Conformational Analysis by UV Spectroscopy: the Decisive Contribution of Environment-Induced Electronic Stark Effects

Jeremy Donon, Sana Habka, Michel Mons, Valérie Brenner, Eric Gloaguen

LIDYL, CEA, CNRS, Université Paris Saclay; CEA Saclay, Bât 522, 91191 Gif-sur-Yvette, France

Turbomole options

The following non-default (program define) TURBOMOLE 7.0 options were used for geometry optimization and frequency calculations at the RI-B97-D3/dhf-TZVPP level:

\$scfconv 8

\$dft

gridsize m4
weight derivatives
\$disp3

For electric field calculations at the RI-B97-D3(BJ)/def2-QZVPP//RI-B97-D3(BJ)-abc/dhf-TZVPP level, the following non-default options of TURBOMOLE 7.2 were used:
\$scfconv 8
\$dft
gridsize m5
weight derivatives
\$disp3 bj abc \#abc when applicable

Figure SO. Reaction scheme featuring a photoinduced decarboxylation of the ($\mathrm{M}^{+}, \mathrm{BA}^{-}$) systems, consistent with the m / z of ions measured by mass spectrometry, i.e. the parent ion (green), the (parent- $\left.\mathrm{CO}_{2}\right)^{+}$(blue), the $\mathrm{CO}_{2} \cdot \mathrm{M}^{+}$complex ion (orange), and the alkali cation M^{+}(red).

Figure S1. Top: Vibrational progression observed on the (parent- $\left.\mathrm{CO}_{2}\right)^{+}$mass channel of the $\left(\mathrm{K}^{+}, \mathrm{BA}^{-}\right)$ion pair, for which the vibrational quantum number n is assigned. Bottom: Second order polynomial regression.

Figure S2. IR spectra recorded by the IR/UV technique at a UV wavelength corresponding to the most intense transition of the most intense mass channel (see Fig. 2) for every conformer considered along the $\left(\mathrm{M}^{+}, \mathrm{BA}^{-}\right)$series. While experimental frequencies of the CO_{2}^{-}stretch modes of both conformers \mathbf{A} and \mathbf{B} are very similar in $\left(\mathrm{Li}^{+}, \mathrm{BA}^{-}\right)$and $\left(\mathrm{Na}^{+}, \mathrm{BA}^{-}\right)$, that of \mathbf{C} are quite different from \mathbf{B} in $\left(\mathrm{K}^{+}, \mathrm{BA}^{-}\right)$, with a clear increase of the $\mathrm{CO}_{2}{ }^{-}$stretch modes splitting in the former.

Table S1. Comparison between theoretical mode-dependent scaled frequencies at the RI-B97-D3/dhfTZVPP level and experimental frequencies of the CO_{2}^{-}stretch modes, $\mathrm{v}\left(\mathrm{CO}_{2}\right)^{-5 v m} /$ anti, and their difference, $\Delta v\left(\mathrm{CO}_{2}^{-}\right)$(in cm^{-1}). In case of multiplets (d for doublets, or q for quadruplets), the spectral range is given. $\mathrm{O}-\mathrm{O}-\pi$ conformers are characterized by blue shifted $v\left(\mathrm{CO}_{2}^{-}\right)^{-a n t i}$ and a larger $\Delta v\left(\mathrm{CO}_{2}^{-}\right)$than $\mathrm{O}-\mathrm{O}$ within the same system. This behavior is also observed for conformer \mathbf{C} relatively to \mathbf{B} for $\left(\mathrm{K}^{+}, \mathrm{BA}^{-}\right)$, supporting the assignment of \mathbf{C} to the $\mathbf{g c}(\mathbf{O}-\mathbf{O}-\boldsymbol{\pi})$ conformer. The evolution of $v\left(\mathrm{CO}_{2}\right)^{-5 y m}$ is considered less reliable due to the presence of couplings blurring the comparison between harmonic calculations and experiments.

	Theory					Experiment			
	Label	Type	$\mathrm{v}\left(\mathrm{CO}_{2}\right)^{-}{ }^{\text {sym }}$	$\mathrm{v}\left(\mathrm{CO}_{2}{ }^{-}\right)^{\text {anti }}$	$\Delta \mathrm{v}\left(\mathrm{CO}_{2}{ }^{-}\right)$	Conf.	$\mathrm{v}\left(\mathrm{CO}_{2}\right)^{-5 \mathrm{sym}}$	$\left.\mathrm{v}\left(\mathrm{CO}_{2}\right)^{-}\right)^{\text {anti }}$	$\Delta v\left(\mathrm{CO}_{2}{ }^{-}\right)$
($\left.\mathrm{Li}^{+}, \mathrm{BA} \mathrm{A}^{-}\right)$	ap	O-O	1424	1537	113	B	1449.0	1540.5	91.5
	ac	O-O	1421	1540	119				
	gc	O-O	1433	1542	109	A	$\begin{aligned} & \text { q(1426- } \\ & 1465) \end{aligned}$	1544.5	99 ${ }^{\text {a }}$
	pl-ap	O-0	1425	1540	115				
$\left(\mathrm{Na}^{+}, \mathrm{BA}^{-}\right)$	ap	O-0	1392	1554	162	B	$\begin{gathered} \hline \mathrm{d}(1416- \\ 1427) \end{gathered}$	1551	$129.5^{\text {a }}$
	ac	O-O	1391	1553	162				
	$\mathrm{gc}^{\text {b }}$	O-O	1403	1556	153	A	1428.5	1561	132.5
	gc	0-0- π	1398	1569	171				
	pl-ap	O-0	1396	1554	158				
$\left(\mathrm{K}^{+}, \mathrm{BA} \mathrm{A}^{-}\right)$	ap	O-O	1382	1562	180	B	1410	1557	147
	ac	O-0	1381	1562	181				
	gc	0-0- π	1390	1579	189	C	1397	1578	181
	pl-ap	O-O	1380	1563	183				
$\left(\mathrm{Rb}^{+}, \mathrm{BA}^{-}\right)$	ap	O-O	1382	1558	176				
	ac	O-O	1381	1559	178				
	gc	0-0- π	1391	1575	184				
	pl-ap	O-O	1380	1560	180				

a. The center of the multiplet is used to calculate the difference
b. Partial optimization with a fixed $\mathrm{C}^{\text {ipso } \mathrm{C}^{a} \mathrm{C}^{b} \mathrm{C}^{c} \text { angle (Table 1) }{ }^{\text {1 }} \text { (T) }}$

Figure S3. Energy profile of the $\left(\mathrm{Na}^{+}, \mathrm{BA}^{-}\right)$gc conformers along the $\mathrm{Na}-\mathrm{C}^{\text {para }}$ coordinate obtained after partial optimizations at the RI-B97-D3(BJ)-abc/dhf-TZVPP. This profile shows a quite large basin, where the minimum of the potential energy surface is of O-O- π type, whereas an inflexion is seen in the region typical of $\mathrm{O}-\mathrm{O}$ conformers ($\sim 600 \mathrm{pm}$). Similar results were obtained for ($\mathrm{Li}^{+}, \mathrm{BA}^{-}$) and ($\mathrm{K}^{+}, \mathrm{BA}^{-}$). The experimental observation of $\mathrm{O}-\mathrm{O}$ conformers for $\left(\mathrm{Li}^{+}, \mathrm{BA}^{-}\right)$and $\left(\mathrm{Na}^{+}, \mathrm{BA}^{-}\right)$suggest that the stabilization of O-O- π conformers is overestimated by at least $\sim 5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ relatively to $\mathrm{O}-\mathrm{O}$ conformers. This profile obtained at a rather advanced level of calculation illustrates how challenging the theoretical structural description of these systems is.

Table S2. The electric field \boldsymbol{E} (in GV m ${ }^{-1}$) produced by the ($\mathrm{M}^{+},{ }^{\bullet} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CO}_{2}{ }^{-}$) system, calculated at the center of the phenyl ring at the RI-B97-D3(BJ)/def2-QZVPP//RI-B97-D3(BJ)-abc/dhf-TZVPP level is presented for the $\left(\mathrm{M}^{+}, \mathrm{BA}^{-}\right.$) series. The electric fields produced by the ${ }^{\bullet} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ (resp. ${ }^{\circ} \mathrm{CH}_{2}-\mathrm{CH}_{2}-$ COOH) system in both conformers of n-propylbenzene (resp. benzylacetic acid) are also shown.

	$\\|E\\|$	E_{x}	E_{y}	E_{z}
$\left(\mathrm{Li}^{+}, \mathrm{BA}^{-}\right)$ ap (O-O) ac (O-O) gc (O-O)	$\begin{aligned} & 2.65 \\ & 2.35 \\ & 2.70 \end{aligned}$	$\begin{aligned} & \hline-2.64 \\ & -2.34 \\ & -2.66 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \\ & 0.36 \end{aligned}$	$\begin{aligned} & -0.27 \\ & -0.14 \\ & -0.27 \end{aligned}$
$\begin{array}{ll} & \text { ap (O-O) } \\ \left(\mathrm{Na}^{+}, \mathrm{BA}^{-}\right) & \text {ac (O-O) } \\ & \mathrm{gc}(\mathrm{O}-\mathrm{O})^{\mathrm{a}} \end{array}$	$\begin{aligned} & 3.29 \\ & 3.01 \\ & 3.40 \end{aligned}$	$\begin{aligned} & -3.29 \\ & -3.01 \\ & -3.39 \end{aligned}$	$\begin{gathered} 0.00 \\ 0.00 \\ -0.12 \end{gathered}$	$\begin{aligned} & -0.15 \\ & -0.02 \\ & -0.18 \end{aligned}$
$\begin{array}{ll} \left(\mathbf{K}^{+}, \mathbf{B A}^{-}\right) & \text {ap (O-O) } \\ & \text { ac (O-O) } \end{array}$	$\begin{aligned} & 3.73 \\ & 3.49 \end{aligned}$	$\begin{aligned} & -3.73 \\ & -3.49 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{gathered} -0.06 \\ 0.07 \end{gathered}$
$\begin{array}{ll} \left(\mathbf{R b}^{+}, \mathbf{B A}^{-}\right) & \text {ap (O-O) } \\ & \text { ac (O-O) } \end{array}$	$\begin{aligned} & 3.82 \\ & 3.58 \end{aligned}$	$\begin{aligned} & -3.82 \\ & -3.58 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.00 \end{aligned}$	$\begin{gathered} -0.04 \\ 0.08 \end{gathered}$
n-propylbenzene	$\begin{aligned} & 2.14 \\ & 2.12 \end{aligned}$	$\begin{aligned} & \hline-2.13 \\ & -2.09 \end{aligned}$	$\begin{aligned} & 0.00 \\ & 0.06 \end{aligned}$	$\begin{aligned} & -0.23 \\ & -0.39 \end{aligned}$
Benzylacetic acid	$\begin{aligned} & 1.45 \\ & 1.53 \end{aligned}$	$\begin{aligned} & -1.32 \\ & -1.33 \end{aligned}$	$\begin{gathered} 0.00 \\ -0.60 \end{gathered}$	$\begin{gathered} 0.60 \\ -0.45 \end{gathered}$

a. Conformer resulting from a partial optimization at the RI-B97-D3/dhf-TZVPP level (Table 1 and S1).

n-propylbenzene

a

gc (0-0)

Figure S4. Interactions between the phenyl ring and the methyl (green) or the $-\mathrm{CO}_{2}^{-} \mathrm{M}^{+}$(orange) group in n-propylbenzene and $\left(\mathrm{M}^{+}, \mathrm{BA}^{-}\right)$ion pairs respectively. These interactions mainly occur in conformers where the $\mathrm{C}^{\text {ipso }} \mathrm{C}^{\text {a }} \mathrm{C}^{b} \mathrm{C}^{\mathrm{C}}$ angle is \mathbf{g}, but not when it is \mathbf{a}.

Figure S5. Ion signal intensity ratios between the different mass channels taken at the origin transitions of ($\mathrm{M}^{+}, \mathrm{BA}^{-}$) conformers \mathbf{B} assigned to ap ($\mathbf{O - O}$) (top) and \mathbf{A} or \mathbf{C} assigned to gc ($\mathbf{O - O}$) or ($\mathbf{O - 0} \mathbf{-} \boldsymbol{\pi}$) (bottom) for $\mathrm{M}=\mathrm{Li}, \mathrm{Na}$ and K .

Table S3. Ionic bond energy of the ($\mathrm{M}^{+}, \mathrm{AcO}^{-}$) bidentate ion pairs calculated at the BSSE-corrected-Full-CCSD(T)/dhf-TZVPP//RI-B97-D3/dhf-TZVPP level ${ }^{1-2}$ for $\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs} .^{3}$

System	Binding energy (kJ mol
$\left(\mathrm{Li}^{+}, \mathrm{AcO}^{-}\right)$	708
$\left(\mathrm{Na}^{+}, \mathrm{AcO}^{-}\right)$	605
$\left(\mathrm{~K}^{+}, \mathrm{AcO}^{-}\right)$	525
$\left(\mathrm{Rb}^{+}, \mathrm{AcO}^{-}\right)$	498
$\left(\mathrm{Cs}^{+}, \mathrm{AcO}^{-}\right)$	495

Figure S6. IR spectra recorded by the IR/UV technique at a UV wavelength corresponding to the most intense transition of the most intense mass channel (see Fig. 5) for every conformer of the ($\mathrm{Na}^{+}, \mathrm{PB}^{-}$) system. The antisymmetric transition of A is clearly blue-shifted by $20-23 \mathrm{~cm}^{-1}$ relatively to all the other conformers.

Table S4. Comparison between theoretical mode-dependent scaled frequencies at the RI-B97-D3/dhf-
 multiplets (d for doublets, or t for triplets), the spectral range is given. $0-0-\pi$ conformers are characterized by blue shifted $v\left(\mathrm{CO}_{2}^{-}\right)^{-2 n t i}$ by at least $10 \mathrm{~cm}^{-1}$. $A \sim 20 \mathrm{~cm}^{-1}$ blueshift is also observed for conformer A relatively to the others, supporting the assignment of A to the $\mathbf{g g}^{-c}(0-0-\pi)$ conformer.

	Theory				Experiment		
	Label	Type	$\mathrm{v}\left(\mathrm{CO}_{2}\right)^{-5 \mathrm{sym}}$	$\mathrm{v}\left(\mathrm{CO}_{2}{ }^{-}\right)^{\text {anti }}$	Conf.	$v\left(\mathrm{CO}_{2}\right)^{\text {sym }}$	$\mathrm{v}\left(\mathrm{CO}_{2}{ }^{-}\right)^{\text {anti }}$
(Li^{+}, PB-)	aap	O-O	1425	1537	D	t(1417-1462)	1538
	aac	O-O	1424	1540	F		
	agp	O-O	1428	1538	C	1452	1537
	gap	O-O	1427	1535			
	$\mathrm{gac}^{\text {a }}$	O-O			E		1537
	ggc	O-0	1432	1535			
	gg-c	O-0- π	1433	1555	A	1453	1557
	pl-aap	O-O	1426	1537	B	1447	1537
$\left(\mathrm{Na}^{+}, \mathrm{PB}^{-}\right)$	aap	O-O	1394	1555	D		1550
	aac	O-O	1395	1552	F		1551
	agp	O-O	1399	1555	C	d(1412-1447)	1548
	gap	O-O	1394	1552			
	$\mathrm{gac}^{\text {a }}$	O-O			E		1549
	ggc	O-O	1407	1552			
	gg-c	O-0- π	1409	1568	A	d (1408-1447)	1571
	pl-aap	O-O	1395	1551	B	1413	1551

a. Partial optimization with a fixed dihedral angle around the $\mathrm{C}^{c} \mathrm{C}^{\mathrm{d}}$ bond (see Table 2)

Figure S7. Mass spectra of ($\mathrm{Li}^{+}, \mathrm{PB}^{-}$) resulting from the difference between spectra taken in resonance with transitions A B and \mathbf{C}, and off resonance. Despite the mass spectrum of conformer \mathbf{B} has the highest signal-to-noise parent ion intensity, it does not show any (parent- CO_{2}) ${ }^{+}$signal, while this fragmentation channel is clearly detected on \mathbf{A} or \mathbf{C}.

Figure S8. Ion signal intensity ratios between the parent ion and (parent- $\left.\mathrm{CO}_{2}\right)^{+}$mass channels taken at the origin transitions of $\left(\mathrm{Na}^{+}, \mathrm{PB}^{-}\right)$conformers. Please note that the $\mathrm{CO}_{2} \cdot \mathrm{Na}^{+}$and Na^{+}channels are not taken into account.

Table S5. The electric field \boldsymbol{E} (in $\mathrm{GV} \mathrm{m}^{-1}$) produced by the $\left(\mathrm{M}^{+},{ }^{\bullet} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CO}_{2}^{-}\right)$system, calculated at the center of the phenyl ring at the RI-B97-D3(BJ)/def2-QZVPP//RI-B97-D3(BJ)-abc/dhf-TZVPP level is presented for the ($\mathrm{M}^{+}, \mathrm{PB}^{-}$) series. The electric field produced by the ${ }^{\circ} \mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$ system in both conformers of n-butylbenzene is also shown.

	$\\|E\\|$	E_{x}	E_{y}	E_{z}
aap (O-O)	2.54	-2.54	0.00	-0.02
aac (0-0)	2.39	-2.38	0.00	-0.18
$\left(\mathrm{L}^{+}\right.$PB-) \quad agp (0-O)	2.60	-2.60	0.15	-0.10
$(\mathrm{Li}, \mathrm{PB}) \quad \operatorname{gap}(\mathrm{O}-\mathrm{O})$	2.35	-2.32	0.01	-0.34
ggc (0-0)	2.40	-2.34	0.51	-0.16
pl-aap (0-O)	2.55	-2.55	-0.02	-0.01
aap (0-O)	2.99	-2.99	0.01	0.05
aac (0-0)	2.85	-2.84	0.01	-0.13
(Na^{+}PB-) agp (0-O)	3.03	-3.03	0.13	0.01
$(\mathrm{Na}, \mathrm{PB}) \quad \operatorname{gap}(\mathrm{O}-\mathrm{O})$	2.72	-2.72	0.07	-0.14
ggc (0-0)	2.84	-2.77	0.62	0.04
pl-aap (O-O)	3.00	-3.00	0.02	0.01
n-butylbenzene	2.21	-2.20	0.00	-0.22
	2.17	-2.16	0.01	-0.22
	2.15	-2.11	0.08	-0.38
	2.14	-2.10	0.02	-0.39

($\mathrm{Li}^{+}, \mathrm{PB}^{-}$)

$\left(\mathrm{Na}^{+}, \mathrm{PB}^{-}\right)$
a.

b.

Figure S9. Energy profiles (solid lines) and electric field profiles (dotted lines) along the $\mathrm{C}^{b} \mathrm{C}^{c} \mathrm{C}^{d} \mathrm{O}$ dihedral angle for the ag. (a), ga• (b) and gg. (c) conformers of ($\mathrm{Li}^{+}, \mathrm{PB}^{-}$) (left) and ($\mathrm{Na}^{+}, \mathrm{PB}^{-}$) (right).

Figure S10. Experimental origin electronic transitions reported as a function of the square of the calculated electric field component E_{x} generated by the chain (${ }^{\circ} \mathrm{CH}_{2}-\mathrm{R}, \mathrm{R}$ depending on the system) at the center of the phenyl ring for all conformers involved in a quadratic Stark effect for n propylbenzene, n-butylbenzene, benzylacetic acid, ($\mathrm{M}^{+}, \mathrm{BA}^{-}$) for $\mathrm{M}=\mathrm{Li}, \mathrm{Na}, \mathrm{K}$ and Rb , ($\mathrm{Li}^{+}, \mathrm{PB}$) and (Na^{+}, PB^{-}). The four sets of conformers are distinguished by their symbols and linearly fitted.

References

1. Boys, S. F.; Bernardi, F., Calculation of small molecular interactions by differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19 (4), 553-566.
2. Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Headgordon, M., A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett. 1989, 157 (6), 479-483.
3. Habka, S. Spectroscopie optique de paires d'ions: De la caractérisation des modèles en phase gazeuse à l'identification des paires d'ions en solution. Université Paris-Saclay, 2017.
