Conformational Analysis by UV Spectroscopy: the Decisive Contribution of Environment-Induced Electronic Stark Effects

Jeremy Donon, Sana Habka, Michel Mons, Valérie Brenner, Eric Gloaguen

LIDYL, CEA, CNRS, Université Paris Saclay; CEA Saclay, Bât 522, 91191 Gif-sur-Yvette, France

Turbomole options

The following non-default (program define) TURBOMOLE 7.0 options were used for geometry optimization and frequency calculations at the RI-B97-D3/dhf-TZVPP level: \$scfconv 8 \$dft gridsize m4 weight derivatives \$disp3

For electric field calculations at the RI-B97-D3(BJ)/def2-QZVPP//RI-B97-D3(BJ)-abc/dhf-TZVPP level, the following non-default options of TURBOMOLE 7.2 were used:

```
$scfconv 8
$dft
gridsize m5
weight derivatives
$disp3 bj abc #abc when applicable
```


Figure S0. Reaction scheme featuring a photoinduced decarboxylation of the (M^+ , BA^-) systems, consistent with the m/z of ions measured by mass spectrometry, *i.e.* the parent ion (green), the (parent-CO₂)⁺ (blue), the CO₂·M⁺ complex ion (orange), and the alkali cation M⁺ (red).

Figure S1. <u>Top</u>: Vibrational progression observed on the (parent-CO₂)⁺ mass channel of the (K⁺, BA⁻) ion pair, for which the vibrational quantum number *n* is assigned. <u>Bottom</u>: Second order polynomial regression.

Figure S2. IR spectra recorded by the IR/UV technique at a UV wavelength corresponding to the most intense transition of the most intense mass channel (see Fig. 2) for every conformer considered along the (M^+ , BA^-) series. While experimental frequencies of the CO_2^- stretch modes of both conformers **A** and **B** are very similar in (Li⁺, BA⁻) and (Na⁺, BA⁻), that of **C** are quite different from **B** in (K⁺, BA⁻), with a clear increase of the CO_2^- stretch modes splitting in the former.

Table S1. Comparison between theoretical mode-dependent scaled frequencies at the RI-B97-D3/dhf-TZVPP level and experimental frequencies of the CO_2^- stretch modes, $v(CO_2^-)^{sym/anti}$, and their difference, $\Delta v(CO_2^-)$ (in cm⁻¹). In case of multiplets (d for doublets, or q for quadruplets), the spectral range is given. O-O- π conformers are characterized by blue shifted $v(CO_2^-)^{anti}$ and a larger $\Delta v(CO_2^-)$ than O-O within the same system. This behavior is also observed for conformer **C** relatively to **B** for (K⁺, BA⁻), supporting the assignment of **C** to the **gc (O-O-\pi)** conformer. The evolution of $v(CO_2^-)^{sym}$ is considered less reliable due to the presence of couplings blurring the comparison between harmonic calculations and experiments.

	Theory					Experiment			
	Label	Туре	v(CO ₂ -)sym	v(CO ₂ -) ^{anti}	$\Delta v(CO_2)$	Conf.	ν(CO ₂ -) ^{sym}	v(CO ₂ -) ^{anti}	$\Delta v(CO_2)$
	ар	0-0	1424	1537	113	В	1449.0	1540.5	91.5
	ac	0-0	1421	1540	119				
(Li⁺, BA⁻)	gc	0-0	1433	1542	109	А	q(1426- 1465)	1544.5	99ª
	pl-ap	0-0	1425	1540	115				
(Na⁺, BA⁻)	ар	0-0	1392	1554	162	В	d(1416- 1427)	1551	129.5ª
	ас	0-0	1391	1553	162				
	gc ^b	0-0	1403	1556	153	Α	1428.5	1561	132.5
	gc	0-0-π	1398	1569	171				
	pl-ap	0-0	1396	1554	158				
(K⁺, BA⁻)	ар	0-0	1382	1562	180	В	1410	1557	147
	ас	0-0	1381	1562	181				
	gc	0-0-π	1390	1579	189	С	1397	1578	181
	pl-ap	0-0	1380	1563	183				
(Rb⁺, BA⁻)	ар	0-0	1382	1558	176				
	ас	0-0	1381	1559	178				
	gc	0-0-π	1391	1575	184				
	pl-ap	0-0	1380	1560	180				

a. The center of the multiplet is used to calculate the difference

b. Partial optimization with a fixed $C^{ipso}C^aC^bC^c$ angle (Table 1)

Figure S3. Energy profile of the (Na⁺, BA⁻) **gc** conformers along the Na-C^{para} coordinate obtained after partial optimizations at the RI-B97-D3(BJ)-abc/dhf-TZVPP. This profile shows a quite large basin, where the minimum of the potential energy surface is of O-O- π type, whereas an inflexion is seen in the region typical of O-O conformers (~600 pm). Similar results were obtained for (Li⁺, BA⁻) and (K⁺, BA⁻). The experimental observation of O-O conformers for (Li⁺, BA⁻) and (Na⁺, BA⁻) suggest that the stabilization of O-O- π conformers is overestimated by at least ~5 kJ mol⁻¹ relatively to O-O conformers. This profile obtained at a rather advanced level of calculation illustrates how challenging the theoretical structural description of these systems is.

Table S2. The electric field *E* (in GV m⁻¹) produced by the (M⁺, $^{\circ}CH_2-CH_2-CO_2^{-}$) system, calculated at the center of the phenyl ring at the RI-B97-D3(BJ)/def2-QZVPP//RI-B97-D3(BJ)-abc/dhf-TZVPP level is presented for the (M⁺, BA⁻) series. The electric fields produced by the $^{\circ}CH_2-CH_2-CH_3$ (resp. $^{\circ}CH_2-CH_2-CH_2-CH_3$ (resp. $^{\circ}CH_2-CH_2-CH_2-CH_3$) system in both conformers of *n*-propylbenzene (resp. benzylacetic acid) are also shown.

		E	E _x	Ey	Ez
	ap (O-O)	2.65	-2.64	0.00	-0.27
(Li⁺ <i>,</i> BA⁻)	ac (O-O)	2.35	-2.34	0.00	-0.14
	gc (O-O)	2.70	-2.66	0.36	-0.27
	ap (O-O)	3.29	-3.29	0.00	-0.15
(Na⁺, BA⁻)	ac (O-O)	3.01	-3.01	0.00	-0.02
	gc (O-O) ^a	3.40	-3.39	-0.12	-0.18
	ap (O-O)	3.73	-3.73	0.00	-0.06
(K⁺, BA⁻)	ac (O-O)	3.49	-3.49	0.00	0.07
	ap (O-O)	3.82	-3.82	0.00	-0.04
(Rb⁺, BA⁻)	ac (O-O)	3.58	-3.58	0.00	0.08
n propulkary	а	2.14	-2.13	0.00	-0.23
<i>n</i> -propylben:	g	2.12	-2.09	0.06	-0.39
Benzylacetic	acid ^{ap}	1.45	-1.32	0.00	0.60
Denzylacette	gc	1.53	-1.33	-0.60	-0.45

a. Conformer resulting from a partial optimization at the RI-B97-D3/dhf-TZVPP level (Table 1 and S1).

Figure S4. Interactions between the phenyl ring and the methyl (green) or the $-CO_2^-M^+$ (orange) group in *n*-propylbenzene and (M⁺, BA⁻) ion pairs respectively. These interactions mainly occur in conformers where the C^{ipso}C^aC^bC^c angle is **g**, but not when it is **a**.

Figure S5. Ion signal intensity ratios between the different mass channels taken at the origin transitions of (M^+ , BA^-) conformers **B** assigned to **ap (O-O)** (top) and **A** or **C** assigned to **gc (O-O)** or **(O-O-** π) (bottom) for M= Li, Na and K.

Table S3. Ionic bond energy of the (M^+ , AcO^-) bidentate ion pairs calculated at the BSSE-corrected-Full-CCSD(T)/dhf-TZVPP//RI-B97-D3/dhf-TZVPP level¹⁻² for M = Li, Na, K, Rb, Cs.³

System	Binding energy (kJ mol ⁻¹)
(Li⁺, AcO⁻)	708
(Na⁺, AcO⁻)	605
(K⁺, AcO⁻)	525
(Rb⁺, AcO⁻)	498
(Cs⁺, AcO⁻)	495

Figure S6. IR spectra recorded by the IR/UV technique at a UV wavelength corresponding to the most intense transition of the most intense mass channel (see Fig. 5) for every conformer of the (Na⁺, PB⁻) system. The antisymmetric transition of **A** is clearly blue-shifted by 20-23 cm⁻¹ relatively to all the other conformers.

Table S4. Comparison between theoretical mode-dependent scaled frequencies at the RI-B97-D3/dhf-TZVPP level and experimental frequencies of the CO_2^- stretch modes, $v(CO_2^-)^{sym/anti}$ (in cm⁻¹). In case of multiplets (d for doublets, or t for triplets), the spectral range is given. O-O- π conformers are characterized by blue shifted $v(CO_2^-)^{anti}$ by at least 10 cm⁻¹. A ~20 cm⁻¹ blueshift is also observed for conformer **A** relatively to the others, supporting the assignment of **A** to the **gg⁻c (O-O**- π) conformer.

		٦	Theory	Experiment			
	Label	Туре	v(CO ₂ -) ^{sym}	v(CO ₂ -) ^{anti}	Conf.	v(CO ₂ -) ^{sym}	v(CO ₂ -) ^{anti}
	аар	0-0	1425	1537	D	t(1417-1462)	1538
	aac	0-0	1424	1540	F		
	agp	0-0	1428	1538	С	1452	1537
(I:+ DD-)	gap	0-0	1427	1535			
(Li⁺, PB⁻)	gac ^a	0-0			E		1537
	ggc	0-0	1432	1535			
	gg⁻c	0-0-π	1433	1555	А	1453	1557
	pl-aap	0-0	1426	1537	В	1447	1537
	аар	0-0	1394	1555	D		1550
	aac	0-0	1395	1552	F		1551
	agp	0-0	1399	1555	С	d(1412-1447)	1548
(Nat DB-)	gap	0-0	1394	1552			
(Na⁺, PB⁻)	gac ^a	0-0			E		1549
	ggc	0-0	1407	1552			
	gg⁻c	0-0-π	1409	1568	А	d(1408-1447)	1571
	pl-aap	0-0	1395	1551	В	1413	1551

a. Partial optimization with a fixed dihedral angle around the C^cC^d bond (see Table 2)

Figure S7. Mass spectra of (Li⁺, PB⁻) resulting from the difference between spectra taken in resonance with transitions **A B** and **C**, and off resonance. Despite the mass spectrum of conformer **B** has the highest signal-to-noise parent ion intensity, it does not show any (parent-CO₂)⁺ signal, while this fragmentation channel is clearly detected on **A** or **C**.

Figure S8. Ion signal intensity ratios between the parent ion and $(parent-CO_2)^+$ mass channels taken at the origin transitions of (Na^+, PB^-) conformers. Please note that the $CO_2 \cdot Na^+$ and Na^+ channels are not taken into account.

Table S5. The electric field *E* (in GV m⁻¹) produced by the (M⁺, $^{\circ}$ CH₂-CH₂-CH₂-CO₂⁻) system, calculated at the center of the phenyl ring at the RI-B97-D3(BJ)/def2-QZVPP//RI-B97-D3(BJ)-abc/dhf-TZVPP level is presented for the (M⁺, PB⁻) series. The electric field produced by the $^{\circ}$ CH₂-CH₂-CH₂-CH₃ system in both conformers of *n*-butylbenzene is also shown.

		E	Ex	Ey	Ez
	aap (O-O)	2.54	-2.54	0.00	-0.02
	aac (O-O)	2.39	-2.38	0.00	-0.18
(Li⁺, PB⁻)	agp (O-O)	2.60	-2.60	0.15	-0.10
(LI', PD)	gap (O-O)	2.35	-2.32	0.01	-0.34
	ggc (O-O)	2.40	-2.34	0.51	-0.16
	pl-aap (O-O)	2.55	-2.55	-0.02	-0.01
	aap (O-O)	2.99	-2.99	0.01	0.05
	aac (O-O)	2.85	-2.84	0.01	-0.13
(Nat DD-)	agp (O-O)	3.03	-3.03	0.13	0.01
(Na⁺, PB⁻)	gap (O-O)	2.72	-2.72	0.07	-0.14
	ggc (O-O)	2.84	-2.77	0.62	0.04
	pl-aap (O-O)	3.00	-3.00	0.02	0.01
	аа	2.21	-2.20	0.00	-0.22
n hutulhan	ag	2.17	-2.16	0.01	-0.22
<i>n</i> -butylben	ga	2.15	-2.11	0.08	-0.38
	gg	2.14	-2.10	0.02	-0.39

Figure S9. Energy profiles (solid lines) and electric field profiles (dotted lines) along the $C^bC^cC^dO$ dihedral angle for the ag· (a), ga· (b) and gg· (c) conformers of (Li⁺, PB⁻) (left) and (Na⁺, PB⁻) (right).

Figure S10. Experimental origin electronic transitions reported as a function of the square of the calculated electric field component E_x generated by the chain (•CH₂-R, R depending on the system) at the center of the phenyl ring for all conformers involved in a quadratic Stark effect for *n*-propylbenzene, *n*-butylbenzene, benzylacetic acid, (M⁺, BA⁻) for M = Li, Na, K and Rb, (Li⁺, PB⁻) and (Na⁺, PB⁻). The four sets of conformers are distinguished by their symbols and linearly fitted.

References

1. Boys, S. F.; Bernardi, F., Calculation of small molecular interactions by differences of separate total energies. Some procedures with reduced errors. *Mol. Phys.* **1970**, *19* (4), 553-566.

2. Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Headgordon, M., A fifth-order perturbation comparison of electron correlation theories. *Chem. Phys. Lett.* **1989**, *157* (6), 479-483.

3. Habka, S. Spectroscopie optique de paires d'ions: De la caractérisation des modèles en phase gazeuse à l'identification des paires d'ions en solution. Université Paris-Saclay, 2017.