treated with acetic acid: HepG2 cells were incubated with 5c (2 μ M) in DMEM containing 1‰ DMSO for 20 min at 37 °C. Then, HepG2 cells were washed twice with phosphate buffered saline (PBS solution, 1 mL × 2), covered with 1 mL of DMEM, and treated with acetic acid (20 μ L) for 30 min before imaging. The cells were observed with a Zeiss LSM 780 confocal fluorescent microscope.

Co-staining experiments: HepG2 cells were incubated with compound **5** or **6a** (2 μ M) in DMEM containing 1‰ DMSO for 20 min at 37 °C. After washed twice with phosphate buffered saline (PBS solution, 1 mL × 2), LysoTrackerTM Deep Red (50 nM) was added to incubate for another 20 min. Finally, HepG2 cells were washed twice with PBS solution (1 mL × 2) and covered with 1 mL of DMEM before imaging. The cells were observed with a Zeiss LSM 780 confocal fluorescent microscope. In order to show effective contrasts, appropriate colors were chose to the labeled images of organelles, thus giving pseudo colors.

Confocal fluorescent imaging experiments incubated with 5a and treated with hydroxychloroquine sulfate: Two groups of comparative experiments were carried out simultaneously. HepG2 cells were incubated with 5a (2 μ M) only, or incubated with 5a (2 μ M) and hydroxychloroquine sulfate (150 μ M), in DMEM containing 1‰ DMSO for 60 min at 37 °C. Then, HepG2 cells were washed twice with phosphate buffered saline (PBS solution, 1 mL × 2), and covered with 1 mL of DMEM before imaging. The cells were observed with a Zeiss LSM 780 confocal fluorescent microscope.

Confocal fluorescent imaging experiments incubated with 5a and treated with

acetic acid: Two groups of comparative experiments were carried out simultaneously. On the one hand, HepG2 cells were incubated with **5a** (2 μ M) in DMEM containing 1‰ DMSO for 30 min at 37 °C. Then, HepG2 cells were washed twice with phosphate buffered saline (PBS solution, 1 mL × 2), and covered with 1 mL of DMEM before imaging. On the other hand, HepG2 cells were incubated with **5a** (2 μ M) in DMEM containing 1‰ DMSO for 20 min at 37 °C. Then, HepG2 cells were washed twice with phosphate buffered saline (PBS solution, 1 mL × 2), covered with 1 mL of DMEM, and treated with acetic acid (10 μ L) for 10 min before imaging. The cells were observed with a Zeiss LSM 780 confocal fluorescent microscope.

Confocal fluorescent imaging experiments incubated with 6a and treated with acetic acid: HepG2 cells were incubated with 6a (2 μ M) in DMEM containing 1‰ DMSO for 20 min at 37 °C. Then, HepG2 cells were washed twice with phosphate buffered saline (PBS solution, 1 mL × 2), covered with 1 mL of DMEM, and treated with acetic acid (10 μ L) for 10 min before imaging. The cells were observed with a Zeiss LSM 780 confocal fluorescent microscope.

Confocal fluorescent imaging experiments incubated with 5a, and followed by the treatment with alkaline buffer solution: Two groups of comparative experiments were carried out simultaneously. On the one hand, HepG2 cells were incubated with 5a (2 μ M) in DMEM containing 1‰ DMSO for 20 min at 37 °C, then washed twice with phosphate buffered saline (PBS solution, 1 mL × 2), and covered with 1 mL of PBS solution before imaging. On the other hand, HepG2 cells were incubated with 5a (2 μ M) in DMEM containing 1‰ DMSO for 20 min at 37 °C, then washed twice with phosphate buffered saline (PBS solution, 1 mL × 2), and covered with 1 mL of PBS solution before imaging. On the other hand, HepG2 cells were incubated with 5a (2 μ M) in DMEM containing 1‰ DMSO for 20 min at 37 °C, then washed twice with phosphate buffered saline (PBS solution, 1 mL × 2), covered with the mixture solution containing 1 mL of PBS solution and 2 μ L of NaOH solution (1 M) for 30 min before imaging. The cells were observed with a Zeiss LSM 780 confocal fluorescent microscope.

Fig. S15 Fluorescence images of HepG2 cells. (a) Incubated with **5a** for 20 min. (b) Incubated with **5a** for 20 min, and followed by the treatment with alkaline phosphate buffer solution for 30 min.

9.3 Cytotoxicity assay

The cytotoxicity experiments were investigated by CellTiler 96[®] AQueous One Solution Cell Proliferation Assay. HepG2 cells were seeded in 96-well culture plates and incubated for 24 h in stationary cultures. Then, the culture medium was replaced with a fresh complete medium containing compound **5** at concentrations of 0, 0.625, 1.25, 2.5, 5, 8, and 10 μ M, respectively (0 μ M for the control experiment). After another 24 h of incubation, 20 μ L of CellTiler 96[®] AQueous One Solution was added to each well, and incubated for further one hour. Afterwards, the absorbance of each well was recorded on the ELISA plate reader (model 680, BioRad) at a wavelength of 490 nm. The cell viability was calculated by the following formula:

(Mean optical density in the treated well / Mean optical density in the control well) × 100%

Fig. S16 Cell viability values (%) estimated by CellTiler 96[®] AQueous One Solution Cell Proliferation Assay, employing HepG2 cells stained with 0–10 μ M of **5a** at 37 °C for 24 h.

Fig. S17 Cell viability values (%) estimated by CellTiler 96[°] AQueous One Solution Cell Proliferation Assay, employing HepG2 cells stained with 0–10 μ M of **5b** at 37 °C for 24 h.

Fig. S18 Cell viability values (%) estimated by CellTiler 96[°] AQueous One Solution Cell Proliferation Assay, employing HepG2 cells stained with 0–10 μ M of **5d** at 37 °C for 24 h.

Fig. S19 Cell viability values (%) estimated by CellTiler 96° AQueous One Solution Cell

Proliferation Assay, employing HepG2 cells stained with 0–10 μ M of **5f** at 37 °C for 24 h.

Fig. S20 Cell viability values (%) estimated by CellTiler 96[°] AQueous One Solution Cell Proliferation Assay, employing HepG2 cells stained with 0–10 μ M of **5g** at 37 °C for 24 h.

Fig. S21 Cell viability values (%) estimated by CellTiler 96[°] AQueous One Solution Cell Proliferation Assay, employing HepG2 cells stained with 0–10 μ M of **5h** at 37 °C for 24 h.

Fig. S22 Cell viability values (%) estimated by CellTiler 96[°] AQueous One Solution Cell Proliferation Assay, employing HepG2 cells stained with 0–10 μ M of **5j** at 37 °C for 24 h.

Fig. S23 Cell viability values (%) estimated by CellTiler 96[°] AQueous One Solution Cell Proliferation Assay, employing HepG2 cells stained with 0–10 μ M of **5k** at 37 °C for 24 h.

X. Preparation and characterization of the described compounds

N-Acetyl-(2-pyridin-2-yl)aniline (1b)

Following general procedures for the synthesis of *N*-acetyl-2-(pyridin-2-yl)aniline derivatives, compound **1b** was obtained as a deep-yellow liquid (197.4 mg) in a total yield of 61%. ¹H NMR (400 MHz, CDCl₃): δ = 2.18 (s, 3H), 7.16 (td, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.27-7.30 (m, 1H), 7.39-7.43 (m, 1H), 7.64 (dd, *J* = 8.0 Hz, 1.6 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.85 (td, *J* = 7.6 Hz, 2.0 Hz, 1H), 8.52 (d, *J* = 8.4 Hz, 1H), 8.64-8.66 (m, 1H), 12.07 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 25.4, 122.0, 122.1, 123.3, 123.6, 125.7, 129.0, 130.2, 137.7, 137.9, 147.5, 158.5, 168.7 ppm. ESI-HRMS: calcd for C₁₃H₁₂N₂ONa [M+Na]⁺ 235.0842, found 235.0842.

N-Acetyl-5-methoxy-(2-pyridin-2-yl)aniline (1c)

Following general procedures for the synthesis of *N*-acetyl-2-(pyridin-2-yl)aniline derivatives, compound **1c** was obtained as a pale-yellow solid (220.8 mg) in a total yield of 49%. ¹H NMR (400 MHz, CDCl₃): δ = 2.20 (s, 3H), 3.88 (s, 3H), 6.71 (dd, *J* = 8.4 Hz, 2.4 Hz, 1H), 7.20-7.23 (m, 1H), 7.60 (d, *J* = 8.8 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.77-7.82 (m, 1H), 8.30 (d, *J* = 2.4 Hz, 1H), 8.58-8.60 (m, 1H), 12.59 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 25.6, 55.6, 105.9, 110.4, 117.7, 121.2, 122.3, 129.8, 137.7, 139.6, 147.3, 158.4, 161.1, 169.0 ppm. ESI-HRMS: calcd for C₁₄H₁₅N₂O₂ [M+H]⁺ 243.1128, found 243.1133.

N-Acetyl-[2-(5-methoxypyridin-2-yl)]aniline (1d)

Following general procedures for the synthesis of *N*-acetyl-2-(pyridin-2-yl)aniline derivatives, compound **1d** was obtained as a pale-yellow solid (229.7 mg) in a total yield of 59%. ¹H NMR (400 MHz, CDCl₃): δ = 2.17 (s, 3H), 3.93 (s, 3H), 7.14 (td, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.34-7.38 (m, 2H), 7.57 (dd, *J* = 7.6 Hz, 1.2 Hz, 1H), 7.67 (d, *J* = 8.8 Hz, 1H), 8.33 (dd, *J* = 2.8 Hz, 0.4 Hz, 1H), 8.49 (d, *J* = 8.4 Hz, 1H), 11.88 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 25.4, 55.9, 122.0, 122.6, 123.6, 123.9, 125.7, 128.5, 129.4, 134.8, 137.1, 150.8, 154.5, 168.7 ppm. ESI-HRMS: calcd for C₁₄H₁₅N₂O₂ [M+H]⁺ 243.1128, found 243.1124.

N-Acetyl-5-methoxy-[2-(5-methoxypyridin-2-yl)]aniline (1e)

Following general procedures for the synthesis of N-acetyl-2-(pyridin-2-yl)aniline

derivatives, compound **1e** was obtained as a pale-yellow solid (255.1 mg) in a total yield of 56%. ¹H NMR (400 MHz, CDCl₃): δ = 2.19 (s, 3H), 3.86 (s, 3H), 3.92 (s, 3H), 6.69 (dd, *J* = 8.8 Hz, 2.8 Hz, 1H), 7.34 (dd, *J* = 8.8 Hz, 2.8 Hz, 1H), 7.51 (d, *J* = 8.8 Hz, 1H), 7.61 (d, *J* = 8.8 Hz, 1H), 8.25 (d, *J* = 2.8 Hz, 1H), 8.28 (dd, *J* = 2.8 Hz, 0.4 Hz, 1H), 12.30 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 25.6, 55.6, 55.9, 105.9, 110.3, 117.9, 122.9, 123.0, 129.3, 134.3, 138.8, 150.9, 154.0, 160.4, 168.9 ppm. ESI-HRMS: calcd for C₁₅H₁₇N₂O₃ [M+H]⁺ 273.1234, found 273.1236.

N-Acetyl-2-[5-(trifluoromethyl)pyridin-2-yl]aniline (1f)

Following general procedures for the synthesis of *N*-acetyl-2-(pyridin-2-yl)aniline derivatives, compound **1f** was obtained as a pale-yellow solid (257.8 mg) in a total yield of 44%. ¹H NMR (400 MHz, CDCl₃): δ = 2.19 (s, 3H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.47 (t, *J* = 7.6 Hz, 1H), 7.66 (d, *J* = 7.6 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 8.08 (d, *J* = 8.4 Hz, 1H), 8.53 (d, *J* = 8.0 Hz, 1H), 8.92 (s, 1H), 11.70 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 25.4, 122.5, 123.0, 123.5 (q, *J* = 270.3 Hz), 123.9, 124.6, 129.4, 131.3, 134.9 (q, *J* = 3.3 Hz), 137.9, 144.7 (q, *J* = 4.0 Hz), 161.8, 168.8 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -62.37 ppm. ESI-HRMS: calcd for C₁₄H₁₁F₃N₂ONa [M+Na]⁺ 303.0716, found 303.0712.

N-Acetyl-5-methoxy-2-[5-(trifluoromethyl)pyridin-2-yl]aniline (1g)

Following general procedures for the synthesis of *N*-acetyl-2-(pyridin-2-yl)aniline derivatives, compound **1g** was obtained as a pale-yellow solid (285.5 mg) in a total

yield of 46%. ¹H NMR (400 MHz, CDCl₃): δ = 2.21 (s, 3H), 3.88 (s, 3H), 6.72 (dd, *J* = 9.2 Hz, 2.8 Hz, 1H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.80 (d, *J* = 8.4 Hz, 1H), 7.99-8.02 (m, 1H), 8.30 (d, *J* = 2.4 Hz, 1H), 8.85 (dd, *J* = 1.2 Hz, 0.8 Hz, 1H), 12.29 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 25.6, 55.6, 106.0, 110.7, 121.9, 123.6 (q, *J* = 270.4 Hz), 123.8 (q, *J* = 33.4 Hz), 130.3, 134.6 (q, *J* = 3.2 Hz), 140.1, 144.4 (q, *J* = 4.0 Hz), 161.6, 162.0, 169.0 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -62.32 ppm. ESI-HRMS: calcd for C₁₅H₁₃F₃N₂O₂Na [M+Na]⁺ 333.0821, found 333.0826.

11-Acetamido-6,7-diphenylphenanthridizin-5-ium trifluoromethanesulfonate (3c)

Compound **3c** was obtained as a grayish-white solid (36.7 mg) in 68% yield *via* Rh-catalyzed C–H activation/cyclization of 2-(pyridin-2-yl)aniline **1a** with diphenylacetylene **2a**. ¹H NMR (400 MHz, CDCl₃): δ = 2.42 (s, 3H), 7.13-7.15 (m, 2H), 7.30-7.33 (m, 5H), 7.39 (dd, *J* = 8.0 Hz, 0.8 Hz, 1H), 7.43-7.44 (m, 3H), 7.75 (td, *J* = 7.2 Hz, 1.6 Hz, 1H), 7.85 (t, *J* = 8.0 Hz, 1H), 8.22 (d, *J* = 7.2 Hz, 1H), 8.35-8.40 (m, 1H), 8.67 (d, *J* = 6.8 Hz, 1H), 9.82 (d, *J* = 9.2 Hz, 1H), 10.47 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 24.2, 120.1, 123.6, 125.0, 126.7, 128.7, 128.8, 130.0, 130.1, 130.3, 130.6, 130.7, 130.9, 133.6, 134.0, 134.3, 135.4, 137.1, 137.2, 137.4, 138.4, 144.4, 170.8 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -78.43 ppm. ESI-HRMS: calcd for C₂₇H₂₁N₂O [M]⁺ 389.1648, found 389.1644.

2,3,6,7-Tetraphenyl-1H-pyrrolo[3,2-k]phenanthridizin-8-ium

trifluoromethanesulfonate (4a)

Compound **4a** was obtained as a yellow solid (55.2 mg) in 82% yield *via* Rh-catalyzed dual C–H activation/cyclization of *N*-acetyl-2-(pyridin-2-yl)aniline **1b** with

diphenylacetylene **2a**. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.24 (d, *J* = 8.8 Hz, 1H), 7.28-7.53 (m, 16H), 7.55-7.57 (m, 2H), 7.69-7.71 (m, 2H), 8.10 (td, *J* = 6.8 Hz, 1.2 Hz, 1H), 8.20 (d, *J* = 8.8 Hz, 1H), 8.73 (td, *J* = 8.4 Hz, 1.2 Hz, 1H), 8.83 (d, *J* = 6.8 Hz, 1H), 9.86 (d, *J* = 8.8 Hz, 1H), 12.81 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 109.6, 113.0, 116.4, 119.0, 123.6, 126.7, 126.8, 127.1, 128.2, 128.3, 128.6, 128.7, 129.0, 129.3, 129.5, 129.8, 129.96, 130.04, 130.11, 130.15, 131.19, 131.21, 131.7, 133.3, 135.5, 136.0, 136.1, 136.3, 138.7, 139.4, 140.3 ppm. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ = -77.74 ppm. ESI-HRMS: calcd for C₃₉H₂₇N₂ [M]⁺ 523.2169, found 523.2162.

2,3,6,7-Tetraphenyl-1H-pyrrolo[3,2-k]phenanthridizin-8-ium chloride (5a)

Following the general procedure for Rh-catalyzed dual C–H activation/cyclization and the subsequent anion exchange reaction, compound **5a** was obtained as a yellow solid (42.5 mg) in a total yield of 76%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 7.23 (d, *J* = 8.4 Hz, 1H), 7.28-7.51 (m, 16H), 7.55-7.57 (m, 2H), 7.70-7.72 (m, 2H), 8.11 (td, *J* = 7.2 Hz, 1.2 Hz, 1H), 8.20 (d, *J* = 8.4 Hz, 1H), 8.73 (td, *J* = 7.2 Hz, 1.2 Hz, 1H), 8.82 (d, *J* = 7.2 Hz, 1H), 9.88 (d, *J* = 8.8 Hz, 1H), 12.88 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 109.6, 113.0, 116.4, 118.9, 123.6, 126.67, 127.1, 128.1, 128.2, 128.5, 128.6, 128.9 , 129.3, 129.4, 129.8, 129.9, 130.00, 130.02, 130.11, 130.13, 130.15, 131.2, 131.6, 133.3, 135.5, 135.9, 136.1, 136.2, 138.7, 139.4, 140.2 ppm. ESI-HRMS: calcd for C₃₉H₂₇N₂ [M]⁺ 523.2169, found 523.2168.

2,3,6,7-Tetra(4-tolyl)-1H-pyrrolo[3,2-k]phenanthridizin-8-ium chloride (5b)

Following the general procedure for Rh-catalyzed dual C–H activation/cyclization and the subsequent anion exchange reaction, compound **5b** was obtained as a yellow solid (46.6 mg) in a total yield of 76%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 2.30 (s, 3H), 2.34 (s, 3H), 2.36 (s, 3H), 2.38 (s, 3H), 7.16-7.21 (m, 5H), 7.24-7.32 (m, 8H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.58 (d, *J* = 8.0 Hz, 2H), 8.07 (t, *J* = 7.2 Hz, 1H), 8.15 (d, *J* = 8.8 Hz, 1H), 8.69 (t, *J* = 8.4 Hz, 1H), 8.76 (d, *J* = 6.8 Hz, 1H), 9.83 (d, *J* = 8.4 Hz, 1H), 12.69 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 21.4, 21.5, 21.6, 113.0, 116.7, 119.1, 122.6, 127.2, 127.7, 128.0, 128.4, 129.2, 129.3, 129.5, 129.6, 130.0, 130.3, 130.68, 130.75, 130.8, 131.0, 132.1, 132.3, 134.3, 135.2, 136.7, 137.9, 138.2, 138.6, 139.4, 140.6, 140.7, 141.5 ppm. ESI-HRMS: calcd for C₄₃H₃₅N₂ [M]⁺ 579.2795, found 579.2792.

2,3,6,7-Tetra[4-(*tert*-butyl)phenyl]-1*H*-pyrrolo[3,2-*k*]phenanthridizin-8-ium chloride (5c)

Following the general procedure for Rh-catalyzed dual C–H activation/cyclization and the subsequent anion exchange reaction, compound **5c** was obtained as a yellow solid (56.2 mg) in a total yield of 72%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 1.22 (s, 9H), 1.24 (s, 9H), 1.33 (s, 9H), 1.34 (s, 9H), 7.14 (d, *J* = 8.0 Hz, 2H), 7.31-7.54 (m, 13H), 7.65 (d, *J* = 8.4 Hz, 2H), 8.11 (t, *J* = 6.8 Hz, 1H), 8.20 (d, *J* = 8.8 Hz, 1H), 8.69 (t, *J* = 7.6 Hz, 1H), 8.95 (d, *J* = 6.8 Hz, 1H), 9.82 (br, 1H), 12.67 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 31.2, 31.3, 31.4, 31.6, 34.71, 34.74, 34.8, 35.0, 113.3, 116.7, 118.9, 122.6, 125.1, 125.6, 125.7, 126.6, 127.7, 128.2, 128.3, 128.6, 129.3, 129.9, 130.2, 130.8, 131.0, 131.3, 132.4, 132.6, 133.9, 135.0, 138.1, 138.6, 141.0, 141.3, 149.8, 151.2, 151.3, 153.5 ppm. ESI-HRMS: calcd for C₅₅H₅₉N₂ [M]⁺ 747.4673, found 747.4672.

2,3,6,7-Tetra(4-fluorophenyl)-1H-pyrrolo[3,2-k]phenanthridizin-8-ium chloride (5d)

Following the general procedure for Rh-catalyzed dual C-H activation/addition/cyclization and the subsequent anion exchange reaction, compound 5d was obtained as a yellow solid (41.7 mg) in a total yield of 66%. ¹H NMR (400 MHz, DMSO- d_6): δ = 7.21-7.40 (m, 11H), 7.42-7.46 (m, 2H), 7.62-7.65 (m, 2H), 7.73-7.76 (m, 2H), 8.10 (td, J = 7.2 Hz, 1.2 Hz, 1H), 8.18 (d, J = 8.8 Hz, 1H), 8.74 (td, J = 7.6 Hz, 1.2 Hz, 1H), 8.88 (d, J = 6.8 Hz, 1H), 9.92 (d, J = 7.6 Hz, 1H), 12.94 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ = 109.6, 113.0, 115.3, 115.4 (d, J = 21.7 Hz), 115.6 (d, J = 21.5 Hz), 116.0 (d, J = 21.3 Hz), 116.5 (d, J = 21.9 Hz), 118.8, 123.6, 126.6 (d, J = 5.0 Hz), 127.5, 128.0 (d, J = 3.4 Hz), 128.2, 129.3, 129.5 (d, J = 2.1 Hz), 130.1, 130.2, 130.9, 131.8 (d, J = 3.3 Hz), 131.9 (d, J = 8.2 Hz), 132.2 (d, J = 8.2 Hz), 133.8 (d, J = 8.7 Hz), 135.6 (d, J = 8.2 Hz), 136.3, 138.7, 138.9, 140.3, 161.3 (d, J = 243.0 Hz), 161.6 (d, J = 244.3 Hz), 162.2 (d, J = 245.3 Hz), 162.6 (d, J = 246.7 Hz) ppm. ¹⁹F NMR (376 MHz, DMSO- d_6): δ = -110.57, -112.56, -113.30, -115.12 ppm. ESI-HRMS: calcd for $C_{39}H_{23}F_4N_2$ [M]⁺ 595.1792, found 595.1787.

2,3,6,7-Tetra(4-methoxyphenyl)-1*H*-pyrrolo[3,2-*k*]phenanthridizin-8-ium chloride (5e)

Following the general procedure for Rh-catalyzed dual C–H activation/cyclization and

the subsequent anion exchange reaction, compound **5e** was obtained as a yellow solid (53.1 mg) in a total yield of 78%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.76 (s, 3H), 3.79 (s, 3H), 3.80 (s, 3H), 3.82 (s, 3H), 6.94 (d, *J* = 8.8 Hz, 2H), 7.02-7.07 (m, 6H), 7.19-7.24 (m, 3H), 7.32 (d, *J* = 8.8 Hz, 2H), 7.46 (d, *J* = 8.8 Hz, 2H), 7.63 (d, *J* = 8.8 Hz, 2H), 8.08 (t, *J* = 6.8 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 8.69 (t, *J* = 8.4 Hz, 1H), 8.83 (d, *J* = 6.8 Hz, 1H), 9.83 (d, *J* = 8.8 Hz, 1H), 12.66 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 55.07, 55.09, 55.2, 55.3, 109.6, 112.7, 113.7, 114.0, 114.4, 114.8, 115.3, 118.7, 123.3, 123.6, 123.8, 125.5, 126.4, 126.6, 127.8, 129.6, 129.9, 130.5, 130.9, 131.1, 131.3, 132.6, 135.8, 136.3, 138.4, 139.1, 140.2, 158.2, 158.6, 159.5, 159.8 ppm. ESI-HRMS: calcd for C₄₃H₃₅N₂O₄ [M]⁺ 643.2591, found 643.2584.

2,3,6,7-Tetra(3-methoxyphenyl)-1*H*-pyrrolo[3,2-*k*]phenanthridizin-8-ium chloride (5f)

Following the general procedure for Rh-catalyzed dual C–H activation/cyclization and the subsequent anion exchange reaction, compound **5f** was obtained as a yellow solid (39.5 mg) in a total yield of 58%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.69 (d, *J* = 3.2 Hz, 3H), 3.72 (d, *J* = 7.2 Hz, 3H), 3.74 (s, 3H), 3.76 (s, 3H), 6.86-7.44 (m, 17H), 8.10 (t, *J* = 7.2 Hz, 1H), 8.24 (d, *J* = 8.8 Hz, 1H), 8.73 (t, *J* = 8.4 Hz, 1H), 8.86 (d, *J* = 7.2 Hz, 1H), 9.86 (d, *J* = 8.4 Hz, 1H), 12.80 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 55.06, 55.14 (d, *J* = 3.2 Hz), 55.2, 55.3 (d, *J* = 5.1 Hz), 109.6, 112.7, 112.9, 113.5, 113.7, 113.9, 115.47, 115.52, 115.8, 115.9, 116.1, 116.4, 116.7, 116.8, 119.0, 122.1, 122.4, 123.16, 123.23, 123.6, 126.7, 126.9, 129.3, 129.5, 129.7, 130.0, 130.1, 130.63, 130.64, 132.4, 132.8, 134.7, 135.7, 135.9, 136.0, 136.7, 138.8, 139.2, 140.2, 158.8, 159.1, 159.5, 159.6 ppm. ESI-HRMS: calcd for C₄₃H₃₅N₂O₄ [M]⁺ 643.2591, found 643.2592.

4-Methoxy-2,3,6,7-tetraphenyl-1*H*-pyrrolo[3,2-*k*]phenanthridizin-8-ium chloride (5g)

Following the general procedure for Rh-catalyzed dual C–H activation/cyclization and the subsequent anion exchange reaction, compound **5g** was obtained as a yellow solid (38.1 mg) in a total yield of 65%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.50 (s, 3H), 6.49 (s, 1H), 7.30-7.50 (m, 16H), 7.54-7.57 (m, 4H), 7.94 (td, *J* = 7.2 Hz, 1.2 Hz, 1H), 8.58 (td, *J* = 8.4 Hz, 1.2 Hz, 1H), 8.69 (d, *J* = 6.8 Hz, 1H), 9.70 (d, *J* = 8.8 Hz, 1H), 12.80 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 55.2, 97.7, 108.6, 116.4, 120.4, 122.0, 125.7, 126.6, 127.5, 128.2, 128.26, 128.30, 128.7, 129.3, 129.7, 129.87, 129.93, 131.1, 131.2, 131.3, 131.6, 131.8, 132.3, 134.5, 135.1, 135.3, 135.4, 136.7, 137.6, 138.8, 139.6, 159.0 ppm. ESI-HRMS: calcd for C₄₀H₂₉N₂O [M]⁺ 553.2274, found 553.2273.

10-Methoxy-2,3,6,7-tetraphenyl-1*H*-pyrrolo[3,2-*k*]phenanthridizin-8-ium chloride (5h)

Following the general procedure for Rh-catalyzed dual C–H activation/cyclization and the subsequent anion exchange reaction, compound **5h** was obtained as a yellow solid (35.8 mg) in a total yield of 61%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.86 (s, 3H), 7.20 (d, *J* = 8.8 Hz, 1H), 7.29-7.52 (m, 16H), 7.57 (dd, *J* = 7.6 Hz, 1.2 Hz, 2H), 7.69 (dd, *J* = 8.0 Hz, 1.2 Hz, 2H), 8.12-8.15 (m, 2H), 8.53 (dd, *J* = 9.6 Hz, 2.4 Hz, 1H), 9.88 (d, *J* = 9.6 Hz, 1H), 12.79 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 57.3, 113.5, 117.1, 118.9, 119.3, 121.1, 122.1, 126.5, 127.1, 128.32, 128.35, 128.46, 128.48, 128.52,

128.7, 128.9, 129.5, 130.1, 130.2, 130.50, 130.53, 130.7, 131.0, 131.5, 131.9, 134.0, 134.5, 135.3, 136.0, 138.2, 140.6, 155.2 ppm. ESI-HRMS: calcd for $C_{40}H_{29}N_2O$ [M]⁺ 553.2274, found 553.2272.

4,10-Dimethoxy-2,3,6,7-tetraphenyl-1*H*-pyrrolo[3,2-*k*]phenanthridizin-8-ium chloride (5i)

Following the general procedure for Rh-catalyzed dual C–H activation/cyclization and the subsequent anion exchange reaction, compound **5i** was obtained as a yellow solid (34.7 mg) in a total yield of 56%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.48 (s, 3H), 3.81 (s, 3H), 6.46 (s, 1H), 7.32-7.58 (m, 20H), 8.00 (d, *J* = 2.8 Hz, 1H), 8.42 (dd, *J* = 10.0 Hz, 2.8 Hz, 1H), 9.68 (d, *J* = 10.0 Hz, 1H), 12.84 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 55.2, 56.6, 97.5, 109.0, 116.5, 118.6, 120.6, 126.7, 127.1, 127.5, 128.20, 128.22, 128.25, 128.31, 128.4, 128.6, 129.5, 129.7, 129.9, 130.1, 131.0, 131.1, 131.2, 131.3, 131.8, 134.6, 135.1, 135.5, 135.8, 136.2, 138.9, 153.1, 158.3 ppm. ESI-HRMS: calcd for C₄₁H₃₁N₂O₂ [M]⁺ 583.2380, found 583.2383.

2,3,6,7-Tetraphenyl-10-trifluoromethyl-1*H*-pyrrolo[3,2-*k*]phenanthridizin-8-ium chloride (5j)

Following the general procedure for Rh-catalyzed dual C–H activation/cyclization and the subsequent anion exchange reaction, compound **5j** was obtained as a yellow solid (39.6 mg) in a total yield of 63%. ¹H NMR (400 MHz, DMSO- d_6): δ = 7.28-7.54 (m, 17H), 7.58-7.60 (m, 2H), 7.70-7.72 (m, 2H), 8.33 (d, *J* = 8.8 Hz, 1H), 8.86 (s, 1H), 9.05

(dd, *J* = 9.2 Hz, 1.6 Hz, 1H), 10.03 (d, *J* = 9.2 Hz, 1H), 13.10 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 112.7, 116.7, 119.0, 120.6, 123.2 (q, *J* = 34.0 Hz), 127.3, 128.45, 128.50, 128.6, 128.8, 129.0, 129.4, 129.8, 129.9, 130.0, 130.2, 130.4, 130.6, 130.7, 131.0, 131.3, 133.0, 133.1, 135.0, 137.1, 137.3, 139.9, 141.9 ppm. ¹⁹F NMR (376 MHz, DMSO-*d*₆): δ = -62.11 ppm. ESI-HRMS: calcd for C₄₀H₂₆F₃N₂ [M]⁺ 591.2043, found 591.2040.

4-Methoxy-2,3,6,7-tetraphenyl-10-trifluoromethyl-1*H*-pyrrolo[3,2-*k*]phenanthridizi n-8-ium chloride (5k)

Following the general procedure for Rh-catalyzed dual C–H activation/cyclization and the subsequent anion exchange reaction, compound **5k** was obtained as a yellow solid (38.8 mg) in a total yield of 59%. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 3.55 (s, 3H), 6.56 (s, 1H), 7.31-7.45 (m, 13H), 7.49-7.53 (m, 3H), 7.57-7.61 (m, 4H), 8.74 (s, 1H), 8.86 (d, *J* = 9.6 Hz, 1H), 9.83 (d, *J* = 9.2 Hz, 1H), 13.08 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ = 55.6, 98.5, 109.4, 117.5, 121.8 (q, *J* = 271.4 Hz), 122.5, 124.2 (q, *J* = 35.6 Hz), 126.8, 127.7, 128.3, 128.4, 128.8, 129.0, 129.8, 129.9, 130.2, 130.7, 130.79, 130.85, 131.0, 131.1, 131.5, 132.2, 132.5, 133.6, 134.95, 135.01, 136.2, 137.4, 141.0, 141.4, 161.7 ppm. ¹⁹F NMR (376 MHz, CDCl₃): δ = -63.15 ppm. ESI-HRMS: calcd for C₄₁H₂₈F₃N₂O [M]⁺ 621.2148, found 621.2143.

2,3,6,7-Tetraphenylpyrrolo[3,2-k]phenanthridizin-8-ium-1-ide (6a)

Compound 6a was obtained as a dark red solid (46.4 mg) in nearly 100% yield via the

reaction of pyrrolo[3,2-*k*]phenanthridizinium **5a** with NaOH solution. ¹H NMR (400 MHz, DMSO-*d*₆): δ = 6.73 (d, *J* = 8.4 Hz, 1H), 7.18-7.42 (m, 16H), 7.47 (dd, *J* = 7.2 Hz, 1.2 Hz, 2H), 7.76 (td, *J* = 7.2 Hz, 1.2 Hz, 1H), 7.87 (d, *J* = 7.2 Hz, 2H), 7.98 (d, *J* = 8.4 Hz, 1H), 8.51 (t, *J* = 6.8 Hz, 2H), 12.29 (d, *J* = 8.8 Hz, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ = 112.5, 114.0, 114.4, 120.7, 124.8, 125.7, 125.8, 127.2, 127.5, 127.8, 128.0, 128.4, 128.5, 128.7, 129.1, 129.4, 129.9, 130.1, 131.5, 132.5, 132.7, 132.8, 133.6, 135.6, 136.5, 136.8, 138.3, 139.2, 141.5, 141.6, 148.6 ppm. ESI-HRMS: calcd for C₃₉H₂₇N₂ [M+H]⁺ 523.2169, found 523.2170.

XI. References

- 1 K. Park, G. Bae, J. Moon, J. Choe, K. H. Song and S. Lee, J. Org. Chem., 2010, 75, 6244–6251.
- 2 J. Peng, M. Chen, Z. Xie, S. Luo and Q. Zhu, *Org. Chem. Front.*, 2014, **1**, 777–781.
- 3 C. N. Baki and E. U. Akkaya, J. Org. Chem., 2001, 66, 1512–1513.

XII. Copies of ¹H, ¹³C and ¹⁹F NMR spectra

S42

-110.571 -112.562 -113.297 -115.118

220 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 80 40 -10 90 70 60 50 30 20 10 0

