Ligand-controlled and nanoconfinement-boosted luminescence employing Pt(II) and Pd(II) complexes: From color-tunable aggregation-enhanced dual emitters towards self-referenced oxygen reporters

Iván Maisuls^{a,b†}, Cui Wang^{c,d†}, Matias E. Gutierrez Suburu^{a,b}, Sebastian Wilde^{a,b}, Constantin-Gabriel Daniliuc^e, Dana Brünink^f, Nikos L. Doltsinis^f, Stefan Ostendorp^g, Gerhard Wilde^g, Jutta Kösters^b, Ute Resch-Genger^{c*} and Cristian A. Strassert^{a,b*}

^a Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, D-48149 Münster, Germany.

^b CeNTech, CiMIC, SoN, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Münster, Germany. ca.s@wwu.de

^c Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), Richard-Willstaetter-Straße 11, 12489 Berlin, Germany

^d Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany

^eOrganisch-Chemisches Institut, Westfalische Wilhelms-Universität Münster, Corrensstraße 40, D-48149 Münster, Germany

^fInstitut für Festkörpertheorie and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, D-48149 Münster, Germany

^g Institut für Materialphysik and CeNTech, Westfalische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, D-48149 Münster, Germany

[†]These authors contributed equally to this work

Table of contents

Section	S1: Materials and methods		3
	S1.1 Single crystal X-ray diffractometry		3
	S1.2 Photophysical characterization of the complexes		3
	S1.3 Structural characterization of the nanoparticles		4
	S1.4 Photophysical characterization of the nanoparticles and oxygen sensin	g	4
Section	S2: Synthesis and characterization of PtLH, PtLF, PdLH and PtLF		6
Section	S3: X-ray diffractometric analysis of PtLH, PtLF, PdLH and PdLF		27
Section	S4: Photophysical characterization of PtLH, PtLF, PdLH and PdLF		41
Section	S5: Quantum chemistry of PtLH, PtLF, PdLH and PdLF		49
Section	S6: Synthesis and characterization of the loaded nanoparticles		56
	S6.1 Preparation of the Pt(II)- and Pd(II)-complex loaded nanoparticles		56
	S6.2 Surface and structural characterization of the nanoparticles		57
	S6.3 Leaking experiments		62
	S6.4 Determination of the loading with PtLF		62
	S6.5 Photophysical studies of nanoparticles loaded with the complexes		63
	S6.6 Stern-Volmer studies of PSNPs loaded with the complexes	69	
Referen	nces		71

Section S1: Materials and methods

All reagents were analytical grade and used as received. Column chromatography was performed with silica gel 60 (particle size 35-70 μ m, 230-400 mesh, Merck). NMR and mass spectra were measured by the Department of Organic Chemistry, University of Münster. NMR spectra were recorded on an DPX/Avance 300 or an Avance 400 from Burker Analytische Messtechnik for the precursor and on an DD2 500 and DD2 600 from Agilent for the Pt(II) complexes. The ¹H-NMR and ¹³C-NMR chemical shifts (δ) of the signals are given in parts per million and referenced to residual protons in the deuterated solvent: DMSO-d₆ (2.50 ppm and 39.5 ppm). The ¹⁹F NMR chemical shifts are referenced to CFCl₃ as an internal standard. The signal multiplicities are abbreviated as follows: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet. All coupling constants (J) are given in Hertz. Exact mass (EM) determination by mass spectrometry (MS) was carried out at the Organisch-Chemisches Institut in Münster (WWU) using a LTQ Orbitap LTQ XL (Thermo-Fisher Scientific, Bremen) with electron spray injection (ESI).

S1.1 Single crystal X-ray diffractometry

Data sets for compound **PdLF** were collected on Bruker Quazar diffractometer with MoK_{α} radiation. The collection method involved ω scans. Data reduction was carried out using the program SAINT+1.². The crystal structures were solved by Direct Methods using SHELXTL^{3,4}. Non-hydrogen atoms were first refined isotropically followed by anisotropic refinement by full matrix least-squares calculation based on F2 using SHELXTL. Hydrogen atoms were positioned geometrically and allowed to ride on their respective parent atoms. Data sets for compounds **PtLH**, **PtLF** and **PdLH** were collected with graphite-monochromated Mo K α radiation ($\lambda = 0.71073$ Å) on a Bruker Quazar diffractometer. The structures solved by Direct Methods and refined by full-matrix least squares on F2 by using the programs SHELXTL and SHELX197.

S1.2 Photophysical characterization of the complexes

Absorption spectra were measured on a Varian Cary 100 double-beam UV-Vis-NIR spectrometer and baseline-corrected. Steady-state excitation and emission spectra were recorded on a FluoTime 300 spectrometer from PicoQuant equipped with a 300 W ozone-free Xe lamp (250 - 900 nm), a 10 W Xe flash-lamp (250-900 nm, pulse width < 10 μ s) with repetition rates of 0.1 - 300 Hz, an excitation monochromator (Czerny-Turner 2.7 nm/mm dispersion, 1200 grooves/mm, blazed at 300 nm), diode lasers (pulse width < 80 ps) operated by a computer-controlled laser driver PDL-820 (repetition rate up to 80 MHz, burst mode for slow and weak decays), two emission monochromators (Czerny-Turner, selectable gratings blazed at 500 nm with 2.7 nm/mm dispersion and 1200 grooves/mm, or blazed at 1250 nm with 5.4 nm/mm dispersion and 600 grooves/mm), Glan-Thompson polarizers for excitation (Xe-lamps) and emission, a

Peltier-thermostatized sample holder from Quantum Northwest (-40 $^{\circ}C - 105 ^{\circ}C$), and two detectors, namely a PMA Hybrid 40 (transit time spread FWHM < 120 ps, 300 - 720 nm) and a R5509-42 NIRphotomultiplier tube (transit time spread FWHM 1.5 ns, 300-1400 nm) with external cooling (-80 °C) from Hamamatsu. Steady-state and fluorescence lifetimes were recorded in TCSPC mode by a PicoHarp 300 (minimum base resolution 4 ps). Emission and excitation spectra were corrected for source intensity (lamp and grating) by standard correction curves. Lifetime analysis was performed using the commercial FluoFit software. The quality of the fit was assessed by minimizing the reduced chi squared function (χ^2) and visual inspection of the weighted residuals and their autocorrelation. Luminescence quantum yields were measured with a Hamamatsu Photonics absolute PL quantum yield measurement system (C9920-02) equipped with a L9799-01 CW Xenon light source (150 W), monochromator, C7473 photonic multichannel analyzer, integrating sphere and employing U6039-05 PLQY measurement software (Hamamatsu Photonics, Ltd., Shizuoka, Japan). All solvents used were of spectrometric grade (Uvasol[®]). Phosphorescence Lifetime Imaging Microscopy (PLIM) Measurements and photoluminescence images were acquired using a time-resolved confocal Fluorescence Microscopy (MicroTime 200, Picoquant®), using as excitation source a $\lambda = 375$ nm laser (for PLIM) and a Xe lamp with BP360-370 and BA520IF filters (fluorescence images). Single Photon Avalanche Diodes (SPAD) were used as detectors. A TimeHarp 260 (PicoQuant) was used as Time-Correlated Single Photon Counting (TCSPC). Sepia II® software was used for data acquisition. Phosphorescence lifetimes were recorded by a NanoHarp 250 (minimum base resolution 32 ns) in Multi-Channel Scaling MCS mode

S1.3 Structural characterization of the nanoparticles

TEM experiments were performed using a Thermo Fisher Scientific (previously FEI) Themis G3 60-300 transmission electron microscope (TEM) equipped with a high-brightness field emission gun (XFEG), a monochromator, an image Cs-corrector, a quadrupole energy-dispersive X-ray (EDX) system (Super-X EDX detector), a high-angle annular dark-field (HAADF) detector (Fischione Model 3000), and a fast CMOS camera (Ceta, $4k \times 4k$). For the measurements, the microscope was operated at an acceleration voltage of either 60 or 300 kV. The size distribution of the PS nanoparticles (1 mg/mL dispersed in H₂O) were determined by dynamic light scattering (DLS) with a Zetasizer Nano ZS from Malvern Panalytical.

S1.4 Photophysical characterization of the nanoparticles and oxygen sensing

Absorption spectra of the metal complexes and of stained PS dispersions were obtained with a calibrated Cary 5000 spectrometer from Agilent. The amount of encapsulated metal complex was obtained from the absorption spectra of stained particle samples disrupted in DMF employing the species' molar absorption coefficients (which were previously determined by absorption measurements of concentration series of the emitters, with DMF containing dissolved PS nanoparticles as the solvent, see Section S6.4, Figure S92 and

Table S14). Luminescence spectra and decay kinetics were measured with the calibrated spectrofluorometers FSP 920 and FLS 920 from Edinburgh Instruments. For the measurement of the emission spectra, a continuous xenon lamp was applied as excitation light source on FSP 920 and FLS 920, while the time-resolved luminescence measurements were completed with a μ s xenon flashlamp on FSP 920 and an EPLED laser (375 nm) on FLS 920 with both detectors in a multi-channel scaling mode. The luminescence decays were analysed by fitting the obtained decay curves exponentially with the program FAST (Fluorescence Analysis Software Technology, Edinburgh Instruments Ltd.). Absolute luminescence quantum yields were obtained with the commercial integrating sphere setup Quantaurus-QY C11347-11 from Hamamatsu and special long neck cuvettes from the instrument manufacturer (1x1 cm, quartz). The standard deviations of luminescence quantum yield measurements were estimated to be ± 2 %. All luminescence measurements were performed in these long neck quartz cuvettes with precision seal rubber septa (Sigma-Aldrich) at room temperature, if not otherwise stated. The oxygen concentration was varied for Stern-Volmer studies by purging the stained PS nanoparticle dispersion with Ar in a sealed long neck cuvette. The oxygen partial pressure was determined with a commercial fiber-optic oxygen meter Firesting O₂ from PyroScience and a solvent-resistant oxygen probe tip (OXSOLVPT).

Section S2: Synthesis and characterization of PtLH, PtLF, PdLH and PtLF

Synthesis of N,N-di(2-bromopyrid-6-yl)-4-methoxyaniline (1): 2,6-Dibromopyridine (4.930 g, 20.8 mmol), Pd₂(dba)₃ (0.154 g, 0.168 mmol), 4-methoxyaniline (1.064 g, 8.62 mmol) and NaOtBu (2.323 g, 23.20 mmol), 1,1'-bis(diphenylphosphino)ferrocene (0.196 g, 0.354 mmol) were combined in toluene (100 mL) under Ar atmosphere. The reaction mixture was degassed during the heating process and reacted at 110°C for 12 - 14 h to yield a dark brown solution. Once at room temperature, the solution was filtered and poured into water (100 mL), the residue was washed with ethyl acetate (EtOAc). The aqueous phase was extracted with EtOAc (3 times 50 mL). The combined organic phases were washed with water (25 mL) and brine (25 mL), dried with MgSO₄, filtered, concentrated and the crude compound was adsorbed onto silica gel. This was loaded onto a column packed with silica gel to perform a column chromatography separation with cyclohexane/EtOAc (9:1) to yield a yellow solid (1.269 g). Yield: 34 %.

¹H NMR (300 MHz, DCM-d₂): δ = 7.41 (dd, *J* = 8.2, 7.6 Hz, 2H), 7.16 – 7.12 (m, 2H), 7.10 (dd, *J* = 7.6, 0.7 Hz, 2H), 7.01 – 6.92 (m, 4H), 3.84 (s, 3H).

¹³C NMR (75 MHz, Methylene Chloride- d_2): $\delta = 159.0$, 157.8, 140.1, 139.9, 136.5, 130.0, 122.2, 115.6, 115.1, 56.0.

HRMS (ESI+, MeOH, m/z): calcd. for $[M + H]^+$ 435.94777, found 435.94785; calcd. for $[M + Na]^+$ 457.92971, found 457.92979; calcd. for $[M + K]^+$ 473.90365, found 473.90340.

Figure S1. ¹H-NMR spectrum (300 MHz, DCM-d₂) of 1.

Figure S2. $^{13}C-{^{1}H}-NMR$ spectrum (75 MHz, DCM-d₂) of 1.

Figure S3. ESI-MS (MeOH) of 1.

Synthesis of N,N-di(2-phenylpyrid-6-yl)-3,5-dimethoxyaniline (LH): 1 (323 mg, 0.74 mmol), Pd(PPh₃)₄ (109 mg, 0.0094 mmol) and the corresponding phenylboronic acid (236 mg, 1.94 mmol) were combined in THF (50 mL) and degassed by bubbling with Ar. The solution was heated up to reflux and aqueous K_2CO_3 (2M, 3 ml) were added under Ar flux. The reaction mixture was refluxed for 12 h to yield a yellow solution. Afterwards, THF was removed under reduced pressure and the precipitate was dissolved in EtOAc (50 ml)

and the solution washed with water (50 ml) and brine (50 ml). The organic phase was dried with MgSO₄, filtered, concentrated and the crude compound was adsorbed onto silica gel. This was loaded onto a column packed with silica gel to perform a column chromatographic separation with cyclohexane/EtOAc as eluent (20:1) to yield a white solid (238 mg). Yield: 75 %.

¹H NMR (400 MHz, Methylene Chloride-d₂): δ = 7.81 – 7.75 (m, 4H), 7.55 (dd, *J* = 8.2, 7.6 Hz, 2H), 7.33 – 7.22 (m, 8H), 7.19 – 7.15 (m, 2H), 6.96 (dd, *J* = 8.3, 0.7 Hz, 2H), 6.93 – 6.88 (m, 2H), 3.76 (s, 3H).

HRMS (ESI+, MeOH, m/z): calcd. for $[M + H]^+$ 430.19139, found, 430.19108; calcd. for $[M + Na]^+$ 452.172, found, 452.17290; calcd. for $[2M + Na]^+$ 881.35745, found, 881.35786.

Figure S4. ¹H-NMR spectrum (400 MHz, DCM-d₂) of LH.

Figure S5. ESI-MS (MeOH) of LH.

Synthesis of N,N-di(2-(2,4-difluorophenyl)pyrid-6-yl)-4-methoxyaniline (LF): The same procedure described for **LH** was adapted. Column chromatography was performed on silica with cyclohexane/ethyl acetate (100:1) as an eluent, yielding a yellow solid. Yield: 84 %.

¹H NMR (300 MHz, DMSO-d₆): δ = 7.74 – 7.64 (m, 2H), 7.56 (t, *J* = 7.9 Hz, 2H), 7.34 (ddd, *J* = 7.6, 2.4, 0.8 Hz, 2H), 7.18 – 7.11 (m, 2H), 6.97 – 6.87 (m, 3H), 6.86 – 6.76 (m, 3H), 3.76 (s, 3H).

¹⁹F NMR (282 MHz, DMSO-d₆): δ =113.46 (d, J = 8.3 Hz), -115.08 (d, J = 8.5 Hz).

HRMS (ESI+, MeOH, m/z): calcd. for $[M + H]^+$ 502.15370, found 502.15392; calcd. for $[M + Na]^+$ 524.13565, found 524.13546.

Figure S7. ¹⁹F-{¹H}-NMR (282 MHz, DCM-d₂) of LF.

Figure S8. ESI-MS (MeOH) of LF.

Synthesis of PtLH: A mixture of the tetradentate ligand precursor LH (100 mg, 0.233 mmol), K_2PtCl_4 (106 mg, 0.256 mmol) and NBu₄Cl (10 mg, 0.034 mmol) were refluxed in glacial acetic acid (15 mL) for 48–60 h. After cooling down the orange solution to room temperature, the solvent was removed to a minimum, red-orange precipitates were formed which were filtered off and washed several times with water to give the complex PtLH. This was loaded onto a column packed with silica gel to perform a column chromatography separation with DCM as eluent to yield yellow solid (84 mg) Yield: 58 %.

¹H NMR (600 MHz, DMSO-*d*₆): δ = 8.20 (d, *J* = 7.0 Hz, 2H), 8.02 (dd, *J* = 8.7, 7.6 Hz, 2H), 7.96 (dd, *J* = 8.0, 1.4 Hz, 2H), 7.96 (d, *J* = 6.6 Hz, 2H), 7.92 (d, *J* = 7.3 Hz, 1H), 7.56 (m, 2H), 7.36 (td, *J* = 7.3, 1.4 Hz, 2H), 7.32 (m, 2H), 7.17 (td, *J* = 7.5, 1.2 Hz, 2H), 6.62 (dd, *J* = 8.7, 0.9 Hz, 2H), 3.92 (s, 3H).

¹³C NMR (150 MHz, DMSO-*d*₆): δ = 163.2, 160.6 – 159.3 (m), 149.6, 149.0, 147.4, 138.3, 135.8, 131.8, 129.3, 124.9 – 123.9 (m), 123.4, 117.2, 114.8, 56.1.

HRMS (ESI+, MeOH, m/z) calcd. for [M + H]⁺ 623.14077, found 623.14122.

Figure S9. ¹H-NMR spectrum (600 MHz, DMSO-d₆) of PtLH.

Figure S10. ¹³C-{¹H}-NMR spectrum (150 MHz, DMSO-d₆) of PtLH.

Figure S11. ¹H/¹H-COSY-NMR spectrum (600 MHz/600 MHz, DMSO-d₆) of PtLH.

Figure S12. ¹H/¹³C-gHSQC-NMR spectrum (600 MHz/150 MHZ, DMSO-d₆) of PtLH.

Figure S13. ¹H/¹³C-gHMBC-NMR spectrum (600 MHz/150 MHz, DMSO-d₆) of PtLH.

Figure S14. ESI+MS (MeOH) of PtLH.

Synthesis of PtLF: The same procedure described for **PtLH** was adapted. Column chromatography was performed on silica with DCM as eluent yielding a yellow-orange solid. Yield: 55 %.

¹H NMR (500 MHz, DMSO- d_6): $\delta = 8.07$ (dd, J = 8.8, 7.7 Hz, 2H), 7.97 (dt, J = 7.9, 1.1 Hz, 2H), 7.59 (dd, J = 9.3, 2.5 Hz, 2H), 7.56 – 7.52 (m, 2H), 7.32 – 7.29 (m, 2H), 6.96 (ddd, J = 12.9, 9.2, 2.4 Hz, 2H), 6.75 (dd, J = 8.7, 0.9 Hz, 2H), 3.94 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 162.7, 160.3, 160.3, 158.9, 154.83, 149.2, 139.3, 135.6, 131.7, 130.2, 117.3, 116.8, 116.1, 115.4, 99.3, 56.1.

¹⁹F NMR (470 MHz, DMSO- d_6): δ = -108.4 (d, *J* = 9.6 Hz), -109.4 (d, *J* = 9.7 Hz).

HRMS (ESI+, MeOH, m/z) calcd. for $[M + H]^+$ 694.09525, found 694.09533; calcd. for $[M + Na]^+$ 717.08502, found 717.08575.

Figure S15. ¹H-NMR spectrum (500 MHz, DMSO-d₆) of PtLF.

Figure S16. ¹³C-{1H}-NMR spectrum (125 MHz, DMSO-d₆) of PtLF.

Figure S17. ¹⁹F-{¹H}-NMR spectrum (470 MHz, DMSO-d₆) of PtLF.

Figure S18. ¹H/¹H-COSY-NMR spectrum (600 MHz/600 MHz, DMSO-d₆) of PtLF.

Figure S19. ¹H/¹³C-gHSQC-NMR spectrum (600 MHz/150 MHZ, DMSO-d₆) of PtLF.

Figure S20. ¹H/¹³C-gHMBC-NMR spectrum (600 MHz/150 MHz, DMSO-d₆) of PtLF.

Figure S21. ESI-MS (MeOH) of PtLF.

Synthesis of PdLH: A mixture of the tetradentate ligand precursor **LH** (100 mg, 0.233 mmol) and palladium(II) acetate (54 mg, 0.239 mmol) were heated in glacial acetic acid (15 mL) for 72 h and refluxed afterwards at 130 °C for 12 h. After cooling down to room temperature, the solvent was removed. The crude

product was loaded onto a column packed with silica gel to perform a column chromatography separation with DCM as eluent to yield yellow solid (7 mg). Yield: 6%.

¹H NMR (500 MHz, DMSO- d_6): $\delta = 8.05$ (dd, J = 7.7, 1.3 Hz, 2H), 7.91 (dd, J = 7.8, 1.4 Hz, 2H), 7.90 – 7.86 (m, 4H), 7.52 (d, J = 8.8 Hz, 2H), 7.32 (dd, J = 7.4, 1.3 Hz, 2H), 7.29 (d, J = 8.8 Hz, 2H), 7.19 – 7.14 (m, 2H), 6.46 (dd, J = 6.7, 2.8 Hz, 2H), 3.91 (s, 3H).

¹³C NMR (125 MHz, DMSO-*d*₆): δ = 162.5, 161.4, 160.1, 151.6, 148.0, 139.5, 135.7, 135.5, 131.8, 129.2, 124.6, 124.0, 117.2, 114.4, 112.5, 56.1.

HRMS (ESI+, MeOH, m/z): calcd. for [M + H]⁺ 534.08033, found 534.07960.

Figure S22. ¹H-NMR spectrum (500 MHz, DMSO-d₆) of PdLH.

Figure S23. ¹³C-{1H}-NMR spectrum (125 MHz, DMSO-d₆) of PdLH.

Figure S24. ¹H/¹H-COSY-NMR spectrum (600 MHz/600 MHz, DMSO-d₆) of PdLH.

Figure S25. ¹H/¹³C-gHSQC-NMR spectrum (600 MHz/150 MHZ, DMSO-d₆) of PdLH.

Figure S26. ¹H/¹³C-gHMBC-NMR spectrum (600 MHz/150 MHz, DMSO-d₆) of PdLH.

Figure S27. ESI+MS (MeOH) of PdLH.

Synthesis of PdLF: A mixture of the tetradentate ligand precursor LF (173 mg, 0.345 mmol) and palladium(II) acetate (78 mg, 0.047 mmol) were heated in glacial acetic acid (15 mL) for 72 h and refluxed afterwards at 130 °C for 12 h. After cooling down to room temperature, the solvent was removed. The crude product was loaded onto a column packed with silica gel to perform a column chromatography separation with CH_2Cl_2 as eluent to yield yellow solid (25 mg). Yield: 12 %

¹H NMR (500 MHz, DMSO- d_6): δ = 7.92 (t, J = 8.2 Hz, 2H), 7.86 (d, J = 7.9 Hz, 2H), 7.49 (d, J = 8.8 Hz, 2H), 7.40 (dd, J = 8.2, 2.4 Hz, 2H), 7.31 – 7.26 (m, 2H), 6.97 (ddd, J = 12.1, 9.1, 2.3 Hz, 2H), 6.53 (d, J = 8.7 Hz, 2H), 3.91 (s, 3H).

¹³C NMR (126 MHz, DMSO-*d*₆): δ = 167.1, 162.2, 159.8, 158.4, 151.7, 140.2, 135.7, 131.8, 117.3, 117.3, 116.0, 115.2, 100.5, 56.2.

¹⁹F NMR (470 MHz, DMSO- d_6): δ = -108.7 (d, J = 8.9 Hz), -108.8 (d, J = 8.9 Hz).

HRMS (ESI+, MeOH, m/z): calcd. for [M + H]⁺ 606.04205, found 606.04264.

Figure S28. ¹H-NMR spectrum (500 MHz, DMSO-d₆) of PdLF.

Figure S29. ¹³C-{¹H}-NMR spectrum (125 MHz, DMSO-d₆) of PdLF.

Figure S30. $^{19}F\{^{1}H\}\text{-NMR}$ spectrum (470 MHz, DMSO-d_6) of PdLF.

Figure S31. ¹H/¹H-COSY-NMR spectrum (500 MHz/500 MHz, DMSO-d₆) of PdLF.

Figure S32. ¹H/¹³C-gHSQC-NMR spectrum (500 MHz/125 MHZ, DMSO-d₆) of PdLF.

Figure S33. ¹H/¹³C-gHMBC-NMR spectrum (500 MHz/125MHz, DMSO-d₆) of PdLF.

Figure S34. ESI-MS (MeOH) of PdLF.

Assignment of NMR signals for the complexes

 Table S1. Assignment of NMR signals for the complexes.

Assignment	PtLH		PtLF			PdLH		PdLF		
Assignment	¹ H	¹³ C	^{1}H	¹³ C	¹⁹ F	^{1}H	¹³ C	^{1}H	¹³ C	¹⁹ F
1	3.92	56.1	3.94	56.1	-	3.91	56.1	3.90	56.2	-
2	-	160.2	-	160.3	-	-	160.1	-	159.8	-
3	7.56	131.8	7.53	116.8	-	7.52	131.8	7.49	131.8	-
4	7.32	117.2	7.31	117.3	-	7.32	117.2	7.28	117.3	-
5	-	135.8	-	130.2	-	-	135.7	-	135.7	-
6	-	163.2	-	162.7	-	-	162.5	-	162.2	-
7	6.62	112.6	6.96	99.3	-	6.46	114.4	6.54	115.2	-
8	8.02	138.3	8.07	139.3	-	7.91	139.5	7.92	140.2	-
9	7.92	114.8	7.97	116.1	-	7.90	112.4	7.86	116.0	-
10	-	149.0	-	154.8	-	-	147.9	-	151.7	-
11	-	149.6	-	158.9	-	-	151.6	-	158.4	-
12	7.96	124.5	-	149.2	-109.4	7.88	124.6	-	-	-108.7
13	7.17	123.3	6.75	115.4	-	7.17	124.3	6.97	100.5	-
14	7.36	129.3	-	160.3	-108.4	7.29	129.2	-	-	-108.8
15	8.20	135.3	7.59	131.7	-	8.05	1.35.5	7.40	117.3	-
16	-	147.4	-	135.9	-	-	161.4	-	167.1	-

Section S3: Single crystal X-ray diffractometric analysis of PtLH, PtLF, PdLH and PdLF

Suitable single crystals for X-ray diffractometric analysis were obtained from slow evaporation of DCM solutions of the four complexes. CCDC Nos. 2024154 - 2024158 contain the supplementary crystallographic data for the complexes. This material can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or E-mail: deposit@ccdc.cam.ac.uk.

Crystal structure analysis of PtLH: formula C₂₉H₂₁N₃OPt, M = 622.58, yellow crystal, 0.16 x 0.09 x 0.03 mm, a = 10.3090(2) Å, b = 13.9097(2) Å, c = 15.4326(3) Å, $\beta = 101.658(1)^\circ$, V = 2167.31(7) Å³, $\rho_{calc} = 1.908$ g/cm⁻³, $\mu = 6.504$ mm⁻¹, empirical absorption correction (0.423 \leq T \leq 0.829), Z = 4, monoclinic, space group $P2_1/n$ (No. 14), $\lambda = 0.71073$ Å, T = 173(2) K, ω and φ scans, 13921 reflections collected (±h, ±k, ±l), 3775 independent ($R_{int} = 0.039$) and 3461 observed reflections [$I > 2\sigma I$], 308 refined parameters, R = 0.030, $wR^2 = 0.075$, max. (min.) residual electron density 1.81 (-0.87) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

Crystal structure analysis of PtLF (1): formula $C_{29}H_{17}F_4N_3OPt$, M = 694.55, yellow crystal, 0.20 x 0.09 x 0.04 mm, a = 9.6007(2) Å, b = 11.7181(2) Å, c = 12.0959(3) Å, $a = 118.2830(1)^\circ$, $\beta = 95.325(1)^\circ$, $\gamma = 104.556(1)^\circ$, V = 1123.48(4) Å³, $\rho_{calc} = 2.053$ g/cm⁻³, $\mu = 6.309$ mm⁻¹, empirical absorption correction (0.365 $\leq T \leq 0.786$), Z = 2, triclinic, space group *P*-1 (No. 2), $\lambda = 0.71073$ Å, T = 173(2) K, ω and φ scans, 11240 reflections collected ($\pm h$, $\pm k$, $\pm l$), 3910 independent ($R_{int} = 0.036$) and 3831 observed reflections [$I > 2\sigma I$], 344 refined parameters, R = 0.024, $wR^2 = 0.063$, max. (min.) residual electron density 0.67 (-1.88) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

Crystal structure analysis of PtLF (2): formula $C_{29}H_{17}F_4N_3OPt$, M = 694.55, yellow crystal, 0.07 x 0.05 x 0.03 mm, a = 22.8339(3) Å, b = 9.8626(2) Å, c = 22.7576(3) Å, $\beta = 117.704(1)^\circ$, V = 4537.52(12) Å³, $\rho_{calc} = 2.033$ g/cm⁻³, $\mu = 6.249$ mm⁻¹, empirical absorption correction ($0.669 \le T \le 0.835$), Z = 8, monoclinic, space group P2/c (No. 2), $\lambda = 0.71073$ Å, T = 173(2) K, ω and φ scans, 29814 reflections collected ($\pm h, \pm k$, $\pm l$), 7879 independent ($R_{int} = 0.063$) and 6114 observed reflections [$I > 2\sigma I$], 687 refined parameters, R = 0.043, $wR^2 = 0.094$, max. (min.) residual electron density 0.84 (-0.75) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

Crystal structure analysis of PdLH: formula $C_{29}H_{21}N_3OPd$, M = 633.93, yellow crystal, 0.030 x 0.120 x 0.200 mm, a = 9.2713(2) Å, b = 11.5997(2) Å, c = 11.9314(2) Å, $a = 118.3680(10)^\circ$, $\beta = 92.8690(10)^\circ$, $\gamma = 106.8240(10)^\circ$, V = 1053.60(4) Å³, $\rho_{calc} = 1.683$ g/cm⁻³, $\mu = 7.336$ mm⁻¹, empirical absorption correction

 $(0.580 \le T \le 0.810)$, Z = 2, triclinic, space group P-1(No. 2), $\lambda = 1.54178$ Å, T = 100(2) K, maximum θ angle of 66.74 ° (0.84 Å resolution), 15777 reflections collected (±*h*, ±*k*, ±*l*), 3699 independent ($R_{int} = 0.0535$), and 3334 observed reflections [*I*>2 σ *I*)], 308 refined parameters, R = 0.032, $wR^2 = 0.080$, max. (min.) residual electron density 0.49 (-0.61) eÅ⁻³, hydrogen atoms were calculated and refined as riding atoms.

Crystal structure analysis of PdLF: formula $C_{29}H_{17}F_4N_3OPd$, M = 605.85, yellow crystal, 0.40 x 0.10x 0.03mm, a = 11.8675(9) Å, b = 12.4514(10) Å, c = 17.2457(3) Å, a = 94.655(2), $\beta = 96.279(2)^\circ$, $\gamma = 113.088(2)^\circ$, V = 2308.6(3) Å³, $\rho_{calc} = 1.743$ g/cm⁻³, $\mu = 0.867$ mm⁻¹, empirical absorption correction (0.6522 $\leq T \leq 0.8878$), Z = 4, triclinic, space group *P*-1 (No. 2), $\lambda = 0.71073$ Å, T = 240(2) K, ω scan, 29395 reflections collected ($\pm h, \pm k, \pm l$), 10852 independent ($R_{int} = 0.0406$) and 7766 observed reflections [*I*>2 σ *I*)], 687 refined parameters, R = 0.0546, $wR^2 = 0.0942$, max. (min.) residual electron density 0.762 (-0.99) e.Å⁻³, hydrogen atoms were calculated and refined as riding atoms.

	PtLH	PtLF (1)	PtLF (2)	PdLH	PdLF
Formula	C ₂₉ H ₂₁ N ₃ OPt	C ₂₉ H ₁₇ F ₄ N ₃ OPt	C ₂₉ H ₁₇ F ₄ N ₃ OPt	C ₂₉ H ₂₁ N ₃ OPd	C ₂₉ H ₁₇ F ₄ N ₃ OPd
Formula Weight	622.58	694.55	694.55	533.93	605.83
Crystal System	Monoclinic	Triclinic	Monoclinic	Triclinic	Triclinic
Color	Yellow	Yellow	Yellow	Yellow	Yellow
Space Group	$P2_1/n$	P - 1	P2/c	P - 1	P - 1
Z	4	2	8	2	4
a (Å)	10.3090(2)	9.6007(2)	22.8339(3)	9.2713(2)	11.8675(9)
b (Å)	13.9097 (2)	11.7181(2)	9.8626(2)	11.5997(2)	12.4514(10)
c (Å)	15.4326 (3)	12.0959(3)	22.7576(3)	11.9314(2)	17.2457(14)
α (°)	-	118.283(1)	-	118.3680(10)	94.655(2)
β (°)	101.658(1)	95.325(1)	117.704(1)	92.8690(10)	96.279(2)
γ (°)	-	104.556(1)	-	106.8240(10)	113.088(2)
V (Å ³)	2167.31(7)	1123.48	4537.52(13)	1053.60(4)	2308.63(30)
Temperature (K)	173	173	173	100	240

Table S2. Cell parameters for the complexes.

Table S3. Most relevant crystallographic parameters from complexes PtLH, PtLF, PdLH and PdLF.

	M…M (Å)	C-H···F (Å)	C-H…O (Å)	N-M-N (°)
PtLH	5.2538(1)	-	-	92.838(1)
PtLF (1)	4.2183(1)	2.7391(1) (H24-F1) 2.5480(1) (H22-F2) 2.5296(1) (H2-F2)	2.6902(1) (O1-H37B)	93.354(1)
PtLF (2)	3.5549(1)	2.6565(0) (H2-F1) 2.6779(0) (H36-F1) 2.8556(0) (H37-F2) 2.9971(1) (H37-F1)	-	93.228(1)
PdLH	4.2964(1)	-	3.0315(1) (O1-H18) 3.1931(1) (O1-H5)	91.697(1)
PdLF	3.7611(5)	2.5461(27) (H44-F57) 2.760(3) (H54 – F57)	-	92.81(14)

Figure S35. Molecular structure in the crystal of PtLH. Thermal displacement ellipsoids are shown at 50% probability.

Figure S36. $\pi \cdots \pi$ and C-H $\cdots \pi$ interactions in **PtLH**.

Figure S37. Molecular structure in the crystal of PtLF. Thermal displacement ellipsoids are shown at 50% probability.

Figure S38. H-bond interactions in PtLF (1) (top) and PtLF (2) (bottom).

Figure S39. PtLF (2) dimers and their columnar arrangement.

Figure S40. Molecular structure in the crystal of PdLH. Thermal displacement ellipsoids are shown at 50% probability.

Figure S41. $\pi \cdots \pi$ and C-H $\cdots \pi$ interactions in PdLH.

Figure S42. H-bond interactions in PdLH.

Figure S43. Molecular structure in the crystal of PdLF. Thermal displacement ellipsoids are shown at 50% probability.

Figure S44. Pd…Pd interactions in PdLF.

Figure S45. H-bond interactions in PdLF.

Table S4. Atomic parameters of PtLH.

Atom	Wyck	Site	v/a	v/h	7/0	U [Å2]
PT1	10	1	0.38503	0.16/18	0.02214	Uni
C1	10	1	0.330305	0.25018	-0.06425	
C1	40	1	0.45782	0.25757	0.05854	
U2 U2	40	1	0.43782	0.33737	0.00681	1 2000
П2 С2	40	1	0.44774	0.39130	-0.00081	-1.2000
112	40	1	0.49891	0.40738	-0.12383	1 2000
H3 C4	40	1	0.51644	0.4/452	-0.11939	-1.2000
C4	40	1	0.51456	0.36170	-0.20154	1 2000
H4	4e	1	0.54808	0.395/4	-0.24566	-1.2000
05	4e	1	0.48149	0.26592	-0.21348	1 2000
HS	4e	1	0.48846	0.23423	-0.26688	-1.2000
C6	4e	1	0.43762	0.21582	-0.14632	
C/	4e	1	0.39252	0.11520	-0.15909	
N8	4e	1	0.34654	0.07856	-0.08768	
C9	4e	1	0.38428	0.06216	-0.23529	
H9	4e	1	0.41596	0.08770	-0.28421	-1.2000
C10	4e	1	0.32887	-0.02947	-0.23968	
H10	4e	1	0.32171	-0.06660	-0.29210	-1.2000
C11	4e	1	0.28466	-0.06611	-0.16842	
H11	4e	1	0.24642	-0.12847	-0.17148	-1.2000
C12	4e	1	0.29601	-0.01143	-0.09121	
N13	4e	1	0.25027	-0.05026	-0.01829	
C14	4e	1	0.27472	-0.02511	0.07206	
N15	4e	1	0.32926	0.06016	0.10086	
C16	4e	1	0.23799	-0.08991	0.13290	
H16	4e	1	0.20189	-0.15089	0.11353	-1.2000
C17	4e	1	0.25459	-0.06452	0.22011	
H17	4e	1	0.22902	-0.10782	0.26123	-1.2000
C18	4e	1	0.30838	0.02381	0.24875	
H18	4e	1	0.31781	0.04218	0.30899	-1.2000
C19	4e	1	0.34755	0.08392	0.18958	
C20	4e	1	0 41297	0 17745	0 21087	
C21	4e	1	0 44259	0 23069	0 13965	
C22	4e	1	0.51881	0 31363	0 16261	
H22	4e	1	0 54214	0 35134	0 11676	-1 2000
C23	4e	1	0.56132	0.34273	0 24903	1.2000
H23	40	1	0.61246	0 39974	0.26139	-1 2000
C24	40	1	0.53053	0.29019	0.31750	1.2000
H24	40	1	0.56006	0.31038	0.37703	-1 2000
C25	4e	1	0.45526	0.20676	0.29825	1.2000
H25	40	1	0.43279	0.16984	0.34488	-1 2000
C31	10	1	0.17279	-0 13802	-0.03740	1.2000
C32	10	1	0.03664	-0.13545	-0.05115	
U22	40	1	0.03004	-0.13545	-0.05115	1 2000
C22	40	1	-0.00707	-0.07320	-0.05/15	-1.2000
1122	40	1	-0.05578	-0.22022	-0.03027	1 2000
C24	40	1	-0.12904	-0.21821	-0.00303	-1.2000
C34	40	1	0.02979	-0.30/0/	-0.04849	
035	40	1	0.10080	-0.310/6	-0.03801	1 2000
133	40	1	0.21110	-0.3/090	-0.03035	-1.2000
C36	4e	1	0.23882	-0.22594	-0.03208	1 2000
H36	4e	1	0.33262	-0.22759	-0.02402	-1.2000
C37	4e	1	-0.16208	-0.39730	-0.03251	
H37A	4e	1	-0.16316	-0.36368	0.02315	-1.5000
H37B	4e	1	-0.19025	-0.46408	-0.02795	-1.5000
H37C	4e	1	-0.22276	-0.36525	-0.08098	-1.5000
O1	4e	1	-0.03067	-0.39567	-0.04968	

Table S5. Atomic parameter of PtLF (1).

Atom	Wyck.	Site	x/a	y/b	z/c	U [Ų]
PT1	2i	1	0.28833	-0.51592	0.41572	
F1	2i	1	-0.14482	-0.96177	0.35135	

	_					
F2	2i	1	0.07425	-0.95692	-0.07793	
F3	2i	1	0.00362	-0.55607	0.75183	
F4	2i	1	0.54766	-0.64709	0.03240	
C1	2i	1	0.12719	-0.62806	0.45447	
C2	2i	1	0.03832	-0.76672	0 37926	
H2	2i	1	0.04587	-0.82084	0 29320	-1 2000
C3	21	1	-0.05987	-0.82546	0.42872	1.2000
C4	21	1	-0.07619	-0.75672	0.55197	
H4	21	1	-0.14515	-0.700/2	0.58380	-1 2000
C5	21	1	0.01420	0.62005	0.50505	-1.2000
C5	21	1	0.01439	-0.02095	0.02084	
C7	21	1	0.11215	0.40974	0.662207	
NR	21	1	0.20930	0.26808	0.00329	
C0	21	1	0.30870	-0.30898	0.00331	
110	21	1	0.20499	0.24597	0.70713	1 2000
П9 С10	21	1	0.15050	-0.54567	0.82844	-1.2000
U10	21	1	0.30164	-0.16552	0.024969	1 2000
HIU CU	21	1	0.29959	-0.11906	0.93485	-1.2000
	21	1	0.40102	-0.14202	0.79041	1 2000
HII CI2	21	1	0.40782	-0.05062	0.83399	-1.2000
C12 N12	21	1	0.40329	-0.23800	0.00350	
NI3	21	1	0.50549	-0.1931/	0.00552	
C14	21	1	0.54667	-0.262/4	0.48839	
NI5 CIC	21	1	0.40833	-0.39300	0.39/49	
C10	21	1	0.6/00/	-0.18923	0.40025	1 2000
HIG	21	1	0.72401	-0.09551	0.52919	-1.2000
CI/	21	1	0./1169	-0.25391	0.35330	
HI7	21	1	0.79400	-0.20467	0.33709	-1.2000
C18	21	1	0.633/3	-0.39139	0.26237	1 2000
HI8	21	1	0.66429	-0.43/6/	0.18521	-1.2000
C19	21	1	0.51228	-0.45946	0.28526	
C20	21	1	0.40931	-0.60009	0.19394	
C21	21	1	0.2/946	-0.64439	0.23076	
C22	21	1	0.16630	-0.76522	0.13414	
H22	21	1	0.07495	-0.79495	0.15308	-1.2000
C23	21	1	0.18618	-0.84051	0.01313	
C24	21	1	0.31465	-0.80588	-0.023/2	
H24	21	1	0.32753	-0.86229	-0.10/14	-1.2000
C25	21	1	0.42293	-0.68380	0.06893	
C31	21	1	0.59296	-0.04704	0.68471	
C32	21	1	0.72492	-0.00445	0.77434	
H32	21	1	0.75974	-0.07039	0.78132	-1.2000
C33	21	1	0.80464	0.13423	0.85285	
H33	21	1	0.89499	0.16355	0.91355	-1.2000
C34	21	1	0.75386	0.23107	0.84382	
C35	2i	1	0.62311	0.18836	0.75340	
H35	2i	1	0.58855	0.25404	0.74563	-1.2000
C36	2i	1	0.54352	0.04865	0.67452	
H36	2i	1	0.45389	0.01899	0.61285	-1.2000
01	2i	1	0.83895	0.36433	0.92905	
C37	2i	1	0.79358	0.46959	0.92282	
H37A	2i	1	0.79003	0.45705	0.83642	-1.5000
H37B	2i	1	0.86493	0.56026	0.98810	-1.5000
H37C	2i	1	0.69485	0.46316	0.93971	-1.5000

Table S6. Atomic parameters of PtLF (2).

Atom	Wyck.	Site	x/a	y/b	z/c	U [Å ²]
PT1	4g	1	0.28296	0.40609	0.23518	
F1	4g	1	0.46423	0.20869	0.16732	
F2	4g	1	0.49157	0.15213	0.43585	
F3	4g	1	0.24792	0.26126	0.00048	
F4	4g	1	0.38903	0.50247	0.48929	
C1	4g	1	0.31855	0.32351	0.17873	
C2	4g	1	0.38383	0.28539	0.19594	
H2	4g	1	0.41681	0.28701	0.24105	-1.2000
C3	4g	1	0.39977	0.24587	0.14741	
C4	4g	1	0.35487	0.23341	0.08229	
H4	4g	1	0.36699	0.19991	0.05032	-1.2000
C5	4g	1	0.29127	0.27161	0.06515	
C6	4g	1	0.27215	0.32340	0.11031	
C7	4g	1	0.20814	0.38830	0.09212	
N8	4g	1	0.20456	0.44925	0.14446	
C9	4g	1	0.15545	0.39640	0.02926	
H9	4g	1	0.15719	0.35264	-0.00709	-1.2000
C10	4g	1	0.09989	0.46941	0.01990	
H10	4g	1	0.06314	0.47506	-0.02315	-1.2000
C11	4g	1	0.09747	0.53345	0.07212	
H11	4g	1	0.05985	0.58555	0.06535	-1.2000
C12	4g	1	0.15143	0.52103	0.13592	
N13	4g	1	0.14774	0.58626	0.18880	
C14	4g	1	0.19477	0.60447	0.25642	
N15	4g	1	0.24809	0.52609	0.28530	
C16	4g	1	0.18205	0.70472	0.29365	
H16	4g	1	0.14405	0.76109	0.27342	-1.2000
C17	4g	1	0.22504	0.71787	0.35810	
H17	4g	1	0.21693	0.78495	0.38340	-1.2000
C18	4g	1	0.28095	0.63727	0.38931	
H18	4g	1	0.31040	0.64763	0.43527	-1.2000
C19	4g	1	0.29261	0.54160	0.35174	
C20	4g	1	0.34769	0.44623	0.37567	
C21	4g	1	0.35274	0.36258	0.32634	

C22	4g	1	0.40182	0.26280	0.34905	
H22	4g	1	0.40540	0.20283	0.31821	-1.2000
C23	40	1	0.44506	0 25049	0.41572	
C24	Δσ	1	0 44217	0.33073	0.46360	
U24	40	1	0.47264	0.33120	0.50032	1 2000
C25	4g	1	0.47204	0.32120	0.30932	-1.2000
C25	4g	1	0.39193	0.42003	0.44103	
C31	4g	1	0.08431	0.65183	0.17199	
C32	4g	1	0.07374	0.78695	0.15544	
H32	4g	1	0.10644	0.83756	0.15024	-1.2000
C33	4g	1	0.01601	0.84986	0.14630	
H33	4g	1	0.01007	0.94426	0.13711	-1.2000
C34	4g	1	-0.03329	0.77465	0.15058	
C35	40	1	-0.02317	0.63764	0 16541	
H35	40	1	-0.05713	0 58580	0 16768	-1 2000
C36		1	0.03504	0.57525	0.17690	1.2000
U26	40	1	0.03304	0.37323	0.19700	1 2000
01	4g	1	0.04177	0.40170	0.16799	-1.2000
01	4g	1	-0.09099	0.82806	0.14337	
037	4g	1	-0.09428	0.9/105	0.15251	
H37A	4g	I	-0.05655	0.99871	0.19434	-1.5000
H37B	4g	1	-0.13555	0.99253	0.15384	-1.5000
H37C	4g	1	-0.09298	1.01972	0.11558	-1.5000
PT1A	4g	1	0.20375	0.10132	0.24298	
F1A	4g	1	0.17551	0.43564	0.41747	
F2A	4g	1	-0.04539	0.28605	0.16298	
F3A	40	1	0 34422	0 11338	0.50206	
E4A		1	0.01316	0.15885	0.00019	
C1 A	40	1	0.21970	0.19015	0.22060	
CIA	4g	1	0.21879	0.18015	0.32909	
U2A U2A	4g	1	0.16/49	0.28021	0.34320	1 2000
HZA	4g	1	0.15118	0.32948	0.30754	-1.2000
C3A	4g	1	0.20719	0.33024	0.40598	
C4A	4g	1	0.25895	0.27235	0.46017	
H4A	4g	1	0.27130	0.30318	0.50392	-1.2000
C5A	4g	1	0.29202	0.16847	0.44858	
C6A	4g	1	0.27501	0.12319	0.38489	
C7A	4g	1	0.31382	0.02176	0.36841	
N8A	4g	1	0.29119	0.00658	0.30152	
C9A	40	1	0.36866	-0.04803	0.41353	
H9A	4σ	1	0 38449	-0.03726	0 45994	-1 2000
CIOA	5 Λα	1	0.30070	-0.13375	0.38014	1.2000
UIDA	40	1	0.37776	0.19202	0.30714	1 2000
CILLA	4g	1	0.43730	-0.16502	0.41927	-1.2000
UIIA	4g	1	0.37741	-0.14928	0.32320	1 2000
HIIA	4g	1	0.39899	-0.21062	0.30/42	-1.2000
CI2A	4g	1	0.32292	-0.07568	0.27833	
N13A	4g	1	0.30350	-0.08847	0.20954	
C14A	4g	1	0.24759	-0.04096	0.15310	
N15A	4g	1	0.19919	0.02962	0.15688	
C16A	4g	1	0.24354	-0.06373	0.09053	
H16A	4g	1	0.27858	-0.10967	0.08745	-1.2000
C17A	4g	1	0.19087	-0.02166	0.03475	
H17A	40	1	0 18863	-0.04019	-0.00721	-1 2000
C184	Δσ	1	0 13979	0.04859	0.03801	1.2000
U19A	40	1	0.10272	0.07018	0.00124	1 2000
CIQA	40	1	0.10272	0.07204	0.000124	-1.2000
CIDA	40	1	0.00402	0.07274	0.07702	
C20A	4g	1	0.07492	0.14131	0.11343	
CZIA	4g	1	0.1121/	0.16462	0.181/3	
C22A	4g	1	0.06254	0.21044	0.19638	
H22A	4g	1	0.07169	0.22187	0.24129	-1.2000
C23A	4g	1	0.00133	0.23865	0.14671	
C24A	4g	1	-0.01660	0.22529	0.08073	
H24A	4g	1	-0.05929	0.24999	0.04704	-1.2000
C25A	4g	1	0.03125	0.17373	0.06632	
C31A	4g	1	0.35138	-0.15682	0.19468	
C32A	4g	1	0.34865	-0.29431	0.18252	
H32A	40	1	0 31600	-0 34867	0 18591	-1 2000
C33A	Δσ	1	0 39328	-0.35211	0 16552	
H33A	75 4a	1	0.30214	-0 44705	0.15800	-1 2000
C24A	78 4a	1	0.37214	0.27210	0.15000	1.2000
C34A	4g	1	0.44271	-0.2/218	0.13927	
C35A	4g	1	0.442/1	-0.13529	0.1/089	1 2000
нээд	4g	1	0.4/460	-0.08056	0.10035	-1.2000
C36A	4g	1	0.39824	-0.07737	0.18939	
H36A	4g	1	0.40020	0.01705	0.19839	-1.2000
O1A	4g	1	0.48662	-0.32182	0.14264	
C37A				0 1 6 8 8 1	0.14550	
	4g	1	0.49694	-0.46554	0.14559	
H37D	4g 4g	1 1	0.49694 0.50907	-0.46554 -0.49808	0.14559 0.19049	-1.5000
H37D H37E	4g 4g 4g	1 1 1	0.49694 0.50907 0.53264	-0.46554 -0.49808 -0.48636	0.14559 0.19049 0.13454	-1.5000 -1.5000

Table S7. Atomic parameters of PdLH.

Atom	Wyck.	Site	x/a	y/b	z/c	U [Å ²]
PD1	2i	1	0.72277	1.03142	0.59471	
01	2i	1	0.16003	0.12568	0.07089	
C1	2i	1	0.72726	1.16112	0.78285	
C2	2i	1	0.84080	1.28457	0.88209	
H2	2i	1	0.93787	1.31813	0.86420	-1.2000
C3	2i	1	0.81570	1.36002	1.00678	
H3	2i	1	0.89525	1.44375	1.07201	-1.2000
C4	2i	1	0.67534	1.31351	1.03603	
H4	2i	1	0.65613	1.36729	1.11939	-1.2000
C5	2i	1	0.56310	1.18689	0.94143	
H5	2i	1	0.46762	1.15247	0.96102	-1.2000

C6	2i	1	0.59026	1.11017	0.81772	
C7	2i	1	0.48353	0.96558	0.72288	
N8	2i	1	0.53010	0.90043	0.60935	
C9	2i	1	0.35337	0.89490	0.74780	
H9	2i	1	0.32162	0.94088	0.82692	-1.2000
C10	2i	1	0.26978	0.75525	0.65487	
H10	2i	1	0.18075	0.70449	0.67061	-1.2000
C11	2i	1	0.31637	0.69067	0.53996	
H11	2i	1	0.25973	0.59524	0.47634	-1.2000
C12	2i	1	0.44800	0.76652	0.51721	
N13	2i	1	0.49390	0.69824	0.39930	
C14	2i	1	0.60257	0.74943	0.33962	
N15	2i	1	0.70319	0.88227	0.40350	
C16	2i	1	0.60688	0.65742	0.21140	
H16	2i	1	0.53553	0.56360	0.16527	-1.2000
C17	2i	1	0.71454	0.70297	0.15225	
H17	2i	1	0.71713	0.64072	0.06508	-1.2000
C18	2i	1	0.81849	0.83867	0.21927	
H18	2i	1	0.89447	0.87039	0.17972	-1.2000
C19	2i	1	0.81042	0.92857	0.34587	
C20	2i	1	0.91351	1.07650	0.42841	
C21	2i	1	0.89420	1.15185	0.55765	
C22	2i	1	0.98741	1.29336	0.63132	
H22	2i	1	0.97742	1.34742	0.71823	-1.2000
C23	2i	1	1.09399	1.35817	0.58274	
H23	2i	1	1.15420	1.45516	0.63584	-1.2000
C24	2i	1	1.11315	1.28200	0.45682	
H24	2i	1	1.18743	1.32560	0.42365	-1.2000
C25	2i	1	1.02161	1.14053	0.37990	
H25	2i	1	1.03328	1.08734	0.29338	-1.2000
C31	2i	1	0.40557	0.54864	0.31831	
C32	2i	1	0.26959	0.50178	0.23074	
H32	2i	1	0.23167	0.56742	0.22576	-1.2000
C33	2i	1	0.18868	0.35991	0.15048	
H33	2i	1	0.09438	0.32787	0.09125	-1.2000
C34	2i	1	0.24580	0.26341	0.15654	
C35	2i	1	0.38184	0.31036	0.24597	
H35	2i	1	0.42002	0.24526	0.25179	-1.2000
C36	2i	1	0.46119	0.45422	0.32683	
H36	2i	1	0.55408	0.48739	0.38813	-1.2000
C37	2i	1	0.20998	0.02354	0.07967	
H37A	2i	1	0.31477	0.03559	0.06435	-1.5000
H37B	2i	1	0.13953	-0.07086	0.01376	-1.5000
H37C	2i	1	0.20973	0.03615	0.16691	-1.5000

Table S8. Atomic parameters of PdLF.

Atom	Wvck.	Site	x/a	v/b	z/c	U [Å ²]
Pd1	2i	1	0.18284(3)	0 16913(3)	0.78306(2)	
N1	2i	1	0 1767(4)	0.2407(3)	0.9699(2)	
C2	2i	1	0.1483(4)	0.2520(4)	1.0502(2)	
C3	2i	1	0.2342(5)	0.3381(4)	1 1075(3)	
H3	2i	1	0.30880	0.39210	1.09470	0.0680
C4	2i	1	0.2094(5)	0.3438(4)	1.1833(3)	
H4	2i	1	0.26590	0.40340	1.22240	0.0680
C5	2i	1	0.1007(5)	0.2617(4)	1.2022(3)	
C6	2i	1	0.0153(4)	0.1764(4)	1.1445(3)	
H6	2i	1	-0.05880	0.12140	1.15720	0.0580
C7	2i	1	0.0399(4)	0.1728(4)	1.0680(3)	
H7	2i	1	-0.01820	0.11570	1.02820	0.0610
08	2i	1	0.0868(3)	0.2716(3)	1.27958(18)	
C25	2i	1	-0.0068(5)	0.1747(4)	1.3053(3)	
H25A	2i	1	-0.08780	0.16730	1.28140	0.0810
H25B	2i	1	0.00010	0.18790	1.36210	0.0810
H25C	2i	1	0.00360	0.10290	1.28980	0.0810
C20	2i	1	0.1369(4)	0.3061(4)	0.9193(3)	
C21	2i	1	0.1135(6)	0.3998(5)	0.9516(3)	
H21	2i	1	0.12980	0.42250	1.00640	0.0810
C22	2i	1	0.0665(6)	0.4586(5)	0.9028(3)	
H22	2i	1	0.05030	0.52190	0.92430	0.0900
C23	2i	1	0.0428(5)	0.4262(5)	0.8225(3)	
H23	2i	1	0.00840	0.46530	0.78920	0.0760
C24	2i	1	0.0704(4)	0.3358(4)	0.7919(3)	
N25	2i	1	0.1180(3)	0.2774(3)	0.8405(2)	
C30	2i	1	0.2382(4)	0.1663(4)	0.9579(3)	
C31	2i	1	0.2776(5)	0.1214(5)	1.0231(3)	
H31	2i	1	0.26250	0.14100	1.07360	0.0650
C32	2i	1	0.3373(5)	0.0498(5)	1.0124(3)	
H32	2i	1	0.36380	0.02000	1.05590	0.0740
C33	2i	1	0.3601(5)	0.0195(5)	0.9386(3)	
H33	2i	1	0.40060	-0.03110	0.93120	0.0680
C34	2i	1	0.3216(4)	0.0659(4)	0.8762(3)	
N35	2i	1	0.2594(3)	0.1362(3)	0.88614(19)	
C40	2i	1	0.0479(4)	0.2867(4)	0.7081(3)	
C41	2i	1	-0.0165(5)	0.3177(5)	0.6483(3)	
C42	2i	1	-0.0471(5)	0.2620(5)	0.5716(3)	
H42	2i	1	-0.09130	0.28420	0.53200	0.0720
C43	2i	1	-0.0099(5)	0.1737(5)	0.5569(3)	
C44	2i	1	0.0561(4)	0.1396(4)	0.6119(2)	
H44	2i	1	0.07850	0.07700	0.59810	0.0550
C45	2i	1	0.0901(4)	0.1977(4)	0.6887(3)	

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F46	2i	1	-0.0538(3)	0.4058(3)	0.6626(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F47	2i	1	-0.0429(3)	0.1137(3)	0.48241(16)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C50	2i	1	0.3361(4)	0.0417(4)	0.7937(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C51	2i	1	0.4114(5)	-0.0121(5)	0.7701(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C52	21	1	0.4216(6)	-0.0377(6)	0.6932(3)	0.0050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H52	21	1	0.47160	-0.07650	0.67880	0.0850
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C53	21	1	0.3546(5)	-0.0037(5)	0.6385(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1154	21	1	0.2843(4)	0.0551(4)	0.0509(3)	0.0550
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C55	21	1	0.24440	0.08040	0.01080	0.0330
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	E56	21	1	0.2707(4) 0.4802(3)	-0.0784(4)	0.7348(2) 0.82395(19)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	F57	2i	1	0.3609(3)	-0.0297(3)	0.56094(18)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Pd1A	2i	1	0.3000(3)	0.41555(3)	0.50094(10) 0.69293(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1A	2i	1	0.3811(3)	0.3006(3)	0.5095(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C2A	2i	1	0.3543(4)	0.2322(4)	0.4314(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C3A	2i	1	0.4164(4)	0.2833(4)	0.3712(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H3A	2i	1	0.47920	0.36000	0.38110	0.0600
H4A2i1 0.42720 0.25440 0.25620 0.0570 C5A2i1 $0.2323(4)$ $0.0567(4)$ $0.2823(2)$ C6A2i1 $0.2323(4)$ $0.0567(4)$ $0.3424(2)$ H6A2i1 $0.2323(4)$ 0.02090 0.33320 0.0500 C7A2i1 $0.22464(4)$ $0.1213(4)$ $0.4172(3)$ H7A2i1 0.22510 0.08750 0.45840 0.0520 C8A2i1 $0.1636(5)$ $-0.0559(5)$ $0.1865(3)$ H9A12i1 $0.1636(5)$ $-0.0559(5)$ $0.1865(3)$ H9A22i1 $0.1636(5)$ -0.04910 0.19880 0.0890 H9A32i1 0.08860 -0.04910 0.19880 0.0890 C20A2i1 $0.3170(4)$ $0.3734(4)$ $0.5174(3)$ C21A2i1 $0.3170(4)$ $0.3734(4)$ $0.5174(3)$ C21A2i1 $0.3170(4)$ 0.34380 0.4090 0.0660 C22A2i1 $0.1816(5)$ $0.4533(5)$ $0.4571(3)$ H21A2i1 $0.1850(5)$ $0.5120(5)$ $0.5283(3)$ H23A2i1 $0.1850(5)$ $0.5120(5)$ $0.5874(2)$ C30A2i1 $0.479(4)$ $0.289(4)$ $0.5624(3)$ C31A2i1 $0.479(4)$ $0.2849(4)$ $0.5624(3)$ C31A2i1 $0.6329(5)$ $0.2146(6)$ $0.8324(3)$ H23A </td <td>C4A</td> <td>2i</td> <td>1</td> <td>0.3849(4)</td> <td>0.2208(4)</td> <td>0.2971(3)</td> <td></td>	C4A	2i	1	0.3849(4)	0.2208(4)	0.2971(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H4A	2i	1	0.42720	0.25440	0.25620	0.0570
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C5A	2i	1	0.2912(4)	0.1084(4)	0.2823(2)	
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C6A	21	1	0.2323(4)	0.0567(4)	0.3424(2)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H6A	21	1	0.17130	-0.02090	0.33320	0.0500
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	U7A	21	1	0.2040(4)	0.1213(4)	0.4172(3)	0.0520
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	П/А 08А	21	1	0.22530	0.08730 0.0557(2)	0.43840	0.0320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C9A	21 2i	1	0.2031(3) 0.1636(5)	-0.0559(5)	0.20008(17) 0.1865(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H9A1	2i	1	0.17950	-0.11220	0.21680	0.0890
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H9A2	2i	1	0 15350	-0.08250	0 13080	0.0890
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H9A3	2i	1	0.08860	-0.04910	0.19880	0.0890
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C20A	2i	1	0.3170(4)	0.3734(4)	0.5174(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C21A	2i	1	0.2455(5)	0.3841(4)	0.4502(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H21A	2i	1	0.24190	0.34380	0.40090	0.0660
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C22A	2i	1	0.1818(5)	0.4533(5)	0.4571(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H22A	2i	1	0.13460	0.46090	0.41210	0.0720
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C23A	2i	1	0.1850(5)	0.5120(5)	0.5283(3)	0.0700
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H23A	21	1	0.14000	0.55920	0.53280	0.0680
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C24A	21	1	0.2558(4)	0.5005(4) 0.4220(2)	0.593/(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C30A	21	1	0.3209(3) 0.4739(4)	0.4320(3) 0.2869(4)	0.3874(2) 0.5624(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C31A	21 2i	1	0.4757(4)	0.2309(4)	0.5024(5)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H31A	2i	1	0.53620	0.21120	0.3323(3)	0.0750
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C32A	2i	1	0.6329(5)	0.2166(6)	0.5824(3)	0.0720
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H32A	2i	1	0.68290	0.18170	0.56220	0.0890
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C33A	2i	1	0.6477(5)	0.2495(5)	0.6625(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H33A	2i	1	0.70730	0.23770	0.69710	0.0830
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	C34A	2i	1	0.5733(4)	0.3000(4)	0.6904(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N35A	2i	1	0.4876(3)	0.3187(3)	0.6402(2)	
	C40A	2i	1	0.2704(4)	0.5582(4)	0.6743(3)	
	C41A	21	1	0.2218(5)	0.6397(5)	0.6944(3)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C42A	21	1	0.2409(6)	0.6968(5)	0.7696(3)	0.0000
	H42A	21	1	0.20490	0.74990	0.78200	0.0860
	C43A	21	1	0.3148(6) 0.3660(5)	0.0722(5) 0.5038(4)	0.8248(3)	
	H44A	21 2i	1	0.3000(3)	0.5938(4)	0.8099(3)	0.0600
	C45A	2i	1	0.3431(4)	0.5324(4)	0.7350(2)	0.0000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	F46A	2i	1	0.1509(4)	0.6675(3)	0.63897(19)	
	F47A	2i	1	0.3370(4)	0.7299(3)	0.89964(18)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C50A	2i	1	0.5695(4)	0.3323(4)	0.7744(3)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C51A	2i	1	0.6314(5)	0.3038(5)	0.8370(3)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C52A	2i	1	0.6146(5)	0.3211(5)	0.9142(3)	
	H52A	2i	1	0.65860	0.30190	0.95560	0.0730
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C53A	2i	1	0.5309(5)	0.3672(4)	0.9270(3)	
H54A 21 I 0.41020 0.43060 0.88030 0.0490 C55A 2i I 0.4874(4) 0.3849(4) 0.7907(3) F56A 2i I 0.7135(4) 0.2553(4) 0.82454(19) F57A 2i I 0.6703(3) 0.2018(16)	C54A	2i	1	0.4673(4)	0.3991(4)	0.8682(2)	0.0400
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H54A	21	1	0.41020	0.43060	0.88030	0.0490
F50A = 21 = 1 = 0.7155(4) = 0.2555(4) = 0.62454(19) F57A = 21 = 1 = 0.5073(3) = 0.3802(3) = 1.00185(16)	CSSA ES6A	21	1	0.48/4(4) 0.7125(4)	0.3849(4)	0.7907(3)	
	F57A	2i	1	0.7133(4) 0.5073(3)	0.2333(4) 0.3802(3)	1 00185(16)	

Section S4: Photophysical characterization of PtLH, PtLF, PdLH and PdLF

Parameter	Value	Conf. Lower	Conf. Upper	Conf. Estimation
A1 [Cnts]	8384.3	-48.1	+48.1	Fitting
τι [µs]	0.184247	-0.000762	+0.000762	Fitting
Bkar, per [Cnts]	1,235	-0.387	+0.387	Fitting

Average Lifetime:

 $\tau_{Av,2}$ =0.184247 µs (intensity weighted) $\tau_{Av,2}$ =0.184247 µs (amplitude weighted)

Figure S46. Left: Time-resolved photoluminescence decay of **PtLH** in aerated DCM at 298 K, including the residuals ($\lambda_{exc} = 376.7$ nm, $\lambda_{em} = 530$ nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Conf. Lower	Conf. Upper	Conf. Estimation
A ₁ [Cnts]	7272.4	-45.1	+45.1	Fitting
τ ₁ [μs]	8.1793	-0.0368	+0.0368	Fitting
Bkgr, per [Cnts]	2.621	-0.489	+0.489	Fitting

Average Lifetime

 $τ_{Av.1}$ =8.1793 μs (intensity weighted) $τ_{Av.2}$ =8.1793 μs (amplitude weighted)

Figure S47. Left: Time-resolved photoluminescence decay of **PtLH** in deaerated DCM at 298 K, including the residuals ($\lambda_{exc} = 376.7 \text{ nm}$, $\lambda_{em} = 530 \text{ nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Figure S48. Left: Time-resolved photoluminescence decay of PtLH in a frozen glassy matrix of DCM/MeOH (V:V = 1:1) at 77 K, including the residuals ($\lambda_{exc} = 376.7$ nm, $\lambda_{em} = 530$ nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Conf. Lower	Conf. Upper	Conf. Estimation
A ₁ [Cnts]	8923.6	-46.2	+46.2	Fitting
τ ₁ [μs]	0.42034	-0.00157	+0.00157	Fitting
Bkgr. Dec [Cnts]	0.958	-0.403	+0.403	Fitting

Average Lifetime:

 $\tau_{Av.1}$ =0.42034 µs (intensity weighted)

 $\tau_{Av,2}$ =0.42034 µs (amplitude weighted)

Figure S49. Left: Time-resolved photoluminescence decay of PtLF in aerated DCM at 298 K, including the residuals ($\lambda_{exc} = 376.7$ nm, $\lambda_{em} = 500$ nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Conf. Lower	Conf. Upper	Conf. Estimation
A1 [Cnts]	9895.1	-47.2	+47.2	Fitting
τ1 [µs]	11.9304	-0.0409	+0.0409	Fitting
Bkgr. Dec [Cnts]	0.968	-0.420	+0.420	Fitting

Average Lifetime:

 $\tau_{Av.1}$ =11.9304 µs (intensity weighted)

τ_{Av.2}=11.9304 μs (amplitude weighted)

Figure S50. Left: Time-resolved photoluminescence decay of **PtLF** in deaerated DCM at 298 K, including the residuals ($\lambda_{exc} = 376.7 \text{ nm}$, $\lambda_{em} = 500 \text{ nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Figure S51. Left: Time-resolved photoluminescence decay of PtLF in a frozen glassy matrix of DCM/MeOH (V:V = 1:1) at 77 K, including the residuals ($\lambda_{exc} = 376.7$ nm, $\lambda_{em} = 500$ nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Conf. Lower	Conf. Upper	Conf. Estimation
A1 [Cnts]	140.50	-3.95	+3.95	Fitting
τι [µs]	0.32556	-0.00728	+0.00728	Fitting
Bkgr. Dec [Cnts]	-0.324	-0.365	+0.365	Fitting

Average Lifetime

τ_{Av.1}=0.32556 μs (intensity weighted) τ_{Av.2}=0.32556 μs (amplitude weighted)

Figure S52. Left: Time-resolved photoluminescence decay of PdLH in aerated DCM at 298 K, including the residuals (λ_{exc} = 376.7 nm, λ_{em} = 500 nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Conf. Lower	Conf. Upper	Conf. Estimation
A ₁ [Cnts]	140.25	-3.47	+3.47	Fitting
τ1 [µs]	0.7459	-0.0152	+0.0152	Fitting
Bkgr pro [Cnts]	-0.843	-0 477	+0 477	Fitting

 $\tau_{Av.1}$ =0.7459 µs (intensity weighted) τ_{Av.2}=0.7459 μs (amplitude weighted)

Figure S53. Left: Time-resolved photoluminescence decay of **PdLH** in deaerated DCM at 298 K, including the residuals ($\lambda_{exc} = 376.7 \text{ nm}$, $\lambda_{em} = 500 \text{ nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Figure S54. Left: Time-resolved photoluminescence decay of PdLH in a frozen glassy matrix of DCM/MeOH (V:V = 1:1) at 77 K, including the residuals ($\lambda_{exc} = 376.7$ nm, $\lambda_{em} = 525$ nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Conf. Lower	Conf. Upper	Conf. Estimation
A ₁ [Cnts]	79.99	-2.81	+2.81	Fitting
τι [µs]	1.0327	-0.0315	+0.0315	Fitting
Bkgr. Dec [Cnts]	-0.305	-0.380	+0.380	Fitting

 $\tau_{AV,1}$ =1.0327 µs (intensity weighted) $\tau_{AV,2}$ =1.0327 µs (amplitude weighted)

Figure S55. Left: Time-resolved photoluminescence decay of PdLF in aerated DCM at 298 K, including the residuals ($\lambda_{exc} = 376.7$ nm, $\lambda_{em} = 500$ nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Conf. Lower	Conf. Upper	Conf. Estimation
A ₁ [Cnts]	329.24	-8.80	+8.80	Fitting
τ ₁ [μs]	4.3855	-0.0946	+0.0946	Fitting
Bkgr. Dec [Cnts]	2.157	-0.411	+0.411	Fitting

Average Lifetime: $\tau_{Av,1}$ =4.3855 µs (intensity weighted)

 $\tau_{Av,2}$ =4.3855 µs (amplitude weighted)

Figure S56. Left: Time-resolved photoluminescence decay of **PdLF** in deaerated DCM at 298 K, including the residuals ($\lambda_{exc} = 376.7 \text{ nm}$, $\lambda_{em} = 500 \text{ nm}$). Right: Fitting parameters including pre-exponential factors and confidence limits.

Parameter	Value	Conf. Lower	Conf. Upper	Conf. Estimation
A ₁ [Cnts]	702.3	-14.5	+14.5	Fitting
τ ₁ [ms]	0.24875	-0.00364	+0.00364	Fitting
A ₂ [Cnts]	669.4	-45.7	+45.7	Fitting
τ2 [ms]	0.05918	-0.00453	+0.00453	Fitting
Bkgr. Dec [Cnts]	1.442	-0.349	+0.349	Fitting

Average Lifetime:

 $\tau_{Av.1}$ =0.21371 ms (intensity weighted) $\tau_{Av.2}$ =0.15623 ms (amplitude weighted)

Figure S57. Left: Time-resolved photoluminescence decay of PdLF in a frozen glassy matrix of DCM/MeOH (V:V = 1:1) at 77 K, including the residuals ($\lambda_{exc} = 376.7$ nm, $\lambda_{em} = 500$ nm). Right: Fitting parameters including pre-exponential factors and confidence limits.

Figure S58. Luminescence micrographs of PtLH crystals. Excitation filter BP360 – 370, emission filter BA420.

Figure S59. Luminescence micrographs of PtLF crystals. Excitation filter BP360 - 370, emission filter BA420

Figure S60. Luminescence micrographs of PdLH crystals. Excitation filter BP360 - 370, emission filter BA420

Figure S61. Luminescence micrographs of PdLF crystals. Excitation filter BP360-370, emission filter BA420-

Figure S62. Emission spectra of the complexes as single crystals ($\lambda_{exc} = 376.6$ nm) at 298 K. Normalized to the highest intensity. <u>Black</u> **PtLH**; red **PtLF**; green **PdLH** and <u>blue</u> **PdLF**. Measured using a spectrograph coupled to a confocal microscope.

Figure S63. Phosphorescence lifetime maps and photoluminescence decay obtained by time-resolved confocal microscopy of PtLH as single crystals at 298 K (λ_{exc} = 376.6 nm).

Figure S64. Phosphorescence lifetime maps and photoluminescence decay obtained by time-resolved confocal microscopy of **PtLF** as single crystals at 298 K (λ_{exc} = 376.6 nm).

Figure S65. Phosphorescence lifetime maps and photoluminescence decay obtained by time-resolved confocal microscopy of PdLH as single crystals at 298 K (λ_{exc} = 376.6 nm).

Figure S66. Phosphorescence lifetime maps and photoluminescence decay obtained by time-resolved confocal microscopy of PdLF as crystals at 298 K (λ_{exc} = 376.6 nm).

Complex	Lifetime components (µs)	Average Lifetime (µs)
PdLH	$\tau_1 = 2.88 \pm 0.01 \ (28)$	$\tau_{av amp} = 1.51 \pm 0.01$
	$\tau_2 = 1.38 \pm 0.01 \ (47\%);$	
	$\tau_3 = 0.25 \pm 0.01 \ (25\%)$	
PdLF	$\tau_1 = 2.08 \pm 0.08 \ (29\%);$	$\tau_{av amp} = 0.80 \pm 0.06$
	$\tau_2 = 0.28 \pm 0.04 \ (71\%);$	
PtLH	$\tau_1 = 4.49 \pm 0.06 (5\%);$	
	$\tau_2 = 1.08 \pm 0.06 (56\%);$	$\tau_{av_amp} = 0.94 \pm 0.01$
	$\tau_3 = 0.30 \pm 0.01 \ (39\%)$	
PtLF	$\tau_1 = 1.13 \pm 0.03 \ (81\%);$	$\tau_{av amp} = 1.09 \pm 0.01$
	$\tau_2 = 2.32 \pm 0.02 (5\%);$	
	$\tau_3 = 0.43 \pm 0.06 (14\%)$	

Table S9. Measured and average lifetimes of the single crystal of the complexes. τ_{av_amp} : Amplitude-weighted average lifetime.

Section S5: Quantum chemistry of PtLH, PtLF, PdLH and PdLF

Vibrationally resolved emission spectra. All calculations of vibrational Franck-Condon spectra and optimized geometries were carried out using the quantum chemistry package Gaussian 09 Rev. D.01⁵. The PBE0 functional⁶ was used along with Grimme's D3 dispersion correction with Becke-Johnson damping $(BJ)^7$ and the SDD basis set, which applies an effective core potential for the Pt and Pd atoms⁸ and the D95 basis set for H, C, N, F and O atoms⁹. Vibrational Franck-Condon spectra were computed according the method of Barone *et al.*^{10,11} with Kohn-Sham DFT-based geometry optimizations of the S₀ and T₁ state followed by frequency analysis calculations.

The energies were corrected by zero-point vibrational energies and thermal free energy contributions. In order to calculate the overlap integrals for the vibronic spectra, the transitions are divided into classes C_n where *n* is the number of the excited normal modes in the final electronic state. The maximum number of quanta per mode was set to 100, the maximum number of quanta for combinations of two modes to 65. The number of integrals calculated was limited to 1.5×10^8 . A maximum of 20 classes were computed. The line spectrum was broadened by Gaussian functions with a half-width at half-maximum of 400 cm⁻¹. The solvent dichloromethane (DCM) was described by the polarizable continuum model (PCM) in an integral equation formalism framework¹² with atomic radii from the universal force field model (UFF).¹³

Character of T₁ **state.** The character of the emissive T_1 state is determined by TD-DFT calculations including 20 excited singlet and triplet states at the T_1 geometry optimized with Kohn-Sham DFT with multiplicity 3.

Absorption spectra. To obtain the UV-Vis absorption spectrum of the complexes, TDDFT calculations of the 70 lowest excited singlet states were performed with the PBE0 functional and the SDD basis set. A Lorentzian broadening with a half-width at half-maximum (HWHM) of 10 nm was used for each transition.

Figure S67. Geometry-optimized ground state monomer structures of (a) PdLH, (b) PtLH, (c) PdLF and (d) PtLF.

Figure S68. Comparison in energy of different kinds of stacking modes for geometry-optimized ground state dimer structures.

Figure S69. Frontier orbitals at the optimized T₁ dimer geometry of (a) PdLH, (b) PtLH, (c) PdLF and (d) PtLF.

Figure S70: Frontier orbitals of complexes **PtLH** and **PdLH** at the optimized T_1 geometry together with the highest contributions to the emitting T_1 state as obtained from TD-DFT calculations at the optimized T_1 geometry.

Figure S71: Frontier orbitals of complexes **PtLF** and **PdLF** at the optimized T_1 geometry together with the highest contributions to the emitting T_1 state as obtained from TDDFT calculations at the optimized T_1 geometry.

Figure S72: Geometry-optimized ground state dimer structures of (a) PdLH, (b) PtLH, (c) PdLF and (d) PtLF.

Table S10. Dimer energy differences (E_{LH} - E_{LF}) between stacked (**LH**-minimum) and displaced (**LF**-minimum) dimer geometries in the S₀ and T₁ state (a negative sign corresponds to an energetically favourable **LH** geometry).

	PdLH	PdLF	PtLH	PtLF
$E_{LH}-E_{LF}(\mathbf{S}_{0})$	-0.14 eV	+0.08 eV	-0.16 eV	+0.07 eV
$E_{LH}-E_{LF}(\mathbf{T}_{1})$	+0.40 eV	+0.51 eV	+0.58 eV	+0.81 eV

Table S11. Electrostatic interaction energies (U) in eV for the S₀ geometry calculated between all atoms of one monomer to each one of the other monomer, based on partial atomic charges for stacked (LH-minimum) and displaced (LF-minimum) dimer geometries.

Energies (eV)	PdLH	PdLF	PtLH	PtLF
LH minimum (stacked)	-1.290	-0.869	-1.962	-0.897
LF minimum (displaced)	-0.064	-0.259	-0.477	-0.255
U_{LH} - $U_{LF}(\mathbf{S}_0)$	-1.226	-0.61	-1.485	-0.642

Table S12. Electrostatic interaction energies (U) in eV for the T₁ geometry calculated between all atoms of one monomer to each one of the other monomer, based on partial atomic charges.

Energies (eV)	PdLH	PdLF	PtLH	PtLF
LH minimum (stacked)	-1.52	-1.05	-1.75	-1.79
LF minimum (displaced)	0.21	-0.15	0.10	-0.18
U_{LH} - $U_{LF}(T_1)$	-1.73	-0.90	-1.85	-1.61

Table S13. Contributions (> 3%) of monoelectronic excitations to the T_1 dimer state as obtained from TD-DFT calculations at the

opt	imized
T_{1g}	geometry.

	PdLH	PtLH	PdLF	PtLF
HOMO →LUMO	71.36%	68.93%	98.02%	98.00%
HOMO →LUMO+1	5.26%	5.55%	-	-
HOMO-8 →LUMO	3.09%	4.64%	-	-
HOMO-4 →LUMO	-	4.07%	-	-

Monomer		PdLH	PdLF	PtLH	PtLF
	LUMO	-0.065	-0.075	-0.069	-0.078
	HOMO	-0.224	-0.237	-0.216	-0.233
S_0	gap [Hartree]	0.159	0.162	0.147	0.155
	gap [eV]	4.327	4.408	4.000	4.218
	LUMO	-0.157	-0.168	-0.157	-0.170
	HOMO	-0.225	-0.238	-0.221	-0.231
T ₁	gap [Hartree]	0.068	0.070	0.064	0.061
	gap [eV]	1.850	1.905	1.742	1.660

Table S14. HOMO-LUMO gap of all monomer S_0 and T_1 geometries obtained from TD-DFT calculations.

Table S15. HOMO-LUMO gap of all dimer S_0 and T_1 geometries obtained from TD-DFT calculations.

Dimer		PdLH	PdLF	PtLH	PtLF
	LUMO	-0.067	-0.077	-0.069	-0.081
	HOMO	-0.220	-0.216	-0.213	-0.211
S_0	gap [Hartree]	0.153	0.139	0.144	0.130
	gap [eV]	4.163	3.782	3.918	3.537
	LUMO	-0.077	-0.087	-0.076	-0.090
	HOMO	-0.214	-0.195	-0.208	-0.187
T ₁	gap [Hartree]	0.137	0.108	0.132	0.097
	gap [eV]	3.728	2.939	3.592	2.640

Section S6: Synthesis and characterization of the loaded nanoparticles (PS)

S6.1 Preparation of the Pt(II)- and Pd(II)-complex-loaded nanoparticles

100 nm-sized aminated polystyrene nanoparticles (PS) were bought from Micromod GmbH (Germany).

Scheme S1: Schematic illustration of one-step staining procedure using 100 nm polystyrene nanoparticles (PSNPs).

The preparation of the nanoparticles loaded with Pt(II)- or Pd(II)-complex is illustrated in **Scheme S1**. The highly hydrophobic complexes **PtLH**, **PtLF**, **PdLH** and **PdLF** were encapsulated into 100 nm-sized aminated polystyrene nanoparticles (PS) via a simple one-step staining procedure. 3 mg of PS nanoparticles were dispersed in deionized water to 2.5 mg/mL (1.2 mL). The Pt(II)- or Pd(II)-complex was dissolved in tetrahydrofuran (THF) with the initial loading concentration c_L ranging from 0.1 mM to 2.0 mM and eventually to 4.0 mM. 200 µL of metal complex solution in THF was then added to the PS dispersion and the sample was subsequently shaken for 40 minutes. Shrinking of the particles was induced by adding 200 µL deionized water to the dispersion, thereby encapsulating the complex molecules in the nanoparticles. The particles were then centrifuged at 16,000 rcf for 60 minutes (Centrifuge 5415D from *Eppendorf*, Germany). The precipitate was washed three times with ethanol/water mixtures (volume ratios of 40/60, 30/70, and 20/80) and once with deionized water to remove excess dye adsorbed onto the particle surface. Finally the PS loaded with the Pt(II)- or Pd(II)-complex were diluted to 5 mg/mL (600 µL).

S6.2 Surface and structure characterization of nanoparticles

Samples	Averaged hydrodynamic diameter (nm)	Polydispersity index (PDI)
Blank PS nanoparticles	131.1	0.007
PS(PtLF- 0.1 mM)	132.3	0.003
PS(PtLF-0.5 mM)	136.6	0.020
PS(PtLF -1.0 mM)	140.8	0.049
PS(PtLF-2.0 mM)	146.0	0.063
PS(PtLF-3.0 mM)	142.6	0.062
PS(PtLF-4.0 mM)	153.4	0.095

Table S16: Size distribution of PS(PtLF-series), dispersed in H₂O with particle concentration of 1 mg/mL.

Figure S73. HRTEM images of blank polystyrene nanoparticles (PS).

Figure S74. HAADF image of blank polystyrene nanoparticles (PS).

Figure S75. HAADF image and corresponding EDX maps of blank polystyrene nanoparticles (PS).

Figure S76. HRTEM images of polystyrene nanoparticles loaded with PtLH, i.e. PS(PtLH-0.5 mM).

Figure S77. HAADF image of polystyrene nanoparticles loaded with PtLH, i.e. PS(PtLH-0.5 mM).

Figure S78. EDX maps of polystyrene nanoparticles loaded with PtLH, i.e. PS(PtLH-0.5 mM).

Figure S79. HRTEM images of polystyrene nanoparticles loaded with PtLF, i.e. PS(PtLF-0.5 mM).

Figure S80. HAADF image of polystyrene nanoparticles loaded with PtLF, i.e. PS(PtLF-0.5 mM).

Figure S81. HAADF image and corresponding EDX maps of polystyrene nanoparticles loaded with PtLF, i.e. PS(PtLF-0.5 mM).

Figure S82. HRTEM images of polystyrene nanoparticles loaded with PdLH, i.e. PS(PdLH-0.5 mM).

Figure S83. HAADF image of polystyrene nanoparticles loaded with PdLH, i.e. PS(PdLH-0.5 mM).

Figure S84. HAADF image and corresponding EDX maps of polystyrene nanoparticles loaded with PdLH, i.e. PS(PdLH-0.5 mM).

Figure S85. HRTEM images of polystyrene nanoparticles loaded with PdLF, i.e. PS(PdLF-0.5 mM).

Figure S86. HAADF image and corresponding EDX maps of polystyrene nanoparticles loaded with PdLH, i.e. PS(PdLH-0.5 mM).

S6.3 Leaking experiments

Figure S87. Emission spectra of freshly prepared **PtLF**-loaded PS nanoparticles and of the corresponding supernatant after centrifugation after 2 days storage. Left: fresh PS(**PtLF**-0.1 mM) in H₂O (black) and its supernatant in excess (red). Right: fresh PS(**PtLF**-2.0 mM) in H₂O (black) and its supernatant in excess (red).

S6.4 Determination of loading with PtLF

To estimate the loading with complex of the PS, the absorption coefficient had to be determined firstly. DMF containing dissolved PS nanoparticles (0.1 mg/mL) was taken as the solvent. **PtLF** calibration samples in the DMF-PS were prepared with known concentrations. Their respective absorbances were measured and plotted as a function of the **PtLF** concentration (**Figure S88**). The fitted linear function acted as the calibration curve, whose slope value contains the information about the molar absorption coefficient and the optical path length through the sample.

The samples PS(**PtLF**-series) were dissolved in pure DMF to give the final particle concentration of 0.1 mg/mL. By measuring the absorbance, the **PtLF** concentrations were calculated according to the generated

linear calibration function as shown in **Figure S88**. Knowing the mass/particle $m = 5.39307*10^{-16}$ g/particle (data from the manufacturer) and the particle mass concentration (recorded in the preparation protocol), the particle number can be calculated. The obtained loading of **PtLF** molecules per particle of PS(**PtLF**-series) are listed in **Table S17**.

Figure S88. Absorbance of PtLF in DMF-PS (0.1 mg/mL) as a function of PtLF concentration.

PS(PtLF-series)	Absorbance	PtLF concentration in 0.1 mg/mL	Number of PtLF molecules per PS
		PS, μM)	nanoparticle
$c_{\rm L} = 0.1 {\rm mM}$	0.02508	0.7610664	2472
$c_{\rm L} = 0.2 {\rm mM}$	0.04670	1.84859155	6004
$c_{\rm L} = 0.5 {\rm mM}$	0.09594	4.32545272	14048
$c_{\rm L} = 1.0 \text{ mM}$	0.13119	6.09859155	19806
$c_{\rm L} = 2.0 {\rm mM}$	0.26685	12.9225352	41969

Table S17: Number of **PtLF** molecules loaded on each PS nanoparticle and the corresponding parameters (c_L).

S6.5 Photophysical studies of nanoparticles loaded with the complexes

Table S18: Photoluminescence quantum yield Φ_{L} and decay lifetimes data of PtLH- and PtLF-stained nanoparticles.^[a]

Medium (RT)	PtLH ($\lambda_{\text{exc.}} = 405 \text{ nm}$)					PtLF ($\lambda_{\text{exc.}} = 388 \text{ nm}$)					
	$arPhi_{ m L}$	[%]	$\tau_{510}^{[c]} [\mu s]$		$\Phi_{\rm L}$ [%]		$\tau_{490}^{[c]}[\mu s]$		$\tau_{635}^{[c]}[\mu s]$		
	Air	Ar	Air	Ar	Air	Ar	Air	Ar	Air	Ar	
$c_{\rm I}^{[b]} = 0.1 {\rm mM}$	36.0 ± 1.0	55.1 ± 0.7	9.0 ±	12.6 ±	47.3 ±	79.3 ±	10.9 ±	15.7 ±	8 ± 2	9.9±	
-			0.8	0.5	0.4	0.5	0.6	0.3		1.7	
$c_{\rm L}^{\rm [b]} = 0.5 {\rm mM}$	23.4 ± 0.2	32.7 ± 0.2	9.0 ±	12.8 ±	61.5 ±	72.1 ±	10.8 ±	15.3 ±	6.7 ±	6.6 ±	
_			0.9	0.5	0.2	0.1	0.8	0.4	1.1	1.1	
$c_{\rm L}^{\rm [b]} = 1.0 {\rm mM}$	14.5 ± 0.1	19.8 ± 0.2	9.7 ±	$11.8 \pm$	59.1 ±	66.2 ±	9.8 ± 0.7	$14.6 \pm$	6.7 ±	6.8 ±	
			0.8	0.6	0.2	0.2		0.4	1.5	1.5	
$c_{\rm L}^{\rm [b]} = 2.0 {\rm mM}$	7.9 ± 0.1	10.9 ± 0.2	8.9 ±	12.1 ±	64.6 ±	70.3 ±	10.5 ±	14.3 ±	7.9 ±	$8.0 \pm$	
-			0.9	0.6	0.4	0.1	0.7	0.4	1.5	1.2	

[a] The stained PS nanoparticles were dispersed in deionized water with a particle concentration of 0.25 mg/mL. [b] Loading concentration of metal complex in the PS. [c] Lifetimes τ_{510} and τ_{490} were fitted monoexponentially, while lifetime τ_{635} were fitted biexponentially. The averaged lifetimes were calculated as intensity-weighted.

PS(PtLF-	$\pmb{\sigma}_{ m L}$ [%]								
series)	series) Air			Ar					
	Monomer (490 nm)	Aggregate (635 nm)	Monomer (490 nm)	Aggregate (635 nm)					
$c_{\rm L} = 0.1 {\rm mM}$	28.1 ± 1.4	19.2 ± 0.9	49 ± 2	29.9 ± 1.5					
$c_{\rm L} = 0.25 \text{ mM}$	17.3 ± 0.8	32.4 ± 1.6	28.9 ± 1.4	41 ± 2					
$c_{\rm L} = 0.5 {\rm mM}$	8.0 ± 0.4	54 ± 3	12.5 ± 0.6	60 ± 3					
$c_{\rm L} = 1.0 {\rm mM}$	4.5 ± 0.3	55 ± 3	7.1 ± 0.3	59 ± 3					
$c_{\rm L} = 2.0 {\rm mM}$	2.9 ± 0.1	61 ± 3	4.3 ± 0.2	66 ± 3					

Table S19: Photoluminescence quantum yield Φ_L of the monomer and aggregate emission of PS(PtLF-series).

Figure S89. Photoluminescence lifetimes *vs.* loading with **PtLH** ($\lambda_{exc.} = 405 \text{ nm}$) and **PtLF** ($\lambda_{exc.} = 388 \text{ nm}$) in PS nanoparticles under different conditions

Figure S90. Time-resolved photoluminescence decays of PS(PtLH-series) in air-equilibrated and Ar-purged H₂O ($\lambda_{exc.}$ = 405 nm).

Figure S91. Time-resolved photoluminescence decays of PS(PtLF-series) in air-equilibrated and in Ar-purged H₂O ($\lambda_{exc.}$ = 388 nm).

Table S20: Photoluminescence quantum yield Φ_L of Pd(II)-complexes and stained PS nanoparticles. [a] The stained PS nanoparticles were dispersed in deionized water with a particle mass concentration of 0.25 mg/mL. [b] Loading concentration of metal complex in the PS nanoparticles. [c] Lifetimes of PdLH and of PdLF were fitted triexponentially and calculated as intensity-weighted. [d] The decay signal was too weak to be measured.

Medium	PdLH ($\lambda_{\text{exc.}}$ 335 nm)								PdLF ($\lambda_{exc.}$ 368 nm)							
(RT)	$\Phi_{ m L.}$ \pm	2 [%]	$\tau_{488}^{[}$	^{c]} [µs]	$\tau_{520}^{[}$	^[c] [µs]	$\tau_{561}^{[}$	^{c]} [µs]	$\Phi_{\rm L} \pm$	2 [%]	$\tau_{480}^{[c]}$][µs]	τ_{530}	^[c] [µs]	τ_{565}	^[c] [µs]
	Air	Ar	Air	Ar	Air	Ar	Air	Ar	Air	Ar	Air	Ar	Air	Ar	Air	Ar
$^{[b]} c_{L} =$	2	12	20 ±	113 ± 8	20 ±	112 ±	20 ±	$108 \pm$	2	5	11 ±	85 ±	16 ±		18 ±	106 ± 9
0.1 mM			4		5	10	7	14			3	6	3	90 ± 10	3	
$^{[b]} c_{L} =$	3	9	33 ±	113 ±	32 ±	116 ±	32 ±	118 ±	2	6	15 ±	78 ±	15.3		20 ±	79 ± 7
0.5 mM			5	10	7	11	7	13			2	7	± 1.6	87 ± 7	7	
$^{[b]} c_{L} =$	1	3	45 ±	119 ± 5	45 ±	113 ± 7	41 ±	114 ± 8	3	6	14 ±	71 ±	16.2		17 ±	73 ± 7
1.0 mM			4		5		3				2	8	± 1.7	77 ± 8	1	
$^{[b]} c_{L} =$	1	2	21 ±	119 ± 6	24 ±	116 ±	21 ±	108 ± 9	3	6	13 ±	61 ±	16.9		20 ±	71 ± 7
2			5		6	11	4				2	8	± 1.5	67 ± 7	4	
2.0 mM																
$^{[b]} C_{L} =$	1	2	26 ±	121 ± 7	24 ±	114 ± 7	21 ±	109 ± 6	4	6	15 ±	48 ±	19 ±		23 ±	64 ± 7
3.0 mM			4		4		4				2	7	2	63 ± 6	6	
$^{[b]} c_{I} =$	1	2	23 ±	108 ± 7	22 ±	107 ± 9	20 ±	112 ±	4	6	16 ±	45 ±	22.9		24 ±	50 ± 7
4.0 mM			3		4		6	10			2	9	± 1.2	51 ± 6	7	

Figure S92. Photoluminescence lifetimes vs. loading concentration of PdLH ($\lambda_{exc.} = 335 \text{ nm}$) (left) and PdLF ($\lambda_{exc.} = 368 \text{ nm}$) (right) in PS nanoparticles under different conditions.

Figure S93. Time-resolved photoluminescence decays of PS(PtLH-series) in air-equilibrated and in Ar-purged H₂O ($\lambda_{exc.}$ = 335, λ_{em} 488 nm).

Figure S94. Time-resolved photoluminescence decays of PS(PdLH-series) in air-equilibrated and in Ar-purged H₂O (λ_{exc} = 335 nm, λ_{em} = 520 nm).

Figure S95. Time-resolved photoluminescence decays of PS(PdLH-series) in air-equilibrated and in Ar-purged H₂O (λ_{exc} = 335 nm, λ_{em} = 560 nm).

Figure S96. Time-resolved photoluminescence decays of PS(PdLF-series) in air-equilibrated and in Ar-purged H₂O (λ_{exc} = 368 nm, λ_{em} = 480 nm).

Figure S97. Time-resolved photoluminescence decays of PS(PdLF-series) in air-equilibrated and in Ar-purged H₂O (λ_{exc} = 368 nm, λ_{em} = 530 nm).

Figure S98. Time-resolved photoluminescence decays of PS(PdLF-series) in air-equilibrated and in Ar-purged H₂O (λ_{exc} = 368 nm, λ_{em} = 565 nm).

Figure S99. a) Absorption spectra of PS(**PtLF**-series) with loading concentrations of 0.1 mM (black) and 2.0 mM (red). b) Lifetime amplitudes of PS(**PtLF**-0.5 mM) plotted as a function of the emission wavelength, together with the emission spectrum (solid line). Amplitude *B1* (red dotted line) corresponds to the aggregate lifetime of $\tau_1 = 4.8 \ \mu s$ and amplitude *B2* (green dotted line) describes the monomer distribution with a lifetime of $\tau_2 = 11.0 \ \mu s$.

Figure S100. a) Absorption spectra of PS(**PdLF**-series) with **PdLF** loading concentration c_L from 0.1 mM (black) to 4.0 mM (red) with growing c_L (grey). **b)** Lifetime amplitudes of degassed PS(**PdLH**-0.5 mM) plotted as a function of the emission wavelength, together with the emission spectrum (solid line). Amplitude *B1* (red dotted line) corresponds to the fixed lifetime of $\tau_1 = 5 \ \mu$ s, *B2* (green dotted line) describes the lifetime component $\tau_2 = 28 \ \mu$ s, while *B3* (blue dotted line) is assigned to the component with lifetime of 240 \ \mus.

Figure S101. Pt(II)- and Pd(II)-complexes in THF/H₂O mixtures with different water fractions f_w . Top left: **PtLH** complex in THF/H₂O mixtures with water fractions f_w of 0, 30%, 50%, 70%, 90%. Top right: **PtLF** complex in THF/H₂O mixtures with different water fraction f_w of 0, 30%, 50%, 70%, 90%. Bottom left: **PdLH** complex in THF/H₂O mixtures with water fraction f_w of 0, 30%, 50%, 70%, 90%. Bottom right: **PdLF** complex in THF/H₂O mixtures with water fraction of 0.07 mM, 0.14 mM, 0.24 mM and 0.33 mM. The sample pictures were taken under 365 nm UV lamp illumination under air saturation.

S6.6 Stern-Volmer studies of PSNPs loaded with complexes

Table S21. Stern-Volmer constant (K_{sv}) and quenching rate constant (K_q) values of PS(PtLF-series) ($K_q = K_{SV} / \tau_{max}$).

Loading	K_{sv} [hPa ⁻¹]		K_q [hPa ⁻¹ s ⁻¹]		
concentration	Emission-based K_{sv}	Lifetime-based K_{sv}	Emission-based K_q	Lifetime-based K_q	
$c_{\rm L} = 0.1 {\rm mM}$	0.0039 ± 0.0004	0.0026 ± 0.0003	250 ± 30	166 ± 19	
$c_{\rm L} = 0.25 \text{ mM}$	0.0022 ± 0.0004	0.0025 ± 0.0003	150 ± 30	170 ± 20	
$c_{\rm L} = 0.5 {\rm mM}$	0.0032 ± 0.0004	0.0026 ± 0.0003	210 ± 30	170 ± 20	
$c_{\rm L} = 1.0 {\rm mM}$	0.0030 ± 0.0004	0.0026 ± 0.0003	210 ± 30	180 ± 20	
$c_{\rm L} = 2.0 \text{ mM}$	0.0030 ± 0.0004	0.0026 ± 0.0003	210 ± 30	180 ± 20	

Table S22. Stern-Volmer constant (K_{sv}) and quenching rate constant (K_q) values of PS(PtLH-series) ($K_q = K_{SV} / \tau_{max}$).

Samples	K_{sv} [hPa ⁻¹]		K_q [hPa ⁻¹ s ⁻¹]		
	Emission-based K _{sv}	Lifetime-based K_{sv}	Emission-based K_q	Lifetime-based K_q	
$c_{\rm L} = 0.1 {\rm mM}$	0.0028 ± 0.0004	0.0021 ± 0.0003	220 ± 30	170 ± 20	
$c_{\rm L} = 0.5 {\rm mM}$	0.0029 ± 0.0004	0.0021 ± 0.0003	230 ± 30	160 ± 20	
$c_{\rm L} = 1.0 {\rm mM}$	0.0029 ± 0.0004	0.0023 ± 0.0003	230 ± 30	180 ± 20	
$c_{\rm L} = 2.0 {\rm mM}$	0.0026 ± 0.0004	0.0021 ± 0.0003	220 ± 30	170 ± 30	

To explore the oxygen response of the Pd(II) complexes loaded into PS nanoparticles, we completed the Stern-Volmer studies of PS(PdLH-series) and PS(PdLF-series). It was noticed that the Stern-Volmer plots of both complexes cannot be simply described with a linear fit, especially with high loading concentration. This is due to the multi-exponential contribution for each complex, which demonstrates different responses to oxygen. According to the luminescence decay curves of Pd(II) complexes dissolved in THF, the lifetimes were fitted triexponentially. Different lifetime components might demonstrate various oxygen responses, thus the overall Stern-Volmer plots could be dominated by different components in various oxygen partial pressure ranges. On the other hand, with increasing complex loading concentration c_L , aggregates are formed in the PS nanoparticles. This might lead to different quenching sites with various oxygen accessibilities in the nanomatrices.¹⁴ Despite these influencing factors, we fitted the Stern-Volmer plots of

both PS(**PdLH**-series) and PS(**PdLF**-series) with two linear sections, aiming to exploiting more dynamic quenching information of the systems.

For PS(PdLH-series), regardless ACQ, no spectral change was observed, and the lifetimes showed independence on c_L or aggregation, indicating similar optical properties to the PdLH monomer. As a result, the K_{SV} and K_q of PdLH showed basically bare dependence on the c_L and aggregation (Table S23). On the contrary, in terms of PS(PdLF-series), Stern-Volmer plots showed significant difference with increasing c_L . With lower c_L , *e.g.* PS(PdLF-0.5 mM), monitoring oxygen partial pressure from 0.1 hPa to 201.0 hPa, oxygen response can be achieved by emission intensity and lifetime, as shown in Figure S102 a) and inset in c). Stern-Volmer plots based on I_{475} (or τ_{475}) and I_{530} (and τ_{530}) have essentially the same K_{SV} and K_q value, as shown in Figure S102 b) and c). Nevertheless, for PS(PdLF-4.0 mM), when increasing the pO_2 from 0.1 hPa to 187.0 hPa, the Stern-Volmer plots based on I_{480} (or τ_{480}) and I_{530} (and τ_{530}) differ clearly from each other (Figure S102 d), e), f) and inset). The K_{SV} values derived from I_{530} (or τ_{530}) showed a high tendency to decrease with increasing c_L (Table S24). This can be probably explained by the increased contribution of the PdLF aggregate state, which possesses lower oxygen sensitivity, demonstrating again that the emission band at around 530 nm is supported by both monomeric and aggregated states. Moreover, the K_{SV} values of the second section derived from $I_{475/480}$ (or $\tau_{475/480}$) becomes smaller. Possibly, one or more oxygen-sensitive components of monomeric PdLF are influenced by formation of the aggregates.

Loading	λ _{em}	Emission-based	Lifetime-based K_{sv}	[hpa ⁻¹]	K_q [hpa ⁻¹ s ⁻¹]	
concentration	[nm]	K_{sv} [hpa ⁻¹]	Section 1	Section 2	Section 1	Section 2
$c_{\rm L} = 0.1 {\rm mM}$	488	0.0166 ± 0.0009	0.031 ± 0.003	0.0173 ± 0.0006	270 ± 20	153 ± 5
$c_{\rm L} = 0.5 {\rm mM}$	488	0.0190 ± 0.0006	0.029 ± 0.003	0.0182 ± 0.0013	250 ± 20	161 ± 11
	520	0.0186 ± 0.0006	0.030 ± 0.002	0.014 ± 0.002	258 ± 10	120 ± 20
$c_{\rm L} = 1.0 {\rm mM}$	488	0.0176 ± 0.0004	0.0301 ± 0.0018	0.0168 ± 0.0008	253 ± 10	141 ± 7
	520	0.0174 ± 0.0003	0.030 ± 0.002	0.0166 ± 0.0005	270 ± 20	147 ± 4
$c_{\rm L} = 2.0 \text{ mM}$	488	0.0183 ± 0.0004	0.030 ± 0.003	0.0171 ± 0.0006	250 ± 20	144 ± 5
	520	0.0182 ± 0.0004	0.0279 ± 0.0019	0.0175 ± 0.0003	240 ± 20	151 ± 3
$c_{\rm L} = 3.0 \text{ mM}$	488	0.0168 ± 0.0011	0.032 ± 0.002	0.0169 ± 0.0012	270 ± 20	140 ± 10
	520	0.0164 ± 0.0010	0.0299 ± 0.0015	0.0153 ± 0.0004	262 ± 10	134 ± 4
$c_{\rm L} = 4.0 {\rm mM}$	488	0.0135 ± 0.0006	0.032 ± 0.002	0.0175 ± 0.0004	290 ± 20	162 ± 4
	520	0.0132 ± 0.0006	0.0267 ± 0.0015	0.0148 ± 0.0006	250 ± 10	139 ± 6

Table S23. Stern-Volmer constant (K_{sv}) and quenching rate constant (K_q) values of PS(PdLH-series).

Table S24. Stern-Volmer constant (K_{sv}) and quenching rate constant (K_{sv}) values of PS(PdLF-series).

Loading	λ_{em}	Emission-based K_{sv} [hpa ⁻¹]		Lifetime-based K_{sv} [hpa ⁻¹]		K_q [hpa ⁻¹ s ⁻¹]	
concentration	[nm]						
		Section 1	Section 2	Section 1	Section 2	Section 1	Section 2
$c_{\rm L} = 0.1 {\rm mM}$	475	0.0068 ± 0.0003	0.0022 ± 0.0002	0.0191 ± 0.0007	0.0121 ± 0.0011	224 ± 8	142 ± 13
	510	0.0120 ± 0.0003	0.0044 ± 0.0004	0.0240 ± 0.0008	0.0131 ± 0.0004	266 ± 9	145 ± 4
$c_{\rm L} = 0.5 {\rm mM}$	475	0.0101 ± 0.0015	0.0060 ± 0.0003	0.0153 ± 0.0005	0.0125 ± 0.0014	196 ± 6	160 ± 18
	530	0.0106 ± 0.0010	0.0062 ± 0.0002	0.0168 ± 0.0019	0.0124 ± 0.0007	190 ± 20	143 ± 8
$c_{\rm L} = 1.0 {\rm mM}$	480	0.011 ± 0.002	0.0044 ± 0.0003	0.022 ± 0.002	0.0127 ± 0.0005	310 ± 30	180 ± 7
	530	0.009 ± 0.002	0.0036 ± 0.0002	0.0211 ± 0.0014	0.0061 ± 0.0007	276 ± 18	80 ± 9
$c_{\rm L} = 2.0 \text{ mM}$	480	0.0105 ± 0.0005	0.0049 ± 0.0003	0.0171 ± 0.0003	0.0083 ± 0.0007	279 ± 5	135 ± 11
	530	0.0094 ± 0.0007	0.0029 ± 0.0001	0.0090 ± 0.0011	0.0029 ± 0.0001	134 ± 16	43 ± 2
$c_{\rm L} = 3.0 {\rm mM}$	475	0.0083 ± 0.0005	0.0015 ± 0.0003	0.0174 ± 0.0016	0.0046 ± 0.0003	360 ± 30	96 ± 6
	530	0.0065 ± 0.0009	0.0008 ± 0.0003	0.0076 ± 0.0003	0.0006 ± 0.0004	121 ± 5	9 ± 6
$c_{\rm L} = 4.0 {\rm mM}$	480	0.0056 ± 0.0010	0.0019 ± 0.0003	0.0143 ± 0.0017	0.0049 ± 0.0005	320 ± 40	109 ± 11
	530	0.0034 ± 0.0009	0.0012 ± 0.0007	0.0041 ± 0.0004	0.0014 ± 0.0002	81 ± 8	28 ± 4

References

- 1 Saint+, Bruker AXS INC., 6.02, (includes Xprep Sadabs).
- 2 G. M. Sheldrick, SADABS, Univ. Göttingen, Ger. 1996.
- 3 G. M. Sheldrick, SHEXL-97 SHELXL-2013, Progr. Refinement Struct. Univ. Göttingen, Ger.
- 4 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8.
- 5 G. A. et al. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, *Gaussian Inc. Wallingford CT*.
- 6 C. Adamo and V. Barone, J. Chem. Phys., 1999, 110, 6158–6170.
- 7 S. Grimme, S. Ehrlich and L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- 8 D. Andrae, U. Häußermann, M. Dolg, H. Stoll and H. Preuß, *Theor. Chim. Acta*, 1990, 77, 123–141.
- 9 T. H. Dunning Jr. and P. J. Hay, Modern Theoretical Chemistry, vol. 3, Plenum, New York, 1977.
- 10 V. Barone, J. Bloino and M. Biczysko, MRS Bull., 2013, 37, 1–20.
- 11 V. Barone, J. Bloino, M. Biczysko and F. Santoro, J. Chem. Theory Comput., 2009, 5, 540–554.
- 12 J. Tomasi, B. Mennucci and R. Cammi, Chem. Rev., 2005, 105, 2999–3094.
- 13 A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard and W. M. Skiff, J. Am. Chem. Soc., 1992, 114, 10024–10035.
- 14 M. H. Gehlen, J. Photochem. Photobiol. C Photochem. Rev., 2020, 42, 100338.