Supplementary Information

Synthesis and Characterization of Carbene Derivatives of $Th@C_{3\nu}(8)-C_{82}$ and $U@C_{2\nu}(9)-C_{82}$: Exceptional Chemical Properties Induced by Strong Actinide-Carbon Cage Interaction

Xinye Liu, ^{†a} Bo Li, ^{†b} Wei Yang, ^{†a} Yang-Rong Yao,^c Le Yang,^b Jiaxin Zhuang,^a Xiaomeng Li,^a Peng Jin^{*b} and Ning Chen^{*a}

^a College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123, P. R. China. Email: chenning@suda.edu.cn
^b School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, P. R. China. Email: china.peng.jin@gmail.com

^c Department of Chemistry, University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States.

Table of Contents

Fig. S1. Positive-ion mode MALDI-TOF mass spectra of the purified Th@ $C_{3\nu}(8)$ - C ₈₂ Ad(I, II, III)
Fig. S2 . Positive-ion mode MALDI-TOF mass spectra of the purified U@ $C_{2\nu}(9)$ - C ₈₂ Ad(I, II, III, IV)
Fig. S3 . Packing diagrams in the crystal of Th@ $C_{3\nu}(8)$ -C ₈₂ Ad(I) viewed along the (a) a-axis, (b) b-axis, and (c) c-axisS4
Fig. S4. Packing diagrams in the crystal of $U@C_{2\nu}(9)-C_{82}Ad(I)$ viewed along the (a) a-axis, (b) b-axis, and (c) c-axis
Table S1. Charge densities (e) and POAV (in degree) values of all thenonequivalent carbon atoms in Th@ $C_{3\nu}(8)$ -C $_{82}$
Table S2. Relative energies (ΔE , kcal/mol) of different Th@ $C_{3\nu}(8)$ -C ₈₂ Ad isomers.
Table S3. Comparison between experimental and calculated interatomicdistances (Å) of Th@ $C_{3\nu}(8)$ -C $_{82}$ Ad(I) and U@ $C_{2\nu}(9)$ -C $_{82}$ Ad(I).S7
Table S4. Charge densities (e) and POAV (in degree) values of all thenonequivalent carbon atoms in $U@C_{2\nu}(9)-C_{82}$.S7
Table S5. Relative energies (ΔE , kcal/mol) of different U@ $C_{2\nu}(9)$ -C ₈₂ Ad isomers
Table S6. The calculated nearest metal-cage distances in Th@ $C_{3\nu}(8)$ -C ₈₂ andM@ $C_{2\nu}(9)$ -C ₈₂ (M = U, Sc, La)S8

Fig. S1. Positive-ion mode MALDI-TOF mass spectra of the purified (a) Th@ $C_{3\nu}(8)$ -C₈₂Ad(I), (b) Th@ $C_{3\nu}(8)$ -C₈₂Ad(II) and (c) Th@ $C_{3\nu}(8)$ -C₈₂Ad(III). Using Trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile as a matrix.

Fig. S2. Positive-ion mode MALDI-TOF mass spectra of the purified (a) $U@C_{2\nu}(9)-C_{82}(I)$, (b) $U@C_{2\nu}(9)-C_{82}(II)$, (c) $U@C_{2\nu}(9)-C_{82}(II)$, and (d) $U@C_{2\nu}(9)-C_{82}(IV)$. Using Trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene]malononitrile as a matrix.

Fig. S3. Packing diagrams in the crystal of Th@ $C_{3\nu}(8)$ -C₈₂Ad(I) viewed along the (a) a-axis, (b) b-axis, and (c) c-axis.

Fig. S4. Packing diagrams in the crystal of $U@C_{2\nu}(9)-C_{82}Ad(I)$ viewed along the (a) a-axis, (b) b-axis, and (c) c-axis.

Carbon number	Charge density value	POAV value
1	-0.159	14.137
2	-0.127	10.954
3	-0.087	10.209
4	-0.108	9.339
5	-0.066	10.152
6	-0.062	8.784
7	-0.078	9.288
8	-0.072	10.464
9	-0.044	10.740
10	-0.014	10.097
11	-0.043	7.702
12	-0.012	11.010
13	-0.017	7.483
14	-0.008	10.582
15	-0.017	10.841
16	0.011	10.725
17	-0.012	11.524

Table S1. Charge densities (e) and POAV (in degree) values of all the nonequivalent carbon atoms in Th@ $C_{3\nu}(8)$ -C₈₂.

Table S2. Relative energies (ΔE , kcal/mol) of different Th@ $C_{3\nu}(8)$ -C₈₂Ad isomers.

C-C bond	ΔΕ	C-C bond	ΔΕ
1-2 (I)	0.00	3-6	17.14
3-4 (II)	1.08	6-7	18.48
2-3 (III)	6.69	9-12	18.97
13-13 '	10.04	14-15	19.42
17-17 '	11.26	15-16	19.77
4-5	11.55	6-6 '	20.83
13-16	12.23	7-8	21.23
17-17 "	12.30	5-8	21.75
11-12	13.73	16-17	23.25
7-9	14.48	12-14	25.13
9-9 '	15.81	10-11	26.01
8-10	16.47	10-10 '	30.05
11-13	17.12		

bond	evneriment	calculatio
bonu	experiment	n
C1-C2	2.136	2.165
Th-C1	2.565	2.604
Th-C2	2.568	2.615
C1-C2	2.071	2.232
U-C1	2.557	2.523
U-C2	2.544	2.590
	bond C1-C2 Th-C1 Th-C2 C1-C2 U-C1 U-C1 U-C2	bondexperimentC1-C22.136Th-C12.565Th-C22.568C1-C22.071U-C12.557U-C22.544

Table S3. Comparison between experimental and calculated interatomic distances (Å) of Th@ $C_{3\nu}(8)$ -C₈₂Ad(I) and U@ $C_{2\nu}(9)$ -C₈₂Ad(I).

Table S4. Charge densities (e) and POAV (in degree) values of all the nonequivalent carbon atoms in $U@C_{2\nu}(9)-C_{82}$.

Carbon number	Charge density value	POAV value
1	-0.209	11.331
2	-0.144	11.623
3	-0.122	8.722
4	-0.096	9.312
5	-0.022	10.203
6	-0.071	9.081
7	-0.014	8.836
8	-0.001	9.868
9	-0.011	10.564
10	-0.043	9.046
11	-0.039	7.983
12	-0.004	10.807
13	-0.016	10.525
14	-0.026	7.622
15	-0.012	10.707
16	0.001	10.954
17	0.006	10.834
18	-0.005	10.797
19	-0.032	8.503
20	-0.004	10.681
21	0.004	10.367
22	-0.024	8.645
23	0.007	10.610
24	-0.024	8.587

C-C bond	ΔE	C-C bond	ΔE
1-2(I)	0.00	4-7	14.89
2-2'(II)	3.97	9-12	15.43
2-4(III)	7.62	4-6	15.73
1-3(IV)	10.50	18-21	16.19
24-24'	10.91	10-13	16.47
14-17	11.34	11-12	17.19
20-20'	11.45	17-18	17.62
6-9	11.95	20-23	17.73
15-18	12.23	7-10	18.14
16-19	12.36	15-16	19.83
13-16	12.86	5-6	20.21
11-14	13.03	17-20	21.52
21-22	13.06	3-5	21.64
23-24	13.49	8-8'	21.65
9-13	13.59	12-15	21.67
5-8	14.10	8-11	35.19
21-23	14.29	14-14 '	36.09
19-22	14.43		

Table S5. Relative energies (ΔE , kcal/mol) of different U@ $C_{2\nu}(9)$ -C₈₂Ad isomers.

Table S6. The calculated nearest metal-cage distances in Th@ $C_{3\nu}(8)$ -C₈₂ and M@ $C_{2\nu}(9)$ -C₈₂(M = U, Sc, La).

Compound	ion radius/Å	bond	distance/Å
	Th ⁴⁺	Th-C1	2.365
111@C3v(8)-C82	0.940	Th-C2	2.459
	U ³⁺	U-C1	2.428
$0 (w c_{2v}(9) - c_{82})$	1.025	U-C2	2.436
Sc@C (0) C	Sc ³⁺	Sc-C1	2.265
3C@C2v(9)-C82	0.745	Sc-C2	2.272
	La ³⁺	La-C1	2.550
La@C2v(9)-C82	1.061	La-C2	2.557