Supporting Information

Switching between mono- and doubly-reduced odd alternant hydrocarbon: Designing redox catalyst

Jasimuddin Ahmed,^{*a*} Paramita Datta,^{*a*} Arpan Das,^{*a*} Stephy Jomy^{*a,b*} and Swadhin K. Mandal^{*a**}

^{*a*}Department of Chemical Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur-741246, India.

^bDepartment of Chemistry, Indian Institute of Technology Madras, Chennai-600036, India.

*Correspondence to: swadhin.mandal@iiserkol.ac.in

1. Experimental section
2. Preparation and characterization of phenalenyl ligand and
the K-phenalenyl complexesS5
I. Synthesis and characterization PLY(O,O)-K (1a and 1a(CE))S5
II. Synthesis and characterization PLY(N,O)-K (1b and 1b(CE))S6
III. Isolation, characterization and crystallization of
PLY(O,O)-K monoreduced complex (2)
IV. Synthesis and characterization of doubly-reduced PLY(O,O)-K complex (3)S7
V. Trapping and characterization of doubly-reduced PLY(O,O)-KS8
VI. Trapping and characterization of deuterium leveled doubly-reduced PLY(O,O)-KS9
3. Cyclic voltametric experiment of potassium phenalenyl complex
4. ¹ H, ¹³ C NMR spectra and mass spectra of various phenalenyl species
and K-complexes
5. Computational Details
6. Theoretically predicted ¹ H NMR spectra
7. Electrostatic potential maps of PLY(N,O)-K
8. Anisotropic Induced Current Density (AICD) plots
9. Model example for Nuclear Independent Chemical Shift (NICS) calculation
10. Theoretical calculations for all reduction processes
11. Optimized geometries of three different redox states of PLY(O,O)-K complexS35
12. DFT calculation for the quenching experiment by HCl treatment
of doubly-reduced PLY-K complex
13. Frontier molecular orbital diagrams of three different redox states
of K-phenalenyl complex
14. Crystallographic and data collection parameters for 1a(CE), 1a(CE), 2S39
15. Reaction Optimization for direct C-H arylation of N-methyl pyrrole
with 4-chlorobenzonitrile coupling partner
16. C-H arylation of arenes/heteroarenes with 4-chlorobenzonitrile
in absence of catalyst

17. General procedure for C-H arylation of arenes/heteroarenes with aryl halides	S48
18. General procedure for intramolecular coupling reactions	S48
19. Radical scavenging experiment in presence of TEMPO	S49
20. Radical trapping experiment	S50
21. The analytical and spectral characterization data of the catalytic products	S51
22. ¹ H and ¹³ C NMR Spectra of the catalytic products	S66
23. Mass spectra	S101
24. All computational details and theoretically obtained parameter	S104
25. Coordinates of all DFT optimized structures	S117
26. Reference	S168

1. Experimental Section

Materials and Methods:

All solvents except THF and toluene used in the experiments were distilled from calcium hydride under inert condition prior to use. Toluene and THF were distilled using Na/benzophenone. All chemicals were purchased and used as received. The ¹H, ¹³C NMR spectra were recorded on 400 and 500 MHz spectrometers in CDCl₃ with residual undeuterated solvent (CDCl₃, 7.26/77.0) as an internal standard. Chemical shifts (δ) are given in ppm, and J values are given in Hz. All chemical shifts were reported in ppm using tetramethylsilane as a reference. Chemical shifts (δ) downfield from the reference standard were assigned positive values. Column chromatography including thin-layer chromatography (TLC) was performed on silica gel (Merck silica gel 100-200 mesh). Evaporation of solvents was performed under reduced pressure using a rotary evaporator. Highresolution mass spectra (HRMS) were obtained on a Bruker maXis impact. ESI-mass spectra were recorded on a water Micro-MS mass spectrometer. EPR spectroscopic measurements were performed in Bruker (X-band) spectrometer. All the glassware and NMR tubes used for experiments were kept in oven at 120 °C for overnight (12h). X-ray crystallographic measurements were performed in Agilent X-ray diffractometer. All chemicals have been directly purchased from Sigma-Aldrich. 9-Hydroxyphenalenone ligand has been prepared by following the literature report¹. The starting materials for intramolecular coupling reactions have been prepared by following the previous literature².

2. Preparation and characterization of phenalenyl ligand and the K-phenalenyl complexes:

I. Synthesis and characterization PLY(O,O)-K complex (1a and 1a(CE)):

Inside an argon filled glovebox, 0.1 mmol (20 mg) PLY(O,OH), 0.1 mmol (12 mg) KO'Bu and 0.12 mmol (25 mg) 18-crown-6 were mixed together with 1.2 mL THF in a glass vial. The reaction mixture was stirred at room temperature for 10 min. The clear reddish solution was transferred to another vial and for crystallization under -35 °C along with 0.5 mL toluene as co-solvent. Rod shaped crystals were grown at overnight standing. A suitable crystal was coated with precooled inert oil and was analyzed by solid state structure. Also it was characterized by NMR spectroscopy.

The **1a** has been prepared following same procedure without adding 18-crown-6 and it was collected as precipitate.

¹**H NMR** (500 MHz, DMSO-d₆, 298K) δ (ppm) 3.55 (s, 24H), 6.56 (d, 2H, *J* = 8 Hz), 7.05 (t, 1H, *J* = 6 Hz), 7.57 (dd, 4H, *J*₁ = 8 Hz, *J*₂ = 12 Hz).

¹³C{¹H} NMR (125 MHz, DMSO-d₆, 298K) δ (ppm) 69.9, 115.7, 118.2, 123.5, 129.1, 131.9, 132.3, 135.2, 179.7.

DEPT 135 (125 MHz, DMSO-d₆, 298K) *δ* (ppm) 69.9 (s, CH₂), 118.2 (CH), 129.1 (CH), 131.9 (CH), 135.2 (CH).

II. Synthesis and characterization PLY(N,O)-K (1b and 1b(CE)):

Inside an argon filled glovebox, 0.1 mmol (22 mg) PLY(O,NH), 0.1 mmol (4 mg) KH and 0.12 mmol (25 mg) 18-crown-6 were mixed together with 1.2 mL toluene in a glass vial. The reaction mixture was stirred at room temperature for 2-3 mins. The clear reddish solution was transferred to another vial and for crystallization under -35 °C along. Red colored block shaped crystals were grown at overnight standing. A suitable crystal was coated with precooled inert oil and mounted under 100 K and analyzed by solid state structure. Instability of this molecule in DMSO and very low solubility in THF or toluene does not allow us to record the NMR spectrum.

1b was prepared following the same procedure without adding 18-crown-6 and it was collected as precipitate.

III. Synthesis and characterization of PLY(O,O)-K mono-reduced complex (2):

Inside an argon filled glovebox, 0.1 mmol (20 mg) PLY(O,OH), 0.1 mmol (12 mg) KO'Bu and 0.12 mmol (25 mg) 18-crown-6 were mixed together with 1.2 mL THF in a glass vial. 0.12 mmol (5 mg) K and 0.12 mmol (25 mg) 18-crown-6 were added in the reaction mixture. The final reaction mixture was stirred for 10 min and the red colored solution slowly turned into a green colored solution. The clear green solution was transferred to another vial and for crystallization under -35 °C along with 0.5 mL toluene as co-solvent. Blocked shaped crystals were grown at overnight standing. A suitable crystal was coated with precooled inert oil and was analyzed by solid state structure.

EPR measurement of this green crystal shows a sharp signal at g = 2.0001 in X-band. NMR spectroscopic measurement shows broad NMR signals in the ¹H NMR spectrum.

IV. Synthesis and characterization of doubly-reduced PLY(O,O)-K complex (3):

Inside an argon filled glovebox, 0.1 mmol (20 mg) PLY(O,OH), 0.1 mmol (12 mg) KO'Bu and 0.12 mmol (25 mg) 18-crown-6 were mixed together with 2 mL THF in a glass vial. 0.24 mmol (12 mg) K and 0.24 mmol (50 mg) 18-crown-6 were added in the reaction mixture. The final reaction mixture was stirred at room temperature, after 10 min the red colored solution slowly turned into a green colored solution and after another 15 min, this green color slowly turns into

dark brown solution. EPR measurement of this brown colored solution shows it as EPR silent. ¹H NMR spectroscopic measurement of this brown solution shows resonance signal at upfield region with respect to the neutral PLY(O,O)-K (Figure S10).

Inside an argon filled glovebox, 0.1 mmol (20 mg) PLY(O,OH), 0.1 mmol (12 mg) KO'Bu and 0.12 mmol (25 mg) 18-crown-6 were mixed together with 2 mL THF in a glass vial. 0.24 mmol (12 mg) K and 0.24 mmol (50 mg) 18-crown-6 were added in the reaction mixture. The final reaction mixture was stirred at room temperature, after 10 min, the red colored solution slowly turned into a green colored solution and after another 15 min, this green color slowly turns into dark brown solution. 0.8 mL aq. HCl solution (35%) was added into that brown solution. The organic compound was extracted in ethylacetate from water and after solvent evaporation, the organic compound was dried. The product was isolated from column chromatography using hexane as eluent over silica. The isolated product was characterized by mass and NMR spectroscopic measurements.

¹H NMR (500 MHz, CDCl₃, 298K) δ (ppm) 2.94 (t, 2H, J = 6 Hz), 3.33 (t, 2H, J = 6 Hz), 7.16
(d, 1H, J = 10 Hz), 7.33 (t, 1H, J = 7 Hz), 7.41 (d, 1H, J = 8 Hz), 7.66 (d, 1H, J = 8.4 Hz), 7.97 (d, 1H, J = 8.2 Hz), 13.1 (s, 1H).

¹³C{¹H} NMR (125 MHz, CDCl₃, 298K) δ (ppm) 27.6, 37.1, 110.2, 119.3, 124.0, 126.6, 126.7, 127.1, 130.7, 131.6, 138.1, 162.5, 203.8.

DEPT 135 (125 MHz, CDCl₃, 298K) *δ* (ppm) 27.6 (CH2), 37.1 (CH2), 119.3 (CH), 124.0 (CH), 126.6 (CH), 126.7 (CH), 138.1 (CH).

Inside an argon filled glovebox, 0.1 mmol (20 mg) PLY(O,OH), 0.1 mmol (12 mg) KO'Bu and 0.12 mmol (25 mg) 18-crown-6 were mixed together with 2 mL THF in a glass vial. 0.24 mmol (12 mg) K and 0.24 mmol (50 mg) 18-crown-6 were added to the reaction mixture. The final reaction mixture was stirred at room temperature, after 10 min, the red colored solution slowly turned into green colored solution and after another 15 min this green color slowly turned into dark brown solution. 0.8 mL DCl solution (35% in D_2O) was added into that brown solution. The organic compound was extracted in ethyl acetate from water, after solvent evaporation the organic compound was dried. The reaction mixture was subjected to the mass spectrometric measurement

(HRMS). The mass spectrum shows the presence of non-deuterated, mono-deuterated and dideuterated quenched species along with these we could found PLY(O,OH). The mass spectrum has been presented in Figure S17.

The product was isolated by column chromatography using hexane as eluent over silica. The isolated product was characterized by mass and NMR spectroscopic measurements.

¹**H NMR** (500 MHz, CDCl₃, 298K) δ (ppm) 2.94 (m, 0.73 H), 3.33 (m, 2.34H), 7.16 (d, 1H, *J* = 10 Hz), 7.33 (t, 1H, *J* = 7 Hz), 7.41 (d, 1H, *J* = 8 Hz), 7.66 (d, 1H, *J* = 8.4 Hz), 7.97 (d, 1H, *J* = 8.2 Hz), 13.1 (s, 1H).

DEPT 135 (125 MHz, CDCl₃, 298K) *δ* (ppm) 27.6 (CH₂, m), 37.1 (CH, d), 119.3 (CH), 124.0 (CH), 126.6 (CH), 126.7 (CH), 138.1 (CH).

²**D** NMR (500 MHz, CHCl₃, 298K) δ (ppm) 2.93 (s, CD₂).

3. Cyclic voltammetric study:

Cyclic voltammetric study of PLY(O,O)-K complex (**1a**) was carried out in $N_nBu_4ClO_4 0.1 \text{ M}$ solution in DMF using Ag/AgCl reference electrode with 100mVs⁻¹ at room temperature under N₂ atmosphere.

Figure S1. a) Cyclic voltammogram of **1a**; b) Frontier Molecular Orbital (FMO) diagram of three different redox states.

4. ¹H, ¹³C NMR spectra and mass spectra of various phenalenyl species and K-complexes:

Figure S2. ¹H NMR (CDCl₃) spectrum of 9-hydroxyphenalenone (PLY(OH,O)).

Figure S3. ¹³C NMR (CDCl₃) spectrum of 9-hydroxyphenalenone (PLY(OH,O)).

Figure S4. ¹H NMR (DMSO-d₆) spectrum of PLY(O,O)-K complex (1a).

Figure S5. ¹³C NMR (DMSO-d₆) spectrum of PLY(O,O)-K complex (1a).

Figure S6. ¹H NMR (DMSO-d₆) spectrum of PLY(N,O)-K complex (**1b**)

Figure S7. ¹H NMR (DMSO-d₆) spectrum of PLY(O,O)-K(18-crown-6) complex (1a(CE)).

Figure S8. ¹³C NMR (DMSO-d₆) spectrum of PLY(O,O)-K(18-crown-6) complex (1a(CE)).

Figure S9. (¹³C) DEPT 135 NMR (DMSO-d₆) spectrum of PLY(O,O)-K(18-crown-6) complex (1a(CE)).

Figure S10. ¹H NMR (THF-d₈) spectrum of reaction mixture of doubly-reduced PLY species 3.

Figure S11. ¹³C NMR (THF-d₈) spectrum of reaction mixture of doubly-reduced PLY species 3.

Figure S12. (¹³C) DEPT 135 NMR (THF-d₈) spectrum of reaction mixture of doubly-reduced PLY species **3**.

3.

Figure S14. ¹H NMR (CDCl₃) spectrum of quenched PLY(O,O) (**3Q**).

Figure S15. ¹³C NMR (CDCl₃) spectrum of quenched PLY(O,O) (3Q).

Figure S16. (¹³C) DEPT135 NMR (CDCl₃) spectrum of quenched PLY(O,O) (**3Q**).

Figure S17. Mass spectrum of reaction mixture of quenched PLY(O,O) with DCl.

Figure S18. ¹H NMR (CDCl₃) spectrum of quenched PLY(O,O) with DCl (35% solution in D_2O).

Figure S19. (¹³C) DEPT 135 NMR (CDCl₃) spectrum of quenched PLY(O,O) with DCl (35% solution in D₂O) (**3QD**).

Figure S20. D NMR (CHCl₃) spectrum of quenched PLY(O,OH) with DCl (35% solution in D_2O).

Figure S21. Mass Spectrum of quenched PLY(O,O) (3Q).

5. Computational Details:

Theoretical calculations were performed with the Gaussian16 program suite³. All theoretical calculations were carried out using the density functional theory (DFT) method with Becke's three-parameter hybrid exchange functionals and the Lee-Yang-Parr correlation functional (B3LYP) employing the 6-31G(d) basis set⁴⁻⁵ for all atoms. Anisotropic Induced Current Density (ACID) plots (B3LYP/6-311g(d,p)) were calculated by using the method developed by Herges and only π -orbitals are considered. CSGT NMR calculation was performed for this ACID plots^{6,7}. The plots were generated using with AICD-3.0.2 version with threshold vector 1.5 Å and isovalue 0.04. Nuclear Independent Chemical Shift (NICS) values were calculated (B3LYP/6-311G(d,p)) using the standard GIAO procedure⁸. CPCM solvent model has been used in these calculations⁹.

6. Theoretically predicted ¹H NMR spectra:

Structure of neutral PLY(O,O)-K complex and doubly-reduced **3** have been optimized by DFT at the level of B3LYP with basis set 6-31+g(d,p). ¹H NMR resonances have been predicted by GIAO method considering THF(CPCM) as solvent model.

Neutral PLY(O,O)-K complex (1a):

Doubly-reduced PLY(O,O)-K complex:

7. Electrostatic potential maps of PLY(N,O)-K:

Figure S22: Electrostatic potential maps of three redox states of PLY(N,O)-K complex (Isovalue = 0.002).

8. Anisotropic Induced Current Density (AICD) plots:

a) Neutral PLY(O,O)-K complex (1a):

Figure S23. Three different views of ACID plots of different redox states of PLY(O,O)-K complex, a) For neutral PLY(O,O)-K complex (**1a**); b) For mono-reduced radical PLY (O,O)-K complex; c) For doubly-reduced PLY-(O,O)-K complex.

Figure S24: ACID plot of and PLY(N,O)-K complex (1b) in three different redox states.

Figure S25. Spin density plots of mono-reduced PLY moieties.

9. Model example for Nuclear Independent Chemical Shift (NICS) calculation:

I. NICS calculation for the top aromatic ring of PLY(O,O)-K (1a):

PLY(O,O)-K neutral: NICS(1)zz = 25.0 ppm **PLY(O,O)-K anion:** NICS(1)zz = 16.9 ppm **PLY(O,O)-K dianion:** NICS(1)zz = 6.6 ppm

II. NICS calculation for the two equivalent aromatic ring (side rings) of PLY(O,O)-K (1a):

 PLY(O,O)-K neutral:

 NICS(1)zz = 9.6 ppm

 PLY(O,O)-K anion:

 NICS(1)zz = 8.9 ppm

 PLY(O,O)-K dianion:

 NICS(1)zz = 7.4 ppm

SCF GIAO Magnetic shielding tensor (ppm):

1.

a) PLY(O,O)-K (top ring):

6. Bq (0) Isotropic =
$$8.1380$$
 Anisotropy = 0.6068

XY= 0.0022 YY= 7.9282 ZY= 0.0833

XZ= 0.0013 YZ= 0.0797 ZZ= 7.9440

Eigenvalues: 7.8542 8.0173 8.5425

<u>XX= 24.9996</u> YX= 3.5564 ZX= 1.9117

XY= 0.6070 YY= 3.1251 ZY= 0.2707

XZ= 0.4828 YZ= 0.2647 ZZ= 2.8581

Eigenvalues: 2.6920 3.0287 25.2621

b) PLY(O,O)-K (side rings).

- 6 Bq Isotropic = 2.1849 Anisotropy = 12.8656
 - XX= -8.0601 YX= -0.1569 ZX= -0.0102
 - XY= -0.1674 YY= 10.7372 ZY= -0.8200
 - XZ= 0.0030 YZ= 0.0181 ZZ= 3.8776
 - Eigenvalues: -8.0615 3.8543 10.7620
- 7 Bq Isotropic = 5.3896 Anisotropy = 9.4100
 - <u>XX= 9.5909</u> YX= 4.3790 ZX= 4.6344
 - XY= 1.0645 YY= 4.6776 ZY= -0.2043

XZ= 1.6222 YZ= 0.2760 ZZ= 1.9002

Eigenvalues: 0.5656 3.9402 11.6629

2.a) Mono-reduced PLY(O,O)-K (top ring)

XY= 0.2226 YY= 2.9397 ZY= 0.0492

- XZ= 0.8646 YZ= 0.1579 ZZ= 2.9108
- Eigenvalues: 2.7268 2.8207 17.2356

b) Mono-reduced PLY(O,O)-K (side rings):

XY= 1.0212 YY= 4.3829 ZY= -0.1436

XZ= 1.7475 YZ= 0.4858 ZZ= 2.5177

Eigenvalues: 1.3187 3.7437 10.7223

3.

a) Doubly-reduced PLY(O,O)-K (top ring):

Eigenvalues: 1.5162 2.6088 7.4738

b) Doubly-reduced PLY(O,O)-K (side rings):

7 Bq(1) Isotropic = 4.8140 Anisotropy = 6.9933

 $\underline{XX} = 7.3866$ $\underline{YX} = 2.8677$ $\underline{ZX} = 2.8169$

XY= 0.9055 YY= 3.6386 ZY= 0.1098

XZ= 2.3355 YZ= 2.1437 ZZ= 3.4168

Eigenvalues: 2.1096 2.8562 9.4762

10. Theoretical calculations for all reduction processes:

The theoretical calculation for the different redox process have been carried out by DFT with B3LYP of calculation using 6-31g(d) basis set.

a. Gibbs free energy change for the mono-reduced PLY(O,O)-K complex preparation from neutral PLY(O,O)-K complex.

b. Gibbs free energy change for the doubly-reduced PLY(O,O)-K complex preparation from mono-reduced PLY(O,O)-K complex.

Scheme S1: Gibbs free energy change for different reduction processes. a) For mono reduction; b) for double reduction of PLY(O,O)-K(18-crown-6) complex.

11. Optimized geometries of three different redox states of PLY(O,O)-K complex:

[PLY-K(18-Crown-6)](1a(CE)) [PLY-K(18-Crown-6)₂](2) [PLY-K(18-Crown-6)₃](3)

 Table S1: Energies, enthalpies, and free energies (in Hartree) of the structures calculated with
 B3LYP/6-31G(d).

Structure	ZPE	$\Delta \mathbf{E}$	$\Delta \mathbf{H}$	$\Delta \mathbf{G}$	Е	Н	G	IF(cm ⁻	Infrared
								1)	
PLY-Kc		0.56889	0.56984	0.46855	-	-	-		
	0.53557				2172.52029	2172.51934	2172.62063		
K	0.00000	0.00141	0.00236	-0.0158	-599.88896	-599.88801	-599.90620		
Crown	0.37011	0.38972	0.39066	0.32065	-922.58725	-922.58631	-922.65632		
PLY-2Kc	0.90639	0.96278	0.96372	0.81065	-	-	-		
					3695.09349	3695.09254	3695.24562		
PLY-3Kc	1.27698	1.35680	1.35775	1.15323	-	-	-		
					5217.62234	5217.62140	5217.82592		

12. DFT calculation for the quenching experiment by HCl treatment of doubly-reduced PLY(O,O)-K complex (3):

 Table S2: Energies, enthalpies, and free energies (in Hartree) of the structures calculated with
 B3LYP/6-31G(d).

Structure	ZPE	$\Delta \mathbf{E}$	$\Delta \mathbf{H}$	$\Delta \mathbf{G}$	Е	Н	G	IF(cm ⁻	Infrared
								1)	
PLY-H	0.19658	0.20781	0.20876	0.15966	-651.67765	-651.67670	-651.72580		
PLY-H ₂ 1	0.19792	0.20850	0.20944	0.16188	-651.71054	-651.70959	-651.75716		
PLY-H ₂ 2	0.19721	0.20796	0.20891	0.16101	-651.68673	-651.68578	-651.73368		
13. Frontier molecular orbital diagrams of three different redox states of K-phenalenyl complex:

a) Neutral PLY(O,O)-K complex (1a).

b) Mono-reduced PLY(O,O)-K complex (II).

c) Doubly-reduced PLY(O,O)-K complex (III):

Figure S26. Frontier molecular orbital diagrams and energies of three different redox states of PLY(O,O)-K complex (1a).

c) Doubly-reduced PLY(N,O)-K complex:

b) Mono-reduced PLY(N,O)-K complex.

Figure S27. Frontier molecular orbital diagrams and energies of three different redox states of PLY(N,O)-K complex (**1b**).

14. Crystallographic and data collection parameters for 1a(CE), 1b(CE), 2:

X-ray crystallographic details:

Suitable single crystals of **1a**(**CE**), **1b**(**CE**) and **2** were selected and mounted under nitrogen atmosphere using the X-TEMP2 and intensity data were collected on a Super Nova, Dual, Cu at zero, Eos diffractometer. Both the crystals were kept at 100 K during data collection. Using Olex2 ¹⁰, the structure was solved with the ShelX¹¹ structure solution program using Intrinsic Phasing and refined with the ShelXL¹¹ refinement package using Least Squares minimisation. All nonhydrogen atoms were refined with anisotropic displacement parameters. Crystallographic data (including structure factors) for the structures have been deposited with the Cambridge Crystallographic Data Centre. Copies of the data can be obtained free of charge from The Cambridge Crystallographic Data Centre *via* www.ccdc.cam.ac.uk/data_request/cif. CCDC 1991245, 2015680 and 1991246 contains the supplementary crystallographic data of compounds **1a(CE)**, **1b(CE)** and **2** respectively for this paper.

Table S3: Crystal data and structure refinement for PLY(O,O)-K[18-crown-6] (1a(CE)).

CCDC	1991245
Empirical formula	$C_{25}H_{31}KO_8$
Formula weight	498.60
Temperature/K	100.00(10)
Crystal system	Monoclinic
Space group	P21/c
a/Å	8.3399(4)
b/Å	27.1397(12)
c/Å	11.0226(5)
$\alpha / ^{\circ}$	90
β/°	100.071(4)
$\gamma/^{\circ}$	90
Volume/Å ³	2456.4(2)
Z	4
$\rho_{calc}g/cm^3$	1.348
μ/mm^{-1}	2.296
F(000)	1056.0
Crystal size/mm ³	$0.3\times0.15\times0.1$
Radiation	CuKa (λ = 1.54184)
2Θ range for data collection/°	6.514 to 132.732

Index seaso	$-8 \le h \le 9, -32 \le k \le 31, -12 \le 1$	
Index ranges	≤ 13	
Reflections collected	16231	
Independent reflections	4218 [$R_{int} = 0.0429$, $R_{sigma} =$	
Independent reflections	0.0345]	
Data/restraints/parameters	4218/2/295	
Goodness-of-fit on F ²	1.045	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1134, wR_2 = 0.3001$	
Final R indexes [all data]	$R_1 = 0.1199, wR_2 = 0.3068$	
Largest diff. peak/hole / e Å ⁻³	1.52/-0.78	

Identification code	JASI_NOPLY
Empirical formula	$C_{66}H_{81}K_2N_2O_{14}\\$
Formula weight	1204.52
Temperature/K	100.00(10)
Crystal system	Monoclinic
Space group	P21/c
a/Å	14.2195(10)
b/Å	34.5380(19)
c/Å	13.8905(9)
α/°	90
β/°	113.176(8)
γ/°	90
Volume/Å ³	6271.3(8)
Z	4
$\rho_{calc}g/cm^3$	1.276
μ/mm ⁻¹	1.874
F(000)	2564.0
Crystal size/mm ³	$0.25 \times 0.2 \times 0.15$
Radiation	CuKa (λ = 1.54184)
20 range for data collection/°	6.762 to 133.364

Table S4: Crystal data and structure refinement for PLY(N,O)-K[18-crown-6] (1b(CE)).

Index manage	$-16 \le h \le 16, -41 \le k \le 39, -16$
Index ranges	≤1≤15
Reflections collected	39527
Independent reflections	10947 [$R_{int} = 0.0885$, $R_{sigma} =$
Independent reflections	0.0638]
Data/restraints/parameters	10947/0/712
Goodness-of-fit on F ²	1.053
Final R indexes [I>= 2σ (I)]	$R_1 = 0.1198, wR_2 = 0.3097$
Final R indexes [all data]	$R_1 = 0.1510, wR_2 = 0.3471$
Largest diff. peak/hole / e Å ⁻³	0.90/-0.75
CCDC number	2015680

CCDC	1991246
Empirical formula	$C_{51}H_{69}K_2O_{14}$
Formula weight	984.26
Temperature/K	100.00(10)
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁
a/Å	14.23700(10)
b/Å	18.7126(2)
c/Å	19.1013(2)
a/°	90
β/°	90
γ/°	90
Volume/Å ³	5088.80(8)
Z	4
$\rho_{calc}g/cm^3$	1.285
μ/mm^{-1}	2.176
F(000)	2100.0
Crystal size/mm ³	$0.25\times0.15\times0.1$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	6.612 to 132.292
Index ranges	$-16 \le h \le 16, -22 \le k \le 22, -18 \le 1 \le 22$

Reflections collected	34892
Independent reflections	8827 [$R_{int} = 0.0273, R_{sigma} = 0.0212$]
Data/restraints/parameters	8827/0/606
Goodness-of-fit on F ²	1.028
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0407, wR_2 = 0.1069$
Final R indexes [all data]	$R_1 = 0.0415, wR_2 = 0.1077$
Largest diff. peak/hole / e Å ⁻³	0.55/-0.43
Flack parameter	0.450(2)

15. Reaction Optimization for direct C-H arylation of N-methyl pyrrole with 4chlorobenzonitrile coupling partner:

Catalyst PLY(O,O)-K (0.024 mmol) and reducing agent (0.06 mmol) were taken in 1.2 mL solvent in a 25 mL pressure tube. This mixture was allowed to stir at room temperature for 30 mins. Nmethylpyrrole (1.2 mmol), 4-chlorobenzonitril (0.24 mmol) and base (0.48 mmol) were added to the resulting solution of catalyst inside a nitrogen filled glovebox. The final reaction mixture was allowed to stir for appropriate time at room temperature. After completion of the reaction, product was extracted in 25 mL ethylacetate and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to get the crude product. Reaction conversion was calculated by ¹H NMR spectrum of the crude reaction mixture using 1,4-dimethoxybenzene as the internal standard.

Table S6: Reaction optimization table.

Entry	Catalyst (mol %)	Reductant	Base (equiv.)	Solvent	Yield
		(mol%)			
1	PLY(O,O)-K (5)	K (15)	KO'Bu (2)	DMSO	12%
_					
2	PLY(O,O)-K (10)	K (25)	KO'Bu (2)	DMSO	15%
3	PL V(O O)-K (10)	K (25)	KQ(Ru (2)	DMF	54%(51% ^a)
5	1 L1 (0,0)•K (10)	IX (23)	KO Du (2)		37/0(31/0)

4	PLY(O,O)-K (10)	K (25)	KO'Bu (2)	DMAc	40%
5	PLY(O,O)-K (10)	-	KO'Bu (2)	DMF	10%
6	-	K (25)	KO'Bu (2)	DMF	23%
7	Fe(PLY(O,O)) ₃ (10)	K (30)	KO'Bu (2)	DMF	<10%
8	PLY(O,O)-K (10)	K (15)	KO'Bu (2)	DMAc	25%
9	PLY-O,O-K (10)	K (25)	KO'Bu (2)	THF	0 %
10	PLY(O,O) cat (10)	K (25)	KO'Bu (2)	DMF	<10 %
11 ^b	PLY(O,O)-K (10)	K (25)	KO'Bu (2)	DMF	52 %
12 ^c	PLY(O,O)-K (10)	K (25)	KO'Bu (2)	DMF	<2%
13	PLY(N,O)-K (10)	K (25)	KOtBu (2)	DMF	67%
14	-	K (1.5 equiv)	KO'Bu (2)	DMF	30%

^a Isolated yield; ^b Reaction was carried out under dark condition; ^cThe reaction was performed with chlorobenzene coupling partner.

16. C-H arylation of arenes/heteroarenes with 4-chlorobenzonitrile in absence of catalyst.

Potassium (0.06 mmol), N-methylpyrrole (1.2 mmol), 4-chlorobenzonitril (0.24 mmol) and KO'Bu (0.48 mmol) were taken in 1.2 mL n,n-dimethylformamide in a 25 mL pressure tube inside an argon filled glovebox. The final reaction mixture was allowed to stir for appropriate 5time at room

temperature. After completion of the reaction, product was extracted in 25 mL ethylacetate and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to get the crude product. Reaction conversion was calculated by ¹H NMR spectrum of the crude reaction mixture using 1,4-dimethoxybenzene as the internal standard.

17. General procedure for C-H arylation of arenes/heteroarenes with aryl halides:

PLY(O,O)-K (0.024 mmol) and K (0.06 mmol) were taken in 1.2 mL DMF/DMSO solvent in a 25 mL pressure tube. This mixture was allowed to stir at room temperature for 30 mins. Arene/heteroarenes, aryl halide partner (0.24 mmol) and KO^{*t*}Bu (0.48 mmol) were added to the resulting solution of catalyst inside a nitrogen filled glovebox. After the final reaction mixture was allowed to stir for appropriate time at room temperature. After completion of the reaction, product was extracted in 25 mL ethylacetate and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure and crude product was purified by column chromatography over silica gel (100-200 mesh) using hexane/EtOAc mixture to yield the pure desired products.

18. General procedure for intramolecular coupling reactions:

In a typical method, PLY(O.O)-K (**1a**, 0.024 mmol) and K (0.06 mmol) were taken in 1.2 mL DMF in a 25 mL pressure tube. This mixture was allowed to stir at room temperature for 30 mins. Substrates (5as-5es, 0.24 mmol) and KO'Bu (0.48 mmol) were added to the resulting solution of catalyst inside an argon filled glovebox. The final reaction mixture was allowed to stir for appropriate time at room temperature. After completion of the reaction, products were extracted in 25 mL ethylacetate and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure to get the crude products. NMR (¹H and ¹³C) spectroscopic measurements of all the reaction mixtures were carried out to characterize the products and the conversion were calculated from ¹H NMR peak intensities.

19. Radical scavenging experiment in presence of TEMPO:

PLY(O,O)-K (**1a**, 0.024 mmol) and K (0.06 mmol) were taken in 1.2 mL DMF in a 25 mL pressure tube. This mixture was allowed to stir at room temperature for 30 mins. N-methylpyrrole (1.2 mmol), 4-chlorobenzonitril (0.24 mmol) and KO^{*t*}Bu (0.48 mmol) were added to the resulting solution of catalyst inside a nitrogen filled glovebox. TEMPO (0.48 mmol) was added in the resulting reaction mixture. The final reaction mixture was allowed to stir for appropriate time at room temperature. After completion of the reaction, product was extracted in 25 mL ethylacetate and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure and crude product was subjected for ¹H NMR spectroscopic measurement.

20. Radical trapping experiment:

PLY(O,O)-K (**1a**, 0.24 mmol) and K (0.53 mmol) were taken in 1.2 mL DMF in a 25 mL pressure tube. This mixture was allowed to stir at room temperature for 30 min, 4-chlorobenzonitril (0.24 mmol) was added to the resulting solution of catalyst inside an argon filled glovebox. TEMPO (0.48 mmol) was added in the resulting reaction mixture. The final reaction mixture was allowed to stir for 2h at room temperature. After completion of the reaction, product was extracted in 25 mL ethylacetate and dried over anhydrous sodium sulphate. The mass spectroscopic measurement of this crude reaction mixture was carried out in acetonitrile solvent (Figure 98).

21. Catalyst recovery after catalytic reaction:

PLY(O,O)-K (0.107 mmol) and K (0.23 mmol) were taken in 2 mL DMF/DMSO solvent in a 25 mL pressure tube. This mixture was allowed to stir at room temperature for 30 mins. N-methylpyrrole (5.3 mmol), 4-chlorobenzonitriler (1.07 mmol) and KO'Bu (0.214 mmol) were added to the resulting solution of catalyst inside a nitrogen filled glovebox. After the final reaction mixture was allowed to stir for appropriate time at room temperature. After completion of the reaction, product was extracted in 25 mL ethylacetate and dried over anhydrous sodium sulphate. The solvent was removed under reduced pressure. The phenalenyl parts were collected together from column chromatography with 10% ethylacetate in hexane mixture. The ¹H NMR spectrum

of this residues (Figure S96) shows the presence of PLY(O,OH) along with other species. We could isolate 6 mg of PLY(O,OH) from this mixture which indicates ~30% recovery of the catalyst.

21. The analytical and spectral characterization data of the catalytic products

4-(1-methylpyrrole)benzonitrile (4a):¹²

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 5% ethylacetate in hexane. The compound was obtained as a white solid.

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 3.72 (s, 3H), 6.23 (dd, 1H, J₁ = 4 Hz, J₂ = 2 Hz),
6.34 (m, 1H), 6.78 (t, 1H, J = 4 Hz), 7.50 (d, 2H, J = 8 Hz), 7.67 (d, 2H, J = 8 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 35.4, 108.5, 109.6, 110.7, 118.9, 125.8, 128.2, 132.2, 132.6, 137.6.

2-(4-Cyanophenyl)furan (5a):¹³

The crude product was purified by column chromatography using silica gel (100-200 mesh) with hexane. The compound was obtained as a white solid.

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 6.52-6.54 (m, 1H), 6.81 (d, 1H, J = 2 Hz), 7.53 (s, 1H), 7.65 (d, 2H, J = 8 Hz), 7.74 (d, 2H, J = 8 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ(ppm) 108.1, 110.2, 112.2, 118.9, 123.9, 132.5, 134.6, 143.6, 151.9.

2-(4-Cyanophenyl)thiophene (6a):¹³

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 2% ethylacetate in hexane. The compound was obtained as a white solid.

¹**H** NMR (400 MHz, CDCl₃, 298K) δ (ppm) 7.13 (t, 1H, J = 4 Hz), 7.40-7.43 (m, 2H), 7.64-7.71 (m, 4H).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ(ppm) 110.6, 118.8, 125.1, 126.1, 127.0, 128.6, 132.7, 138.6, 142.1.

4-(benzofuran-2-yl)benzonitrile (7a):¹⁴

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 5% ethylacetate in hexane. The compound was obtained as a white solid.

¹**H NMR** (400 MHz, CDCl₃, 298K) δ (ppm) 7.18 (s, 1H), 7.27 (d, 1H, J = 8 Hz), 7.35 (t, 1H, J = 8 Hz), 7.55 (m, 1H), 7.63 (d, 1H, J = 8 Hz), 7.73 (d, 2H, J = 9 Hz), 7.95 (d, 2H, J = 8 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ(ppm) 104.5, 111.5, 111.6, 118.7, 121.5, 123.4, 125.1, 125.6, 128.6, 132.6, 134.4, 153.5, 155.2.

4-Cyanobiphenyl (8a): ¹³

The crude product was purified by column chromatography using silica gel (100-200 mesh) with hexane. The compound was obtained as a white solid.

¹**H NMR** (400 MHz, CDCl₃, 298K) δ (ppm) 7.41 (d, 1H, *J* = 8 Hz), 7.47 (t, 2H, *J* = 7 Hz), 7.59 (d, 2H, *J* = 8 Hz), 7.70 (q, 4H, *J* = 8.2 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ(ppm) 110.9, 118.9, 127.2, 127.7, 128.6, 129.1, 132.6, 139.2, 145.7.

1-Cyano-4-(2, 4-dimethylbenzene) (9a):¹⁵

The crude product was purified by column chromatography using silica gel (100-200 mesh) with hexane. The compound was obtained as a white solid.

¹H NMR (400 MHz, DMSO-d6₃, 298K) δ (ppm) 2.21 (s, 3H), 2.36 (s, 3H), 7.01 (s, 1H), 7.13
(d, 1H, *J* = 3 Hz), 7.18 (d, 1H, *J* = 4 Hz), 7.42 (dd, 2H, *J*₁ = 8 Hz, *J*₂ = 2Hz), 7.69 (dd, 2H, *J*₁ = 8 Hz, *J*₂ = 2 Hz).

¹³C{¹H} NMR (100 MHz, DMSO-d6, 298K) δ (ppm) 19.8, 20.8, 110.6, 118.9, 129.0, 129.9, 130.0, 130.6, 131.9, 135.6, 139.8, 147.0.

1-Cyano-4-mesitylbenzene (10a):¹³

The crude product was purified by column chromatography using silica gel (100-200 mesh) with hexane. The compound was obtained as a white solid.

¹**H** NMR (400 MHz, CDCl₃, 298K) δ (ppm) 1.98 (s, 6H), 2.34 (s, 3H), 6.96 (s, 2H), 7.27 (d, 2H, J = 8 Hz), 7.70 (d, 2H, J = 8 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 20.5, 21.0, 110.6, 118.9, 128.3, 130.3, 132.3, 135.3, 137.1, 138.0, 146.4.

4-(1-methylpyrrole)anisole (4b): ¹⁶

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 10% ethylacetate in hexane. The compound was obtained as a light yellow colored solid.

¹**H NMR** (400 MHz, CDCl₃, 298K) δ (ppm) 3.64 (s, 3H), 3.85 (s, 3H), 6.16-6.17 (m, 1H), 6.19-6.21 (m, 1H), 6.70 (t, 1H, *J* = 6 Hz), 6.95 (d, 2H, *J* = 8 Hz), 7.32 (d, 2H, *J* = 9 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 34.8,55.3, 107.5, 107.9, 113.7, 123.0, 125.9, 130.0, 134.3, 158.6.

4-(1-methylpyrrole)benzene (4c):¹⁶

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 10% ethylacetate in hexane. The compound was obtained as a light yellow colored solid.

¹**H NMR** (400 MHz, CDCl₃, 298K) δ (ppm) 3.67 (s, 3H), 6.20-6.24 (m, 2H), 6.72 (t, 1H, *J* = 2 Hz), 7.29-7.32 (m, 1H), 7.40-7.42 (m, 4H).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 35.0, 107.7, 107.6, 123.6, 126.7, 128.3, 128.6, 133.3, 134.6.

4-(1-methylpyrrole)3, 5-dimethylbenzene (4d):¹⁶

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 10% ethylacetate in hexane. The compound was obtained as a colorless soild.

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 2.35 (s, 3H), 3.66 (s, 3H), 6.18 (d, 2H, J = 4 Hz),
6.69 (t, 1H, J = 2 Hz), 6.95 (s, 1H), 7.02 (s, 2H).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 21.4, 35.0,107.6, 108.4, 123.3, 126.5, 128.4, 133.2, 134.8, 137.8.

4-(1-methylpyrrole)biphenyl (4e):¹⁷

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 10% ethylacetate in hexane. The compound was obtained as a brown colored oil.

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 3.74 (s, 3H), 6.26 (t, 1H, J = 2 Hz), 6.31 (m, 1H),
6.77 (t, 1H, J = 1 Hz), 7.38 (t, 1H, J = 2 Hz), 7.46-7.52 (m, 4H), 7.65 (d, 4H, J = 8 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 35.1, 107.8, 108.8, 123.9, 127.0, 127.0, 127.3, 127.5, 127.9, 128.8, 128.8, 128.8, 131.4, 132.3, 134.2, 139.4, 140.6.

4-(1-methylpyrrole)toluene (4f):¹⁸

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 10% ethylacetate in hexane. The compound was obtained as a brown colored oil.

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 2.39 (s, 3H), 3.66 (s, 3H), 6.20 (d, 2H, J = 2 Hz),
6.71 (t, 1H, J = 2 Hz), 7.21 (d, 2H, J = 8 Hz), 7.31 (d, 2H, J = 8 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 21.1, 34.9, 107.6, 108.2, 123.3, 128.6, 129.0, 130.4, 134.6, 136.5.

2-(4-Methoxyphenyl)furan (5b):¹⁴

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 2% ethylacetate in hexane. The compound was obtained as a colorless solid.

¹**H NMR** (400 MHz, CDCl₃, 298K) δ (ppm) 3.82 (s, 3H), 6.43 (t, 1H, *J* = 4 Hz), 6.49 (d, 1H, *J* = 4 Hz), 6.91 (d, 2H, *J* = 8 Hz), 7.41 (s, 1H), 7.59 (d, 2H, *J* = 8 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 55.3, 103.3, 111.5, 114.1, 124.0, 125.2, 141.4, 154.0, 159.0.

2-Phenylfuran (5c):¹⁴

The crude product was purified by column chromatography using silica gel (100-200 mesh) with hexane. The compound was obtained as a colorless solid.

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 6.47 (m, 1H), 6.65 (d, 1H, J = 5 Hz), 7.24-7.28 (m, 1H), 7.38 (t, 2H, J = 6 Hz), 7.68 (d, 2H, J = 8 Hz), 7.47 (s, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ(ppm) 105.0, 111.7, 123.9, 127.4, 128.7, 130.9, 142.1, 154.1.

2-(3, 5-Dimethlphenyl)furan (5d):¹⁹

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 2% ethylacetate in hexane. The compound was obtained as a yellow colored oil.

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 2.35 (s, 6H), 6.45 (m, 1H), 6.60 (d, 1H, J = 4 Hz),
6.90 (s, 1H), 7.30 (s, 2H), 7.44 (s, 1H).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 21.3, 104.7, 111.5, 121.6, 129.1, 130.7, 138.2, 141.8, 154.3.

2-Biphenylfuran (5e):²⁰

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 2% ethylacetate in hexane. The compound was obtained as a colorless solid.

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 6.5 (q, 1H, J₁ = 4Hz, J₂ = 1Hz), 6.7 (d, 1H, J = 4Hz),
7.45 (t, 2H, J = 8Hz), 7.50 (d, 1H, J = 2Hz), 7.63 (d, 4H, J = 8Hz), 7.75 (d, 2H, J = 8Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ(ppm) 105.1, 111.7, 124.2, 126.9, 127.3, 128.8, 129.8, 139.9, 140.6, 142.1, 153.7.

2-(4-Methylphenyl)furan (5f):¹⁴

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 5% ethylacetate in hexane. The compound was obtained as a colorless solid.

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 2.35 (s, 3H), 6.44 (m, 1H), 6.57 (d, 1H, J = 4 Hz),
7.17 (d, 2H, J = 8 Hz), 7.43 (s, 1H), 7.55 (d, 2H, J = 8 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 21.2, 104.2, 111.5, 123.7, 128.2, 129.3, 137.1 141.6, 154.2.

2-(4-Methoxyphenyl)thiophene (6b):¹⁴

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 5% ethylacetate in hexane. The compound was obtained as a colorless solid.

¹**H** NMR (400 MHz, CDCl₃, 298K) δ (ppm) 3.84 (s, 3H), 6.92 (d, 2H, J = 8 Hz), 7.05 (dd, 1H, $J_1 = 4$ Hz, $J_2 = 1$ Hz), 7.21 (t, 2H. J = 4 Hz), 7.54 (d, 2H, J = 8 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 55.3, 114.2, 122.1, 123.8, 127.2, 127.4, 127.9, 144.3, 159.2.

2-Biphenylthiophene (6e):²¹

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 2% ethylacetate in hexane. The compound was obtained as a colorless solid.

¹**H NMR** (400 MHz, CDCl₃, 298K) δ (ppm) 7.10-7.12 (m, 1H), 7.31 (d, 1H, *J* = 6 Hz), 7.36-7.38 (m, 2H), 7.46 (t, 2H, *J* = 8 Hz), 7.62 (m, 4H), 7.70 (d, 2H, *J* = 9 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ(ppm) 123.1, 124.8, 126.3, 126.9, 127.4, 127.5, 128.0, 128.8, 133.4, 140.2, 140.5, 144.0.

2-(4-Methylphenyl)thiophene (6f):¹⁴

The crude product was purified by column chromatography using silica gel (100-200 mesh) with hexane. The compound was obtained as a yellow colored oil.

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 2.36 (s, 3H), 7.06 (dd, 1H, J₁ = 7 Hz, J₂ = 4 Hz),
7.18 (d, 2H, J = 8 Hz), 7.23-7.27 (m, 2H), 7.51 (d, 2H, J = 8 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 21.1, 122.5, 124.3, 125.9, 127.9, 129.5, 131.6, 137.3, 144.6.

4-(benzofuran-2-yl)benzene (7b):¹⁴

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 5% ethylacetate in hexane. The compound was obtained as a brown colored solid

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 3.87 (s, 3H), 6.89 (s, 1H), 6.98 (d, 2H, J = 8 Hz),
7.21 (m, 2H), 7.50 (d, 1H, J = 4 Hz), 7.55 (d, 1H, J = 4 Hz), 7.80 (d, 2H, J = 8 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 55.3, 99.6, 110.9, 114.2, 120.5, 122.8, 123.4, 123.7, 126.4, 129.5, 154.5, 156.0, 159.9.

4-(benzofuran-2-yl)benzene (7c): ¹⁴

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 5% ethylacetate in hexane. The compound was obtained as a colorless solid

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 7.04 (s, 1H), 7.24-7.31 (m, 3H), 7.34 (t, 1H, J = 8 Hz), 7.44 (t, 2H, J = 9 Hz), 7.51 (d, 1H, J = 10 Hz), 7.59 (d, 1H, J = 8 Hz), 7.88 (d, 2H, J = 9 Hz).
¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 101.3, 111.1, 120.8, 122.9, 124.2, 124.9, 128.5, 128.7, 130.5, 131.0, 154.8, 155.9.

4-(benzofuran-2-yl)3, 5-dimethylbenzene (7d):²²

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 5% ethylacetate in hexane. The compound was obtained as a light colorless solid.

¹**H NMR** (400 MHz, CDCl₃, 298K) δ (ppm) 2.39 (s, 6H), 7.00 (s, 1H), 7.21-7.30 (m, 3 H), 7.51— 7.53 (m. 3H), 7.57 (d, 1 H, *J* = 8 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 21.3, 101.0, 111.1, 120.8, 122.8, 122.8, 124.0, 129.3, 130.3, 130.4, 138.3, 154.8, 156.3.

4-(benzofuran-2-yl)biphenyl (7e):²³

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 5% ethylacetate in hexane. The compound was obtained as a colorless solid

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 7.07 (s, 1H), 7.4-7.30 (m, 2H), 7.38 (t, 1H, *J* = 4 Hz),
7.45 (t, 2H, *J* = 8 Hz), 7.55 (d, 1H, *J* = 8 Hz), 7.60 (d, 1H, *J* = 8Hz), 7.65 (d, 2H, *J* = 8 Hz), 7.69 (d, 2H, *J* = 10 Hz), 7.95 (d, 2H, *J* = 8 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ(ppm) 101.4, 111.1, 120.9, 122.9, 124.3, 125.3, 126.9, 127.4, 127.6, 128.8, 129.2, 129.4, 140.4, 141.2, 154.9, 155.7.

2-(4-Methoxyphenyl)thiazole (11b):²⁴

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 10% ethylacetate in hexane. The compound was obtained as a light yellow colored oil.

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 3.86 (s, 3H), 6.96 (dd, 2H, J₁ = 7 Hz, J₂ = 4 Hz),
7.25 (m, 1H), 7.81 (s, 1H), 7.91 (dd, 2H, J₁ = 9 Hz, J₂ = 3 Hz)

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ (ppm) 55.4, 114.3, 117.8, 126.6, 128.0, 143.4, 161.1, 168.3.

2-Phenylthiazole (11c):²⁴

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 10% ethylacetate in hexane. The compound was obtained as a colorless oil.

¹H NMR (400 MHz, CDCl₃, 298K) δ (ppm) 7.34 (d, 1H, J = 4 Hz), 7.43-7.76 (m, 4H), 7.87 (d, 1H, J = 4 Hz), 7.97 (d, 2H, J = 8 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ(ppm) 118.9, 126.6, 128.9, 130.1, 133.7, 143.7, 168.5.

2-(3, 5-Dimethylphenyl)thiazole (11d):²⁴

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 10% ethylacetate in hexane. The compound was obtained as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃, 298K) δ (ppm) 2.4 (s, 6H), 7.07 (s, 1H), 7.30 (d, 1H, *J* = 4 Hz), 7.59 (s, 2H), 7.84 (d, 1H, *J* = 4 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ(ppm) 21.2, 118.5, 124.4, 131.7, 133.4, 138.6, 143.5, 168.8.

2-Biphenylthiazole (11e):²⁵

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 10% ethylacetate in hexane. The compound was obtained as a brown colored oil.

¹**H NMR** (400 MHz, CDCl₃, 298K) δ (ppm) 7.34 (d, 1H, *J* = 4 Hz), 7.40 (d, 1H, *J* = 4 Hz), 7.47 (t, 2H, *J* = 8 Hz), 7.65 (d, 2H, *J* = 8 Hz), 7.69 (d, 2H, *J* = 9 Hz), 7.90 (d, 1H, *J* = 4 Hz), 8.05 (d, 2H, *J* = 9 Hz).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ(ppm) 118.8, 126.9, 127.0, 127.6, 127.8, 128.9, 132.5, 140.2, 142.7, 143.7, 168.1.

2-(4-Methylphenyl)thiazole (11f):²⁴

The crude product was purified by column chromatography using silica gel (100-200 mesh) with 10% ethylacetate in hexane. The compound was obtained as a colorless oil.

¹**H NMR** (400 MHz, CDCl₃, 298K) δ (ppm) 2.4 (s, 3H), 7.23 (m, 2H), 7.27 (m, 1H), 7.82-7.85 (m, 3H).

¹³C{¹H} NMR (100 MHz, CDCl₃, 298K) δ(ppm) 21.4, 118.3, 126.5, 129.5, 129.6, 130.9, 140.2, 143.5, 168.6.

Figure S28. ¹H NMR (CDCl₃) spectrum of 4-(1-methylpyrrole)benzonitrile (4a).

Figure S29. ¹³C NMR (CDCl₃) spectrum of 4-(1-methylpyrrole)benzonitrile (4a).

Figure S30. ¹H NMR (CDCl₃) spectrum of 2-(4-cyanophenyl)furan (5a).

Figure S31. ¹³C NMR (CDCl₃) spectrum of 2-(4-cyanophenyl)furan (**5a**).

Figure S32. ¹H NMR (CDCl₃) spectrum of 2-(4-cyanophenyl)thiophene (6a).

Figure S33. ¹³C NMR (CDCl₃) spectrum of 2-(4-cyanophenyl)thiophene (6a).

•

Figure S34. ¹H NMR (CDCl₃) spectrum of 4-(benzofuran-2-yl)benzonitrile (7a).

Figure S35. ¹³C NMR (CDCl₃) spectrum of 4-(benzofuran-2-yl)benzonitrile (7a).

Figure S36. ¹H NMR (CDCl₃) spectrum of 4-cyanobiphenyl (8a).

Figure S37. ¹³C NMR (CDCl₃) spectrum of 4-cyanobiphenyl (8a).

Figure S38. ¹H NMR (CDCl₃) spectrum of 1-cyano-4-(2, 5-dimethylbenzene) (9a).

Figure S39. ¹³C NMR (CDCl₃) spectrum of 1-cyano-4-(2, 5-dimethylbenzene) (9a).

Figure S40. ¹H NMR (CDCl₃) spectrum of 1-cyano-4-mesitylbenzene (10a).

S72

Figure S42. ¹H NMR (CDCl₃) spectrum of 4-(1-methylpyrrole)anisole (4b).

Figure S43. ¹³C NMR (CDCl₃) spectrum of 4-(1-methylpyrrole)anisole (4b).

Figure S44. ¹H NMR (CDCl₃) spectrum of 4-(1-methylpyrrole)benzene (**4c**).

Figure S45. ¹³C NMR (CDCl₃) spectrum of 4-(1-methylpyrrole)benzene (**4c**).

Figure S46. ¹H NMR (CDCl₃) spectrum of 4-(1-methylpyrrole)3, 5-dimethylbenzene (4d).

Figure S47. ¹³C NMR (CDCl₃) spectrum of 4-(1-methylpyrrole)3, 5-dimethylbenzene (4d).

Figure S48. ¹H NMR (CDCl₃) spectrum of 4-(1-methylpyrrole)biphenyl (4e).

Figure S49. ¹³C NMR (CDCl₃) spectrum of 4-(1-methylpyrrole)biphenyl (4e).

Figure S50. ¹H NMR (CDCl₃) spectrum of 4-(1-methylpyrrole)toluene (**4f**).

Figure S51. ¹³C NMR (CDCl₃) spectrum of 4-(1-methylpyrrole)toluene (4f).

Figure S52. ¹H NMR (CDCl₃) spectrum of 2-(4-methoxyphenyl)furan (5b).

Figure S53. ¹³C NMR (CDCl₃) spectrum of 2-(4-methoxyphenyl)furan (5b).

Figure S54. ¹H NMR (CDCl₃) spectrum of 2-phenylfuran (**5c**).

Figure S55. ¹³C NMR (CDCl₃) spectrum of 2-phenylfuran (**5c**).

Figure S56. ¹H NMR (CDCl₃) spectrum of 2-(3, 5-dimethylphenyl)furan (5d).

Figure S57. ¹³C NMR (CDCl₃) spectrum of 2-(3, 5-dimethylphenyl)furan (**5d**).

Figure S58. ¹H NMR (CDCl₃) spectrum of 2-biphenylfuran (5e).

Figure S59. ¹³C NMR (CDCl₃) spectrum of 2-biphenylfuran (**5e**).

Figure S60. ¹H NMR (CDCl₃) spectrum of 2-(4-methylphenyl)furan (**5f**).

Figure S61. ¹³C NMR (CDCl₃) spectrum of 2-(4-methylphenyl)furan (5f).

Figure S62. ¹H NMR (CDCl₃) spectrum of 2-(4-methoxyphenyl)thiophene (6b).

Figure S63. ¹³C NMR (CDCl₃) spectrum of 2-(4-methoxyphenyl)thiophene (6b).

Figure S64. ¹H NMR (CDCl₃) spectrum of 2-biphenylthiophene (6e).

Figure S65. ¹³C NMR (CDCl₃) spectrum of 2-biphenylthiophene (6e).

Figure S66. ¹H NMR (CDCl₃) spectrum of 2-(4-methylphenyl)thiophene (6f).

Figure S67. ¹³C NMR (CDCl₃) spectrum of 2-(4-methylphenyl)thiophene (6f).

Figure S68. ¹H NMR (CDCl₃) spectrum of 4-(benzofuran-2-yl)anisole (7b).

Figure S69. ¹³C NMR (CDCl₃) spectrum of 4-(benzofuran-2-yl)anisole (7b).

Figure S70. ¹H NMR (CDCl₃) spectrum of 4-(benzofuran-2-yl)benzene (**7c**).

Figure S71. ¹³C NMR (CDCl₃) spectrum of 4-(benzofuran-2-yl)benzene (**7c**).

Figure S72. ¹H NMR (CDCl₃) spectrum of 4-(benzofuran-2-yl)-3, 5-dimethylbenzene (7d).

Figure S73. ¹³C NMR (CDCl₃) spectrum of 4-(benzofuran-2-yl)-3, 5-dimethylbenzene (7d).

Figure S74. ¹H NMR (CDCl₃) spectrum of 4-(benzofuran-2-yl)biphenyl (7e).

Figure S75. ¹³C NMR (CDCl₃) spectrum of 4-(benzofuran-2-yl)biphenyl (7e).

Figure S76. ¹H NMR (CDCl₃) spectrum of 2-(4-methoxyphenyl)thiazole (11b).

Figure S77. ¹³C NMR (CDCl₃) spectrum of 2-(4-methoxyphenyl)thiazole (11b).

Figure S78. ¹H NMR (CDCl₃) spectrum of 2-phenylthiazole (11c).

Figure S79. ¹³C NMR (CDCl₃) spectrum of 2-phenylthiazole (11c).

Figure S80. ¹H NMR (CDCl₃) spectrum of 2-(3, 5-dimethylphenyl)thiazole (11d).

Figure S81. ¹³C NMR (CDCl₃) spectrum of 2-(3, 5-dimethylphenyl)thiazole (11d).

Figure S82. ¹H NMR (CDCl₃) spectrum of 2-biphenylthiazole (11e).

Figure S83. ¹³C NMR (CDCl₃) spectrum of 2-biphenylthiazole (11e).

Figure S84. ¹H NMR (CDCl₃) spectrum of 2-(4-methylphenyl)thiazole (11f).

Figure S85. ¹³C NMR (CDCl₃) spectrum of 2-(4-methylphenyl)thiazole (11f).

Figure S86. Reaction mixture ¹H NMR (CDCl₃) spectrum of 5-methyl-5,6-dihydrophenanthridine (**12a**).

Figure S87. Reaction mixture ¹³C NMR (CDCl₃) spectrum of 5-methyl-5,6dihydrophenanthridine (**12a**).

Figure S88. Reaction mixture ¹H NMR (CDCl₃) spectrum of 2-chloro-5-methyl-5,6dihydrophenanthridine (**12b**).

Figure S89. Reaction mixture 13 C NMR (CDCl₃) spectrum of 2-chloro-5-methyl-5,6-dihydrophenanthridine (12b).

Figure S90. Reaction mixture ¹H NMR (CDCl₃) spectrum of 2-fluoro-5-methyl-5,6dihydrophenanthridine (**12c**).

Figure S91. Reaction mixture 13 C NMR (CDCl₃) spectrum of 2-fluoro-5-methyl-5,6-dihydrophenanthridine (12c).

dihydrophenanthridine (12d).

Figure S93. Reaction mixture ¹³C NMR (CDCl₃) spectrum of 2-methoxy-5-methyl-5,6dihydrophenanthridine (**12d**).

Figure S94. Reaction mixture ¹H NMR (CDCl₃) spectrum of 8-methoxy-5-methyl-5,6dihydrophenanthridine (**12e**).

dihydrophenanthridine (12e).

Figure S96. ¹H NMR (CDCl₃) spectrum of the phenalenyl parts, obtained after column chromatography of the catalytic reaction mixture.

23. Mass spectra:

Figure S97. Mass spectrum of reaction mixture for the chlorobenzonitrile by doubly-reduced PLY(O,O)-K complex.

Figure S98. Reaction mixture mass spectrum of a catalytic reaction between N-methylpyrrole and chlorobenzonitrile.

Figure S99. Mass spectrum of reaction mixture for radical trapping experiment with TEMPO radical.

24. Computational study for the catalytic reactions:

Figure S100. Energy profile diagram for aryl radical attack to N-methylpyrrole.

Figure S101. Plot of reaction exothermicity and transition state energy barriers.

Figure S102: Optimized geometries the transition states of with different aryl radical corresponding to TS1.

Table S7: Energies, enthalpies, and free energies (in Hartree) of the optimized structures of all transition states and intermediates.

Structure	ZPE	$\Delta \mathbf{E}$	$\Delta \mathbf{H}$	$\Delta \mathbf{G}$	Ε	Н	G	IF(cm ⁻	Infrared
								1)	
Int1(Me)	0.11449	0.12071	0.12165	0.08323	-270.78244	-270.78149	-270.81991		
TS2(Me)	0.22503	0.23797	0.23891	0.18076	-520.16446	-520.16351	-520.22166	-245.5	38.4
Int2(Me)	0.22703	0.23954	0.24048	0.18579	-520.20892	-520.20798	-520.26267		
N-Me-	0.11012	0.11571	0.11665	0.08105	-249.38960	-249.38866	-249.42426		
pyrrole									
Int1(diMe)	0.14166	0.14982	0.15076	0.10585	-310.07536	-310.07442	-310.11934		
TS2(diMe)	0.25213	0.26699	0.26793	0.20429	-559.45676	-559.45581	-559.51946	-253.7	37.5
Int2(diMe)	0.25420	0.26859	0.26954	0.21005	-559.50059	-559.49965	-559.55913		
. (

Int1(H)	0.08720	0.09160	0.09254	0.09254	-231.49115	-231.49021	-231.52361		
TS2(H)	0.19785	0.20886	0.20981	0.15794	-480.87332	-480.87238	-480.92425	-245.5	39.4
Int2(H)	0.19991	0.21048	0.21142	0.16210	-480.91716	-480.91622	-480.96555		
Int1(OMe)	0.11977	0.12666	0.12761	0.08806	-345.98524	-345.98430	-346.02385		
TS2(OMe)	0.23024	0.24388	0.24482	0.18638	-595.36782	-595.36688	-595.42532	-235.1	38.9
Int2(OMe)	0.23223	0.24545	0.24639	0.19076	-595.41282	-595.41187	-595.46750		
Int1(Ph)	0.16821	0.17711	0.17805	0.13296	-462.47732	-462.47638	-462.52146		
TS2(Ph)	0.27863	0.29433	0.29527	0.23068	-711.86003	-711.85909	-711.92368	-233.6	43.6
Int2(Ph)	0.28064	0.29592	0.29687	0.23564	-711.90411	-711.90317	-711.96440		

Figure S103: Energy profile diagram for full reaction of direct C-H arylation of arenes/heteroarenes.

 Table S8: Activation energy barriers for different transition states for different arenes and heteroarenes.

Arenes/	ΔG1 [≠]	ΔG_2^{\neq}
HetAr-H	(kcal/mole)	(kcal/mole)
N-Methylpyrrole	13.1	17.9
Furan	12.8	9.1
Thiophene	14.0	9.2
Benzofuran	13.0	7.5
Benzene	16.9	10.4
Xylene	15.7	12.5

Table S9:	Energ	ies, e	enthalpies,	and fre	e en	nergies (in	Hartree)	of the optimized	structures o	f all
transition	states	and	intermedia	tes wit	h t	heoretical	method	b3lyp/6-31+g(d);	(CPCM; n	, n-
dimethylfo	ormami	de).								

Ia ² 0.15474 0.16775 0.16870 0.11429 - - - - Ia ² 0.15474 0.16775 0.16870 0.11429 - 1250.03055 1250.07961 1250.13402 - Ia ^a 0.17093 0.17187 0.11715 0.18076 -	Structure	ZPE	$\Delta \mathbf{E}$	$\Delta \mathbf{H}$	$\Delta \mathbf{G}$	Ε	Н	G	IF(cm ⁻	Infrared
Ia ² 0.15474 0.16775 0.16870 0.11429 - - - - Ia [*] 0.17093 0.17187 0.11715 0.18076 - 1250.08055 1250.07961 1250.13402 Ia [*] 0.17093 0.17187 0.11715 0.18076 - - - - Int1(CN) 0.08596 0.09208 0.09302 0.05505 -323.73923 -323.73828 -323.77626 N-Me- pyrrole 0.11012 0.11571 0.11665 0.08105 -249.38960 -249.38866 -249.42426 'O'Bu 0.12043 0.12664 0.12759 0.09194 -233.0638 -233.06292 -233.00057 TS2(N-py) 0.19673 0.20864 0.20959 0.15466 -573.12508 -573.12413 -573.17906 -173.6 50.0 Int2(N-py) 0.19856 0.21006 0.21100 0.16002 -573.16802 -573.16708 -573.17906 -1325 49402.7 Pdr ¹ (N- 0.18548 0.19706 0.19800 <									1)	
la ⁻ 0.15474 0.16775 0.16870 0.11429 -										
Ia* 0.17093 0.17187 0.11715 0.18076 1250.03055 1250.07961 1250.13402 1 Ia* 0.17093 0.17187 0.11715 0.18076 - 1 1250.02313 1250.07785 Intl(CN) 0.08596 0.09208 0.09302 0.05505 -323.73923 -323.73828 -323.77626 N-Me- pyrrole 0.11012 0.11571 0.11665 0.08105 -249.38960 -249.38866 -249.42426 O'Bu 0.12043 0.12664 0.12759 0.09194 -233.0638 -233.06292 -233.00957 TS2(N-py) 0.19673 0.20864 0.20959 0.15466 -573.12508 -573.12413 -573.17906 -173.6 50.0 Int2(N-py) 0.19856 0.21006 0.21100 0.16002 -573.16802 -573.12413 -573.12806 TS3(N-py) 0.31615 0.33608 0.33702 0.26548 -806.21766 -806.21671 -806.28825 -1325 49402.7 Pdt ¹ (N- py) 0.18548 0.19706	1a ²⁻	0.15474	0.16775	0.16870	0.11429	-	-	-		
Ia: 0.17093 0.17187 0.11715 0.18076 - - - - Intl(CN) 0.08596 0.09208 0.09302 0.05505 -323.73923 -323.73828 -323.77626 N-Me- pyrrole 0.11012 0.11571 0.11665 0.08105 -249.38960 -249.38866 -249.42426 'O'Bu 0.12043 0.12664 0.12759 0.09194 -233.0638 -233.06292 -233.09856 HO'Bu 0.13534 0.14192 0.14287 0.10651 -233.56515 -233.56421 -233.60057 TS2(N-py) 0.19673 0.20864 0.20959 0.15466 -573.12508 -573.12413 -573.17906 -173.6 50.0 Int2(N-py) 0.19856 0.21006 0.21000 0.16002 -573.16802 -573.21806 - TS3(N-py) 0.31615 0.33608 0.33702 0.26548 -806.21766 -806.21671 -806.28825 -1325 49402.7 Pdt ¹ (N- py) 0.18548 0.19706 0.19800 0.14649 <th></th> <th></th> <th></th> <th></th> <th></th> <th>1250.08055</th> <th>1250.07961</th> <th>1250.13402</th> <th></th> <th></th>						1250.08055	1250.07961	1250.13402		
Id 0.11/13/1 0.11/13/1 0.13/13/1 0.13/13/1 0.13/13/1 1250.02407 1250.02313 1250.07785 Intl(CN) 0.08596 0.09208 0.09302 0.05505 -323.73923 -323.73828 -323.77626 N-Me- pyrrole 0.11012 0.11571 0.11665 0.08105 -249.38960 -249.38866 -249.42426 'O'Bu 0.12043 0.12664 0.12759 0.09194 -233.0638 -233.06292 -233.09856 HO'Bu 0.13534 0.14192 0.14287 0.10651 -233.56515 -233.56421 -233.60057 TS2(N-py 0.19673 0.20864 0.20959 0.15466 -573.12508 -573.12413 -573.17906 -173.6 50.0 Int2(N-py 0.19856 0.21006 0.21100 0.16002 -573.16802 -573.21806 - TS3(N-py) 0.31615 0.33608 0.33702 0.26548 -806.21761 -806.28825 -1325 49402.7 Pdt ¹ (N- py) 0.18548 0.19706 0.19800 <td< th=""><th>10</th><th>0 17003</th><th>0 17187</th><th>0 11715</th><th>0 18076</th><th></th><th></th><th></th><th></th><th></th></td<>	10	0 17003	0 17187	0 11715	0 18076					
Intl(CN) 0.08596 0.09208 0.09302 0.05505 -323.73923 -323.73828 -323.77626 N-Me- pyrrole 0.11012 0.11571 0.11665 0.08105 -249.38960 -249.38866 -249.42426 O'Bu 0.12043 0.12664 0.12759 0.09194 -233.0638 -233.06292 -233.09856 HO'Bu 0.13534 0.14192 0.14287 0.10651 -233.56515 -233.56421 -233.60057 TS2(N-py) 0.19673 0.20864 0.20959 0.15466 -573.12508 -573.12413 -573.17906 -173.6 50.0 Int2(N-py) 0.19673 0.20864 0.20959 0.15466 -573.12508 -573.12413 -573.21806 TS3(N-py) 0.31615 0.33608 0.33702 0.26548 -806.21671 -806.28825 -1325 49402.7 Pdt ⁴ (N- py) 0.18548 0.19706 0.19800 0.14649 -572.70526 -572.70432 -573.7538 Furan 0.06982 0.07355 0.07449 0.04353 <	1a	0.17095	0.17107	0.11713	0.16070	1250 02407	1250 02313	-		
Intl(CN) 0.08596 0.09208 0.09302 0.05505 -323.7323 -323.73828 -323.77626 N-Me- pyrrole 0.11012 0.11571 0.11665 0.08105 -249.38860 -249.38866 -249.42426 'O'Bu 0.12043 0.12664 0.12759 0.09194 -233.0638 -233.06292 -233.09856 HO'Bu 0.13534 0.14192 0.14287 0.10651 -233.56515 -233.56421 -233.60057 TS2(N-py) 0.19673 0.20864 0.20959 0.15466 -573.12508 -573.12413 -573.17906 -173.6 50.0 Int2(N-py) 0.19856 0.21006 0.21100 0.16002 -573.16802 -573.12413 -573.21806 TS3(N-py) 0.31615 0.33608 0.33702 0.26548 -806.21766 -806.21671 -806.28825 -1325 49402.7 Pdt'(N- py) 0.31615 0.33608 0.13702 0.26548 -502.70526 -572.70432 -572.75583 Furan 0.06982 0.07355 0.07449						1230.02407	1250.02515	1250.07705		
N-Me- pyrrole 0.11012 0.11571 0.11665 0.08105 -249.38860 -249.38866 -249.42426 O'Bu 0.12043 0.12664 0.12759 0.09194 -233.0638 -233.06292 -233.09856 HO'Bu 0.13534 0.14192 0.14287 0.10651 -233.56515 -233.56421 -233.60057 TS2(N-py) 0.19673 0.20864 0.20959 0.15466 -573.12508 -573.12413 -573.17906 -173.6 50.0 Int2(N-py) 0.19856 0.21006 0.21100 0.16002 -573.16708 -573.21806 TS3(N-py) 0.31615 0.33608 0.33702 0.26548 -806.21671 -806.28825 -1325 49402.7 Pdt ¹ (N- py) 0.18548 0.19706 0.19800 0.14649 -572.70526 -572.70432 -572.7583 - Furan 0.06982 0.07355 0.07449 0.04353 -229.96707 -229.99802 - TS2(Fur) 0.15609 0.16709 0.16803 0.11566 -553.75574	Int1(CN)	0.08596	0.09208	0.09302	0.05505	-323.73923	-323.73828	-323.77626		
N·Me- pyrrole 0.11012 0.11571 0.11665 0.08105 -249.38960 -249.38866 -249.42426 'O'Bu 0.12043 0.12664 0.12759 0.09194 -233.0638 -233.06292 -233.09856 HO'Bu 0.13534 0.14192 0.14287 0.10651 -233.56515 -233.56421 -233.60057 TS2(N-py) 0.19673 0.20864 0.20959 0.15466 -573.12508 -573.12413 -573.17906 -173.6 50.0 Int2(N-py) 0.19856 0.21006 0.21100 0.16002 -573.16802 -573.12413 -573.21806 TS3(N-py) 0.31615 0.33608 0.33702 0.26548 -806.21766 -806.21671 -806.28825 -1325 49402.7 Pdt ¹ (N- py) 0.18548 0.19706 0.19800 0.14649 -572.70526 -572.70432 -572.7583 -553.7534 -209.8 49.6 Furan 0.06982 0.07355 0.07449 0.04353 -229.96707 -229.99802										
pyrrole . </th <th>N-Me-</th> <th>0.11012</th> <th>0.11571</th> <th>0.11665</th> <th>0.08105</th> <th>-249.38960</th> <th>-249.38866</th> <th>-249.42426</th> <th></th> <th></th>	N-Me-	0.11012	0.11571	0.11665	0.08105	-249.38960	-249.38866	-249.42426		
O'Bu 0.12043 0.12664 0.12759 0.09194 -233.0638 -233.06292 -233.09856 HO'Bu 0.13534 0.14192 0.14287 0.10651 -233.56515 -233.56421 -233.00057 TS2(N-py) 0.19673 0.20864 0.20959 0.15466 -573.12508 -573.12413 -573.17906 -173.6 50.0 Int2(N-py) 0.19856 0.21006 0.21100 0.16002 -573.16802 -573.16708 -573.21806 TS3(N-py) 0.31615 0.33608 0.33702 0.26548 -806.21766 -806.21671 -806.28825 -1325 49402.7 Pdt ⁻¹ (N- py) 0.18548 0.19706 0.19800 0.14649 -572.70526 -572.70432 -572.75583 - Furan 0.06982 0.07355 0.07449 0.04353 -229.96801 -229.99707 -229.99802 TS2(Fur) 0.15609 0.16709 0.16803 0.11546 -553.70232 -553.70138 -553.7534 -209.8 49.6 Int2(Fur) 0.15836	pyrrole									
O'Bu 0.12043 0.12644 0.12759 0.09194 -233.0638 -233.06392 -233.09356 HO'Bu 0.13534 0.14192 0.14287 0.10651 -233.56515 -233.56421 -233.60057 TS2(N-py) 0.19673 0.20864 0.20959 0.15466 -573.12508 -573.12413 -573.17906 -173.6 50.0 Int2(N-py) 0.19856 0.21006 0.21100 0.16002 -573.16802 -573.16708 -573.21806 TS3(N-py) 0.31615 0.33608 0.33702 0.26548 -806.21766 -806.21671 -806.28825 -1325 49402.7 Pdt ¹ (N- 0.18548 0.19706 0.19800 0.14649 -572.70526 -572.70432 -572.7583 Furan 0.06982 0.07355 0.07449 0.04353 -229.96801 -229.99802	-0/D	0.120.42	0.10((4	0.10750	0.00104	222.0620	222.06202	222.0005.6		
HO'Bu 0.13534 0.14192 0.14287 0.10651 -233.56515 -233.56421 -233.60057 TS2(N-py) 0.19673 0.20864 0.20959 0.15466 -573.12508 -573.12413 -573.17906 -173.6 50.0 Int2(N-py) 0.19856 0.21006 0.21100 0.16002 -573.16802 -573.16708 -573.21806 TS3(N-py) 0.31615 0.33608 0.33702 0.26548 -806.21766 -806.21671 -806.28825 -1325 49402.7 Pdt ⁻¹ (N- py) 0.18548 0.19706 0.19800 0.14649 -572.70526 -572.70432 -572.7583 Furan 0.06982 0.07355 0.07449 0.04353 -229.96801 -229.96707 -229.99802 TS2(Fur) 0.15609 0.16709 0.16803 0.11546 -553.70232 -553.75574 -553.80597 TS3(Fur) 0.27589 0.29416 0.29510 0.22694 -786.82287 -786.82192 -786.89009 -762.0 12148.2 Pdt ⁻¹ (F	O'Bu	0.12043	0.12664	0.12/59	0.09194	-233.0638	-233.06292	-233.09856		
Loose Loose <thloose< th=""> <thloose< th=""> <thlo< th=""><th>HO[/]Bu</th><th>0.13534</th><th>0.14192</th><th>0.14287</th><th>0.10651</th><th>-233.56515</th><th>-233.56421</th><th>-233.60057</th><th></th><th></th></thlo<></thloose<></thloose<>	HO [/] Bu	0.13534	0.14192	0.14287	0.10651	-233.56515	-233.56421	-233.60057		
TS2(N-py) 0.19673 0.20864 0.20959 0.15466 -573.12508 -573.12413 -573.17906 -173.6 50.0 Int2(N-py) 0.19856 0.21006 0.21100 0.16002 -573.16802 -573.16708 -573.12806 TS3(N-py) 0.31615 0.33608 0.33702 0.26548 -806.21766 -806.21671 -806.28825 -1325 49402.7 Pdt ⁻¹ (N- 0.18548 0.19706 0.19800 0.14649 -572.70526 -572.70432 -572.75583 - Furan 0.06982 0.07355 0.07449 0.04353 -229.96801 -229.96707 -229.99802 TS2(Fur) 0.15609 0.16709 0.16803 0.11546 -553.70232 -553.70138 -553.75394 -209.8 49.6 Int2(Fur) 0.15836 0.16899 0.11971 -553.7568 -553.75574 -553.80597 - TS3(Fur) 0.27589 0.29416 0.29510 0.22694 -786.82287 -786.82192 -786.89009 -762.0 12148.2 Pdt ⁻¹ (Fur) 0.14549 0.15593 0.15687 0.10808 -553										
Int2(N-py) 0.19856 0.21006 0.21100 0.16002 -573.16802 -573.16708 -573.21806 TS3(N-py) 0.31615 0.33608 0.33702 0.26548 -806.21766 -806.21671 -806.28825 -1325 49402.7 Pdt ⁻¹ (N- py) 0.18548 0.19706 0.19800 0.14649 -572.70526 -572.70432 -572.75583 - Furan 0.06982 0.07355 0.07449 0.04353 -229.96801 -229.96707 -229.99802 - TS2(Fur) 0.15609 0.16709 0.16803 0.11546 -553.70232 -553.7574 -553.80597 TS3(Fur) 0.27589 0.29416 0.29510 0.22694 -786.82287 -786.82192 -786.89009 -762.0 12148.2 Pdt ⁻¹ (Fur) 0.14549 0.15593 0.15687 0.10808 -553.30276 -553.30182 -553.3506 - TS2(Thio) 0.15277 0.16419 0.16513 0.11110 -876.68266 -876.68172 -876.73575 -255.6 28.0 <th>TS2(N-py)</th> <th>0.19673</th> <th>0.20864</th> <th>0.20959</th> <th>0.15466</th> <th>-573.12508</th> <th>-573.12413</th> <th>-573.17906</th> <th>-173.6</th> <th>50.0</th>	TS2(N-py)	0.19673	0.20864	0.20959	0.15466	-573.12508	-573.12413	-573.17906	-173.6	50.0
Int2(N-py) 0.19856 0.21006 0.21100 0.16002 -573.16802 -573.16708 -573.21806 TS3(N-py) 0.31615 0.33608 0.33702 0.26548 -806.21766 -806.21671 -806.28825 -1325 49402.7 Pdt ⁻¹ (N- py) 0.18548 0.19706 0.19800 0.14649 -572.70526 -572.70432 -572.75583 - Furan 0.06982 0.07355 0.07449 0.04353 -229.96801 -229.96707 -229.99802 - TS2(Fur) 0.15609 0.16709 0.16803 0.11546 -553.70232 -553.7514 -553.80597 - TS3(Fur) 0.27589 0.29416 0.29510 0.22694 -786.82287 -786.82192 -786.89009 -762.0 12148.2 Pdt ⁻¹ (Fur) 0.14549 0.15593 0.15687 0.10808 -553.30276 -553.30182 -553.3506 - Thiophene 0.06654 0.07063 0.07158 0.03930 -552.95046 -552.94951 -552.98180 - TS2(Thio) 0.15277 0.16419 0.16513 0.11110 -876.68266<										
TS3(N-py) 0.31615 0.33608 0.33702 0.26548 -806.21766 -806.21671 -806.28825 -1325 49402.7 Pdt ⁻¹ (N- py) 0.18548 0.19706 0.19800 0.14649 -572.70526 -572.70432 -572.75583 - Furan 0.06982 0.07355 0.07449 0.04353 -229.96801 -229.96707 -229.99802 - TS2(Fur) 0.15609 0.16709 0.16803 0.11546 -553.70232 -553.70138 -553.75394 -209.8 49.6 Int2(Fur) 0.15836 0.16899 0.16994 0.11971 -553.75668 -553.75574 -553.80597 - TS3(Fur) 0.27589 0.29416 0.29510 0.22694 -786.82287 -786.82192 -786.89009 -762.0 12148.2 Pdt ⁻¹ (Fur) 0.14549 0.15593 0.15687 0.10808 -553.30276 -553.30182 -553.3506 - Thiophene 0.06654 0.07063 0.07158 0.03930 -552.95046 -552.94951 -552.98180 - TS2(Thio) 0.15277 0.16419 0.16513	Int2(N-py)	0.19856	0.21006	0.21100	0.16002	-573.16802	-573.16708	-573.21806		
Host(rpy) 0.15101 0.15102 0.15102 0.15101 0.00121100 0.00121100 0.00121011 0.0012022 1523 1522 1522 1523 <th1533< th=""> 1523 <th1533< th=""> <</th1533<></th1533<>	TS3(N-nv)	0 31615	0 33608	0 33702	0 26548	-806 21766	-806 21671	-806 28825	-1325	49402 7
Pdt ⁻¹ (N- py) 0.18548 0.19706 0.19800 0.14649 -572.70526 -572.70432 -572.75583	105(1 1-py)	0.51015	0.55000	0.33702	0.203 10	000.21700	000.21071	000.20025	1525	19102.7
py) Image: Second	Pdt ⁻¹ (N-	0.18548	0.19706	0.19800	0.14649	-572.70526	-572.70432	-572.75583		
Furan 0.06982 0.07355 0.07449 0.04353 -229.96801 -229.96707 -229.99802 TS2(Fur) 0.15609 0.16709 0.16803 0.11546 -553.70232 -553.70138 -553.75394 -209.8 49.6 Int2(Fur) 0.15836 0.16899 0.16994 0.11971 -553.75668 -553.75574 -553.80597 TS3(Fur) 0.27589 0.29416 0.29510 0.22694 -786.82287 -786.82192 -786.89009 -762.0 12148.2 Pdt ⁻¹ (Fur) 0.14549 0.15593 0.15687 0.10808 -553.30276 -553.30182 -553.3506 Thiophene 0.06654 0.07063 0.07158 0.03930 -552.95046 -552.94951 -552.98180 TS2(Thio) 0.15277 0.16419 0.16513 0.11110 -876.68266 -876.68172 -876.73575 -255.6 28.0	py)									
Furan 0.06982 0.07355 0.07449 0.04353 -229.96801 -229.96707 -229.99802 TS2(Fur) 0.15609 0.16709 0.16803 0.11546 -553.70232 -553.70138 -553.75394 -209.8 49.6 Int2(Fur) 0.15836 0.16899 0.16994 0.11971 -553.75668 -553.75574 -553.80597 - TS3(Fur) 0.27589 0.29416 0.29510 0.22694 -786.82287 -786.82192 -786.89009 -762.0 12148.2 Pdt ⁻¹ (Fur) 0.14549 0.15593 0.15687 0.10808 -553.30276 -553.30182 -553.3506 - Thiophene 0.06654 0.07063 0.07158 0.03930 -552.95046 -552.94951 -552.98180 - TS2(Thio) 0.15277 0.16419 0.16513 0.11110 -876.68266 -876.68172 -876.73575 -255.6 28.0										
TS2(Fur) 0.15609 0.16709 0.16803 0.11546 -553.70232 -553.70138 -553.75394 -209.8 49.6 Int2(Fur) 0.15836 0.16899 0.16994 0.11971 -553.75668 -553.75574 -553.80597 - TS3(Fur) 0.27589 0.29416 0.29510 0.22694 -786.82287 -786.82192 -786.89009 -762.0 12148.2 Pdt ⁻¹ (Fur) 0.14549 0.15593 0.15687 0.10808 -553.30276 -553.30182 -553.3506 - Thiophene 0.06654 0.07063 0.07158 0.03930 -552.95046 -552.94951 -552.98180 - TS2(Thio) 0.15277 0.16419 0.16513 0.11110 -876.68266 -876.68172 -876.73575 -255.6 28.0	Furan	0.06982	0.07355	0.07449	0.04353	-229.96801	-229.96707	-229.99802		
Int2(Fur) 0.15836 0.16899 0.16994 0.11971 -553.75668 -553.75574 -553.80597 Int2(Fur) 0.15836 0.16899 0.16994 0.11971 -553.75668 -553.75574 -553.80597 TS3(Fur) 0.27589 0.29416 0.29510 0.22694 -786.82287 -786.82192 -786.89009 -762.0 12148.2 Pdt ⁻¹ (Fur) 0.14549 0.15593 0.15687 0.10808 -553.30276 -553.30182 -553.3506 - Thiophene 0.06654 0.07063 0.07158 0.03930 -552.95046 -552.94951 -552.98180 - TS2(Thio) 0.15277 0.16419 0.16513 0.11110 -876.68266 -876.68172 -876.73575 -255.6 28.0	TS2(Fur)	0 15600	0 16700	0 16803	0.11546	553 70232	553 70138	553 75304	200.8	19.6
Int2(Fur) 0.15836 0.16899 0.16994 0.11971 -553.75668 -553.75574 -553.80597 TS3(Fur) 0.27589 0.29416 0.29510 0.22694 -786.82287 -786.82192 -786.89009 -762.0 12148.2 Pdt ⁻¹ (Fur) 0.14549 0.15593 0.15687 0.10808 -553.30276 -553.30182 -553.3506 Thiophene 0.06654 0.07063 0.07158 0.03930 -552.95046 -552.94951 -552.98180 TS2(Thio) 0.15277 0.16419 0.16513 0.11110 -876.68266 -876.68172 -876.73575 -255.6 28.0	152(111)	0.15009	0.10709	0.10005	0.11540	-333.70232	-555.70158	-333.13394	-209.8	49.0
TS3(Fur) 0.27589 0.29416 0.29510 0.22694 -786.82287 -786.82192 -786.89009 -762.0 12148.2 Pdt ⁻¹ (Fur) 0.14549 0.15593 0.15687 0.10808 -553.30276 -553.30182 -553.3506 Thiophene 0.06654 0.07063 0.07158 0.03930 -552.95046 -552.94951 -552.98180 TS2(Thio) 0.15277 0.16419 0.16513 0.11110 -876.68266 -876.68172 -876.73575 -255.6 28.0	Int2(Fur)	0.15836	0.16899	0.16994	0.11971	-553.75668	-553.75574	-553.80597		
TS3(Fur) 0.27589 0.29416 0.29510 0.22694 -786.82287 -786.82192 -786.89009 -762.0 12148.2 Pdt ⁻¹ (Fur) 0.14549 0.15593 0.15687 0.10808 -553.30276 -553.30182 -553.3506 - Thiophene 0.06654 0.07063 0.07158 0.03930 -552.95046 -552.94951 -552.98180 - TS2(Thio) 0.15277 0.16419 0.16513 0.11110 -876.68266 -876.68172 -876.73575 -255.6 28.0										
Pdt ⁻¹ (Fur) 0.14549 0.15593 0.15687 0.10808 -553.30276 -553.30182 -553.3506 Thiophene 0.06654 0.07063 0.07158 0.03930 -552.95046 -552.94951 -552.98180 TS2(Thio) 0.15277 0.16419 0.16513 0.11110 -876.68266 -876.68172 -876.73575 -255.6 28.0	TS3(Fur)	0.27589	0.29416	0.29510	0.22694	-786.82287	-786.82192	-786.89009	-762.0	12148.2
Pdt (Pur) 0.14349 0.13393 0.13687 0.10808 -333.30276 -333.30182 -333.306 Thiophene 0.06654 0.07063 0.07158 0.03930 -552.95046 -552.94951 -552.98180 TS2(Thio) 0.15277 0.16419 0.16513 0.11110 -876.68266 -876.68172 -876.73575 -255.6 28.0	D.J4-1(E)	0 1 4 5 4 0	0 15502	0 15697	0 10000	552 20276	552 20192	552 2506		
Thiophene 0.06654 0.07063 0.07158 0.03930 -552.95046 -552.94951 -552.98180 TS2(Thio) 0.15277 0.16419 0.16513 0.11110 -876.68266 -876.68172 -876.73575 -255.6 28.0	Pat (Fur)	0.14549	0.15595	0.13087	0.10808	-335.50270	-335.50182	-355.5500		
TS2(Thio) 0.15277 0.16419 0.16513 0.11110 -876.68266 -876.68172 -876.73575 -255.6 28.0	Thiophene	0.06654	0.07063	0.07158	0.03930	-552.95046	-552.94951	-552.98180		
TS2(Thio) 0.15277 0.16419 0.16513 0.11110 -876.68266 -876.68172 -876.73575 -255.6 28.0	•									
	TS2(Thio)	0.15277	0.16419	0.16513	0.11110	-876.68266	-876.68172	-876.73575	-255.6	28.0
	T (0/17) · · ·	0 155 47	0.16676	0.16751	0.11620	076 70010	076 72017	076 70000		
Int2(1nto) 0.15547 0.16656 0.16751 0.11639 $-8/6.73912 -8/6.73817 -8/6.78929 $	Int2(Thio)	0.15547	0.16656	0.16/51	0.11639	-876.73912	-8/6./381/	-8/6./8929		
TS3(Thio) 0.27360 0.29223 0.29318 0.22404439.5 5664.9	TS3(Thio)	0.27360	0.29223	0.29318	0.22404	_	-	-	-439 5	5664 9
		0.27000	0.27220	0.29010	0.22101	1109.80517	1109.80423	1109.87337		200119
Pdt ⁻¹ (Thi)	0.14253	0.15345	0.15439	0.10430	-876.28343	-876.28249	-876.33259			
-------------------------	---------	---------	---------	---------	------------	------------	------------	--------	--------	
Benzene	0.10036	0.10477	0.10571	0.07289	-232.16641	-232.16547	-232.19829			
TS2(Ben)	0.18649	0.19814	0.19908	0.14543	-555.89499	-555.89405	-555.94770	-314.4	7.3	
Int2(Ben)	0.18839	0.19980	0.20075	0.14844	-555.93330	-555.9323	-555.98467			
TS3(Ben)	0.30827	0.32682	0.32776	0.25945	-788.99937	-788.99843	-789.06675	-124.7	498.4	
Pdt ⁻¹ (Ben)	0.17630	0.18746	0.18840	0.13747	-555.49285	-555.49190	-555.54284			
Xylene	0.15465	0.16192	0.16287	0.12210	-310.75063	-310.74968	-310.79045			
TS2(Xyl)	0.24099	0.25631	0.25725	0.19432	-634.47984	-634.47890	-634.54183	-286.1	13.0	
Int2(Xyl)	0.24341	0.25817	0.25911	0.19984	-634.51878	-634.51784	-634.57711			
TS3(Xyl)	0.36120	0.38355	0.38449	0.30807	-867.58033	-867.57939	-867.65581	-993.1	9473.3	
Pdt ⁻¹ (Xyl)	0.23117	0.24562	0.24657	0.18866	-634.06698	-634.06604	-634.12395			
BenzoFur	0.11707	0.12306	0.12401	0.08692	-383.57876	-383.57782	-383.61491			
TS2(BFu)	0.20314	0.21656	0.21750	0.15902	-707.31307	-707.31212	-707.37061	-201.7	38.1	
Int2(BFu)	0.20567	0.21871	0.21965	0.16343	-707.37073	-707.36979	-707.42601			
TS3(BFu)	0.32391	0.34447	0.34542	0.27163	-940.43980	-940.43885	-940.51264	-317.4	3358.9	
Pdt ⁻¹ (BFu)	0.19263	0.20557	0.20651	0.15176	-706.92026	-706.91931	-706.97406			

Table S10: Energies, enthalpies, and free energies (in Hartree) of the optimized structures of all transition states and intermediates with theoretical method wB97XD/6-31+g(d); (CPCM; n, n-dimethylformamide).

Structure	ZPE	$\Delta \mathbf{E}$	$\Delta \mathbf{H}$	$\Delta \mathbf{G}$	Ε	Н	G	IF(cm ⁻	Infrared
								1)	
1a ²⁻	0.15703	0.16987	0.17081	0.11658	-	-	-		
					1249.84104	1249.84010	1249.89433		
1a ⁻	0.16043	0.17286	0.17380	0.11940	-	-	-		
					1249.78693	1249.78599	1249.84039		

Sub	0.09074	0.09796	0.09890	0.05829	-783.87263	-783.87168	-783.91229		
Sub ⁻	0.08730	0.09556	0.09651	0.05329	-783.92734	-783.92640	-783.96962		
Int1(CN)	0.08713	0.09316	0.09411	0.05629	-323.60734	-323.60639	-323.64421		
N-Me- pyrrole	0.11155	0.11627	0.11722	0.08363	-249.29259	-249.29164	-249.32523		
⁻ O'Bu	0.12311	0.12924	0.13019	0.09461	-232.97528	-232.97433	-233.00991		
HO'Bu	0.13716	0.14373	0.14467	0.10832	-233.47407	-233.47313	-233.50948		
TS2(CN)	0.19929	0.21194	0.21288	0.15658	-572.90122	-572.90028	-572.95658	-253.2	114.3
Int2(CN)	0.20140	0.21365	0.21460	0.16109	-572.94984	-572.94889	-573.00239		
TS3(CN)	0.32145	0.34086	0.34180	0.27297	-805.92210	-805.92116	-805.99000	-1430	14429.4
Pdt ⁻¹ (CN)	0.18806	0.19874	0.19968	0.15022	-572.48650	-572.48556	-572.53502		

Table S11: Energies, enthalpies, and free energies (in Hartree) of the optimized structures of different molecules (Opt) and their monoreduced moieties' single point (SP) calculation at the *w*B97XD theory level with 6-31+g(d) basis set considering CPCM (n,n-dimethylformamide) solvent model.

Optimized structures (Opt + Freq)

Single-point energy calculation (Freq)

Structure	ZPE	$\Delta \mathbf{E}$	$\Delta \mathbf{H}$	$\Delta \mathbf{G}$	Е	Η	G	IF(cm ⁻	Infrared
								1)	
1- (O · F)	0.16042	0.17296	0 17200	0.11040					
1a (O+F)	0.16043	0.1/286	0.1/380	0.11940	-	-	-		
					1249.78693	1249.78599	1249.84039		
11-(O · F)	0.20000	0.01472	0.215(9	0 15741					
1D (O+F)	0.20080	0.214/3	0.21568	0.15741	-	-	-		
					1269.13923	1269.13828	1269.19655		
Pdt(O+F)	0.19292	0.20447	0.20541	0.15478	-572.40819	-572.40724	-572.45787		
Sub(O+F)	0.09074	0.09796	0.09890	0.05829	-783.87263	-783.87168	-783.91229		
$1a^{2}(SP)$	0.15708	0.16861	0.16955	0.11892	-	-	-		
					1249.83720	1249.83626	1249.88689		
1b ²⁻ (SP)	0.19716	0.21023	0.21118	0.15701	-	-	-		
					1269.18550	1269.18455	1269.23872		
Pdt ⁻ (SP)	0.18837	0.19849	0.19943	0.15158	-572.48337	-572.48243	-572.53029		
Sub ⁻ (SP)	0.08626	0.09414	0.09508	0.05222	-783.92151	-783.92057	-783.96343		

Table S12: Energies, enthalpies, and free energies (in Hartree) of the optimized structures of different monoreduced molecules (Opt) and their neutral moieties' single point (SP) calculation at the *w*B97XD theory level with 6-31+g(d) basis set considering CPCM (n,n-dimethylformamide) solvent model.

<u>Single-point energy calculation (Freq)</u>

Structure	ZPE	$\Delta \mathbf{E}$	$\Delta \mathbf{H}$	$\Delta \mathbf{G}$	Ε	Н	G	IF(cm ⁻	Infrared
								1)	
1a ²⁻ (O+F)	0.15703	0.16987	0.17081	0.11658	-	-	-		
					1249.84104	1249.84010	1249.89433		
1b ²⁻ (O+F)	0.19700	0.21125	0.21219	0.15503	-	-	-		
					1269.18957	1269.18863	1269.24579		
Pdt ⁻	0.18891	0.20089	0.20183	0.14961	-572.48798	-572.48703	-572.53926		
(O + F)									
Sub ⁻	0.08730	0.09556	0.09651	0.05329	-783.92734	-783.92640	-783.96962		
(O + F)									
1a ⁻ (SP)	0.15975	0.17191	0.17285	0.11991	-	-	-		
					1249.78295	1249.78200	1249.83495		
1b ⁻ (SP)	0.19992	0.21351	0.21445	0.15858	-	-	-		
					1269.13548	1269.13454	1269.19040		
Pdt(SP)	0.19214	0.20334	0.20429	0.1550	-572.40230	-572.40136	-572.45062		
Sub(SP)	0.08945	0.09656	0.09751	0.05723	-783.86648	-783.86554	-783.90581		

 Table S13: Electron transfer energy barriers for substrate activation process.

[PLY(O,O)-K] ²⁻ +	CI-CN	[PLY(0,0)-K] ⁻	+ CI-CN
(III; Cat ²⁻)	Sub	(II; Cat⁻)	Sub ⁻

Computational method	Reorganization Energy (eV)	Driving force ΔG^0 (kcal/mol)	Activation energy barrier
			ΔG^{\neq} (kcal/mol)
Basis set: $6-31+g(d)$	$\lambda 1 = 0.3165$	-2.14	$\Delta G^{\neq}_{\lambda 1} = 3.82$
Solvation: CPCM	$\lambda 2 = 0.3787$	-2.14	$\Delta G^{\neq}_{\lambda 2} = 5.22$
Basis set: $6-31+g(d)$	$\lambda 1 = 0.3175$	1.03	$\Delta G^{\neq} \lambda_1 = 2.38$
Solvation: SMD	$\lambda 2 = 0.3550$	1.03	$\Delta G^{\neq}_{\lambda 2} = 2.59$
Basis set:def2tzvpp	$\lambda 1 = 0.3027$	- 2.49	$\Delta G^{\neq} \lambda_1 = 0.72$
Solvation: CPCM	$\lambda 2 = 0.3878$	- 2.49	$\Delta G^{\neq} \lambda_2 = 1.16$
Basis set: def2tzvpp	$\lambda 1 = 0.2892$	1.39	$\Delta G^{\neq}_{\lambda 1} = 2.43$
Solvation: SMD	$\lambda 2 = 0.2545$	1.39	$\Delta G^{\neq} \lambda_2 = 2.43$

Table S14: Electron transfer energy barriers for catalyst regeneration process.

∠_N	$ + [PLY(0,0)-K] - + [PLY(0,0)-K]^{-} $											
Int	3 (II; Cat⁻)	Product (III;	Cat ²⁻)									
Computational method	Reorganization Energy (eV)	Driving force ΔG^0 (kcal/mol)	Activation energy barrier ΔG^{\neq} (kcal/mol)									
Basis set: 6-31+g(d)	$\lambda 1 = 0.3998$	17.3	$\Delta G^{\neq}_{\lambda 1} = 18.9$									
Solvation: CPCM	$\lambda 2 = 0.3924$	17.3	$\Delta G^{\neq}_{\lambda 2} = 19.0$									
Basis set: $6-31+g(d)$	$\lambda 1 = 0.3768$	14.7	$\Delta G^{\neq} \lambda_1 = 15.7$									
Solvation: SMD	$\lambda 2 = 0.4057$	14.7	$\Delta G^{\neq} \lambda_2 = 15.5$									
Basis set:def2tzvpp	$\lambda 1 = 0.4189$	17.5	$\Delta G^{\neq} \lambda_1 = 19.1$									
Solvation: CPCM	$\lambda 2 = 0.4131$	17.5	$\Delta G^{\neq} \lambda_2 = 19.2$									
Basis set: def2tzvpp	$\lambda 1 = 0.3914$	14.2	$\Delta G^{\neq}_{\lambda 1} = 14.9$									
Solvation: SMD	$\lambda 2 = 0.3965$	14.2	$\Delta G^{\neq} \lambda_2 = 14.9$									

Table S15: Electron transfer energy barriers for radical chain propagation process.

<u>(</u>			N
	Int3 Sub	Product Sub ⁻	
Computational method	Reorganization Energy (eV)	Driving force ΔG^0 (kcal/mol)	Activation energy barrier ΔG^{\neq} (kcal/mol)
Basis set: 6-31+g(d)	$\lambda 1 = 0.3655$	15.1	$\Delta G^{\neq} \lambda_1 = 16.4$
Solvation: CPCM	$\lambda 2 = 0.4201$	15.1	$\Delta G^{\neq} \lambda_2 = 15.8$
Basis set: $6-31+g(d)$	$\lambda 1 = 0.3590$	15.7	$\Delta G^{\neq} \lambda_1 = 17.4$
Solvation: SMD	$\lambda 2 = 0.4254$	15.7	$\Delta G^{\neq} \lambda_2 = 16.6$
Basis set:def2tzvpp	$\lambda 1 = 0.3567$	15.0	$\Delta G^{\neq} \lambda_1 = 16.4$
Solvation: CPCM	$\lambda 2 = 0.4361$	15.0	$\Delta G^{\neq}_{\lambda 2} = 15.6$
Basis set: def2tzvpp	$\lambda 1 = 0.3396$	15.6	$\Delta G^{\neq}_{\lambda 1} = 17.5$
Solvation: SMD	$\lambda 2 = 0.4307$	15.6	$\Delta G^{\neq}_{\lambda 2} = 16.4$

Table S16: Energies, enthalpies, and free energies (in Hartree) of the optimized structures of different monoreduced molecules (Opt) and their neutral moieties' single point (SP) calculation at the *w*B97XD theory level with 6-31+g(d) basis set considering SMD (n,n-dimethylformamide) solvent model.

Structure	ZPE	$\Delta \mathbf{E}$	$\Delta \mathbf{H}$	$\Delta \mathbf{G}$	Ε	Н	G	IF(Infra
								cm	red
								1)	
1a ²⁻ (O+F)	0.15717	0.16994	0.17088	0.11707	-1249.8315	-1249.8305	-1249.8843		
1a ²⁻ (SP)	0.15684	0.16842	0.16937	0.11883	-1249.8280	-1249.8271	-1249.8776		
1a ¹⁻ (O+F)	0.16046	0.17285	0.17379	0.11988	-1249.7748	-1249.7739	-1249.8278		
1a ¹⁻ (SP)	0.15993	0.17201	0.17296	0.12031	-1249.7705	-1249.7695	-1249.8222		
Pdt ⁻	0.18900	0.20093	0.20187	0.14982	-572.4955	-572.4945	-572.5466		
(O + F)									
Pdt ⁻ (SP)	0.18868	0.19867	0.19961	0.15216	-572.4908	-572.4898	-572.5373		
Pdt(O+F)	0.19299	0.20446	0.20541	0.15496	-572.4171	-572.4162	-572.4666		
Pdt(SP)	0.19213	0.20329	0.20424	0.15510	-572.4113	-572.4103	-572.4595		
Sub ⁻ (O+F)	0.08725	0.09548	0.09643	0.05326	-783.9302	-783.9293	-783.9725		
Sub ⁻ (SP)	0.08629	0.09416	0.09510	0.05220	-783.9244	-783.9235	-783.9664		
Sub(O+F)	0.09072	0.09793	0.09887	0.05826	-783.8779	-783.8769	-783.9176		
Sub(SP)	0.08944	0.09656	0.09751	0.05719	-783.8719	-783.8709	-783.9112		

Table S17: Energies, enthalpies, and free energies (in Hartree) of the optimized structures of different monoreduced molecules (Opt) and their neutral moieties' single point (SP) calculation at the *w*B97XD theory level with def2tzvpp basis set considering CPCM (n,n-dimethylformamide) solvent model.

Structure	ZPE	$\Delta \mathbf{E}$	$\Delta \mathbf{H}$	$\Delta \mathbf{G}$	Ε	Н	G	IF(cm ⁻	Infrared
								1)	

$1a^{2-}(O+F)$	0.15699	0.16962	0.17056	0.11714	-	-	-	
					1250.0848	1250.0839	1250.1373	
1a ²⁻ (SP)	0.15696	0.16829	0.16923	0.11928	-	-	-	
					1250.0808	1250.0798	1250.1298	
$1a^{1-}(O+F)$	0.16025	0.17260	0.17354	0.11934	-	-	-	
					1250.0316	1250.0307	1250.0849	
1a ¹⁻ (SP)	0.15969	0.17171	0.17265	0.12004	-	-	-	
					1250.0273	1250.0264	1250.0790	
Pdt ⁻	0.18852	0.20036	0.20130	0.14946	-572.6757	-572.6748	-572.7266	
(O+F)								
Pdt ⁻ (SP)	0.18805	0.19799	0.19893	0.15164	-572.6710	-572.6700	-572.7173	
Pdt(O+F)	0.19242	0.20391	0.20486	0.15429	-572.5966	-572.5956	-572.6462	
Pdt(SP)	0.19193	0.20297	0.20391	0.15509	-572.5905	-572.5895	-572.6383	
Sub ⁻	0.08884	0.09688	0.09782	0.05513	-784.0640	-784.0630	-784.1057	
(O+F)								
Sub ⁻ (SP)	0.08666	0.09436	0.09530	0.05282	-784.0589	-784.0580	-784.1005	
Sub(O+F)	0.09060	0.09778	0.09872	0.05820	-784.0097	-784.0087	-784.0493	
Sub(SP)	0.08931	0.09638	0.09733	0.05712	-784.0033	-784.0023	-784.0425	

Table S18: Energies, enthalpies, and free energies (in Hartree) of the optimized structures of different monoreduced molecules (Opt) and their neutral moieties' single point (SP) calculation at the *w*B97XD theory level with def2tzvpp basis set considering SMD (n,n-dimethylformamide) solvent model.

Structure	ZPE	$\Delta \mathbf{E}$	$\Delta \mathbf{H}$	$\Delta \mathbf{G}$	Ε	Н	G	IF(cm ⁻	Infrared
								1)	
$1a^{2}(O+F)$	0.15689	0.16954	0.17048	0.11719	-	-	-		
					1250.0778	1250.0769	1250.1302		
1a ²⁻ (SP)	0.15686	0.16820	0.16914	0.11932	-	-	-		
					1250.0741	1250.0731	1250.1229		
1a ¹⁻ (O+F)	0.16036	0.17264	0.17359	0.11985	-	-	-		
					1250.0206	1250.0197	1250.0734		

1 al-(SD)	0 15074	0 17174	0 17260	0 12025					
1a (SP)	0.13974	0.17174	0.17209	0.12023	-	-	-		
					1250.0166	1250.0157	1250.0681		
Pdt ⁻	0.18862	0.20041	0.20136	0.14964	-572.6829	-572.6820	-572.7337		
$(\mathbf{O} \mathbf{+} \mathbf{F})$									
$(\mathbf{U} \mathbf{T} \mathbf{I})$									
Pdt ⁻ (SP)	0.18815	0.19805	0.19899	0.15181	-572.6782	-572.6773	-572.7245		
Pdt(O+F)	0.19243	0.20386	0.20481	0.15446	-572.6050	-572.6040	-572.6544		
D.14(CD)	0.10156	0.00069	0.00272	0 15 450	572 5001	572 5092	570 (170		
Pat(SP)	0.19156	0.20268	0.20363	0.15459	-572.5991	-572.5982	-5/2.64/2		
Sub	0.08858	0.09659	0.09753	0.05487	-784 0670	-784 0660	-784 1087		
Sub (O T)	0.00020	0.07027	0.07722	0.02 107	/01.00/0	/01.0000	/01100/		
(O+F)									
Sub [*] (SP)	0.08669	0.09/38	0.09532	0.05281	-78/ 0618	-78/1 0609	-78/ 103/		
Sub (SI)	0.00007	0.07450	0.07552	0.05201	-704.0010	-704.0007	-704.1034		
Sub(O+F)	0.09059	0.09776	0.09871	0.05819	-784.0146	-784.0137	-784.0542		
~~~~~									
Sub(SP)	0.08933	0.09641	0.09736	0.05713	-784.0083	-784.0074	-784.0476		

### 25. Coordinates of all DFT optimized structures:

### PLY(O,O)-K (1a)

С	-3.42480600	-1.20319500	-0.00027000
С	-4.13187500	0.00000800	-0.00012600
С	-1.27383800	0.00000000	0.00001800
С	-2.01929800	-1.22413200	-0.00023200
Н	-5.21816500	0.00001100	-0.00018000
С	0.06188400	2.48825800	0.00007700
С	-1.29737700	-2.46504500	-0.00030600
С	0.06187100	-2.48826400	0.00007700
Н	0.60728200	3.42901000	0.00002400
Н	0.60726400	-3.42901900	0.00016600
С	0.87443800	1.27432200	-0.00009300
С	0.16365900	-0.00000400	0.00009800
С	0.87443300	-1.27433300	0.00036700
С	-2.01929200	1.22413700	0.00019100
С	-1.29736400	2.46504600	0.00032300
С	-3.42480100	1.20320900	0.00009000
Н	-1.86410600	3.39477000	0.00049900
Н	-3.96141100	2.14982600	0.00021000
Н	-3.96142200	-2.14981000	-0.00044800
Н	-1.86412400	-3.39476600	-0.00055200

0	2.13565600	-1.40001400	0.00089500
0	2.13566200	1.39999500	-0.00053400
K	4.34728100	0.00000400	-0.00020500

# [PLY(O,O)-K]⁻¹

-1 2

С	-3.44984600	-1.20842800	-0.00016700
С	-4.14717500	0.00000900	-0.00022300
С	-1.27175800	0.00000100	0.00006800
С	-2.02263400	-1.23409700	-0.00005100
Н	-5.23622700	0.00001300	-0.00034600
С	0.08184600	2.47014200	0.00007700
С	-1.30348000	-2.45397500	-0.00000400
С	0.08183100	-2.47014800	0.00018500
Н	0.61776100	3.41893600	-0.00000100
Н	0.61774000	-3.41894500	0.00025400
С	0.88530300	1.28677900	0.00027800
С	0.17508400	-0.00000400	0.00021900
С	0.88529700	-1.28678900	0.00027200
С	-2.02262600	1.23410300	0.00003000
С	-1.30346500	2.45397700	0.00002800
С	-3.44983800	1.20844200	-0.00014900
Н	-1.86016900	3.39153500	-0.00007600

Н	-3.98700300	2.15577400	-0.00021400
Н	-3.98701700	-2.15575600	-0.00024700
Н	-1.86018900	-3.39152900	-0.00008300
0	2.17658500	-1.40909300	0.00016900
0	2.17659200	1.40906800	0.00026900
K	4.31781300	0.00000500	-0.00032500

# [PLY(0,0)-K]⁻²

-21

С	-3.48037300	-1.21647000	0.00122100
С	-4.16408300	0.00000500	-0.00003300
С	-1.27539300	0.00000000	0.00000300
С	-2.03129300	-1.24558000	0.00020000
Н	-5.25687000	0.00000600	-0.00004600
С	0.09875400	2.45732200	0.00027000
С	-1.30963700	-2.44849300	-0.00028400
С	0.09874600	-2.45732400	-0.00022500
Н	0.62800800	3.41285300	0.00050200
Н	0.62799700	-3.41285700	-0.00044400
С	0.89504100	1.29504200	0.00011800
С	0.18346100	-0.00000200	0.00002300
С	0.89503800	-1.29504600	-0.00005400
С	-2.03128900	1.24558400	-0.00021200

C	-1.30963100	2.44849400	0.00029100
С	-3.48036900	1.21647700	-0.00126900
Н	-1.85489900	3.39504400	0.00020000
Н	-4.02025100	2.16385300	-0.00120400
Н	-4.02025700	-2.16384500	0.00114600
Н	-1.85490900	-3.39504100	-0.00020600
0	2.21542000	-1.41608400	-0.00015200
0	2.21542300	1.41606700	0.00025900
К	4.30371600	0.00000400	-0.00005700

## PLY(0,0)-K₃[18-crown-6]₃ (3)

Κ	3.03158900	-1.67518800	0.00127100
K	2.19977200	2.29567700	-0.04062900
0	1.69575700	-0.00752800	1.42550400
0	2.47790400	-3.36118800	2.53058300
0	1.18038800	3.67343200	-2.34063900
0	2.45026000	-3.41515100	-2.46114400
0	4.84925600	-1.85236000	-2.43446700
0	6.34138100	-2.21195500	-0.01236400
0	0.22447300	4.83794500	0.04203200
0	1.58210300	-0.06378300	-1.41044300
0	1.06967000	-3.86635000	0.05247000

0	4.92213900	-1.87418000	2.44728300
0	1.40939600	3.70453700	2.33499000
0	4.08442200	2.78032400	2.31858400
0	5.25110900	1.86570400	-0.18738800
0	3.84520200	2.76097100	-2.57578100
С	-1.66211300	1.06390800	0.11973000
С	0.30878200	0.27751000	-1.24507900
С	-2.39324800	1.36860900	-1.10199000
С	-0.32075400	0.51658900	2.52974700
Н	0.20982400	0.33524500	3.46540400
С	-0.30971200	0.52873600	0.07403700
С	1.06930600	-3.70194800	-2.31902300
Н	0.68792100	-4.19849900	-3.22873900
Н	0.49864800	-2.77637400	-2.15985600
С	-2.31190300	1.35851800	1.38633100
С	-1.62712500	1.02809100	2.56398900
Н	-2.09432100	1.24919900	3.52591800
С	0.40651800	0.30770300	1.34524700
С	0.88610100	-4.62505300	-1.12976100
Н	-0.12728400	-5.05953000	-1.15236500
Н	1.61221100	-5.45235600	-1.17949300
С	-0.60736500	4.65782000	-1.09702200
Н	-1.37506500	5.44998700	-1.14062600

Η	-1.11967000	3.68820300	-1.05540100
С	-0.50071600	0.48113400	-2.37578900
Н	-0.04440000	0.27321800	-3.34465300
С	4.95415800	1.88492900	-2.55684800
Н	5.52157100	1.96365100	-3.50193900
Н	4.63442400	0.83970200	-2.43609700
С	1.09122100	-3.63136700	2.41693900
Н	0.52726300	-2.70435600	2.23805800
Н	0.71622200	-4.09705400	3.34552700
С	1.80089900	3.45639400	-3.59022500
Н	2.31133800	4.37315700	-3.93208400
Н	1.05067900	3.17693300	-4.34827100
С	0.88579100	-4.58776800	1.25832200
Н	1.60262100	-5.42164700	1.32698200
Н	-0.13297900	-5.00773100	1.30071400
С	6.26523600	-2.31185900	2.38518100
Н	6.30781600	-3.41149500	2.33529200
Н	6.82496900	-1.99185400	3.28073200
С	0.46861200	4.76017900	2.42108300
Н	0.98952200	5.73238700	2.42039600
Н	-0.11148400	4.68067300	3.35461100
С	2.70068900	-2.36162200	-3.39255100
Н	2.21928100	-2.58795500	-4.35984300

С	-0.49350800	4.66486800	1.25704500
Н	-1.26026700	5.45167800	1.36521700
С	2.80426000	2.33029300	-3.45683200
Н	2.32743800	1.42437200	-3.05092300
Н	3.22153100	2.11518300	-4.45578900
С	2.76612000	-2.29313300	3.43416700
Н	2.28501200	-2.48044900	4.40974400
С	-1.80019300	1.01641200	-2.32277100
Н	-2.32673800	1.24815200	-3.25079000
С	0.23910000	4.73241700	-2.34904500
Н	-0.42889300	4.64358300	-3.22084100
Н	0.76169700	5.70170500	-2.41210200
С	6.86874700	-1.59423100	-1.17282900
Н	7.95901700	-1.75636900	-1.23408000
Н	6.68579500	-0.51022000	-1.13595300
С	2.15436200	3.50856000	3.51832900
Н	1.48478800	3.24932500	4.35515500
Н	2.70152100	4.42838500	3.78746200
С	5.97277700	2.26373100	0.96755700
Н	6.14587100	3.35115200	0.95773600
Н	6.95671200	1.76416900	0.99369000
С	4.26393400	-2.27625500	3.64663300
Н	4.52101000	-1.58485200	4.46531200

Η	4.59689100	-3.28575900	3.93170600
С	-3.60712300	2.00958300	1.40218000
Н	-4.01208200	2.33071500	2.36101800
С	4.19539700	-2.30114600	-3.61861200
Н	4.56057400	-3.30467300	-3.88568800
Н	4.42133500	-1.61896000	-4.45429500
С	3.13158800	2.37212700	3.30447000
Н	3.64412400	2.16741000	4.26030000
Н	2.60843100	1.46604000	2.95997100
С	5.17589800	1.89011800	2.20202500
Н	4.83273000	0.84818800	2.12461400
Н	5.83083300	1.96776600	3.08896300
С	6.22434900	-2.18070200	-2.41034800
Н	6.74025000	-1.77135600	-3.29605900
Н	6.35671100	-3.27426600	-2.41829500
С	-4.20699700	2.40886700	0.20777500
Н	-5.13460800	2.98595400	0.24337700
С	-3.66370600	2.06411700	-1.02880200
Н	-4.12724700	2.39255400	-1.95809000
С	6.93845100	-1.71175600	1.17011000
Н	6.84966500	-0.61545600	1.20653800
Н	8.01265100	-1.96518800	1.19549100
С	5.85671600	2.27624600	-1.40356100

Н	6.84200100	1.79314000	-1.52187100
Н	6.01090200	3.36650400	-1.40805500
Н	2.29957800	-1.41324900	-2.99698900
Н	2.39353300	-1.34246800	3.01669000
Н	-0.99855600	3.69038100	1.27513400
K	-4.94294900	-0.47473000	-0.00290400
0	-5.96480600	-0.67255800	-2.77126300
0	-7.14433100	0.10811400	1.89552800
0	-5.07840400	-1.67362800	2.75669500
0	-3.90431000	-2.46435200	-1.95564600
0	-7.87944900	0.17602600	-0.84398200
0	-3.21598800	-2.48163900	0.78670600
С	-7.08347600	-0.45632300	3.19498000
Н	-7.55823600	0.21934700	3.92578300
С	-3.95939800	-1.87901900	-3.24942800
Н	-3.49986900	-2.55318000	-3.99297800
Н	-3.40885200	-0.92733700	-3.25733300
С	-7.77853700	0.73932600	-2.14293500
Н	-7.07254500	1.58383800	-2.14164500
Н	-8.76249600	1.10677600	-2.47927900
С	-5.63161300	-0.65634400	3.57566000
Н	-5.08166200	0.28662400	3.43994100
Н	-5.57808800	-0.94629800	4.63891500

С	-8.38958100	1.08561600	0.11681100
Н	-9.40066100	1.42077600	-0.16967000
Н	-7.74027400	1.97140000	0.19245900
С	-8.45928000	0.39055700	1.46061800
Н	-8.97047000	1.05365300	2.17872400
Н	-9.04855900	-0.53691300	1.37372200
С	-2.56162500	-2.64328800	-1.50954000
Н	-2.03469000	-1.68103100	-1.45847200
Н	-2.01943400	-3.29353700	-2.21733500
С	-5.40775100	-1.65781600	-3.62655900
Н	-5.45771100	-1.32403600	-4.67633900
Н	-5.97267800	-2.60028100	-3.53944300
С	-2.57445100	-3.32040200	-0.15703900
Н	-3.09660900	-4.29059200	-0.21805000
Н	-1.53145400	-3.49534500	0.14256500
С	-7.29511500	-0.32851400	-3.10148600
Н	-7.95290800	-1.21086400	-3.03836600
Н	-7.34878600	0.06355800	-4.13116900
С	-3.19203800	-2.99015100	2.10767000
Н	-3.80815600	-3.90273700	2.17686000
С	-3.70615600	-1.92728300	3.05338200
Н	-3.60582900	-2.29200700	4.08988700
Н	-3.10472100	-1.01300100	2.93978200

Н	-7.61730200	-1.41997600	3.22109800
Н	-2.16170600	-3.24579800	2.40104100

### PLY-K₂[18-crown-6]₂ (2)

Κ	-1.96080100	1.06325400	-0.00068400
K	0.98348200	-1.96285600	0.00082700
0	0.09078700	0.16983900	1.41750400
0	-2.16800900	2.82229000	2.46063800
0	2.55270600	-2.30616300	-2.36356100
0	-2.16908100	2.81718000	-2.46530400
0	-3.57129900	0.28599400	-2.44467400
0	-4.91755800	-0.29676300	0.00121900
0	4.07786500	-2.30797900	0.00325300
0	0.09130600	0.16898000	-1.41776100
0	-1.18274100	3.84400700	-0.00360300
0	-3.57251600	0.29248300	2.44593500
0	2.54886300	-2.30617600	2.36766300
0	-0.13215700	-3.31157100	2.46201000
0	-1.67156000	-3.27492700	-0.00124600
0	-0.12781900	-3.31269300	-2.46195300
С	3.02817600	1.98453100	-0.00015600
С	1.19332900	0.86143600	-1.28912200

С	3.66753800	2.37675300	-1.23074900
С	1.87778400	1.28086100	2.46692800
Н	1.42493800	0.99433900	3.41492900
С	1.79430700	1.22734900	-0.00015200
С	-1.05115600	3.69535900	-2.37840200
Н	-0.97711300	4.30399400	-3.29574700
Н	-0.11774300	3.12876200	-2.26238100
С	3.66724400	2.37725300	1.23043400
С	3.05610500	2.00406200	2.45073700
Н	3.53104600	2.29900700	3.38608900
С	1.19296500	0.86205800	1.28882900
С	-1.24389200	4.61393400	-1.19086300
Н	-0.44599900	5.37405200	-1.19692900
Н	-2.21424600	5.13301800	-1.26263400
С	4.51527700	-1.65068900	-1.17890800
Н	5.61711400	-1.64936900	-1.23234200
Н	4.16740000	-0.60885900	-1.19477400
С	1.87840200	1.27982800	-2.46722700
Н	1.42582500	0.99288400	-3.41523400
С	-1.53547700	-3.17802500	-2.38596400
Н	-2.00731100	-3.58183200	-3.29930200
Н	-1.82291900	-2.12040700	-2.29038400
С	-1.04954700	3.69954300	2.37138300

Η	-0.11658500 3.13212000 2.25577500	
Н	-0.97445300 4.30979700 3.28756500	
С	1.93110200 -2.75270000 -3.55201700	
Н	2.10781000 -3.83077400 -3.70343900	
Н	2.33944500 -2.21383300 -4.42307000	
С	-1.24259000 4.61609100 1.18233000	
Н	-2.21261000 5.13582600 1.25389100	
Н	-0.44427800 5.37578100 1.18643300	
С	-4.90474200 -0.17711100 2.39266000	
Н	-5.60906600 0.66824700 2.33875500	
Н	-5.14920000 -0.76417000 3.29465100	
С	3.96284600 -2.39217100 2.38653200	
Н	4.28330800 -3.44680600 2.36877700	
Н	4.36252600 -1.92518600 3.30103800	
С	-1.99616700 1.80104800 -3.44715500	
Н	-1.73160100 2.24988500 -4.41964900	
С	4.51351100 -1.65107400 1.18627400	
Н	5.61526300 -1.65003000 1.24148900	
С	0.44564000 -2.47155800 -3.46360900	
Н	0.27846900 -1.41867200 -3.19518800	
Н	-0.01448500 -2.68751300 -4.44296400	
С	-1.99542500 1.80802000 3.44447100	
Н	-1.72983200 2.25859800 4.41587500	

С	3.05669100	2.00306700	-2.45104700
Н	3.53185300	2.29763900	-3.38640400
С	3.96674700	-2.39165100	-2.38022100
Н	4.36770100	-1.92429400	-3.29397800
Н	4.28753900	-3.44618300	-2.36222700
С	-5.07445300	-1.07075400	-1.17454300
Н	-6.07878400	-1.52687800	-1.20438600
Н	-4.33092600	-1.88271100	-1.19684500
С	1.92516300	-2.75206800	3.55526400
Н	2.33234900	-2.21310900	4.42679700
Н	2.10112900	-3.83017300	3.70731000
С	-2.04109700	-3.95830200	1.18584200
Н	-1.61053600	-4.97189100	1.19732600
Н	-3.13883300	-4.05519600	1.24423900
С	-3.31128200	1.07767700	3.60561700
Н	-3.27072800	0.42823600	4.49564100
Н	-4.11965700	1.81055400	3.75139100
С	4.87955900	3.11964200	1.20402700
Н	5.33412900	3.40220600	2.15172300
С	-3.31138600	1.06907500	-3.60609700
Н	-4.12060100	1.80080400	-3.75298400
Н	-3.27059200	0.41784200	-4.49479500
С	0.43997100	-2.47027900	3.46431900

Н	-0.02188900	-2.68567700	4.44297400
Н	0.27372900	-1.41741100	3.19520400
С	-1.53963400	-3.17657800	2.38370500
Н	-1.82664200	-2.11890700	2.28730200
Н	-2.01306700	-3.57987500	3.29645100
С	-4.90265400	-0.18600900	-2.39063700
Н	-5.14528200	-0.77678300	-3.29069600
Н	-5.60864600	0.65817200	-2.34032700
С	5.47312600	3.48267400	-0.00016800
Н	6.40046400	4.05257900	-0.00017100
С	4.87984900	3.11915300	-1.20435600
Н	5.33464400	3.40133100	-2.15205900
С	-5.07720700	-1.06601400	1.17970400
Н	-4.33535100	-1.87939200	1.20595700
Н	-6.08245500	-1.52007000	1.21016600
С	-2.03865400	-3.95930800	-1.18854400
Н	-3.13622800	-4.05677900	-1.24881500
Н	-1.60754200	-4.97267300	-1.19856800
Н	-1.19913600	1.10955700	-3.13598100
Н	-1.19924200	1.11510700	3.13428800
Н	4.16583800	-0.60917200	1.20184700

### PLY(O,O)-K (1a; for top ring, NICS)

С	0.56941300	0.45180900	-0.09782000
С	0.56039700	1.63751900	-0.82348700
С	0.58647000	-0.87502400	-2.16480600
С	0.58228200	-0.79464600	-0.73771300
Н	0.55046100	2.59356300	-0.31330900
Bq	0.56264000	0.42307900	-1.51333300
Bq	1.56255000	0.43652200	-1.51158500
С	0.59381600	-0.88053000	-4.98113500
С	0.59114300	-2.01330200	0.01459800
С	0.60331200	-3.21808200	-0.60150100
Н	0.59719200	-0.93087900	-6.06429900
Н	0.61000400	-4.14595100	-0.04046300
С	0.60351500	-2.16508200	-4.29463400
С	0.59949100	-2.13896700	-2.83922700
С	0.60845200	-3.36223500	-2.05068600
С	0.57723800	0.35550000	-2.89210500
С	0.58142900	0.30188900	-4.32332900
С	0.56440700	1.58061100	-2.21266400
Н	0.57454900	1.23834800	-4.87431400
Н	0.55758300	2.49741900	-2.79413200
Н	0.56690000	0.47859600	0.98751300

Н	0.58790800	-1.94955300	1.09923900
0	0.62038000	-4.53213200	-2.52393500
0	0.61466900	-3.20879500	-5.00394400
K	0.63542600	-5.60453700	-4.68753600

# [PLY(O,O)-K]⁻¹ (for top ring, NICS)

-12

С	0.56440400	0.46132900	-0.09064400
С	0.56055100	1.64571300	-0.81948600
С	0.58651300	-0.87311200	-2.16373300
С	0.58018800	-0.79145200	-0.73109900
Н	0.55066600	2.60333800	-0.30832100
Bq	0.56214000	0.42869400	-1.51019800
Bq	1.56205500	0.44131600	-1.50631200
С	0.59649300	-0.88552800	-4.97809800
С	0.58416500	-2.00830000	0.01449400
С	0.60101600	-3.21804300	-0.60749100
Н	0.60124200	-0.93556000	-6.06229000
Н	0.60649700	-4.14664300	-0.04564400
С	0.58297600	-2.16848400	-4.29876200
С	0.59945000	-2.13682700	-2.83821400
С	0.62885500	-3.36739900	-2.05128700
С	0.57932400	0.36257700	-2.89331400

C	0.58864800	0.30462900	-4.31922000
С	0.56949800	1.59209500	-2.20911500
Н	0.59034400	1.24090400	-4.87313900
Н	0.56705000	2.50940000	-2.79160600
Н	0.55716700	0.48799300	0.99564100
Н	0.57235000	-1.94741600	1.10057900
0	0.68704700	-4.53532800	-2.52911600
0	0.54776300	-3.21631400	-5.00347600
K	0.63522500	-5.67244100	-4.72475700

#### 4-Chlorobenzonitrile

С	0.57953000	-1.21996100	0.00000700
С	-0.81336300	-1.21928200	-0.00002600
С	-1.51452300	-0.00004300	0.00000200
С	-0.81336000	1.21924900	-0.00001000
С	0.57949600	1.21994000	-0.00000600
С	1.26034800	-0.00002400	0.00002700
Н	1.12692100	-2.15623000	0.00002100
Н	-1.35406300	-2.15990200	-0.00002000
Н	-1.35412500	2.15983100	-0.00000600
Н	1.12692900	2.15618400	0.00000100
С	-2.94820400	-0.00000200	0.00001200

Ν	-4.11292300	0.00005200	0.00000200
Cl	3.01560300	0.00002900	-0.00000300

#### Chlorobenzene

С	0.17802600	-1.21894300	-0.00001200
С	1.57687400	-1.20995700	0.00002700
С	2.27813000	0.00000300	-0.00001700
С	1.57685900	1.20996300	0.00000800
С	0.17802300	1.21894400	0.00000700
С	-0.50150900	-0.00000900	-0.00004000
Н	-0.37164800	-2.15473200	0.00000000
Н	2.11410400	-2.15444200	0.00003200
Н	2.11410000	2.15444400	0.00001100
Н	-0.37168100	2.15471400	0.00002300
Cl	-2.26869100	0.00000000	0.00000600
Н	3.36445200	0.00001800	-0.00001600

# 4-CyanoMesitylBenzene radical anion (Pdt⁻)

-12

С	-2.74820900	0.84621900	-0.88988900
С	-1.36907600	0.84024400	-0.87517600
С	-0.60719900	0.00166700	-0.00051000
С	-1.36491700	-0.83848300	0.87635000
С	-2.74395400	-0.84665000	0.89563000
С	-3.50571800	-0.00080900	0.00413000
Н	-3.27963300	1.48784500	-1.58966400
Н	-0.84366800	1.48075100	-1.58072400
Н	-0.83599700	-1.47824600	1.58000200
Н	-3.27206300	-1.48912200	1.59714200
С	-4.90038600	-0.00200200	0.00635300
Ν	-6.08768600	-0.00291700	0.00827100
С	0.87271400	0.00160000	-0.00266200
С	1.61149700	1.21064300	0.16722500
С	1.60974800	-1.20796800	-0.17899300
С	3.01210600	1.18455200	0.15655300
С	3.01021400	-1.18338400	-0.17398500
С	3.74084000	-0.00019700	-0.00648200
Н	3.55158100	2.12054500	0.30088500
Н	3.54846900	-2.11840800	-0.32919400
С	0.92218200	-2.53368700	-0.43824100

Н	0.52958700	-2.99250400	0.47841000
Н	0.07018900	-2.41623600	-1.11738300
Н	1.62367400	-3.24839800	-0.88283400
С	5.25300800	-0.00685900	0.02719900
Н	5.63363300	-0.15342800	1.04837800
Н	5.66385900	-0.81622100	-0.58783200
Н	5.66754200	0.94002100	-0.33794300
С	0.92671000	2.53955300	0.41749900
Н	0.53627000	2.99393900	-0.50231400
Н	0.07376800	2.42794900	1.09636900
Н	1.62921700	3.25529600	0.85879900

### <u>Int2</u>

	1	2
-	T	2

С	-0.62911400	-0.22268600	-1.21679600
С	0.11857600	-0.27929800	0.00009600
С	-0.62906900	-0.22150500	1.21695700
С	-2.00527200	-0.11957900	1.23495300
С	-2.76421400	-0.06404200	0.00005000
С	-2.00531600	-0.12074600	-1.23482600
Н	-0.09304200	-0.26597200	-2.16438000
Н	-0.09296600	-0.26387800	2.16456400
Н	-2.53517900	-0.08304500	2.18442300

Н	-2.53526100	-0.08511700	-2.18430900
С	1.59111800	-0.39559400	0.00013700
С	2.41644100	-1.51654900	0.00022400
С	3.77232900	-1.07707400	0.00047200
Н	2.06447100	-2.54143900	0.00034600
С	3.74469400	0.30647400	0.00009100
Н	4.66231600	-1.69458000	0.00077200
Н	4.54738200	1.03205400	0.00001700
N	2.43058000	0.71494200	-0.00023000
С	1.99001300	2.10381000	-0.00083200
Н	1.38996900	2.32157600	-0.88975300
Н	1.39010600	2.32240600	0.88797800
Н	2.87081200	2.74933300	-0.00120300
С	-4.15241700	0.03987100	0.00002300
N	-5.33846900	0.12936700	-0.00002000

<u>Int1</u>

С	1.57953200	-0.19704800	0.66083200
С	2.18774100	-1.55153800	0.36510300
С	3.30054400	-1.37421400	-0.43940600
С	3.44041200	-0.01747600	-0.73191700
Ν	2.37259700	0.69724000	-0.20314000

Н	1.74328200	0.08388900	1.72338100
Н	1.79080800	-2.47680700	0.76028300
Н	3.95248800	-2.15507300	-0.81198300
Н	4.18343600	0.48542300	-1.33654900
С	2.45957100	2.10455900	0.12628000
Н	3.01318500	2.62859000	-0.65857700
Н	1.45446700	2.53552000	0.17971800
Н	2.96687600	2.28450700	1.08928500
С	0.07899700	-0.10609300	0.39760000
С	-0.82759800	-0.07901800	1.46271900
С	-0.41448700	-0.08984300	-0.91441800
С	-2.20092600	-0.04315600	1.23426800
Н	-0.45504100	-0.08410600	2.48447700
С	-1.78143500	-0.04603300	-1.15898900
Н	0.28784800	-0.10535900	-1.74209500
С	-2.68677500	-0.02497600	-0.08224200
Н	-2.89892100	-0.02139200	2.06516800
Н	-2.15986200	-0.02955800	-2.17621800
С	-4.09852700	0.02008800	-0.32863800
Ν	-5.24414900	0.05745300	-0.52886700

<u>TS1</u>

С	2.24249300	0.41051000	0.86138100
С	2.63008300	-0.87147300	1.27533300
С	3.21527500	-1.51526000	0.16519900
С	3.22791700	-0.60304400	-0.87997100
Ν	2.68428600	0.57775900	-0.44053500
Н	2.00496600	1.27619500	1.46335700
Н	2.47714800	-1.28060400	2.26453100
Н	3.60313800	-2.52419100	0.12583600
Н	3.57609500	-0.70254700	-1.89872900
С	-0.10075700	0.18674600	0.54196300
С	-0.98346400	1.14344000	1.02013100
С	-0.51368000	-0.90614700	-0.20463100
С	-2.34531600	1.00594800	0.73592900
Н	-0.64158800	1.99267400	1.60942800
С	-1.87232300	-1.04728500	-0.49576100
Н	0.20245700	-1.64610200	-0.55436600
С	-2.79028700	-0.08981200	-0.02483600
Н	-3.06515400	1.73622500	1.09520300
Н	-2.23190700	-1.89038900	-1.07918200
С	2.39668400	1.73614800	-1.26551200
Н	2.61078100	2.65380400	-0.70914200

Н	3.03375900	1.71329700	-2.15262100
Н	1.34512900	1.74718700	-1.57508100
С	-4.18597600	-0.23212500	-0.32172800
Ν	-5.31838700	-0.34653500	-0.56435300

### <u>'BuOH</u>

0	0.01325900	-0.00017600	1.45215900
Н	0.94382400	0.00188400	1.72867200
С	-0.00533400	-0.00001600	0.01400900
С	0.69430700	-1.26338700	-0.50999500
Н	0.65905500	-1.31910400	-1.60428400
Н	1.75131900	-1.27513800	-0.21193800
Н	0.21574400	-2.15905100	-0.10037200
С	-1.49012900	-0.00419400	-0.35745000
Н	-1.98611800	0.88091600	0.05430700
Н	-1.62211800	-0.00462500	-1.44478600
Н	-1.98114600	-0.89201700	0.05438900
С	0.68697600	1.26752000	-0.50959700
Н	0.65116800	1.32353100	-1.60385100
Н	0.20331300	2.16021000	-0.09948100
Н	1.74396800	1.28526900	-0.21172500

## <u>'BuO'</u>

-11

0	0.00002100	-0.00001500	1.48405900
С	-0.00001900	-0.00001400	0.15973500
С	0.98745900	-1.07958200	-0.43683100
Н	1.03488000	-1.12999600	-1.54099900
Н	1.99851200	-0.87484300	-0.05674500
Н	0.69248300	-2.06872400	-0.05840000
С	-1.42876900	-0.31528600	-0.43680100
Н	-2.13792600	0.43442000	-0.05777900
Н	-1.49634500	-0.33050300	-1.54097200
Н	-1.75680100	-1.29353000	-0.05727100
С	0.44130800	1.39489000	-0.43680800
Н	0.46209000	1.46086000	-1.54097700
Н	1.44505800	1.63430400	-0.05761000
Н	-0.24199100	2.16808900	-0.05749100

<u>TS2</u>

-12

С	0.41840600	1.06216600	-0.18479600
С	0.84987100	1.82173900	-1.37429400
С	1.67660300	2.87338200	-0.97589700
С	1.72593900	2.89024800	0.41332200

Ν	0.88227600	1.92588600	0.93116000
Н	1.11242200	-0.00459500	-0.01659700
Н	0.63825000	1.51248800	-2.39089000
Н	2.20026300	3.56877000	-1.62358600
Н	2.30545000	3.51870600	1.07840100
С	1.06318500	1.37445800	2.26194700
Н	1.50663800	2.14161000	2.90753700
Н	0.09019900	1.09392000	2.68487300
Н	1.69986000	0.48017200	2.23008100
С	-1.00015100	0.57127100	-0.09512500
С	-1.31955100	-0.56486900	0.68564100
С	-2.03681100	1.14714400	-0.86303200
С	-2.61017400	-1.06783500	0.73214800
Н	-0.50902400	-1.07673800	1.19731700
С	-3.33122500	0.65224800	-0.82895200
Н	-1.80365600	2.01405000	-1.47647600
С	-3.64595000	-0.46477400	-0.02256500
Н	-2.83592000	-1.94211800	1.33718000
Н	-4.11894400	1.12840300	-1.40794200
0	1.74630300	-1.10417900	0.57052900
С	2.73221500	-1.70409600	-0.19662700
С	3.21369800	-2.97154800	0.55056000
Н	4.00902100	-3.51069100	0.01319000

Н	3.59176600	-2.69084500	1.54135100
Н	2.36813500	-3.65444200	0.69796900
С	3.93792500	-0.74924500	-0.39676400
Н	3.60882200	0.16539600	-0.90366900
Н	4.34237900	-0.46056400	0.58153000
Н	4.75000400	-1.20122900	-0.98722800
С	2.18118800	-2.12013700	-1.58530000
Н	1.30393200	-2.76445200	-1.45186600
Н	1.86227900	-1.23168800	-2.14378200
Н	2.92141400	-2.65931400	-2.19593400
С	-4.97434100	-0.97616600	0.01908100
Ν	-6.06780200	-1.38836100	0.05858700

#### TS1(Fur)

$\cap$	$\mathbf{r}$
υ	7

С	-2.47368700	-0.52973800	0.77562400
С	-3.40339500	1.06870500	-0.42507500
С	-3.48184000	-0.06746500	-1.18272100
Н	-2.19835000	-0.94823300	1.73050400
Н	-3.69557200	2.09435300	-0.58939400
Н	-3.89653700	-0.14255100	-2.17792400
С	-0.10726300	-0.29666100	0.40663800
С	0.38641900	0.99638700	0.33474000
---	-------------	-------------	-------------
С	0.68024000	-1.42941200	0.26931500
С	1.75636100	1.17094400	0.10886300
Н	-0.26086300	1.86082000	0.45248300
С	2.05111700	-1.26052200	0.04709700
Н	0.26003700	-2.42977400	0.32833600
С	2.58518400	0.04078500	-0.03348500
Н	2.18303900	2.16724900	0.04583100
Н	2.70267100	-2.12178100	-0.06384900
С	3.98908400	0.21710800	-0.26426800
Ν	5.13008300	0.36043700	-0.45197600
0	-2.82614200	0.79738700	0.78487300
С	-2.91403300	-1.11460700	-0.39888700
Н	-2.80499600	-2.15538500	-0.66818900

### TS2(Fur)

С	-0.40002600	1.01518700	-0.11070200
С	-1.47341800	2.91700000	0.58973900
С	-1.59783000	2.89714300	-0.78969500
Н	-1.05481400	-0.05151400	0.05369000
Н	-1.84406700	3.59832300	1.34185300

Н	-2.13435500	3.63539100	-1.37320200
С	1.01970400	0.57404000	-0.07297000
С	1.61424200	-0.00002300	-1.21990800
С	1.77822600	0.61052100	1.11696300
С	2.90380600	-0.51148600	-1.18542600
Н	1.05775600	-0.04411600	-2.15079000
С	3.07175800	0.10487000	1.16291100
Н	1.34421000	1.04867400	2.00835800
С	3.65057400	-0.46626200	0.01118000
Н	3.34322300	-0.94232000	-2.07950700
Н	3.64164800	0.15117400	2.08563100
0	-1.64144000	-1.31081300	0.34006900
С	-3.01528400	-1.47680700	0.10711200
С	-3.45334200	-2.85648200	0.65055300
Н	-4.52255900	-3.04613400	0.48536100
Н	-2.88349500	-3.65275800	0.15667500
Н	-3.25719600	-2.91732800	1.72775500
С	-3.32373100	-1.42114900	-1.41023900
Н	-3.01736500	-0.45288500	-1.82251800
Н	-2.76412900	-2.20572200	-1.93414700
Н	-4.39183800	-1.56193900	-1.62362400
С	-3.83587400	-0.37716300	0.82567500
Н	-3.64442600	-0.41126700	1.90517800

Н	-3.54406300	0.61444900	0.46197500
Н	-4.91579700	-0.49712700	0.66650200
С	4.97943000	-0.98602700	0.05261900
Ν	6.06666300	-1.41003500	0.08619500
0	-0.73273300	1.85482000	1.04379100
С	-0.92287600	1.77691400	-1.27445000
Н	-0.85812800	1.45163200	-2.30359500

# <u>TS1(Thio)</u>

С	-2.12325300	0.90721300	-0.44152500
С	-3.47625500	-0.93822800	0.57034500
С	-3.16844900	0.05123000	1.47652500
Н	-1.81079100	1.65002200	-1.16190500
Н	-4.00595500	-1.86502600	0.74507200
Н	-3.45925600	0.00929000	2.52013900
С	0.19794700	0.39888700	-0.32308300
С	1.07174100	1.47412600	-0.37662100
С	0.60247300	-0.90721800	-0.09689700
С	2.43815200	1.22853900	-0.20332200
Н	0.72296300	2.48891000	-0.54937400
С	1.96701400	-1.15839700	0.07979400

Н	-0.11020400	-1.72674400	-0.06281900
С	2.88222700	-0.08855400	0.02527700
Н	3.15457600	2.04323700	-0.24372800
Н	2.32406000	-2.16832800	0.25626800
С	4.28137900	-0.34358900	0.20508400
Ν	5.41864100	-0.55080800	0.35134800
S	-2.87694600	-0.56656400	-1.01814000
С	-2.43866300	1.12317800	0.89880900
Н	-2.12063100	2.00619400	1.44083300

### TS2(Thio)

-12

С	0.35673600	0.94373600	0.20154200
С	1.79856900	3.04145800	-0.40811100
С	1.59359800	2.89204000	0.96450200
Н	0.99018200	-0.12256700	0.26519600
Н	2.39475700	3.79085200	-0.91185000
Н	2.04008700	3.56821200	1.68827900
С	-1.07275000	0.50831600	0.12422900
С	-1.92424000	0.56382100	1.24833200
С	-1.59315300	-0.06377200	-1.05855900
С	-3.22462200	0.07287800	1.20131600

Н	-1.56975600	1.00549400	2.17257700
С	-2.89079300	-0.55231300	-1.12362300
Н	-0.96820600	-0.12880600	-1.94396700
С	-3.72359300	-0.49197800	0.01236900
Н	-3.86014500	0.13349200	2.07901200
Н	-3.26570400	-0.98247100	-2.04672900
0	1.52830000	-1.46367300	0.45357200
С	2.84995500	-1.78313500	0.11551200
С	3.27910900	-3.05698100	0.88362600
Н	4.30837600	-3.35853100	0.64623400
Н	3.21371200	-2.88441200	1.96478600
Н	2.61209100	-3.89046000	0.63235900
С	3.81669000	-0.63274300	0.49286200
Н	3.54024700	0.28533900	-0.03729400
Н	3.76012000	-0.43211000	1.56961700
Н	4.85926200	-0.87210700	0.24445400
С	2.97503700	-2.06075000	-1.40444500
Н	2.30772500	-2.88324600	-1.68973200
Н	2.68192100	-1.17249000	-1.97638800
Н	3.99815100	-2.33325900	-1.69722300
С	-5.06137700	-0.99096100	-0.04511600
Ν	-6.15398600	-1.39763500	-0.09250400
S	0.96213400	1.81073100	-1.34071700

С	0.79276600	1.81795800	1.32200200
Н	0.58294800	1.55275800	2.35246200

# TS1(Ben)

С	0.12142000	-0.45487900	-0.39356100
С	0.49774700	0.87342700	-0.26633600
С	1.01562500	-1.51239200	-0.31163800
С	1.84739600	1.16563800	-0.04751700
Н	-0.22980300	1.67695100	-0.33874600
С	2.36753300	-1.22669100	-0.09534900
Н	0.69123400	-2.54498200	-0.41091000
С	2.78038300	0.11343200	0.03684700
Н	2.17979600	2.19394900	0.05552100
Н	3.09692800	-2.02807600	-0.02935800
С	4.16532200	0.41004500	0.25847300
Ν	5.29094700	0.65115000	0.43859000
С	-2.05046900	-0.95929300	-0.61638900
С	-2.42090100	-1.15326000	0.74450000
С	-3.14045400	-0.17417300	1.42171100
С	-3.56583600	0.98365900	0.75053100
С	-3.28707500	1.14258700	-0.61755600
С	-2.56886500	0.17078600	-1.30604500

Н	-2.10791200	-2.05664600	1.25928200
Н	-3.38997500	-0.31384100	2.46974600
Н	-4.13093800	1.74377100	1.28165200
Н	-3.65191100	2.02000500	-1.14421000
Н	-2.36954300	0.28591300	-2.36731400
Н	-1.69545200	-1.80842100	-1.19182300

### TS2(Ben)

С	1.03643700	0.52078800	-0.06021900
С	1.55227800	-0.31553100	-1.07219000
С	1.90144800	0.89129600	0.98599700
С	2.86797600	-0.76031600	-1.04930700
Н	0.90131000	-0.63409500	-1.87991400
С	3.22134000	0.44777200	1.03181800
Н	1.54153700	1.54654900	1.77231700
С	3.71692600	-0.38281800	0.01122300
Н	3.24248700	-1.40472600	-1.83809300
Н	3.87075100	0.74895400	1.84767900
С	5.07166500	-0.84081400	0.04785600
Ν	6.17638200	-1.21383100	0.07643800
С	-0.40944600	0.97692300	-0.12538800
С	-0.95799200	1.57902000	1.12483600

С	-1.82202500	2.64781200	1.11515000
С	-2.16914200	3.31257800	-0.08980000
С	-1.57302500	2.87580600	-1.30315500
С	-0.70935500	1.80858100	-1.33627300
Н	-2.24360300	2.99861600	2.05528000
Н	-1.78953200	3.41165400	-2.22538100
Н	-1.00758400	-0.06272400	-0.30491800
0	-1.67266700	-1.42262700	-0.73344200
С	-2.70433600	-1.93873500	0.05376200
С	-3.17402500	-3.29435400	-0.53024500
Н	-3.53078800	-3.15743900	-1.55841900
Н	-2.33718900	-4.00313200	-0.55341800
Н	-3.98713000	-3.74289200	0.05723500
С	-2.22421400	-2.17600300	1.50982100
Н	-1.37430200	-2.86959800	1.51393900
Н	-1.89332600	-1.23171500	1.95695200
Н	-3.01299200	-2.59751000	2.14788600
С	-3.91704000	-0.97212500	0.08330900
Н	-4.28549300	-0.80648700	-0.93668800
Н	-4.74849200	-1.35958200	0.68811800
Н	-3.61507500	-0.00315800	0.49668400
Н	-0.72777600	1.09055500	2.06870300
Н	-2.84479000	4.16191700	-0.07926000

### TS1(Bfu)

С	1.09219100	1.58526800	0.97542500
С	2.45312200	-0.12375500	0.67313600
С	2.52185300	0.66079300	-0.49835100
Н	0.55697300	2.25719900	1.62766900
С	-1.10779900	0.74263600	0.41313000
С	-1.40546600	-0.52469500	0.88594500
С	-1.98366900	1.52131600	-0.32558600
С	-2.66990100	-1.05252200	0.60100600
Н	-0.68977200	-1.10089800	1.46507500
С	-3.25002700	0.99802400	-0.60894300
Н	-1.71178200	2.51064500	-0.68274000
С	-3.58850200	-0.28843700	-0.14502200
Н	-2.94619700	-2.04197600	0.95195500
Н	-3.96935200	1.57440200	-1.18238000
С	-4.88474700	-0.82727700	-0.43666200
Ν	-5.93808100	-1.26518300	-0.67359000
0	1.60759600	0.45842900	1.58562800
С	1.65803800	1.78312000	-0.26522200

С	3.15540300	-1.30919100	0.85248000
С	3.97123400	-1.71324500	-0.20863600
Н	4.54346300	-2.63129800	-0.11781500
С	4.06583700	-0.95253700	-1.39342000
Н	4.71033300	-1.30081600	-2.19484300
С	3.34936300	0.23174100	-1.55365300
Н	3.42653500	0.81056500	-2.46887600
Н	3.07525800	-1.88588200	1.76769800
Н	1.44875700	2.60948000	-0.92939500

# TS2(Bfu)

С	-0.29719300	-0.30273600	0.35678700
С	-2.19607500	-1.18199700	-0.57562200
С	-2.26130700	-1.49569600	0.81641800
Н	-0.38033500	0.91278200	0.56561600
С	1.15482600	-0.61379500	0.19159000
С	2.00293100	-0.59259800	1.31893500
С	1.72941200	-0.85442400	-1.07083400
С	3.36799800	-0.81380100	1.19697800
Н	1.58798600	-0.39905700	2.30317600
С	3.09648000	-1.07734000	-1.20657900
Н	1.09489100	-0.87301800	-1.94893600

С	3.93005700	-1.05943000	-0.07285700
Н	4.00407500	-0.79931500	2.07596900
Н	3.52196900	-1.26867300	-2.18647600
0	-0.52613000	2.30251300	0.99705400
С	-0.61670100	3.31684300	0.03473600
С	-0.64048600	4.68984100	0.74756400
Н	-0.71477700	5.52429500	0.03714500
Н	-1.49705100	4.74387700	1.42998400
Н	0.27333000	4.82352600	1.33879700
С	-1.91491100	3.16788000	-0.79737400
Н	-1.92689100	2.19645000	-1.30413900
Н	-2.78922300	3.21674500	-0.13703500
Н	-2.01624500	3.95444400	-1.55730700
С	0.59957500	3.28005900	-0.92475600
Н	1.53014900	3.39435600	-0.35566600
Н	0.64107600	2.31918500	-1.45045700
Н	0.55850500	4.07857100	-1.67745900
С	5.33462800	-1.28961400	-0.20672500
Ν	6.48066100	-1.47831600	-0.31569300
0	-1.03601800	-0.54276400	-0.88754000
С	-1.07603800	-1.01826800	1.39703200
С	-3.20079400	-1.50591200	-1.47148600
С	-4.33056000	-2.18256100	-0.96449800

Н	-5.13686800	-2.45225300	-1.63996400
С	-4.42468500	-2.50959300	0.40033200
Н	-5.30764500	-3.02935900	0.76230000
С	-3.40827700	-2.17652200	1.29875100
Н	-3.49211600	-2.43223700	2.35112000
Н	-3.11756500	-1.25097000	-2.52339100
Н	-0.79399500	-1.07114900	2.44011100

### TS1(Xyl)

С	-0.55467600	0.37504500	0.46865300
С	-0.89033900	0.05932900	-0.83953700
С	-1.47999500	0.41845800	1.50148400
С	-2.22716100	-0.21943800	-1.13805600
Н	-0.13943800	0.03262000	-1.62447700
С	-2.81996300	0.14140900	1.21022900
Н	-1.18898900	0.66307200	2.51982300
С	-3.19063900	-0.17742500	-0.11050900
Н	-2.52722700	-0.46625700	-2.15180300
Н	-3.57231800	0.17125900	1.99240100
С	-4.56247000	-0.46269900	-0.41289100
Ν	-5.67764300	-0.69457800	-0.65870700
С	1.63425100	0.65060800	0.98902900

С	2.05460100	-0.70205600	1.09797900
С	2.78203500	-1.32123300	0.08293900
С	3.15125300	-0.54243100	-1.03153600
С	2.81924000	0.81795600	-1.10826300
С	2.09279900	1.44945200	-0.09808100
Н	3.15525900	1.39826600	-1.96437900
Н	1.26267600	1.15022300	1.87943900
С	1.75652200	2.91753700	-0.15597100
Н	2.06323000	3.43283400	0.76180000
Н	2.24894500	3.40605700	-1.00129400
Н	0.67467300	3.06921600	-0.26069100
Н	3.72600900	-0.99633400	-1.83521100
Н	1.77077900	-1.26904500	1.98087000
С	3.17484200	-2.77849700	0.16998600
Н	2.60551000	-3.38352200	-0.54624200
Н	4.23617600	-2.92045600	-0.06090600
Н	2.98640600	-3.18197600	1.16889400

### TS2(Xyl)

С	-1.23075600	-0.23501300	0.06024400
С	-1.66149600	0.85030200	-0.72891300
С	-2.21815300	-1.00273900	0.71098200

С	-3.01095900	1.16081800	-0.86599500
Н	-0.91253600	1.46615000	-1.21638600
С	-3.57196200	-0.70262900	0.59527500
Н	-1.91739100	-1.85937000	1.30690600
С	-3.98056500	0.38578900	-0.19909800
Н	-3.32081000	2.00293500	-1.47682600
Н	-4.31451200	-1.30970700	1.10381100
С	-5.36967700	0.70104400	-0.32830500
Ν	-6.50268600	0.95741400	-0.43565100
С	0.24267100	-0.59014500	0.14459900
С	0.72378500	-1.15355400	1.44137700
С	1.65289300	-2.17529800	1.44559700
С	2.11588900	-2.80432600	0.26356100
С	1.59152200	-2.40024400	-0.99883600
С	0.67081200	-1.37953300	-1.04576800
Н	2.05146200	-2.51066600	2.40318100
Н	0.83002700	0.56329000	0.00633700
С	0.31911500	-0.48287200	2.73111900
Н	0.54985500	0.59108200	2.70329300
Н	-0.75625200	-0.55940300	2.93498900
Н	0.84960000	-0.91963400	3.58378400
0	1.27681800	1.85929000	-0.24090500
С	2.65431500	2.11722400	-0.11971500

С	3.15123700	1.82343100	1.31662600
Н	2.60107000	2.43958800	2.03793800
Н	2.98080400	0.77165000	1.56999100
Н	4.22231200	2.03613200	1.43244100
С	3.46822500	1.25733000	-1.11710000
Н	3.30047200	0.19224800	-0.92532100
Н	3.14723300	1.46938800	-2.14441500
Н	4.54600300	1.45617200	-1.04801100
С	2.90379600	3.61024700	-0.43283100
Н	2.33984300	4.24051300	0.26505200
Н	3.96665100	3.87573500	-0.35315600
Н	2.56792500	3.84536600	-1.44990500
Н	2.83736600	-3.61515700	0.32244100
Н	0.25863200	-1.08206900	-2.00911800
С	2.04425200	-3.10886000	-2.25789000
Н	1.85700300	-4.18847400	-2.19845900
Н	1.52697800	-2.72435800	-3.14242800
Н	3.12286200	-2.98344400	-2.41892500

### TS1(OMe)

С	2.31197600	0.42498000	0.89461400
С	2.75571300	-0.83930900	1.32978100

С	3.48660800	-1.41899800	0.26958300
С	3.53234800	-0.48367400	-0.76020900
N	2.86913000	0.64750600	-0.35489300
Н	1.97912300	1.26358100	1.48931200
Н	2.53202100	-1.28063400	2.29134700
Н	3.93992700	-2.40086400	0.24796800
Н	3.98403700	-0.53791600	-1.74059100
С	0.05492700	0.09342800	0.42346800
С	-0.89071900	0.91588400	1.01085800
С	-0.30894600	-0.91890400	-0.45795700
С	-2.25552100	0.73693200	0.70968500
Н	-0.60577900	1.70661700	1.70292600
С	-1.66036200	-1.10232100	-0.76803200
Н	0.43833300	-1.56897000	-0.90758900
С	-2.63472100	-0.27439700	-0.18314600
Н	-2.99283800	1.38419500	1.17120600
Н	-1.97807600	-1.88152400	-1.45584200
С	2.61089000	1.81949800	-1.17741000
Н	2.69190700	2.72408800	-0.56988900
Н	3.35109400	1.86680200	-1.97766100
Н	1.60773000	1.77461900	-1.61508800
0	-3.93231200	-0.53631700	-0.54874700
С	-4.97186200	0.26759500	0.01071200

Н	-4.85005400	1.32193500	-0.26335300
Н	-5.90196900	-0.11236900	-0.41262800
Н	-5.00285400	0.17414900	1.10243100

# <u>TS1(Ph)</u>

С	1.39805600	0.35011900	0.94318500
С	1.82765700	-0.94251900	1.30503400
С	2.61131900	-1.44099000	0.24148900
С	2.70227300	-0.43181200	-0.71299500
Ν	2.01496500	0.66548900	-0.25780700
Н	1.03889000	1.14314800	1.58357300
Н	1.56055700	-1.45419700	2.21950200
Н	3.07016900	-2.41787200	0.16943400
Н	3.20111900	-0.41262000	-1.67160500
С	-0.82515800	0.05626300	0.34388100
С	-1.79226000	0.84171500	0.95584600
С	-1.13789600	-0.89262700	-0.61977800
С	-3.13633700	0.67274100	0.57930300
Н	-1.52997000	1.58031600	1.71162600
С	-2.48163000	-1.05401600	-0.99623400
Н	-0.36381400	-1.50465200	-1.07777800
С	-3.47705600	-0.27233000	-0.39547000

Н	-3.91046800	1.27799700	1.04558900
Н	-2.74927900	-1.78885000	-1.75211400
С	1.79066400	1.89435800	-1.00365400
Н	1.83204500	2.75141600	-0.32716000
Н	2.57163800	2.00440600	-1.75763400
Н	0.81259600	1.87826400	-1.49676100
Н	-4.51603200	-0.40119100	-0.68566200

### TS1(diMe)

С	1.94756200	-1.03180800	-0.40701800
С	2.38393300	-0.41686000	-1.59844400
С	3.19216200	0.68308200	-1.23563000
С	3.29166600	0.68271900	0.15254800
Ν	2.58588300	-0.38829300	0.64245300
Н	1.57400300	-2.03664100	-0.26883700
Н	2.10421900	-0.72486500	-2.59661900
Н	3.66106500	1.39698600	-1.89939900
Н	3.80790800	1.35658700	0.82148000
С	-0.25451200	-0.36328900	-0.18864800
С	-1.24121200	-1.33258500	-0.20462800
С	-0.53139200	0.99131600	-0.06279500
С	-2.59261200	-0.93803900	-0.08405600

Н	-0.99760600	-2.39015000	-0.30511100
С	-1.86848600	1.40665400	0.06863900
Н	0.26789900	1.73035200	-0.06406000
С	-2.87839100	0.42656500	0.05233300
С	2.36492400	-0.68639200	2.04900500
Н	2.39304500	-1.76713100	2.20811900
Н	3.15480500	-0.22379200	2.64289800
Н	1.39309100	-0.30430200	2.38024600
Н	-3.91644900	0.73990700	0.14775800
С	-2.22067200	2.86874700	0.23554800
Н	-1.35102500	3.50892900	0.06151200
Н	-3.01080700	3.17123100	-0.46071100
Н	-2.58851200	3.07434500	1.24838100
С	-3.69875700	-1.97006000	-0.11541800
Н	-4.66671000	-1.52501000	0.13262000
Н	-3.78557100	-2.42681500	-1.10886300
Н	-3.50581200	-2.78187900	0.59478800

#### <u>TS1(Ph)</u>

С	-3.63348800	0.87856500	0.07740800
С	-4.00093000	0.86230000	-1.28305500
С	-4.58115800	-0.39710700	-1.54917100

С	-4.61844700	-1.09700300	-0.34645100
N	-4.09563400	-0.30029300	0.64109500
Н	-3.43203600	1.73125400	0.71001000
Н	-3.82477900	1.66569800	-1.98512400
Н	-4.94233600	-0.76266300	-2.50094900
Н	-4.97587200	-2.09194600	-0.12187900
С	-1.32808500	0.57554500	0.03406300
С	-0.50660200	1.52793400	0.62015300
С	-0.81145900	-0.55761900	-0.57786600
С	0.88280500	1.33287900	0.59953400
Н	-0.91616200	2.41272100	1.10455600
С	0.57731300	-0.74886800	-0.59288400
Н	-1.46347300	-1.28882300	-1.05078300
С	1.44489400	0.19292300	-0.00537300
Н	1.53068000	2.06323700	1.07785700
Н	0.98995600	-1.62542100	-1.08614400
С	-3.87163400	-0.69846400	2.02252900
Н	-4.09039200	0.13854100	2.68995700
Н	-4.53652400	-1.52759600	2.26924400
Н	-2.83282700	-1.01132100	2.17386700
С	2.91914900	-0.01179300	-0.02515400
С	3.79846500	1.06913200	-0.22498800
С	3.47554700	-1.29196100	0.15680900

С	5.18228800	0.87817300	-0.23995900
Н	3.39582000	2.06421800	-0.38990700
С	4.85909400	-1.48473400	0.13865800
Н	2.82148500	-2.14060900	0.33427700
С	5.72001000	-0.40023200	-0.05874600
Н	5.83953500	1.72778400	-0.40250100
Н	5.26410400	-2.48163400	0.28831000
Н	6.79568400	-0.54941200	-0.07149100

### <u>TS1(Me)</u>

С	1.90999800	0.39821600	0.88411700
С	2.30881000	-0.87890400	1.32696300
С	3.01459400	-1.49230000	0.26871900
С	3.09280700	-0.56607400	-0.76725300
Ν	2.47334300	0.59191000	-0.36777900
Н	1.61514900	1.25334100	1.47559800
Н	2.07121400	-1.30552900	2.29184100
Н	3.43094000	-2.49052400	0.25250900
Н	3.53999400	-0.64336800	-1.74814600
С	-0.35174300	0.15314000	0.42292600
С	-1.26343200	0.98504500	1.05375200
С	-0.75408000	-0.82345400	-0.47838200

C	-2.63178500	0.83576300	0.76368600
Н	-0.94359800	1.74978800	1.75995200
С	-2.12067900	-0.96025800	-0.76366800
Н	-0.02978700	-1.47614100	-0.96131500
С	-3.07761300	-0.13540200	-0.14522600
Н	-3.35655600	1.48575400	1.25072600
Н	-2.44732700	-1.71840600	-1.47369200
С	2.25694100	1.76744400	-1.19708800
Н	2.37473100	2.67233400	-0.59598900
Н	2.99526400	1.78119100	-2.00035500
Н	1.25114700	1.75819500	-1.63106100
С	-4.55066400	-0.30670100	-0.44654200
Н	-5.14113700	0.50926100	-0.01992800
Н	-4.73759700	-0.33160200	-1.52580200
Н	-4.93476900	-1.24675200	-0.03190200

# [PLY(O,O)-K]²⁻ (III; Cat²⁻)

-2 1

С	-3.46793200	1.21436800	0.00015100
С	-4.14547400	-0.00000100	0.00021700
С	-1.26622100	0.00000000	-0.00005500
С	-2.01989800	1.24265200	0.00001500
Н	-5.23747200	-0.00000100	0.00032600

С	0.10619600	-2.44615500	-0.00005800
С	-1.30091800	2.43816200	-0.00000900
С	0.10619500	2.44615500	-0.00009300
Н	0.63705400	-3.39937300	-0.00004100
Н	0.63705300	3.39937300	-0.00007300
С	0.89709700	-1.28831500	-0.00019500
С	0.18265200	0.00000000	-0.00017200
С	0.89709700	1.28831600	-0.00017400
С	-2.01989700	-1.24265300	0.00004600
С	-1.30091700	-2.43816300	0.00005300
С	-3.46793200	-1.21436900	0.00018300
Н	-1.84566900	-3.38373300	0.00015400
Н	-4.00610000	-2.16095200	0.00026000
Н	-4.00610100	2.16095100	0.00021000
Н	-1.84567000	3.38373300	0.00006000
0	2.21013600	1.40049100	-0.00011300
0	2.21013600	-1.40048900	-0.00021100
К	4.26865500	-0.00000100	0.00011800

#### 26. References:

- 1. R. C. Haddon, R. Rayford, & A. M. Hirani, J. Org. Chem. 1981, 46, 4587-4588.
- 2. S. De, S. Mishra, B. N. Kakde, D. Dey, & A. Bisai, J. Org. Chem. 2013, 78, 7823-7844.
- 3. M. J. Frisch, et al. Gaussian 16, Revision B.01, Fox, Gaussian, Inc., Wallingford CT, 2016.
- 4. A. D. Becke, J. Chem. Phys. 1993, 98, 5648-5652.
- 5. Y. Zhao, & D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
- 6. D. Geuenich, K. Hess, F. Koehler, & R. Herges, Chem. Rev. 2005, 105, 3758-3772.
- 7. R. Herges, & D. Geuenich, J. Phys. Chem. 2001, A 105, 3214-3220.
- H. Wei, Y. Liu, T. Y. Gopalakrishna, H. Phan, X. Huang, L. Bao, J. Guo, J. Zhou, S. Luo, J.
  Wu, & Z. Zeng, J. Am. Chem. Soc. 2017, 139, 15760-15767.
- 9. Z. Chen, C. S. Wannere, , C. Corminboeuf, R. Puchta, & P. R. Schleyer, *Chem. Rev.* 2005, **105**, 3842-3888.
- 10. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, & H. Puschmann, *J. Appl. Cryst.* 2009, **42**, 339–341.
- 11. G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
- 12. D. T. Gryko, O. Vakuliuk, D. Gryko, & B. Koszarna, J. Org. Chem. 2009, 74, 9517-9520.
- 13. S. Crespi, S. Protti, & M. Fagnoni, J. Org. Chem. 2016, 81, 9612-9619.
- 14. S. Paul, K. K. Das, S. Manna, & S. Panda, Chem. Eur. J. 2020, 26, 1922–1927.
- 15. M, Wang, X. Yuan, H. Li, L. Ren, Z. Sun, Y. Hou, & W. Chu, *Catal. Commun.*, 2015, **58**, 154-157.

N. G. W. Cowper, C. P. Chernowsky, O. P. Williams, & Z. K. Wickens, J. Am. Chem. Soc.,
 2020, 142. 2093-2098.

- 17. J. R. Naber, B. P. Fors, X. Wu, J. T. Gunn, & S. L. Buchwald *HETEROCYCLES*, 2010, **80**, 1215 1226.
- 18. F. Yu, R. Mao, M. Yu, X. Gu, & Y. Wang, J. Org. Chem. 2019, 84, 9946-9956.
- S. Zhang, Z. Tang, W. Bao, J. Li, B. Guo, S. Huang, Y. Zhang & Y. Rao, Org. Biomol. Chem.,
  2019, 17, 4364–4369.
- 20. V. Hornillos, M. Giannerini, C. Vila, M. Fañanás-Mastral, & B. L. Fering, *Org. Lett.* 2013, **15**, 5114-5120.
- 21. X. Li, F. Feng, C. Ren, Y. Teng, Q. Hu, & Z. Yuan, Synlett, 2019, 30, 2131-2135.
- J. Cao, Z-L. Chen, S-M. Li, G-F. Zhu, Y-Y. Yang, C. Wang, W-Z. Chen, J-T. Wang, J-Q.
  Zhang, & L. Tang, *Eur. J. Org. Chem.*, 2018, 22, 2774-2779.
- 23. T. Wang, S. Shi, M. H. Vilhelmsen, T. Zhang, M. Rudolph, F. Rominger, A. S. K. Hashmi, *Chem. Eur. J.* 2013, **19**, 12512-12516.
- 24. S. Tani, T. N. Uehara, J. Yamaguchia, & K. Itami, Chem. Sci., 2014, 5, 123–135.
- 25. Prez-Perarnau, et. al., Angew. Chem. Int. Ed. 2014, 53, 10150-10154.