Kassem et. al. 'Site-to-site peptide transport...'

Site-to-Site Peptide Transport on a Molecular Platform Using a Small-Molecule Robotic Arm

Salma Kassem, Alan T. L. Lee, David A. Leigh*, Augustinas Markevicius, Daniel J. Tetlow, and Naoyuki Toriumi

Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom.

* E-mail: david.leigh@manchester.ac.uk

-Supporting Information-

Table of Contents

1. General Experimental	2
2. Experimental Procedures	3
2.1 Synthesis of <i>EZ</i> - 9	3
2.1.1 Synthetic Scheme	3
2.1.2 Synthetic Procedures and Characterisation Data	4
2.2 Synthesis of <i>EZ</i> -10	7
2.2.1 Synthetic Scheme	8
2.2.2 Synthetic Procedures and Characterisation Data	9
2.3 Synthesis of <i>EZ</i> - 11	13
2.3.1 Synthetic Scheme	
2.3.2 Synthetic Procedures and Characterisation Data	14
3. Effect of Acid Stoichiometry on <i>E</i> - 1 / <i>Z</i> - 1 Interconversion	20
3.1 Titration Procedure	20
3.2 Results	20
4. Effect of Solvent on <i>E</i> - 1 /Z- 1 Interconversion	20
4.1 Titration Procedure	20
4.2 Characterisation of Z-1-H ₃ ³⁺ -Left and Z-1-H ₃ ³⁺ -Right	21
4.2.1 Z- 1 -H ₃ ³⁺ -Left in C ₂ D ₂ Cl ₄ :CD ₃ CN (2:1)	21
4.2.1 Z-1-H ₃ ³⁺ -Right in C ₂ D ₂ Cl ₄ :C ₆ D ₅ CD ₃ (1:2)	23
5. Optimised Backward Transport (E-1 to Z-1)	24
5.1 General Procedure	24
5.2 ¹ H NMR Spectra	25
6. Site-to-Site Transport of Peptide Derivatives 9, 10 and 11.	26
6.1 Forward Transport	26
6.1.1 General Procedure	26
6.1.2 ¹ H NMR Spectra	26
6.2 Backward Transport	
6.2.1 General Procedure	
6.2.2 ¹ H NMR Spectra	29
7. Spectroscopic Data	
8. References	53

1. General Experimental

Unless stated otherwise, reagents were obtained from commercial sources and used without purification. Reactions were carried out in anhydrous solvents and under an N_2 atmosphere. Anhydrous solvents were obtained by passing the solvent through an activated alumina column on a Phoenix SDS (solvent drying system; JC Meyer Solvent Systems, CA, USA). EZ-1 and EZ-2 were synthesized according to our previously reported procedure.^[1] Pivaloylphenylalanine and Pivaloylalanine were prepared according to known literature procedures.^{[2] 1}H NMR spectra were recorded on a Bruker Avance III instrument with an Oxford AS600 magnet equipped with a cryoprobe [5mm CPDCH ¹³C-¹H/D] (600 MHz). Chemical shifts are reported in parts per million (ppm) from high to low frequency using the residual solvent peak as the internal reference ($CDCI_3 = 7.26$ ppm, $C_2D_2CI_4$ = 6.00 ppm, CD₂Cl₂ = 5.32 ppm, CD₃CN = 1.94 ppm, and (CD₃)₂SO = 2.50 ppm).^[3,4] All ¹H resonances are reported to the nearest 0.01 ppm. The multiplicity of 1 H signals are indicated as: s = singlet; d = doublet; t = triplet; q = quartet; quint = quintet; sept = septet; m = multiplet; br = broad; or combinations of thereof. Coupling constants (J) are quoted in Hz and reported to the nearest 0.1 Hz. Where appropriate, averages of the signals from peaks displaying multiplicity were used to calculate the value of the coupling constant. ¹³C NMR spectra were recorded on the same spectrometer with the central resonance of the solvent peak as the internal reference (CDCl₃ = 77.16 ppm, C₂D₂Cl₄ = 73.00 ppm, CD₂Cl₂ = 54.00 ppm, CD₃CN = 118.26 ppm and (CD₃)₂SO = 39.52 ppm).^[3,4] All ¹³C resonances are reported to the nearest 0.1 ppm, except in cases to aid the differentiation of closely resolved signals (which are reported to the nearest 0.01 ppm). DEPT, COSY, HSQC and HMBC experiments were used to aid structural determination and spectral assignment. Where necessary, 1D NOESY and 2D NOESY or ROESY spectra were used to aid the assignment of ¹H spectra. *Cis* and *trans* acyl hydrazone rotamers where assigned according to the characteristic ¹³C shift of the amide carbon (with a lower field shift for the cis conformer). Fully characterized compounds were chromatographically homogeneous. Flash column chromatography was carried out using Silica 60 Å (particle size 40–63 μm, Sigma Aldrich, UK) as the stationary phase. Preparative TLC was performed using either PLC 20×20 cm, 60 F₂₅₄ Preparative plates (Merck) or Silica Gel GF 20 \times 20 cm, U₂₅₄ Preparative plates (Analtech) of various thicknesses. TLC was performed on precoated silica gel plates (0.25 mm thick, 60 F₂₅₄, Merck, Germany) and visualized using both short and long wave ultraviolet light in combination with standard laboratory stains (basic potassium permanganate, acidic ammonium molybdate and ninhydrin). Low resolution ESI mass spectrometry was performed with a Thermo Scientific LCQ Fleet Ion Trap Mass Spectrometer or an Agilent Technologies 1200 LC system with either an Agilent 6130 single quadrupole MS detector or an Advion Expression LCMS single quadrupole MS detector. High-resolution mass spectrometry was carried out by the EPSRC National Mass Spectrometry Service Centre (Swansea, UK) or by staff at the Mass Spectrometry Service, School of Chemistry, The University of Manchester. Melting points (M.p.) were determined using a Büchi M-565 apparatus and are uncorrected.

2. Experimental Procedures

2.1 Synthesis of EZ-9

2.1.1 Synthetic Scheme

Scheme 1. Synthesis of *Z*-**9** and *E*-**9**. Reagents and conditions: (i) Ph₃COH, TFA, r.t., 75 min, 82%. (ii) PivCl, Et₃N, CH₂Cl₂, -10 °C to r.t., 1.5 h, 45%. (iii) NH₂NH₂·H₂O, MeOH, Δ, 67 h, 89%. (iv) *p*-anisaldehyde, AcOH, CH₂Cl₂, r.t., 24 h, 95%. (v) AgNO₃, CHCl₃, MeOH, r.t., 30 mins, then *EZ*-**2** in CHCl₃, r.t., 3 h, 79%. (vi) TFA, CHCl₃, r.t., 17 h, 53%. (vii) TFA, CHCl₃, r.t., 41 h, 64%.

2.1.2 Synthetic Procedures and Characterisation Data

Synthesis of **S1**

L-Cysteine ethyl ester hydrochloride (7.45 g, 40.1 mmol, 1.1 eq.) and triphenylmethanol (9.50 g, 36.5 mmol, 1 eq.) were dissolved in TFA (25 mL). The orange solution was stirred at room temperature for 75 minutes and the solvent was removed under reduced pressure. The resulting brown oil was dissolved in CH_2Cl_2 (200 mL) and water (200 mL) was added upon which the brown organics turned

colourless. The mixture was neutralised by careful portion-wise addition of K₂CO₃ (*ca.* 15 g). The organic layer was separated, dried over MgSO₄ and concentrated under reduced pressure to a light purple oil. The crude oil was triturated with *n*-hexane which was then decanted to give the title compound as a yellow oil (12.9 g, 33.0 mmol, 82%). ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.37 – 7.29 (m, 12H, H₆+ H₇), 7.27 – 7.21 (m, 3H, H₈), 4.02 (q, *J* = 7.1 Hz, 2H, H₃), 3.14 (t, *J* = 6.4 Hz, 1H, H₂), 2.36 (dd, *J* = 11.9, 6.2 Hz, 1H, H₅), 2.28 (dd, *J* = 11.9, 6.7 Hz, 1H, H₅'), 1.82 (s, 2H, H₁), 1.13 (t, *J* = 7.1 Hz, 3H, H₄). ¹³**C NMR** (151 MHz, DMSO-*d*₆) δ 173.7, 144.4, 129.1, 128.0, 126.7, 65.9, 60.2, 53.7, 36.4, 14.1. **HRMS** (NSI⁺): Calc. for C₂₄H₂₆N₁O₂S: 392.1679, found 392.1673 [M+H]⁺. [*a*]²⁰_D +80.0 (*c* = 1.00, MeOH).

Synthesis of S2

Pivaloyl chloride (130 μ L, 1.06 mmol) was added dropwise to a solution of **S1** (338 mg, 0.862 mmol) and triethylamine (130 μ L, 1.51 mmol) in CH₂Cl₂ (3 mL) at -10 °C under nitrogen atmosphere. The reaction mixture was warmed to room temperature and stirred for 1.5 hours. The reaction was quenched with H₂O and the layers separated. The aqueous layer was extracted with CH₂Cl₂ and the

combined organic layers were dried over MgSO₄, filtered and concentrated under reduced pressure. Flash column chromatography (SiO₂, EtOAc/hexane, 20% \rightarrow 70%) afforded **S2** as a colourless oil (184 mg, 0.387 mmol, 45%). ¹**H NMR** (600 MHz, CDCl₃) δ 7.38 (d, *J* = 7.3 Hz, 6H, H₇), 7.28 (t, *J* = 7.3 Hz, 6H, H₈), 7.21 (t, *J* = 7.3 Hz, 3H, H₉), 6.29 (d, *J* = 7.6 Hz, 1H, H₂), 4.59 (dt, *J* = 7.6, 5.2 Hz, 1H, H₃), 4.17 (q, *J* = 7.1 Hz, 2H, H₄), 2.62 – 2.56 (m, 2H, H₆), 1.24 (t, *J* = 7.1 Hz, 3H, H₇), 1.21 (s, 9H, H₁). ¹³**C NMR** (151 MHz, CDCl₃) δ 178.0, 170.7, 144.3, 129.4, 128.0, 126.8, 66.5, 61.7, 50.9, 38.7, 34.0, 27.4, 14.1. **HRMS** (NSI⁺): Calc. for C₂₉H₃₃NO₃SNa: 498.2073, found 498.2070 [M+Na]⁺.

Synthesis of S3

Hydrazine hydrate (45.0 μ L, 0.926 mmol) was added to a solution of **S2** (153 mg, 0.322 mmol) in MeOH (2 mL) and the reaction was stirred at reflux for 67 hours. The crude mixture was concentrated under reduced pressure and purified by flash column chromatography (SiO₂, MeOH/CH₂Cl₂, 0% \rightarrow 4%) to afford **S3** as

colourless solid (133 mg, 0.288 mmol, 89%). **M.p.** 88 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.42 (d, *J* = 7.2 Hz, 6H, H₇), 7.30 (t, *J* = 7.2 Hz, 6H, H₈), 7.23 (t, *J* = 7.2 Hz, 3H, H₉), 7.18 (br, s, 1H, H₄), 6.03 (d, *J* = 7.3 Hz, 1H, H₂), 3.98 (q, *J* = 6.9 Hz, 1H, H₃), 3.77 (br, s, 2H, H₅), 2.68 – 2.53 (m, 2H, H₆), 1.15 (s, 9H, H₁). ¹³**C NMR** (151 MHz, CDCl₃) δ 178.7, 170.9, 144.2, 129.5, 128.1, 126.9, 67.1, 50.7, 38.7, 33.4, 27.4. **HRMS** (NSI⁺): Calc. for C₂₇H₃₁N₃O₂SNa: 484.2029, found 484.2015 [M+Na]⁺.

Synthesis of 3

p-Anisaldehyde (49 µL, 0.400 mmol) was added to a solution of **S3** (92.3 mg, 0.200 mmol) and acetic acid (2 drops) in CH_2CI_2 (1.2 mL). The reaction mixture was stirred at room temperature for 24 hours. The crude mixture was concentrated under reduced pressure and purified by flash column chromatography (SiO₂, MeOH/CH₂CI₂, 0% \rightarrow 2%) to afford **3** as a pale yellow solid (110 mg, 0.190 mmol, 95%). **M.p.** 105 °C. ¹**H NMR** (600 MHz,

CDCl₃) ~3:2 *cis:trans* hydrazone amide rotamers. *Trans*-**3** δ 9.58 (s, 1H, H₄), 7.93 (s, 1H, H₅), 7.63 (d, *J* = 8.8 Hz, 2H, H₆), 7.43 (d, *J* = 7.1 Hz, 6H, H₁₀), 7.28 (t, *J* = 7.1 Hz, 6H, H₁₁), 7.21 (t, *J* = 7.1 Hz, 3H, H₁₂), 6.87 (d, *J* = 8.8 Hz, 2H, H₇), 6.16 (d, *J* = 7.5 Hz, 1H, H₂), 4.05 – 4.01 (m, 1H, H₃), 3.82 (s, 3H, H₈), 2.74 – 2.65 (m, 2H, H₉), 1.17 (s, 9H, H₁). *Cis*-**3** δ 8.66 (s, 1H, H₄), 7.55 (s, 1H, H₅), 7.45 (d, *J* = 8.8 Hz, 2H, H₆), 7.35 (d, *J* = 7.4 Hz, 6H, H₁₀), 7.15 (t, *J* = 7.4 Hz, 6H, H₁₁), 7.09 (t, *J* = 7.3 Hz, 3H, H₁₂), 6.90 (d, *J* = 8.8 Hz, 2H, H₇), 6.72 (d, *J* = 7.9 Hz, 1H, H₂), 5.49 – 5.46 (m, 1H, H₃), 3.87 (s, 3H, H₈), 2.93 – 2.90 (m, 1H, H₉), 2.56 – 2.53 (m, 1H, H₉'), 1.27 (s, 9H, H₁). ¹³**C NMR** (151 MHz, CDCl₃) δ 179.6, 178.0, 171.1, 166.7, 161.7, 161.6, 148.7, 144.6, 144.5, 129.7, 129.6, 129.2, 128.2, 128.0, 127.0, 126.8, 126.2, 125.9, 114.3, 114.2, 67.3, 66.4, 55.6, 55.5, 51.7, 49.5, 39.0, 38.9, 34.0, 32.9, 27.7, 27.5. **HRMS** (NSI⁺): Calc. for C₃₅H₃₇N₃O₃SNa: 602.2448, found 602.2418 [M+Na]⁺.

Synthesis of EZ-6

AgNO₃ (2.3 mg, 14 μ mol) was added to a solution of **3** (6.5 mg, 11 μ mol) in a 2:1 CHCl₃:MeOH mixture (300 μ L), the mixture was stirred at room temperature for 30 minutes. A solution of *EZ*-**2** (18.3 mg, 19 μ mol) in CHCl₃ (50 μ L) was added and the mixture was stirred at room temperature for 3 hours. The reaction mixture was

diluted with CHCl₃, washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. Preparative thin layer chromatography (SiO₂, EtOAc/CH₂Cl₂ (0.2% Et₃N), 10%) afforded *EZ*-**6**

as an orange solid (10.6 mg, 8.75 μ mol, 79%). ¹H NMR (600 MHz, CDCl₃) ~62:38 *E:Z* pyridyl-hydrazone isomers and mixture of acyl-hydrazone rotamers. Major isomer reported (*E*-**7**) δ 15.82 (s, 1H, H₂₂), 10.16 – 10.14 (m, 1H, H₁), 9.16 (m, 1H, H₂₇), 9.05 – 8.98 (m, 1H, H₁₀), 8.98 – 8.85 (m, 1H, H₃₉), 8.36 – 8.29 (m, 1H, H₂₅), 8.24 – 7.36 (m, 25H, H₃+ H₂+ H₄+ H₅+ H₆+ H₈+ H₉+ H₁₁+ H₁₂+ H₁₃+ H₁₅+ H₁₆+ H₁₇+ H₁₈+ H₁₉+ H₂₀+ H₂₁+ H₂₆+ H₂₈+ H₂₉+ H₃₀+ H₃₁+ H₄₀+ H₄₁), 6.90 (d, *J* = 8.3 Hz, 2H, H₄₂), 6.79 (m, 1H, H₃₇), 5.78 – 5.62 (m, 1H, H₃₆), 4.47 (q, *J* = 7.2 Hz, 2H, H₂₃), 4.18 – 4.09 (m, 2H, H₃₂), 3.81 (s, 3H, H₄₃), 3.42 – 3.41 (m, 1H, H₃₅), 3.21 – 3.19 (m, 1H, H_{35'}), 2.99 – 2.95 (m, 2H, H₃₄), 2.50 (s, 6H, H₇+ H₁₄), 2.27 – 2.18 (m, 2H, H₃₃), 1.48 (t, *J* = 7.2 Hz, 3H, H₂₄), 1.26 (m, 9H, H₃₈). **LRMS** (ESI+) 1211.44 (35%, [M+H]⁺), 1257.46 (100%, [M+OC₂H₆+H]⁺).

Synthesis of E-9

EZ-**6** (9.8 mg, 8.1 μ mol) and trifluoroacetic acid (44 μ L, 0.568 mmol) were dissolved in CHCl₃ (8.1 mL, 1.0 mM) and stirred at room temperature for 17 hours. Triethylamine (160 μ L, 1.15 mmol) was added and the reaction mixture was washed with a saturated aqueous solution of NaHCO₃. The aqueous layer was washed with CH₂Cl₂ and the combined organic layers were dried over

Na₂SO₄, filtered and concentrated under reduced pressure. Preparative thin layer chromatography (SiO₂, EtOAc/CH₂Cl₂ (0.2% Et₃N), 20%) afforded E-9 (4.6 mg, 4.3 µmol, 53%) and Z-9 (1.5 mg, 1.4 µmol, 17%) as yellow solids. ¹H NMR (600 MHz, CDCl₃) *E*-9 δ 16.28 (s, 1H, H₂₂), 9.21 (d, *J* = 2.4 Hz, 1H, H₂₇), 9.05 (d, J = 2.2 Hz, 1H, H₁₀), 9.03 (s, 1H, H₃₉), 8.32 (d, J = 8.5 Hz, 1H, H₂₅), 8.22 - 8.21 (m, 3H, H₂+ H₁₁+ H₁₈), 8.10 (dd, J = 8.6, 2.5 Hz, 1H, H₂₆), 8.04 (d, J = 2.2 Hz, 1H, H₁₃), 7.98 (dt, J = 7.9, 1.4 Hz, 1H, H₁₉), 7.90 (dt, J = 7.6, 1.4 Hz, 1H, H₅), 7.84 (s, 1H, H₁), 7.72 (d, J = 7.9 Hz, 1H, H₃), 7.66 (t, J = 7.5 Hz, 1H, H₂₀), 7.64 – 7.59 (m, 4H, H₄+H₆+ H₁₅+ H₈), 7.56 – 7.50 (m, 3H, H₉+ H₁₆+ H₂₁), 7.47 (d, J = 1.7 Hz, 1H, H₁₂), 7.41 $(t, J = 7.9 Hz, 1H, H_{30}), 7.36 - 7.34 (m, 2H, H_{28} + H_{17}), 7.25 (d, J = 6.8 Hz, 1H, H_{31}), 6.95 (dd, J = 8.2, 2.4)$ Hz, 1H, H₂₉), 6.87 (d, J = 7.7 Hz, 1H, H₃₇), 5.74 - 5.70 (m, 1H, H₃₆), 4.45 (q, J = 7.1 Hz, 2H, H₂₃), 4.16 -4.12 (m, 2H, H₃₂), 3.58 (dd, J = 14.2, 4.2 Hz, 1H, H₃₅), 3.26 (dd, J = 14.2, 6.9 Hz, 1H, H₃₅'), 3.01 – 2.88 (m, 2H, H₃₄), 2.51 (s, 6H, H₇+ H₁₄), 2.31 – 2.21 (m, 2H, H₃₃), 1.46 (t, J = 7.1 Hz, 3H, H₂₄), 1.29 (s, 9H, H₃₈). ¹³C **NMR** (151 MHz, CDCl₃) *E*-**9** δ 178.5, 171.3, 165.9, 159.6, 151.3, 150.4, 145.3, 144.9, 142.0, 141.8, 141.4, 140.8, 139.4, 139.0, 138.4, 137.7, 137.0, 136.7, 136.6, 136.3, 135.2, 134.8, 134.7, 134.6, 133.6, 133.2, 131.0, 130.8, 130.5, 129.9, 129.7, 129.5, 129.4, 129.3, 129.2, 128.9, 128.4, 128.2, 127.8, 125.4, 124.7, 123.9, 120.5, 119.8, 115.1, 112.1, 112.0, 66.2, 61.3, 51.5, 39.6, 39.0, 34.8, 32.1, 28.6, 27.6, 21.0, 14.6. HRMS (NSI⁺): Calc. for C₆₃H₅₈DN₇O₆S₂H: 1075.4104, found 1075.4100 [M+H]⁺.

Synthesis of Z-9

EZ-**6** (9.8 mg, 8.1 µmol) and trifluoroacetic acid (2µL, 26.1 µmol) were dissolved in CHCl₃ (3.3 mL) and stirred at room temperature for 41 hours. Triethylamine (8 µL, 57.5 1 µmol) was added and the reaction mixture was washed with a saturated aqueous solution of NaHCO₃. The aqueous layer was washed with CH₂Cl₂ and the combined organic layers were dried over Na₂SO₄,

filtered and concentrated under reduced pressure. Preparative thin layer chromatography (SiO₂, EtOAc/CH₂Cl₂ (0.2% Et₃N), 20%) afforded Z-9 as a yellow solid (5.6 mg, 5.2 μmol, 64%). ¹H NMR (600 MHz, CDCl₃) ~63:37 *cis:trans* hydrazone amide rotamers. δ 13.63 (s, 1H, H_{22cis}), 13.38 (s, 1H, H_{22trans}), 10.24 (s, 1H, H₁), 10.13 (s, 1H, H_{39trans}), 9.01 (d, J = 2.2 Hz, 1H, H₁₀), 8.99 (s, 1H, H_{39cis}), 8.88 (s, 1H, H₂₇), 8.27 - 8.14 (m, 3H, H₂+ H₁₁+ H₂₆), 8.06 - 7.85 (m, 6H, H₃+ H₅+ H₁₃+ H₁₈+ H₁₉ + H₂₅), 7.70 - 7.61 (m, 4H, $H_{4}+H_{6}+H_{15}+H_{20}$, 7.57 – 7.43 (m, 6H, $H_{8}+H_{9}+H_{16}+H_{17}+H_{21}+H_{31}$), 7.40 – 7.35 (m, 2H, $H_{12}+H_{30}$), 7.22 (t, J = 1.8 Hz, 1H, H_{28trans}), 7.16 (t, J = 1.8 Hz, 1H, H_{28cis}), 7.08 (d, J = 7.7 Hz, 1H, H_{37cis}), 6.95 (m, 1H, H₂₉), 6.87 (d, J = 7.7 Hz, 1H, H_{37trans}), 5.74 – 5.70 (m, 1H, H_{36cis}), 4.79 (q, J = 6.5 Hz, 1H, H_{36trans}), 4.45 (m, 2H, H₂₃), 4.16 – 4.12 (m, 2H, H₃₂), 3.46 – 3.31 (m, 2H, H₃₅), 3.01– 2.88 (m, 2H, H₃₄), 2.51 (m, 6H, H₇+ H₁₄), 2.31 – 2.21 (m, 2H, H₃₃), 1.46 (t, J = 7.1 Hz, 3H, H₂₄), 1.29 (s, 9H, H₃₈). ¹³C NMR (151 MHz, CDCl₃) δ 192.5, 178.1, 171.1, 159.6, 159.4, 149.7, 149.6, 142.3, 142.0, 141.7, 141.6, 141.3, 141.1, 140.2, 140.0, 139.7, 138.9, 138.1, 137.1, 136.8, 136.5, 136.1, 135.8, 135.7, 135.5, 135.4, 135.3, 134.0, 133.4, 133.2, 131.1, 130.5, 130.4, 130.0, 129.8, 129.6, 129.3, 129.1, 128.2, 128.1, 128.0, 126.1, 125.1, 125.0, 124.1, 123.3, 119.5, 119.3, 114.7, 114.0, 113.6, 112.7, 135.8, 129.2, 128.6, 127.2, 70.7, 66.3, 65.8, 63.3, 61.7, 54.8, 52.3, 51.1, 50.1, 45.5, 43.2, 41.9, 40.7, 39.4, 39.2, 39.0, 36.5, 35.3, 35.0, 34.1, 33.7, 33.0, 28.5, 27.6, 22.8, 20.9, 14.5, 14.3. HRMS (NSI⁺): Calc. for C₆₃H₅₈DN₇O₆S₂H: 1075.4104, found 1075.4078 [M+H]⁺.

2.2 Synthesis of EZ-10

2.2.1 Synthetic Scheme

Scheme 2. Synthesis of *Z*-**10** and *E*-**10**. Reagents and conditions: (i) **S1**, HOBt·H₂O, EDCl·HCl, Et₃N, CH₂Cl₂, r.t., 17 h, 99%. (ii) NH₂NH₂·H₂O, MeOH, Δ, 17 h, 65%. (iii) *p*-anisaldehyde, AcOH, CH₂Cl₂, r.t., 18 h, 72%. (iv) AgNO₃, CHCl₃, MeOH, r.t., 40 mins, then *EZ*-**2** in CHCl₃, r.t., 3 h, 69%. (v) TFA, CHCl₃, r.t., 16 h, 70%. (vi) TFA, CHCl₃, r.t., 65 h, 38%.

2.2.2 Synthetic Procedures and Characterisation Data

Synthesis of S4

To a solution of **S1** (430 mg, 1.10 mmol) in CH_2Cl_2 (20 mL) was added triethylamine (170 µL, 1.22 mmol), HOBt·H₂O (166 mg, 1.23 mmol), EDCI·HCl (240 mg, 1.25 mmol) and pivaloylphenylalanine (299 mg, 1.20 mmol). The reaction mixture was stirred at room temperature for 17 hours. The reaction mixture was diluted with CH_2Cl_2 , washed with a saturated aqueous solution of NaHCO₃, a 1 M aqueous solution of HCl, and brine. The organic layer was

dried over MgSO₄, filtered and concentrated under reduced pressure. Flash column chromatography (SiO₂, MeOH/CH₂Cl₂, $0\% \rightarrow 5\%$) afforded **S4** as a colourless solid (679 mg, 1.09 mmol, 99%). **M.p.** 61 °C. ¹**H NMR** (600 MHz, DMSO-*d*₆) ~1:1 mixture of rotamers. δ 8.47–8.41 (m, 1H, H₄), 7.38 (d, *J* = 8.6 Hz, 1H, H₂), 7.36 – 7.19 (m, 19H, H₁₃+ H₁₄+ H₁₅+ H₉+ H₁₀), 7.17 – 7.14 (m, 1H, H₁₁), 4.59 – 4.54 (m, 1H, H₃), 4.16 – 4.12 (m, 1H, H₅), 4.05 – 3.99 (m, 2H, H₆), 3.04 – 2.98 (m, 1H, H₈), 2.89 – 2.84 (m, 1H, H_{8'}), 2.57 – 2.52 (m, 1H, H₁₂), 2.42 – 2.36 (m, 1H, H_{12'}), 1.12 – 1.09 (m, 3H, H₇), 0.97 – 0.96 (m, 9H, H₁). ¹³C NMR (151 MHz, DMSO-*d*₆) δ 177.1, 171.8, 171.6, 170.1, 144.1, 138.0, 129.4, 129.1, 128.2, 127.9, 127.2, 126.9, 126.2, 66.4, 66.3 61.0, 60.9, 53.8, 53.6, 51.8, 51.3, 38.0, 37.0, 33.3, 32.8, 27.2, 14.0. HRMS (NSI⁺): Calc. for C₃₈H₄₂N₂O₄SNa: 645.2757, found 645.2732 [M+Na]⁺.

Synthesis of S5

Hydrazine hydrate (15.0 µL, 0.309 mmol) was added to a solution of **S4** (156 mg, 0.250 mmol) in MeOH (1 mL) and the reaction mixture was stirred at reflux for 17 hours. The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography (SiO₂, MeOH/CH₂Cl₂, $0\% \rightarrow 4\%$) to afford **S5** as a colourless solid (98.5 mg, 0.162 mmol, 65%).¹H **NMR** (600 MHz, CDCl₃) ~1:2 *cis:trans* mixture of hydrazone amide rotamers.

Major rotamer reported. δ 7.79 (s, 2H, H₆), 7.38 (d, *J* = 8.3 Hz, 6H, H₁₃), 7.29 – 7.11 (m, 14H, H₁₄+ H₁₅+ H₉+ H₁₀+ H₁₁), 6.85 (d, *J* = 7.0 Hz, 1H, H₄), 6.31 (d, *J* = 7.1 Hz, 1H, H₂), 4.54 (q, *J* = 7.0 Hz, 1H, H₃), 4.02 (q, *J* = 7.3, 1H, H₅), 3.76 (s, 3H, H₇), 3.04 (dd, *J* = 14.0, 7.0 Hz, 1H, H₈), 2.95 (dd, *J* = 13.8, 7.2 Hz, 1H, H_{8'}), 2.59 (dd, *J* = 13.0, 7.6 Hz, 1H, H₁₂), 2.53 (dd, *J* = 13.3, 5.9 Hz, 1H, H_{12'}), 1.07 (s, 9H, H₁). ¹³C NMR (151 MHz, CDCl₃) δ 179.1, 171.2, 170.0, 144.3, 136.1, 129.5, 129.3, 128.6, 128.0, 127.0, 126.9, 67.2, 54.4, 51.2, 38.6, 37.9, 33.3, 27.3, 18.4. HRMS (NSI⁺): Calc. for C₃₆H₄₀N₄O₃SNa: 631.2713, found 631.2736 [M+Na]⁺.

Synthesis of 4

S5 (98.5 mg, 0.162 mmol), *p*-anisaldehyde (24 μ L, 0.200 mmol) and acetic acid (2 drops) were combined in CH₂Cl₂ (1.6 mL) and stirred at room temperature for 18 hours. The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography (SiO₂, MeOH/CH₂Cl₂, 0% \rightarrow 2.5%) to afford **4** as a colourless solid (85.1 mg, 0.117 mmol, 72%). Preparative thin layer

chromatography (SiO₂, EtOAc/CH₂Cl₂, 20% × 2) was used to separate the different diastereoisomers. **M.p.** 212 °C. ¹**H NMR** (600 MHz, CDCl₃) ~43:57 *cis:trans* hydrazone amide rotamers. *Trans*-4 δ 9.96 (s, 1H, H₆), 8.29 (s, 1H, H₇), 7.66 (d, *J* = 6.7 Hz, 2H, H₈), 7.41 – 7.17 (m, 19H, H₁₆+ H₁₇+ H₁₈+ H₁₂+ H₁₃), 7.13 – 7.10 (m, 1H, H₁₄), 6.90–6.87 (m, 2H, H₉), 5.99 (d, *J* = 4.9 Hz, 1H, H₂), 5.93 (d, *J* = 8.2 Hz, 1H, H₄), 4.37 – 4.33 (m, 1H, H₅), 4.06 – 4.02 (m, 1H, H₃), 3.82 (s, 3H, H₁₀), 3.10 – 3.07 (m, 1H, H₁₁), 2.98 – 2.90 (m, 3H, H₁₅+H₁₁), 2.63 – 2.60 (m, 1H, H₁₅), 1.08 (s, 9H, H₁). *Cis*-4 δ 9.42 (s, 1H, H₆), 7.64 (s, 1H, H₇), 7.46 (d, *J* = 8.8 Hz, 1H, H₈), 7.41 – 7.17 (m, 19H, H₁₆+ H₁₇+ H₁₈+ H₁₂+ H₁₃), 7.14 (d, *J* = 7.3 Hz, 1H, H₄), 7.13 – 7.10 (m, 1H, H₁₄), 6.90 – 6.87 (m, 2H, H₉), 6.29 (d, *J* = 8.1 Hz, 1H, H₂), 5.46 – 5.43 (m, 1H, H₅), 5.10 – 5.06 (m, 1H, H₃), 3.86 (s, 3H, H₁₀), 3.24 – 3.20 (m, 1H, H₁₁), 3.05 – 3.01 (m, 1H, H₁₁), 2.98 – 2.90 (m, 1H, H₁₅), 2.48 – 2.45 (m, 1H, H₁₅), 1.08 (s, 9H, H₁). ¹³**C NMR** (151 MHz, CDCl₃) δ 180.2, 178.4, 171.2, 165.8, 161.5, 149.3, 114.2, 67.4, 66.7, 56.1, 55.5, 53.4, 51.8, 49.7, 38.8, 36.8, 34.1, 33.4, 29.9, 27.5, 27.4. **HRMS** (NSI⁺): Calc. for C₄₄H₄₆N₄O₄SNa: 749.3132, found 749.3119 [M+Na]⁺.

Synthesis of EZ-7

AgNO₃ (4.3 mg, 25 μ mol) was added to a solution of 4 (15.4 mg, 21.2 μ mol) in a 2:1 CHCl₃:MeOH

mixture (600 μ L) and the mixture was stirred at room temperature for 40 minutes, a solution of *EZ*-**2** (31.3 mg, 31.8 μ mol) in CHCl₃ (200 μ L) was added and the reaction was stirred at room temperature for 3 hours. The reaction mixture was diluted with CHCl₃, washed with brine, dried over Na₂SO₄, filtered

and concentrated under reduced pressure. Preparative thin layer chromatography (SiO₂, EtOAc/CH₂Cl₂ (0.1% Et₃N), 30%) afforded *EZ*-**7** as a yellow solid (20.0 mg, 14.7 μ mol, 69%). ¹**H NMR** (600 MHz, CDCl₃) ~62:38 *E:Z* pyridyl-hydrazone isomers and mixture of acyl-hydrazone rotamers. δ 15.82 – 15.78 (m, 1H), 13.48 – 13.41 (m, 1H), 10.35 – 10.31 (m, 1H), 10.15 – 10.05 (m, 2H), 9.16 – 9.10 (m, 1H), 9.05 –

8.96 (m, 2H), 8.87 – 8.85 (m, 1H), 8.37 (d, J = 6.6 Hz, 1H), 8.31 – 8.27 (m, 1H), 8.23 – 8.07 (m, 5H), 8.05 – 8.00 (m, 1H), 7.99 – 7.85 (m, 5H), 7.84 – 7.74 (m, 3H), 7.69 – 7.53 (m, 14H), 7.51 – 7.29 (m, 11H), 7.22 – 7.12 (m, 5H), 6.98 – 6.81 (m, 5H), 6.41 – 6.33 (m, 1H), 6.21 – 6.12 (m, 1H), 5.74 (q, J = 6.0 Hz, 1H), 5.50 – 5.33 (m, 1H), 5.18 (quint., J = 6.6 Hz, 1H), 4.92 – 4.85 (m, 1H), 4.53 (q, J = 7.2 Hz, 1H), 4.43 (q, J = 7.2 Hz, 2H), 4.24 – 4.18 (m, 1H), 4.16 – 4.06 (m, 3H), 3.83 – 3.74 (m, 5H), 3.43 – 3.35 (m, 6H), 3.34 – 3.28 (m, 1H), 3.25 – 3.21 (m, 1H), 3.20 – 3.14 (m, 2H), 3.09 – 2.96 (m, 3H), 2.95 – 2.85 (m, 4H), 2.52 – 2.42 (m, 9H), 2.25 – 2.16 (m, 4H), 1.47 – 1.41 (m, 5H), 1.25 (s, 5H), 1.17 – 1.14 (m, 7H), 1.13 – 1.08 (m, 2H), 1.07 – 1.05 (m, 6H). **HRMS** (NSI⁺): Calc. for C₈₀H₇₅DN₈O₉S₂H: 1358.5312; found 1358.5290 [M+H]⁺.

Synthesis of E-10

EZ-**7** (10.0 mg, 7.35 μ mol) and trifluoroacetic acid (40 μ L, 0.515 mmol) were dissolved in CHCl₃ (7.4 mL) and stirred at room temperature for 16 h. Triethylamine (143 μ L, 1.03 mmol) was added and the mixture was washed with a

saturated aqueous solution of NaHCO₃. The aqueous layer was extracted with CH₂Cl₂ and the combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Preparative thin layer chromatography (SiO₂, EtOAc/CH₂Cl₂ (0.1% Et₃N), 30%) afforded E-10 as a yellow solid (6.3 mg, 5.2 μmol, 70%) and Z-10 as a yellow solid (2.0 mg, 1.6 μmol, 22%). ¹H NMR (600 MHz, Chloroform-d) ~87:13 cis:trans hydrazone amide rotamers, major rotamer reported δ 16.34 (s, 1H, H₂₂), 10.53 (s, br, 1H, H₃₈), 9.26 (d, J = 2.4 Hz, 1H, H₂₇), 9.11 (d, J = 2.1 Hz, 1H, H₁₀), 8.37 – 8.34 (m, 2H, H₂₅+ H₂), 8.28 - 8.21 (m, 2H, H₁₁+ H₁₈), 8.14 (dd, J = 8.6, 2.5 Hz, 1H, H₂₆), 8.10 - 8.04 (m, 2H, H₁₃+ H₁), 8.01 (d, J = 7.5 Hz, 1H, H₁₉), 7.93 (dt, J = 7.5 Hz, 1H, H₅), 7.76 – 7.65 (m, 7H, H₄+ H₆+ H₈+ H₁₅+ H₁₆+ H₂₀+ H₃₇), 7.64 – 7.62 (m, 1H, H₁₇), 7.60 – 7.57 (m, 2H, H₃+ H₂₁), 7.53 – 7.48 (m, 2H, H₁₂+ H₉), 7.46 (t, *J* = 7.8 Hz, 1H, H₃₀), 7.41 (s, 1H, H₂₈), 7.33 – 7.30 (m, 4H, H₃₁+ H₄₃+ H₄₅), 7.27 – 7.24 (m, 2H, H₄₄), 7.00 (dd, J = 8.2, 2.0 Hz, 1H, H₂₉), 6.30 (d, J = 8.3 Hz, 1H, H₄₀), 5.84 (dt, J = 7.2, 6.4 Hz, 1H, H₃₆), 5.25 (dt, J = 8.1, 6.8 Hz, 1H, H₃₉), 4.48 (q, J = 7.2 Hz, 2H, H₂₃), 4.27 – 4.11 (m, 2H, H₃₂), 3.44 (dd, J = 13.3, 5.7 Hz, 1H, H₃₅), 3.32 (dd, J = 14.0, 6.1 Hz, 1H, H₄₂), 3.17 (dd, J = 13.3, 5.7 Hz, 1H, H₃₅), 3.06 (dd, J = 14.0, 6.1 Hz, 1H, H₄₂'), 3.02 – 2.92 (m, 2H, H₃₄), 2.57 (s, 3H, H₇), 2.54 (s, 3H, H₁₄), 2.36 – 2.32 (m, 2H, H₃₃), 1.50 (t, *J* = 7.2 Hz, 3H, H₂₄), 1.05 (s, 9H, H₄₁). ¹³C NMR (151 MHz, CDCl₃) δ 178.7, 171.2, 171.1, 165.8, 159.6, 159.6, 151.1, 150.4, 145.9, 145.2, 141.9, 141.7, 141.6, 141.3, 140.6, 139.2, 138.9, 138.3, 137.4, 136.9, 136.6, 136.5, 136.4, 136.2, 135.1, 134.7, 134.5, 134.1, 133.1, 130.9, 130.7, 130.4, 129.9, 129.6, 129.5, 129.2, 129.1, 129.0, 128.8, 128.5, 128.3, 128.1, 127.7, 126.9, 125.4, 124.6, 123.8, 120.3, 119.9, 114.7, 112.3, 111.8, 66.3, 61.2, 53.4, 49.9, 40.1, 39.1, 38.6, 34.5, 31.9, 29.7, 29.6, 28.7, 27.4, 27.3, 27.3, 27.2, 22.7, 20.9, 14.5, 14.2. **HRMS** (ESI⁺): Calc. for C₇₂H₆₇DN₈O₇S₂H: 1222.4788; found 1222.4751 [M+H]⁺.

Synthesis of Z-10

EZ-**7** (10.0 mg, 7.35 μ mol) and trifluoroacetic acid (2 μ L, 22 μ mol) were dissolved in CHCl₃ (3.0 mL) and stirred at room temperature for 65 hours. Triethylamine (6 μ L, 44 μ mol) was added and the mixture was washed with a saturated aqueous solution of NaHCO₃. The aqueous layer was extracted with CH₂Cl₂ and the combined

organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Preparative thin layer chromatography (SiO₂, EtOAc/CH₂Cl₂ (0.1% Et₃N), 30%) afforded Z-10 as a yellow solid (3.4 mg, 2.8 μ mol, 38%). ¹H NMR (600 MHz, CDCl₃) ~22:78 *cis:trans* hydrazone amide rotamers. δ 13.65 (s, 1H, H_{22cis}), 13.44 (s, 1H, $H_{22trans}$), 10.59 (s, 1H, $H_{38trans}$), 10.16 (s, 1H, H_1), 9.01 (d, J = 2.1 Hz, 1H, H_{10cis}), 8.99 (d, J = 2.1 Hz, 1H, H_{10trans}), 8.93 (m, 2H, H₂₇+ H_{38cis}), 8.46 (t, J = 1.8 Hz, 1H, H₁₈), 8.22 (m, 1H, H₂), 8.18 (d, J = 2.2 Hz, 1H, H₁₁), 8.09 (dd, J = 8.2, 2.3 Hz, 1H, H₂₆), 7.99 - 7.92 (m, 6H, H₃+ H₅+ H₁₃+ H₁₉+ H₂₁+ H_{25}), 7.73 – 7.67 (m, 4H, H_6 + H_4 + H_{20} + H_8), 7.66 – 7.62 (m, 2H, H_{15} + H_{16}), 7.56 (d, J = 7.8 Hz, 1H, H_{37}), 7.53 – 7.47 (m, 3H, H₁₂+ H₁₇+ H₉), 7.43 – 7.39 (m, 2H, H₂₉+ H₃₀), 7.37 – 7.34 (m, 2H, H₄₃), 7.31 (d, J = 7.8 Hz, 1H, H₄₅), 7.28 - 7.23 (m, 3H, H₃₁+ H₄₄), 6.94 (dd, J = 9.8, 8.1 Hz, 1H, H₂₈), 6.36 (d, J = 8.7 Hz, 1H, H_{40trans}), 6.21 (d, J = 4.7 Hz, 1H, H_{36trans}), 6.19 (d, J = 8.7 Hz, 1H, H_{40cis}), 5.76 (m, 1H, H_{36cis}), 5.12 (m, 1H, H_{39cis}), 4.95 (dt, J = 9.4, 5.1 Hz, 1H, H_{39trans}), 4.62 – 4.49 (m, 2H, H₂₃), 4.23 – 4.14 (m, 2H, H₃₂), 3.56 (dd, J = 13.5, 5.2 Hz, 1H, H₄₂), 3.22 (dd, J = 13.1, 8.4 Hz, 1H, H₃₅), 3.15 (dd, J = 13.1, 7.7 Hz, 1H, H_{35'}), 2.97 -2.89 (m, 2H, H₃₄), 2.86 (dd, J = 13.5, 4.8 Hz, 1H, H₄₂), 2.50 (s, 3H, H₇), 2.47 (s, 3H, H₁₄), 2.31 – 2.15 (m, 2H, H₃₃), 1.50 (t, J = 7.2 Hz, 3H, H₂₄), 1.27 (s, 9H, H₄₁). ¹³C NMR (151 MHz, CDCl₃) δ 192.4, 180.7, 171.1, 166.1, 163.2, 159.4, 154.2, 149.4, 146.9, 141.9, 141.6, 141.4, 140.9, 140.1, 139.6, 138.5, 138.1, 137.0, 136.7, 135.9, 135.6, 135.4, 135.2, 134.8, 134.5, 133.1, 130.9, 130.1, 130.0, 129.8, 129.6, 129.5, 129.4, 129.1, 129.0, 128.9, 128.8, 128.6, 128.4, 128.1, 128.0, 127.9, 127.6, 125.1, 125.0, 124.7, 123.9, 123.2, 119.8, 119.3, 113.9, 113.8, 112.7, 66.8, 61.6, 61.6, 57.6, 50.6, 38.7, 38.6, 38.2, 36.7, 35.2, 34.4, 31.9, 29.7, 29.6, 29.4, 29.2, 27.4, 27.3, 22.7, 20.8, 14.3, 14.2, 14.1. HRMS (ESI⁺): Calc. for C₇₂H₆₇DN₈O₇S₂H: 1222.4788; found 1222.4742 [M+H]+.

2.3 Synthesis of EZ-11

2.3.1 Synthetic Scheme

Scheme 3. Synthesis of *Z*-**11** and *E*-**11**. Reagents and conditions: (i) HO-Ala-Piv, HOBt·H₂O, EDCl·HCl, Et₃N, CH₂Cl₂, r.t., 18 h, 97%. (ii) LiOH, H₂O, THF, r.t., 2 h, 95%. (iii) **S1**, HOBt·H₂O, EDCl·HCl, CH₂Cl₂, r.t., 22 h, 91%. (iv) NH₂NH₂·H₂O, MeOH, Δ, 22 h, 50%. (v) *p*-anisaldehyde, AcOH, CH₂Cl₂, 30 °C, 23 h, 99%. (vi) AgNO₃, CHCl₃, MeOH, r.t., 60 mins, then *EZ*-**2** in CHCl₃, r.t., 27 h, 63%. (vii) TFA, CHCl₃, r.t., 23 h, 22%. (viii) TFA, CHCl₃, r.t., 47 h, 43%.

2.3.2 Synthetic Procedures and Characterisation Data

Synthesis of S6

To a solution of L-phenylalanine methyl ester hydrochloride (654 mg, 3.03 mmol) in CH_2Cl_2 (60 mL) was added triethylamine (500 μ L, 3.60 mmol,) HOBt·H₂O (489 mg, 3.62 mmol), EDCI·HCl (700 mg, 3.65 mmol) and

Pivaloylalanine (624 mg, 3.60 mmol). The reaction mixture was stirred at room temperature for 18 hours. The reaction mixture was diluted with CH₂Cl₂, washed with a saturated aqueous solution of NaHCO₃ and brine. The organic layer was dried over MgSO₄, filtered and concentrated under reduced pressure. Flash column chromatography (SiO₂, MeOH/CH₂Cl₂, $3\% \rightarrow 6\%$) afforded **S6** as a colourless solid (980 mg, 2.93 mmol, 97%). **M.p.** 69 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.28 (t, *J* = 7.3 Hz, 2H, H₉), 7.23 (t, *J* = 7.3 Hz, 1H, H₁₀), 7.11 (d, *J* = 7.3 Hz, 2H, H₈), 6.74 (d, *J* = 7.7 Hz, 1H, H₂), 6.23 (d, *J* = 7.1 Hz, 1H, H₄), 4.81 (q, *J* = 6.7 Hz, 1H, H₅), 4.48 (quint, *J* = 7.1 Hz, 1H, H₃), 3.71 (s, 3H, H₆), 3.15 (dd, *J* = 13.9, 5.8 Hz, 1H, H₇), 3.07 (dd, *J* = 14.0, 6.6 Hz, 1H, H₇), 1.34 (d, *J* = 7.0 Hz, 3H, H₁₁), 1.17 (s, 9H, H₁). ¹³**C NMR** (151 MHz, CDCl₃) δ 178.3, 172.2, 171.7, 135.8, 129.2, 128.6, 127.2, 53.4, 52.4, 48.5, 38.6, 37.8, 27.4, 18.4. **HRMS** (NSI⁺): Calc. for C₁₈H₂₆N₂O₄Na: 357.1785, found 357.1767 [M+Na]⁺.

Synthesis of S7

S6 (670 mg, 2.00 mmol) was dissolved in a 3:1 THF:LiOH (1 M) mixture (16 mL) and stirred at room temperature for 2 h. The reaction mixture was acidified with 1 M HCl (4.0 mL) and diluted with EtOAc. The two layers were separated and the aqueous layer extracted with EtOAc. The combined organic layers

were washed with brine, dried with Na₂SO₄, filtered and concentrated under reduced pressure. Flash column chromatography (SiO₂, MeOH/CH₂Cl₂, $0\% \rightarrow 5\%$) afforded **S7** as a colourless solid (609 mg, 1.90 mmol, 95%). **M.p.** 98 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.25 (t, *J* = 7.3 Hz, 2H, H₉), 7.20 (t, *J* = 7.3 Hz, 1H, H₁₀), 7.13 (d, *J* = 7.3 Hz, 2H, H₈), 7.10 (d, *J* = 7.6 Hz, 1H, H₂), 6.48 (d, *J* = 7.6 Hz, 1H, H₄), 4.79 (q, *J* = 6.6 Hz, 1H, H₅), 4.56 (quint, *J* = 7.1 Hz, 1H, H₃), 3.17 (dd, *J* = 14.0, 5.6 Hz, 1H, H₇), 2.99 (dd, *J* = 14.0, 6.7 Hz, 1H, H₇), 1.29 (d, *J* = 6.9 Hz, 3H, H₁₁), 1.17 (s, 9H, H₁). ¹³**C NMR** (151 MHz, CDCl₃) δ 178.9, 173.6, 172.3, 136.0, 129.4, 128.5, 127.0, 53.5, 48.6, 38.7, 37.6, 27.3, 18.3. **HRMS** (NSI⁺): Calc. for C₁₇H₂₄N₂O₄H: 321.1809, found 321.1798 [M+H]⁺.

Synthesis of S8

To a solution of **S1** (392 mg, 1.00 mmol) in CH_2CI_2 (20 mL) was added HOBt·H₂O (162 mg, 1.20 mmol), EDCI·HCI (230 mg, 1.20 mmol) and **S7** (384 mg, 1.20 mmol). The reaction mixture was stirred at room temperature for 22 hours. The reaction mixture was diluted with CH_2CI_2 , washed with a saturated aqueous solution of NaHCO₃, a 1 M solution of HCl, and brine. The organic layer was dried over MgSO₄,

filtered and concentrated under reduced pressure. Flash column chromatography (SiO₂, MeOH/CH₂Cl₂, 9%) afforded **S8** as a pale yellow solid (632 mg, 0.911 mmol, 91%). **M.p.** 104 °C. ¹**H NMR** (600 MHz, CDCl₃) δ 7.33 (d, *J* = 7.3 Hz, 6H, H₁₁), 7.27 (t, *J* = 7.4 Hz, 6H, H₁₂), 7.22 – 7.20 (m, 7H, H₁₃+ H₁₅+ H₁₆), 7.14 – 7.11 (m, 1H, H₁₇), 6.74 (d, *J* = 5.6 Hz, 1H, H₄), 6.33 (d, *J* = 7.0 Hz, 1H, H₅), 6.17 (d, *J* = 6.7 Hz, 1H, H₂), 4.61 (q, *J* = 6.9 Hz, 1H, H₅), 4.44 – 4.39 (m, 2H, H₇+ H₃), 4.17 – 4.11 (m, 2H, H₈), 3.09 – 3.01 (m, 1H, H₅), 2.65 (dd, *J* = 12.6, 6.2 Hz, 1H, H₁₄), 2.53 (dd, *J* = 12.5, 5.0 Hz, 1H, H₁₄'), 1.31 (d, *J* = 7.0 Hz, 3H, H₁₈), 1.24 (t, *J* = 7.1 Hz, 3H, H₉), 1.14 (s, 9H, H₁). ¹³**C NMR** (151 MHz, CDCl₃) δ 178.5, 172.1, 170.2, 169.8, 144.2, 136.2, 129.5, 129.4, 128.7, 128.0, 127.0, 126.9, 66.9, 61.8, 54.1, 51.5, 48.8, 38.6, 38.0, 33.5, 27.4, 18.3, 14.1. **HRMS** (NSI⁺): Calc. for C₄₁H₄₇N₃O₅SH: 694.3309, found 694.3280 [M+H]⁺.

Synthesis of S9

Hydrazine hydrate (42 μ L, 0.864 mmol) was added to a solution of **S8** (173 mg, 0.249 mmol) in MeOH (3 mL) and the reaction mixture was stirred at reflux for 22 hours. The reaction mixture was allowed to cool to room temperature to precipitate the product which was isolated by filtration as a colourless solid (84.5 mg, 0.124 mmol, 50%). ¹H NMR (600 MHz, CDCl₃) δ 7.91 (s, br, 1H, H₈), 7.38 (d, *J* = 7.2 Hz, 6H, H₁₁), 7.28

(t, J = 7.6 Hz, 6H, H₁₂), 7.23 – 7.16 (m, 6H, H₁₃+ H₁₆+ H₁₇), 7.12 (d, J = 7.7 Hz, 2H, H₁₅), 6.75 (d, J = 6.7 Hz, 1H, H₄), 6.61 (d, J = 8.3 Hz, 1H, H₆), 6.06 (d, J = 5.3 Hz, 1H, H₂), 4.52 (q, J = 6.6 Hz, 1H, H₅), 4.29 – 4.22 (m, 2H, H₇+ H₃), 3.74 (s, br, 2H, H₉), 3.16 (dd, J = 14.1, 6.1 Hz, 1H, H₁₀), 2.92 (dd, J = 14.0, 6.6 Hz, 1H, H_{10'}), 2.73 (dd, J = 13.1, 8.7 Hz, 1H, H₁₄), 2.65 (dd, J = 13.1, 5.1 Hz, 1H, H₁₄), 1.30 (d, J = 7.0 Hz, 3H, H₁₈), 1.09 (s, 9H, H₁). ¹³**C NMR** (151 MHz, CDCl₃) δ 179.7, 172.9, 170.5, 169.9, 144.4, 135.6, 129.6, 129.3, 129.0, 128.0, 127.3, 126.9, 67.2, 54.4, 51.8, 50.0, 38.5, 37.3, 33.4, 27.3, 17.8. **HRMS** (NSI⁺): Calc. for C₃₉H₄₅N₅O₄SH: 680.3265, found 680.3246 [M+H]⁺.

Synthesis of 5

S9 (75.0 mg, 0.110 mmo), *p*-anisaldehyde (27 μ L, 0.220 mmol) and acetic acid (2 drops) were combined in CH₂Cl₂ (2 mL) and the reaction mixture was stirred at 30 °C for 23 hours. The reaction mixture was concentrated under reduced pressure and purified by flash column chromatography (SiO₂, MeOH/CH₂Cl₂, 0% \rightarrow 3%) to afford **5** as a colourless film (87.1

mg, 0.109 mmol, 99%). ¹**H NMR** (600 MHz, CDCl₃) ~32:68 *cis:trans* hydrazone amide rotamers. *Trans*-**5** δ 10.13 (s, 1H, H₈), 8.18 (s, 1H, H₉), 7.66 (d, *J* = 8.8 Hz, 2H, H₁₀), 7.38 (d, *J* = 7.6 Hz, 6H, H₁₄), 7.28 – 7.07 (m, 14H, H₁₅+ H₁₆+ H₁₈+ H₁₉+ H₂₀), 7.01 (d, *J* = 7.9 Hz, 1H, H₄), 6.88 (d, *J* = 8.8 Hz, 2H, H₁₁), 6.80 – 6.77 (m, 1H, H₆), 6.20 (s, br, 1H, H₂), 4.59 – 4.56 (m, 2H, H₁₇), 4.50 – 4.45 (m, 1H, H₇), 4.35 (s, br, 1H, H₃), 3.82 (s, 3H, H₁₂), 3.07 – 2.95 (m, 1H, H₅), 2.79 – 2.73 (m, 2H, H₁₃), 1.28 (d, *J* = 7.1 Hz, 3H, H₂₁), 1.11 (s, 9H, H₁). *Cis*-**5** δ 9.27 (s, 1H, H₈), 7.62 (s, 1H, H₉), 7.46 (d, *J* = 8.8 Hz, 2H, H₁₀), 7.31 (d, *J* = 7.3 Hz, 6H, H₁₄), 7.28 – 7.07 (m, 14H, H₁₅+ H₁₆+ H₁₈+ H₁₉+ H₂₀), 7.01 (d, *J* = 7.9 Hz, 1H, H₄), 6.90 (d, *J* = 8.7 Hz, 2H, H₁₁), 6.80 – 6.77 (m, 1H, H₆), 6.27 (d, *J* = 7.3 Hz, 1H, H₂), 5.37 – 5.34 (m, 1H, H₇), 4.73 – 4.69 (m, 2H, H₁₇), 4.50 – 4.45 (m, 1H, H₃), 3.87 (s, 3H, H₁₂), 3.14 – 3.11 (m, 1H, H₅), 3.07 – 2.95 (m, 1H, H₁₃), 2.61 – 2.58 (m, 1H, H₁₃), 1.31 (d, *J* = 7.0 Hz, 3H, H₂₁), 1.15 (s, 9H, H₁). ¹³**C NMR** (151 MHz, CDCl₃) δ 179.6, 178.4, 173.1, 172.5, 170.8, 170.4, 166.0, 161.6, 149.1, 145.1, 144.6, 144.5, 136.5, 135.8, 129.7, 129.6, 129.5, 129.2, 129.1, 128.2, 128.0, 127.4, 127.1, 127.0, 126.8, 126.7, 126.1, 114.4, 114.2, 67.3, 66.8, 55.6, 55.5, 54.8, 52.2, 50.0, 48.8, 38.7, 38.5, 36.8, 33.9, 33.7, 27.6, 27.5, 18.7, 18.2. **HRMS** (NSI⁺): Calc. for C₄₇H₅₁N₅O₅SNa: 820.3503, found 820.3476 [M+Na]⁺.

Synthesis of EZ-8

AgNO₃ (6.1 mg, 36.0 μ mol) was added to a solution of **5** (23.9 mg, 30.0 μ mol) in 3:1 CHCl₃:MeOH mixture (800 μ L) and the mixture was stirred at room temperature for 1 hour. A solution of *EZ*-**2** (44.3 mg, 45.0 μ mol) in CHCl₃ (450 μ L) was added and the reaction was stirred at room temperature for 27 hours. The reaction mixture was diluted with CHCl₃, washed with brine, dried over Na₂SO₄, filtered and concentrated

under reduced pressure. Preparative thin layer chromatography (SiO₂, EtOAc/CH₂Cl₂ (0.1% Et₃N), 40%) afforded *EZ*-**8** as a yellow solid (27.0 mg, 18.9 μ mol, 63%). ¹H NMR (600 MHz, CDCl₃) ~70:30 *E:Z* pyridyl-hydrazone isomers and mixture of acyl-hydrazone rotamers. δ 16.23 (s, 1H), 13.47 (s, br, 1H), 10.15

(s, 1H), 10.03 (s, br, 1H), 9.18 – 9.14 (m, 1H), 9.05 – 8.97 (m, 2H), 8.34 – 8.28 (m, 2H), 8.24 – 8.15 (m, 4H), 8.12 – 8.10 (m, 1H), 8.08 – 8.03 (dt, *J* = 8.7, 1.8 Hz, 1H), 8.00 – 7.90 (m, 5H), 7.84 – 7.78 (m, 2H), 7.74 – 7.56 (m, 16H), 7.55 – 7.40 (m, 12H), 7.34 – 7.30 (m, 4H), 7.27 – 7.18 (m, 9H), 7.02 – 6.89 (m, 6H), 6.36 (s, br, 1H), 5.93 (dd, *J* = 15.4, 2.8 Hz, 1H), 5.08 – 5.03 (m, 1H), 5.06 (t, *J* = 9.9 Hz, 1H), 4.62 (q, *J* = 6.2 Hz, 1H), 4.59 – 4.54 (m, 1H), 4.46 (q, *J* = 6.8 Hz, 2H), 4.23 – 4.02 (m, 6H), 3.84 (d, *J* = 2.5 Hz, 4H), 3.54 (dt, *J* = 13.8, 3.5 Hz, 1H), 3.43 – 3.38 (m, 13H), 3.20 – 3.06 (m, 4H), 3.01 – 2.97 (m, 3H), 2.87 (s, 5H), 2.54 – 2.46 (m, 10H), 2.40 (t, *J* = 8.1 Hz, 3H), 2.30 – 2.23 (m, 3H), 2.04 (quint, *J* = 8.1 Hz, 4H), 1.48 (t, *J* = 6.9 Hz, 3H), 1.04 – 1.02 (m, 11H).

Synthesis of E-11

EZ-**8** (8.0 mg, 5.6 μ mol) and trifluoroacetic acid (30 μ L, 0.392 mmol) were dissolved in CHCl₃ (5.6 mL) and stirred at room temperature for 23 hours. Triethylamine (109 μ L, 0.784 mmol) was added and the mixture

was washed with a saturated aqueous solution of NaHCO₃. The aqueous layer was extracted with CH₂Cl₂ and the combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Preparative thin layer chromatography (SiO₂, EtOAc/CH₂Cl₂ (0.2% Et₃N), 50%) afforded E-11 as a yellow solid (1.6 mg, 1.2 µmol, 22%) and Z-11 as a yellow solid (1.2 mg, 0.93 µmol, 17%). ¹H NMR (600 MHz, CDCl₃) ~88:12 *cis:trans* hydrazone amide rotamers, major rotamer reported. δ 16.28 (s, 1H, H₂₂), 9.93 (s, 1H, H₃₈), 9.20 (s, 1H, H₂₇), 9.05 (s, 1H, H₁₀), 8.31 (d, J = 8.4 Hz, 1H, H₂₅), 8.25 (s, 1H, H₁₁), 8.22 (s, 2H, H₂+ H₁₈), 8.09 (d, J = 9.6 Hz, 1H, H₂₆), 8.03 (d, J = 1.3 Hz, 1H, H₁₃), 7.99 (s, 1H, H_1), 7.97 (d, J = 7.8 Hz, 1H, H_{19}), 7.91 (d, J = 7.2 Hz, 1H, H_5), 7.72 (d, J = 7.2 Hz, 1H, H_3), 7.70 – 7.66 (m, 3H, H₆+ H₈+ H₁₅), 7.63 – 7.62 (m, 1H, H₂₀), 7.59 – 7.53 (m, 4H, H₄+ H₉+ H₁₆+ H₁₇), 7.49 (d, J = 1.3 Hz, 1H, H_{12}), 7.46 – 7.37 (m, 4H, H_{21} + H_{30} + H_{46}), 7.28 – 7.26 (m, 5H, H_{28} + H_{31} + H_{45} + H_{47}), 7.25 – 7.24 (m, 1H, H_{37}), 7.22 – 7.21 (m, 1H, H₄₀), 6.92 (d, J = 7.2 Hz, 1H, H₂₉), 6.13 (d, J = 7.8 Hz, 1H, H₄₂), 5.73 (q, J = 6.6 Hz, 1H, H₃₆), 4.84 (q, J = 7.2 Hz, 1H, H₃₉), 4.49 (quint., J = 6.6 Hz, 1H, H₄₁), 4.44 (q, J = 6.6 Hz, 1H, H₂₃), 4.18 -4.12 (m, 2H, H₃₂), 3.56 (dd, J = 13.2, 4.2 Hz, 1H, H₃₅), 3.25 – 3.17 (m, 2H, H₃₅'+ H₄₄), 3.16 – 3.06 (m, 1H, H₄₄'), 3.10 – 2.85 (m, 2H, H₃₄), 2.52 (s, 3H, H₇), 2.51 (s, 3H, H₁₄), 2.33 – 2.21 (m, 2H, H₃₃), 1.46 (t, *J* = 7.2 Hz, 3H, H₂₄), 1.32 (d, J = 7.2 Hz, 3H, H₄₈), 1.14 (s, 9H, H₄₃). ¹³C NMR (151 MHz, CDCl₃) δ 178.6, 172.3, 170.9, 170.5, 165.8, 159.5, 151.1, 150.3, 149.9, 148.4, 145.8, 145.2, 142.9, 141.9, 141.8, 141.7, 141.3, 140.6, 139.2, 138.9, 138.3, 137.5, 136.9, 136.5, 136.5, 136.4, 136.2, 135.1, 134.7, 134.6, 134.5, 133.7, 133.1, 130.9, 130.7, 130.4, 129.8, 129.6, 129.4, 129.3, 129.2, 128.8, 128.6, 128.3, 128.1, 127.7, 126.9, 126.1, 125.3, 125.2, 124.5, 123.7, 122.6, 120.4, 119.6, 115.1, 111.9, 66.2, 61.2, 54.7, 51.0, 48.7, 45.7, 38.6, 38.3, 34.6, 31.9, 31.6, 30.3, 30.1, 29.7, 29.4, 28.6, 27.4, 27.2, 22.7, 20.9, 18.1, 14.51. **HRMS** (ESI⁺): Calc. for $C_{75}H_{72}DN_9O_8S_2Na$: 1315.4978, found 1315.3048 [M+Na]⁺. **HRMS** (ESI⁻): Calc. for $C_{75}H_{71}DN_9O_8S_2$: 1291.5014, found 1291.3281 [M-H]⁻.

Synthesis of Z-11

EZ-**8** (8.0 mg, 5.6 μ mol) and trifluoroacetic acid (1 μ L, 17 μ mol) were dissolved in CHCl₃ (2.2 mL) and stirred at room temperature for 47 hours. Triethylamine (5 μ L, 34 μ mol) was added and the mixture was washed with a saturated aqueous solution of NaHCO₃. The aqueous layer was extracted

with CH₂Cl₂ and the combined organic layers were dried over Na₂SO₄, filtered and concentrated under reduced pressure. Preparative thin layer chromatography (SiO₂, EtOAc/CH₂Cl₂ (0.2% Et₃N), 50%) afforded Z-11 as a yellow solid (3.1 mg, 2.4 µmol, 43%). ¹H NMR (600 MHz, CDCl₃) ~10:90 cis:trans hydrazone amide rotamers, major rotamer reported δ 13.28 (s, 1H, H₂₂), 10.26 (s, 1H, H₃₈), 10.13 (s, 1H, H₁), 8.98 (d, J = 1.9 Hz, 1H, H₁₀), 8.94 (d, J = 1.5 Hz, 1H, H₂₇), 8.47 (t, J= 1.8 Hz, 1H, H₁₈), 8.22 (t, J = 1.8 Hz, 1H, H₂), 8.19 (d, J = 1.9 Hz, 1H, H₁₁), 8.17 (dd, J = 8.2, 1.5 Hz, H₂₆), 8.01 (d, J = 8.2 Hz, 1H, H₂₅), 7.99 - 7.97 (m, 2H, H₃+ H₅), 7.90 (m, 1H, H₁₉), 7.71 - 7.66 (m, 3H, H₄+ H₁₃+ H₂₀), 7.64 (dd, J = 8.0, 1.6 Hz, 1H, H₂₁), 7.60 (s, 1H, H₆), 7.55 – 7.45 (m, 5H, H₈+ H₉+ H₁₅+ H₂₉+ H₃₁), 7.43 – 7.37 (m, 4H, H₁₂+ H₁₆+ $H_{17}+H_{47}$, 7.34 – 7.31 (m, 3H, $H_{46}+H_{30}$), 7.23 (d, J = 7.2 Hz, 2H, H_{45}), 6.92 (dd, J = 7.2, 1.8 Hz, 1H, H_{28}), 6.32 (s, 1H, H₄₀), 5.93 (s, 1H, H₄₂), 5.14 (ddd, J = 10.8, 8.4, 2.4 Hz, 1H, H₃₆), 4.64 (q, J = 6.0 Hz, 1H, H₃₉), $4.57 (q, J = 7.2 Hz, 2H, H_{23}), 4.19 - 4.08 (m, 2H, H_{32}), 4.07 - 4.00 (m, 1H, H_{41}), 3.67 - 3.59 (m, 1H, H_{35}),$ 3.48 (dd, J = 14.4, 4.8 Hz, 1H, H₄₄), 3.15 (dd, J = 13.2, 10.8 Hz, 1H, H_{35'}), 3.08 - 3.01 (m, 2H, H₃₄+ H_{44'}), 2.95 (ddd, J = 13.2, 10.2, 5.4 Hz, 1H, H_{34'}), 2.48 (s, 3H, H₇), 2.47 (s, 3H, H₁₄), 2.37 - 2.29 (m, 1H, H₃₃), 2.26 – 2.19 (m, 1H, H₃₃'), 1.50 – 1.43 (m, 6H, H₂₄+ H₄₈), 0.99 (s, 9H, H₄₃). ¹³C NMR (151 MHz, CDCl₃) δ 192.5, 181.4, 174.2, 171.2, 167.4, 163.3, 159.6, 149.5, 142.1, 141.8, 141.4, 140.8, 140.5, 139.7, 138.2, 137.1, 136.8, 135.9, 135.7, 135.5, 135.3, 135.2, 134.7, 133.2, 131.1, 130.3, 130.2, 130.2, 129.7, 129.6, 129.5, 129.0, 128.9, 128.8, 128.6, 128.3, 128.1, 127.9, 125.4, 125.1, 119.5, 114.4, 70.7, 66.5, 63.3, 61.8, 54.8, 52.2, 51.9, 38.9, 38.7, 36.1, 34.8, 33.6, 32.9, 32.1, 29.9, 29.5, 27.3, 25.9, 24.9, 22.8, 21.1, 20.9, 17.3, 14.4. HRMS (ESI⁺): Calc. for C₇₅H₇₂DN₉O₈S₂Na: 1315.4978, found 1315.3048 [M+Na]⁺. HRMS (ESI⁻): Calc. for C₇₅H₇₁DN₉O₈S₂: 1291.5014, found 1291.3281 [M-H]⁻.

3. Effect of Acid Stoichiometry on E-1/Z-1 Interconversion

3.1 Titration Procedure

To a solution of *E*-**1**/*Z*-**1** (1.22 mg, 1.25 μ mol) in C₂D₂Cl₄ (500 μ L, 2.5 mM) in a standard NMR tube was added trifluoroacetic acid and the sample was left to equilibrate at r.t. Triethylamine was then added and the reaction mixture was partitioned between CH₂Cl₂ and water. The layers were separated and washed with a saturated aqueous solution of ammonium chloride, water, a saturated aqueous solution of sodium bicarbonate, and brine. The organic layer was dried with Na₂SO₄, filtered and concentrated under reduced pressure. The residue was analysed by ¹H NMR in C₂D₂Cl₄ and compared to authentic samples of *E*-**1** and *Z*-**1** to determine the conversion of the operation (based on the integration of the hydrazone ester peaks).

3.2 Results

Figure 1. a. Graph showing the effect of acid stoichiometry on the *E*-**1**/*Z*-**1** interconversion (margin of error ±2%). b. *E*-**1** titration results. c. *Z*-**1** titration results.

4. Effect of Solvent on E-1/Z-1 Interconversion

4.1 Titration Procedure

To a solution of Z-1 (1.22 mg, 1.25 μ mol) in the adequate solvent (500 μ L, 2.5 mM) in a standard NMR tube was added trifluoroacetic acid (8 μ L, 80 eq.) and the sample was left to equilibrate at r.t. Triethylamine (16 μ L, 100 eq.) was then added and the reaction mixture was partitioned between CH₂Cl₂ and water. The layers were separated and washed with a saturated aqueous solution of ammonium chloride, water, a saturated aqueous solution of sodium bicarbonate, and brine. The

organic layer was dried with Na₂SO₄, filtered and concentrated under reduced pressure. The residue was analysed by ¹H NMR in C₂D₂Cl₄ and compared to authentic samples of *E*-**1** and *Z*-**1** to determine the conversion of the operation (based on the integration of the hydrazone ester peaks).

4.2 Characterisation of Z-1-H₃³⁺-Left and Z-1-H₃³⁺-Right

4.2.1 Z-1-H₃³⁺-Left in C₂D₂Cl₄:CD₃CN (2:1)

Figure 2. Partial ¹H NMR (600 MHz, 295 K, $C_2D_2Cl_4:CD_3CN$ (2:1)) spectra of the transformation and intermediates observed upon the addition of 80 equivalents of TFA to *Z*-**1** in $C_2D_2Cl_4:CD_3CN$ (as an example of polar solvent mixture). a) *Z*-**1** (mixture of acyl hydrazone rotamers); b) *Z*-**1**-H₃³⁺-left 10 mins after the addition; c) *Z*-**1**-H₃³⁺-left 12 h after the addition; d) sample after neutralisation and work-up (*Z*-**1**). Signals from traces of residual solvents are shown in grey. Dashed lines connect resonances indicative of the configuration of the hydrazone switch (H₂, H₃ and H₄) and the position of the cargo (H₁ and H₅).

<u>2D ROESY spectrum of Z-1-H₃³⁺-left in C₂D₂Cl₄:CD₃CN (2:1)</u>

Figure 3. 2D ROESY NMR (600 MHz, 295 K, C₂D₂Cl₄:CD₃CN (2:1)) spectrum of *Z*-1-H₃³⁺-left.

4.2.1 Z-1-H₃³⁺-Right in C₂D₂Cl₄:C₆D₅CD₃ (1:2)

Figure 4. Partial ¹H NMR (600 MHz, 295 K, $C_2D_2Cl_4:C_6D_5CD_3$ (1:2)) spectra of the transformation and intermediates observed upon the addition of 80 equivalents of TFA to *Z*-**1** in $C_2D_2Cl_4:C_6D_5CD_3$ (as an example of unpolar solvent mixture). a) *Z*-**1** (mixture of acyl hydrazone rotamers); b) *Z*-**1**-H₃³⁺-left: *Z*-**1**-H₃³⁺-right (81:19) 12 mins after the addition; c) *Z*-**1**-H₃³⁺-left: *Z*-**1**-H₃³⁺-right (45:55) 1 h after the addition; d) *Z*-**1**-H₃³⁺-left: *Z*-**1**-H₃³⁺-right (17:83) 5 h after the addition; e) sample after neutralisation and work-up (*E*-**1**:*Z*-**1** 83:17). Signals from traces of residual solvents are shown in grey. Dashed lines connect resonances indicative of the configuration of the hydrazone switch (H₂, H₃ and H₄) and the position of the cargo (H₁ and H₅).

<u>2D ROESY spectrum of Z-1-H₃³⁺-right in C₂D₂Cl₄:C₆D₅CD₃ (2:1)</u>

Figure 5. 2D ROESY NMR (600 MHz, 295 K, C₂D₂Cl₄:C₆D₅CD₃ (1:2)) spectrum of Z-1-H₃³⁺-right

5. Optimised Backward Transport (E-1 to Z-1)

5.1 General Procedure

To a solution of *E*-**1** (1.22 mg, 1.25 µmol) in the C₂D₂Cl₄:CD₃CN (2:1, 500 µL, 2.5 mM) in a standard NMR tube was added trifluoroacetic acid (8 µL, 80 eq.) and the sample was left to equilibrate at r.t. Triethylamine (16 µL, 100 eq.) was then added and the reaction mixture was partitioned between CH₂Cl₂ and water. The layers were separated; the organic layer was washed with saturated aqueous ammonium chloride solution, water, saturated aqueous sodium bicarbonate solution, and brine. The organic layer was dried with Na₂SO₄, filtered and concentrated under reduced pressure. The residue was analysed by ¹H NMR in C₂D₂Cl₄ and compared to authentic samples of *E*-**1** and *Z*-**1** to determine the conversion of the operation (based on the integration of the hydrazone ester peaks).

5.2 ¹H NMR Spectra

Figure 6. Partial ¹H NMR (600 MHz, 295 K, C₂D₂Cl₄:CD₃CN (2:1)) spectra of the conversion of *E*-1 to *Z*-1 with 80 equivalents of TFA. a) *E*-1; b) *Z*-1-H₃³⁺-right:*E*-1 (82:18) 10 mins after the addition; c) *Z*-1-H₃³⁺-left: *Z*-1-H₃³⁺-right (18:82) 1 h after the addition; d) *Z*-1-H₃³⁺-left: *Z*-1-H₃³⁺-left: *Z*-1-H₃³⁺-right (72:28) 5 h after the addition; e) *Z*-1-H₃³⁺-left: *Z*-1-H₃³⁺-right (>98:2) 8 h after the addition; f) sample after neutralisation and work-up (*E*-1:*Z*-1 >2:98). Signals from traces of residual solvents are shown in grey. Dashed lines connect resonances indicative of the configuration of the hydrazone switch (H₂, H₃ and H₄) and the position of the cargo (H₁ and H₅).

6. Site-to-Site Transport of Peptide Derivatives 9, 10 and 11

6.1 Forward Transport

6.1.1 General Procedure

To a solution of Z-9-11 (1.125 μ mol) in C₂D₂Cl₄/C₆D₅CD₃ (1:2, 450 μ L, 2.5 mM) in a standard NMR tube was added trifluoroacetic acid (7 μ L, 90 μ mol, 80 eq.) and the sample (final volume: 450 μ L, 2.5 mM) was left to equilibrate at r.t.. Triethylamine (16 μ L, 113 μ mol, 100 eq.) was then added and the reaction mixture was partitioned between CH₂Cl₂ and water. The layers were separated; the organic layer was washed with saturated aqueous ammonium chloride solution, water, saturated aqueous sodium bicarbonate solution, and brine. The organic layer was dried with Na₂SO₄, filtered and concentrated under reduced pressure. The residue was analysed by ¹H NMR in CDCl₃ and compared to authentic samples of *Z*-9-11 and *E*-9-11 to determine the conversion of the operation.

Figure 7. Partial ¹H NMR (600 MHz, 295 K, CDCl₃) spectra of the conversion of *Z*-**9** to *E*-**9** using the general procedure described above (**6.1.1**). a) *Z*-**9**; b) sample after neutralisation and work-up (*E*-**9**:*Z*-**9** 66:34). Signals from traces of residual solvents and organic salts are shown in grey. Dashed lines connect resonances belonging to the same proton.

Figure 8. Partial ¹H NMR (600 MHz, 295 K, CDCl₃) spectra of the conversion of *Z*-**10** to *E*-**10** using the general procedure described above (**6.1.1**). a) *Z*-**10**; b) sample after neutralisation and work-up (*E*-**10**:*Z*-**10** 65:35). Signals from traces of residual solvents and organic salts are shown in grey. Dashed lines connect resonances belonging to the same proton.

Figure 9. Partial ¹H NMR (600 MHz, 295 K, CDCl₃) spectra of the conversion of *Z*-**11** to *E*-**11** using the general procedure described above (**6.1.1**). a) *Z*-**11**; b) sample after neutralisation and work-up (*E*-**11**:*Z*-**11** 65:35). Signals from traces of residual solvents and organic salts are shown in grey. Dashed lines connect resonances belonging to the same proton.

6.2 Backward Transport

6.2.1 General Procedure

To a solution of *E*-**9-11** (1.125 μ mol) in C₂D₂Cl₄:CD₃CN (2:1, 450 μ L, 2.5 mM) in a standard NMR tube was added trifluoroacetic acid (7 μ L, 90 μ mol, 80 eq.) and the sample was left to equilibrate at r.t. Triethylamine (16 μ L, 113 μ mol, 100 eq.) was then added and the reaction mixture was partitioned between CH₂Cl₂ and water. The layers were separated; the organic layer was washed with saturated aqueous ammonium chloride solution, water, saturated aqueous sodium bicarbonate solution, and brine. The organic layer was dried with Na₂SO₄, filtered and concentrated under reduced pressure. The residue was analysed by ¹H NMR in CDCl₃ and compared to authentic samples of *Z*-**9-11** and *E*-**9-11** to determine the conversion of the operation.

6.2.2 ¹H NMR Spectra

Figure 10. Partial ¹H NMR (600 MHz, 295 K, CDCl₃) spectra of the conversion of *E*-**9** to *Z*-**9** using the general procedure described above (**6.2.1**). a) *E*-**9**; b) sample after neutralisation and work-up (*E*-**9**:*Z*-**9** 2:98). Signals from traces of residual solvents and organic salts are shown in grey. Dashed lines connect resonances belonging to the same proton.

Figure 11. Partial ¹H NMR (600 MHz, 295 K, CDCl₃) spectra of the conversion of *E*-**10** to *Z*-**10** using the general procedure described above (**6.2.1**). a) *E*-**10**; b) sample after neutralisation and work-up (*E*-**10**:*Z*-**10** >2:98). Signals from traces of residual solvents and organic salts are shown in grey. Dashed lines connect resonances belonging to the same proton.

Figure 12. Partial ¹H NMR (600 MHz, 295 K, CDCl₃) spectra of the conversion of *E*-**11** to *Z*-**11** using the general procedure described above (**6.2.1**). a) *E*-**11**; b) sample after neutralisation and work-up (*E*-**11**:*Z*-**11** >2:98). Signals from traces of residual solvents and organic salts are shown in grey. Dashed lines connect resonances belonging to the same proton.

7. Spectroscopic Data

Spectrum 1. ¹H NMR (600 MHz, DMSO- d_6) of **S1**

Spectrum 2. ¹³C NMR (151 MHz, DMSO-*d*₆) of **S1**

Spectrum 4. $^{\rm 13}{\rm C}$ NMR (151 MHz, CDCl₃) of S2

Spectrum 6. $^{\rm 13}C$ NMR (151 MHz, CDCl_3) of S3

Spectrum 8. $^{\rm 13}{\rm C}$ NMR (151 MHz, CDCl₃) of 3

Spectrum 16. ^1H NMR (600 MHz, CDCl_3) of S5

Spectrum 17. $^{\rm 13}{\rm C}$ NMR (151 MHz, CDCl₃) of S5

Spectrum 19. $^{\rm 13}{\rm C}$ NMR (151 MHz, CDCl_3) of 4

Spectrum 20. ^1H NMR (600 MHz, CDCl₃) of <code>EZ-7</code>

Spectrum 26. ¹³C NMR (151 MHz, CDCl₃) of S6

 110 100 δ (ppm)

Ó

Spectrum 27. ¹H NMR (600 MHz, $CDCl_3$) of S7

Spectrum 29. ¹H NMR (600 MHz, CDCl₃) of S8

Spectrum 30. $^{\rm 13}C$ NMR (151 MHz, CDCl_3) of S8

Spectrum 32. $^{\rm 13}{\rm C}$ NMR (151 MHz, CDCl₃) of S9

Spectrum 34. $^{\rm 13}{\rm C}$ NMR (151 MHz, CDCl₃) of 5

Spectrum 35. ¹H NMR (600 MHz, CDCl₃) of EZ-8

8. References

[1] S. Kassem, A. T. L. Lee, A. Markevicius, D. A. Leigh, J. Solá, Nat. Chem. 2016, 8, 138.

[2] M. Kalek, G. C. Fu, J. Am. Chem. Soc. 2015, 137, 9438.

[3] H. E. Gottlieb, V. Kotlyar, A. Nudelman, J. Org. Chem. 1997, 62, 7512.

[4] S. Budavari, M. J. O'Neil, A. Smith, P. E. Heckelman, *The Merck Index, an Encyclopedia of Chemicals, Drugs, and Biologicals — Eleventh Edition*; Merck Co., Inc.: Rahway, NJ, **1989**.