Supporting Information for o-Quinone Methide with Overcrowded Olefin Component as a Dehydridation Catalyst under Aerobic Photoirradiation Conditions

Daisuke Uraguchi ${ }^{1}$, Kohsuke Kato ${ }^{2}$, Takashi Ooi*2
${ }^{1}$ Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
${ }^{2}$ Institute of Transformative Bio-Molecules (WPI-ITbM) and Department of Molecular and Macromolecular Chemistry Graduate School of Engineering, Nagoya University, Nagoya 464-8601, Japan
tooi@chembio.nagoya-u.ac.jp

General Information: Infrared spectra were recorded on a SHIMADZU IRAffinity-1 spectrometer. ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a JEOL JNM-ECZ400S (400 MHz), JEOL JNM-ECA500II (500 MHz), or JEOL JNMECA600II $(600 \mathrm{MHz})$ spectrometer. Chemical shifts are reported in ppm from the solvent resonance $\left(\mathrm{CD}_{3} \mathrm{CN}\right.$: $\left.1.94 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}: 7.16 \mathrm{ppm}\right)$ or tetramethylsilane $\left(0.00 \mathrm{ppm} ; \mathrm{CDCl}_{3}\right)$ resonance as the internal standard. Data are reported as follows: chemical shift, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, brd = broad-doublet), and coupling constants (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a JEOL JNMECA600II (151 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance $\left(\mathrm{CDCl}_{3}: 77.16 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{CN}: 1.32 \mathrm{ppm}, \mathrm{C}_{6} \mathrm{D}_{6}: 128.06 \mathrm{ppm}\right)$. ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a JEOL JNM-ECZ400S (376 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from benzotrifluoride (-64.0 ppm) resonance as the external standard. The high-resolution mass spectrometry were conducted on Thermo Fisher Scientific Exactive (ESI). Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel $60 \mathrm{~F}_{254}, 0.25 \mathrm{~mm}$). Flash column chromatography was performed on Silica gel 60N (spherical neutral, 40-50 $\mu \mathrm{m}$; Kanto Chemical Co., Inc.).

Dichloromethane was supplied from Kanto Chemical Co., Inc. Other simple chemicals were purchased and used as such.

Experimental Section:

Synthesis and Characterization of Quinone Methides and Their Precursors:

Preparation of 9-(2-hydroxynaphthalen-1-yl)-10,10-dimethyl-9,10-dihydroanthracen-9-ol (2H-H2O): Tо а solution of 1-bromo-2-naphthol ($1.78 \mathrm{~g}, 8.0 \mathrm{mmol}$) in anhydrous tetrahydrofuran (THF) (27.0 mL) was added ${ }^{\mathrm{t}} \mathrm{BuLi}$ (1.6 M in ${ }^{n}$ pentane, $15.0 \mathrm{~mL}, 24.0 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$ and the reaction mixture was stirred at $-15^{\circ} \mathrm{C}$ for 1 h . A solution of 10,10 -dimethylanthrone $(1.67 \mathrm{~g}, 7.5 \mathrm{mmol})$ in anhydrous THF $(8.0 \mathrm{~mL})$ was introduced dropwise to the mixture at $-78^{\circ} \mathrm{C}$, and the resulting mixture was allowed to warm to room temperature and stirred there for overnight. The reaction mixture was poured into a saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ethyl acetate (EA) three times. The combined organic extracts were washed with brine and dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of volatiles under reduced pressure, purification of the residue was performed by column chromatography on silica gel (hexane $(\mathrm{H}) / \mathrm{EA}=10: 1$ as eluent) to afford $\mathbf{2 H}-\mathrm{H}_{2} \mathrm{O}$ in 77% yield $(2.11 \mathrm{~g}, 5.8 \mathrm{mmol})$ as a white solid. $\mathbf{2 H}-\mathbf{H}_{2} \mathbf{O}:{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.09(1 \mathrm{H}, \mathrm{s}), 7.74(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.68(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.61(1 \mathrm{H}$, $\mathrm{d}, J=7.8 \mathrm{~Hz}), 7.35(2 \mathrm{H}, \mathrm{dt}, J=1.5,7.8 \mathrm{~Hz}), 7.28(2 \mathrm{H}, \mathrm{dd}, J=1.5,7.8 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.08(2 \mathrm{H}, \mathrm{t}, J$ $=7.8 \mathrm{~Hz}), 7.00(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 6.78(1 \mathrm{H}, \mathrm{dt}, J=1.2,7.8 \mathrm{~Hz}), 2.83(1 \mathrm{H}, \mathrm{s}), 1.98(3 \mathrm{H}$, s), $1.80(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.8,142.3,138.5,131.1,130.7,129.7,129.1,128.6,128.5,127.5$, $127.2,125.6,125.3,122.2,120.7,117.9,81.2,38.0,36.9,31.8$; IR (film) $3100,1653,1506,1457,1224,1153,1068$, 1038, 1003, $981 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}_{2}{ }^{-}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 365.1536$. Found 365.1545.

Preparation of 9-(6-bromo-2-hydroxynaphthalen-1-yl)-10,10-dimethyl-9,10-dihydroanthracen-9-ol (2Br$\mathbf{H}_{2} \mathbf{O}$): To a solution of $\mathbf{2} \mathbf{H}-\mathrm{H}_{2} \mathrm{O}(109.9 \mathrm{mg}, 0.30 \mathrm{mmol})$ in acetonitrile $(\mathrm{MeCN})(3.0 \mathrm{~mL})$ was added N bromosuccinimide (NBS) ($53.4 \mathrm{mg}, 0.30 \mathrm{mmol})$. After being stirred at room temperature for 24 h , the resulting mixture was diluted with water and extracted with EA three times. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure to afford the crude residue. Purification of the residue by column chromatography on silica gel ($\mathrm{H} / \mathrm{EA}=10: 1$ as eluent) furnished $\mathbf{2 B r}-\mathrm{H}_{2} \mathrm{O}$ in 34% yield $(45.4 \mathrm{mg}, 0.10 \mathrm{mmol})$ as a light-purplish solid. $\quad \mathbf{2 B r}-\mathbf{H}_{2} \mathbf{O}:{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.10(1 \mathrm{H}, \mathrm{s}), 7.75(1 \mathrm{H}$, $\mathrm{d}, J=2.4 \mathrm{~Hz}), 7.68(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.65(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.37(2 \mathrm{H}, \mathrm{dt}, J=1.5,8.1 \mathrm{~Hz}), 7.27(1 \mathrm{H}, \mathrm{d}, J=8.1$ $\mathrm{Hz}), 7.25(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.10(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 6.86(1 \mathrm{H}, \mathrm{dd}, J=2.4,8.1 \mathrm{~Hz}), 6.79(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 2.82$ $(1 \mathrm{H}, \mathrm{s}), 1.96(3 \mathrm{H}, \mathrm{s}), 1.79(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 157.0,142.3,138.2,131.0,130.3,129.8,129.7$,
$129.3,128.6,128.5,127.6,127.2,121.9,118.3,116.0,81.0,37.9,36.9,31.7$, one carbon atom was not found probably due to overlapping.; IR (film) $3150,1617,1595,1506,1486,1456,1384,1228,1051,940,911 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{BrO}_{2}^{-}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 443.0641$ and 445.0621. Found 443.0648 and 445.0629.

Preparation of 1-(10,10-dimethyl-9,10-dihydroanthracen-9-yl)-naphthalen-2-ol (2H-H2): Cyclohexa-1,4-diene (1,4-CHD) ($0.40 \mathrm{~mL}, 5.0 \mathrm{mmol}$) and trifluoroacetic acid (TFA) $(0.23 \mathrm{~mL}, 2.0 \mathrm{mmol})$ were added to a solution of $\mathbf{2 H}-\mathrm{H}_{2} \mathrm{O}(366.5 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dichloromethane $(10.0 \mathrm{~mL})$ at room temperature. After overnight stirring, the reaction mixture was evaporated to afford the crude residue. Purification of the residue was conducted by column chromatography on silica gel $\left(H / E A=10: 1\right.$ as eluent) to give $\mathbf{2 H}-\mathrm{H}_{2}$ in quantitative yield ($350.5 \mathrm{mg}, 1.0 \mathrm{mmol}$) as a yellowish solid. $\quad \mathbf{2 H}-\mathbf{H}_{\mathbf{2}}:{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ major rotamer $\delta 7.81(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.75(1 \mathrm{H}, \mathrm{d}, J$ $=8.1 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{s}), 7.38(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.22(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{dt}, J=$ $1.8,8.1 \mathrm{~Hz}), 6.93(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 6.91(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 6.66(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $6.37(1 \mathrm{H}, \mathrm{s}), 2.04(3 \mathrm{H}, \mathrm{s}), 1.55(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) major rotamer $\delta 154.6,143.9,138.4,132.9$, $131.3,130.1,129.6,128.3,127.5,126.9,126.8_{0}, 126.75,125.9,123.5,122.8,118.6,39.2,39.1,35.0,29.6$; IR (film) 1653, 1540, 1506, 1472, 1276, 1250, $808 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}^{-}$([M-H] $]^{-}$) 349.1587. Found 349.1597.

$\mathbf{2 B r}-\mathbf{H}_{2}$: The title compound was prepared as a yellowish solid from $\mathbf{2 B r}-\mathrm{H}_{2} \mathrm{O}$ by following the procedure for $\mathbf{2 H}-\mathrm{H}_{2} .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ major rotamer $\delta 7.95(1 \mathrm{H}, \mathrm{d}, J=1.8 \mathrm{~Hz})$, $7.76(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.60(1 \mathrm{H}, \mathrm{s}), 7.41(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.23$ $(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 6.94(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 6.94(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz})$, $6.63(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 6.34(1 \mathrm{H}, \mathrm{s}), 2.02(3 \mathrm{H}, \mathrm{s}), 1.54(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right)$ major rotamer δ $155.1,143.9,138.1,132.6,131.6,131.4,129.4,128.9,128.8,128.3,127.6,127.0,126.8,123.3,119.8,116.6,39.2$, 39.0, 34.8, 29.4; IR (film) 2966, 1700, 1654, 1636, 1540, 1506, 1457, 1360, 1253, $967 \mathrm{~cm}^{-1} ;$ HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{BrO}^{-}\left([\mathrm{M}-\mathrm{H}]^{-}\right) 427.0692$ and 429.0672. Found 427.0698 and 429.0678.

Preparation of 9-(2-hydroxynaphthalen-1-yl)-10,10-dimethyl-9,10-dihydroanthracen-9-ylium tetrafluoroborate ($\mathbf{2 H}-\mathbf{H B F}_{4}$): $\mathbf{2 H}-\mathrm{H}_{2} \mathrm{O}(18.3 \mathrm{mg}, 0.05 \mathrm{mmol})$ was treated with tetrafluoroboric acid diethyl ether complex $\left(\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O}\right)(8.1 \mathrm{mg}, 0.050 \mathrm{mmol})$ in toluene $(1.0 \mathrm{~mL})$ at room temperature for a few minutes to form deep-red precipitation. Precipitation was collected by filtration with toluene and dried under reduced pressure to
afford $\mathbf{2 H}-\mathrm{HBF}_{4}$ in quantitative yield $(21.8 \mathrm{mg}, 0.050 \mathrm{mmol})$ as a deep-red solid. $\quad \mathbf{2 H}-\mathbf{H B F} \mathbf{4}:{ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CD}_{3} \mathrm{CN}\right) \delta 8.40(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.35(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.02(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.94$ $(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.92(1 \mathrm{H}, \mathrm{brs}), 7.61(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 7.45(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 7.35$ $(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 2.03(3 \mathrm{H}, \mathrm{s}), 1.94(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}\right) \delta 197.7,164.5$, $153.0,147.5,141.4,135.0_{1} 134.97,133.5,131.2,130.7,129.5,129.2,128.9,125.7,125.5,115.7,46.1,31.8,31.2$, one carbon atom was not found probably due to overlapping; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-151.7 \mathrm{~cm}^{-1}$; IR (film) 3300, 2950, 1588, 1559, 1484, 1446, 1371, 1349, 1334, 1311, 1265, 1231, 1066, 978, $820 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}^{+}\left(\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}\right) 349.1587$. Found 349.1588.

$\mathbf{2 H} \mathbf{- H O T f}$: The title compound was prepared as a deep-red solid by following the above procedure using trifluoromethanesulfonic acid instead of $\mathrm{HBF}_{4} \cdot \mathrm{Et}_{2} \mathrm{O} .{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 8.39$ $(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.34(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 8.22(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 8.12(1 \mathrm{H}, \mathrm{br}), 8.02(1 \mathrm{H}, \mathrm{d}, J$ $=8.1 \mathrm{~Hz}), 7.95(2 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.61(2 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{t}$, $J=8.1 \mathrm{~Hz}), 7.35(1 \mathrm{H}, \mathrm{t}, J=8.1 \mathrm{~Hz}), 6.98(1 \mathrm{H}, \mathrm{d}, J=8.1 \mathrm{~Hz}), 2.03(3 \mathrm{H}, \mathrm{s}), 1.94(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\mathrm{CD}_{3} \mathrm{CN}$) $\delta 197.8,164.4,153.1,147.5,141.4,135.0_{2}, 134.96,133.5,131.2,130.7,129.5,129.2,128.8$, 125.7, 125.4, 115.7, 46.0, 31.8, 31.2, two carbon atom was not found probably due to overlapping or broadening.; ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-79.2$, IR (film) $3164,1590,1564,1482,1448,1373,1343,1284,1228,1173,1028$, 982, $818 \mathrm{~cm}^{-1}$; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}^{+}\left([\mathrm{M}-\mathrm{OTf}]^{+}\right)$349.1587. Found 349.1588.

Preparation of 1-(10,10-dimethylanthracen-9(10H)-ylidene)-naphthalen-2(1H)-one $\mathbf{(2 H)}$: In a glove box, a suspension of $\mathbf{2 H}-H O T f(49.8 \mathrm{mg}, 0.10 \mathrm{mmol}), 4 \AA$ molecular sieves (MS4A) (200.0 mg), and $\mathrm{K}_{2} \mathrm{CO}_{3}(138.2 \mathrm{mg}$, $1.0 \mathrm{mmol})$ in toluene $(10.0 \mathrm{~mL})$ was stirred at room temperature overnight. The remaining solid was removed by filtration with toluene and the filtrate was concentrated to afford the crude residue. The resulting residue was dissolved in hexane and filtered for removing KOTf. Concentration of the filtrate furnished $\mathbf{2 H}$ in quantitative yield ($34.8 \mathrm{mg}, 0.10 \mathrm{mmol}$) as a yellow solid. $\quad \mathbf{2 H}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.54(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.32$ $(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.28(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.13(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.08(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.05(1 \mathrm{H}, \mathrm{t}, J=7.8$ $\mathrm{Hz}), 7.00(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 6.83(1 \mathrm{H}, \mathrm{td}, J=1.8,7.8 \mathrm{~Hz}), 6.80(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 6.79$ $(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 6.67(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 6.56(1 \mathrm{H}, \mathrm{dt}, J=1.8,7.8 \mathrm{~Hz}), 6.28(1 \mathrm{H}, \mathrm{d}, J=9.6 \mathrm{~Hz}), 1.64(6 \mathrm{H}, \mathrm{s}) ;$ ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 194.8,149.0,146.9,146.2,141.4,138.1,138.0,135.1,132.7,131.0,129.9,128.8$, $127.6,126.8,125.6,125.3,124.2,123.8,40.8,28.0$; IR (film) 2922, 1659, 1559, 1487, 1465, 1387, 1238, 1203, 830 cm^{-1}; HRMS (ESI) Calcd for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{O}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$349.1587. Found 349.1585.

Representative Procedure for $2 \mathrm{Br}-\mathrm{H}_{2}$-catalyzed Oxidation of Benzylic Secondary Alcohols under Aerobic Photoirradiation Condition:

1-(4-Methylphenyl)ethyl alcohol ($13.42 \mathrm{mg}, 0.10 \mathrm{mmol}$), $2 \mathbf{2 B r}-\mathrm{H}_{2}$ ($2.15 \mathrm{mg}, 0.0050 \mathrm{mmol}$), and dichloromethane $(4.0 \mathrm{~mL})$ were added to a test tube equipped with a stir bar. After bubbling with oxygen, the reaction mixture was irradiated with Kessil PR160L-456 Blue LED lamps with fans under oxygen atmosphere for 12 h . The reaction mixture was concentrated under reduced pressure. Purification of the residue was performed by column chromatography on Silica gel $60 \mathrm{~N}\left(\mathrm{H}^{2} \mathrm{Et}_{2} \mathrm{O}=10: 1\right.$ as eluent) to afford 4 '-methylacetophenone in 99% yield ($13.3 \mathrm{mg}, 0.099 \mathrm{mmol}$). 4'-Methylacetophenone ${ }^{1}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86(2 \mathrm{H}, \mathrm{t}, J=8.4 \mathrm{~Hz}$), $7.25(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 2.57(3 \mathrm{H}, \mathrm{s}), 2.41(3 \mathrm{H}, \mathrm{s}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.9,144.0,134.8,129.3,128.5$, 26.6, 21.7.

4'-(Trifluoromethyl)acetophenone ${ }^{2}$: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz})$, $7.73(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 2.65(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.1,139.8,134.6(\mathrm{q}$, $\left.J_{\mathrm{C}-\mathrm{F}}=32.8 \mathrm{~Hz}\right), 128.8,125.8_{2}, 125.8_{0}, 123.7\left(\mathrm{q}, J_{\mathrm{C}-\mathrm{F}}=272.8 \mathrm{~Hz}\right), 26.9$.

4'-Cyanoacetophenone ${ }^{3}:{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.05(2 \mathrm{H}, \mathrm{td}, J=1.8,8.6 \mathrm{~Hz}), 7.78(2 \mathrm{H}$, $\operatorname{td}, J=1.8,8.6 \mathrm{~Hz}), 2.65(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.7,140.0,132.6,128.8$, 118.0, 116.5, 26.9.

4'-Chloroacetophenone ${ }^{1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.89(2 \mathrm{H} . \operatorname{td}, J=2.3,8.4 \mathrm{~Hz}), 7.44(2 \mathrm{H}$, $\mathrm{dt}, J=2.3,8.4 \mathrm{~Hz}), 2.59(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.0,139.7,135.5,129.8,129.9$, 26.7.

4'-Bromoacetophenone ${ }^{1}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.82(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.61(2 \mathrm{H}, \mathrm{d}, J$ $=8.5 \mathrm{~Hz}), 2.59(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 197.2,135.9,132.0,130.0,128.4,26.7$.

Acetophenone ${ }^{3}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(2 \mathrm{H}, \mathrm{td}, J=1.6,7.2 \mathrm{~Hz}), 7.57(1 \mathrm{H}, \mathrm{tt}, J=1.6$, $7.2 \mathrm{~Hz}), 7.47(2 \mathrm{H}, \mathrm{tt}, J=1.6,7.2 \mathrm{~Hz}), 2.61(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 198.2,137.2$, $133.2,128.7,128.4,26.7$.

[^0]

3'-Chloroacetophenone ${ }^{1}$: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.93(1 \mathrm{H}, \mathrm{t}, J=2.0 \mathrm{~Hz}), 7.83(1 \mathrm{H}, \mathrm{td}$, $J=1.6,7.8 \mathrm{~Hz}), 7.54(1 \mathrm{H}$, ddd, $J=1.6,2.0,7.8 \mathrm{~Hz}), 7.41(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 2.60(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 196.8,138.7,135.0,133.1,130.0,128.5,126.5,26.7$.

3'-Methylacetophenone ${ }^{2}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78(1 \mathrm{H}, \mathrm{s}), 7.75(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz})$, $7.37(1 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.34(1 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 2.59(3 \mathrm{H}, \mathrm{s}), 2.41(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 198.5,138.5,137.3,134.0,128.9,128.5,125.7,26.8,21.4$

3'-Methoxyacetophenone ${ }^{4}$: ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54(1 \mathrm{H}, \mathrm{td}, J=1.4,8.2 \mathrm{~Hz}), 7.49$ $(1 \mathrm{H}, \mathrm{dd}, J=1.4,2.6 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{t}, J=8.2 \mathrm{~Hz}), 7.11(1 \mathrm{H}, \mathrm{ddd}, J=1.4,2.6,8.2 \mathrm{~Hz}), 3.86(3 \mathrm{H}$, s), $2.59(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 198.1, 159.9, 138.6, 129.7, 121.2, 119.7, 112.4, 55.5, 26.8.

2'-Chloroacetophenone ${ }^{1}$: ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(1 \mathrm{H}, \mathrm{dd}, J=1.6,8.0 \mathrm{~Hz}), 7.42(1 \mathrm{H}$, $\mathrm{dd}, J=2.0,8.0 \mathrm{~Hz}), 7.39(1 \mathrm{H}, \mathrm{dt}, J=2.0,8.0 \mathrm{~Hz}), 7.32(1 \mathrm{H}, \mathrm{dt}, J=2.0,8.0 \mathrm{~Hz}), 2.65(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.6,139.2,132.1,131.4,130.7,129.5,127.0,30.8$.

2'-Methylacetophenone ${ }^{2}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.68(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.37(1 \mathrm{H}, \mathrm{t}, J=$ $7.8 \mathrm{~Hz}), 7.26(1 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 7.24(1 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 2.58(3 \mathrm{H}, \mathrm{s}), 2.53(3 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $(151$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.8,138.5,137.7,132.1,131.6,129.4,125.8,29.6,21.7$.

Propiophenone ${ }^{3}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(2 \mathrm{H}, \mathrm{td}, J=1.6,7.2 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{tt}, J=$ $1.6,7.2 \mathrm{~Hz}), 7.45(2 \mathrm{H}, \mathrm{tt}, J=1.6,7.2 \mathrm{~Hz}), 3.00(2 \mathrm{H}, \mathrm{q}, J=7.2 \mathrm{~Hz}), 1.23(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}){ }^{13} \mathrm{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 200.9,137.0,132.9,128.6,128.0,31.8,8.3$.

Butyrophenone ${ }^{3}:{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.96(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.56(1 \mathrm{H}, \mathrm{t}, J=7.5$ $\mathrm{Hz}), 7.46(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.95(2 \mathrm{H}, \mathrm{t}, J=7.4 \mathrm{~Hz}), 1.77(2 \mathrm{H}$, sextet, $J=7.4 \mathrm{~Hz}), 1.01(3 \mathrm{H}, \mathrm{t}$, $J=7.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.5,137.2,133.0,128.6,128.1,40.6,17.9,14.0$.

Isobutyrophenone ${ }^{5}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.56(2 \mathrm{H}, \mathrm{d}, J=7.8 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{tt}, J=2.0$, $7.8 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{t}, J=7.8 \mathrm{~Hz}), 3.56(1 \mathrm{H}$, septet, $J=6.8 \mathrm{~Hz}), 1.22(6 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 204.5,136.3,132.9,128.7,128.4,35.4,19.2$.

[^1]

Isovalerophenone ${ }^{5}:{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.95(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.55(1 \mathrm{H}, \mathrm{t}, J=7.5$ $\mathrm{Hz}), 7.46(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 2.84(2 \mathrm{H}, \mathrm{d}, J=6.6 \mathrm{~Hz}), 2.30(1 \mathrm{H}$, nonet, $J=6.6 \mathrm{~Hz}), 1.00(6 \mathrm{H}, \mathrm{d}$, $J=6.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.4,137.5,133.0,128.7,128.2,47.6,25.3,22.9$.

Cyclohexyl phenyl ketone ${ }^{5}:{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.94(2 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 7.54(1 \mathrm{H}, \mathrm{t}$, $J=7.5 \mathrm{~Hz}), 7.46(2 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}), 3.26(1 \mathrm{H}, \mathrm{tt}, J=3.3,11.3 \mathrm{~Hz}), 1.89(2 \mathrm{H}, \operatorname{brd}, J=13.0 \mathrm{~Hz})$, $1.85(2 \mathrm{H}, \mathrm{td}, J=3.3,13.0 \mathrm{~Hz}), 1.78-1.71(1 \mathrm{H}, \mathrm{m}), 1.50(2 \mathrm{H}, \mathrm{dq}, J=3.3,13.0 \mathrm{~Hz}), 1.39(2 \mathrm{H}, \mathrm{tq}, J=3.3,13.0 \mathrm{~Hz})$, $1.27(1 \mathrm{H}, \mathrm{tq}, J=3.3,13.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 204.0,136.5,132.9,128.7,128.4,45.8,29.6,26.1$, 26.0.

3-Hydroxypropiophenone ${ }^{6}:{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97(2 \mathrm{H}, \mathrm{d}, J=7.2 \mathrm{~Hz}), 7.95(1 \mathrm{H}$, $\mathrm{t}, J=7.2 \mathrm{~Hz}), 7.48(2 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz}), 4.04(2 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}), 3.24(2 \mathrm{H}, \mathrm{t}, J=5.4 \mathrm{~Hz}), 2.76(1 \mathrm{H}$, $\mathrm{br}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.7,136.8,133.7,128.8,128.2,58.2,40.5$.

Procedure for Large Scale Oxidation of Benzylic Secondary Alcohol:

A solution of 1-(4-methylphenyl)ethyl alcohol ($681.0 \mathrm{mg}, 5.0 \mathrm{mmol}$), $\mathbf{2} \mathbf{B r}-\mathrm{H}_{2}(107.3 \mathrm{mg}, 0.25 \mathrm{mmol})$, in dichloromethane $(200 \mathrm{~mL})$ was placed in a 1-L 4-neck flask equipped with a condenser tube. After saturating the solution with oxygen by bubbling, the reaction mixture was stirred for 18 h under irradiation of Kessil PR160L-456 Blue LED lamps with fans under oxygen atmosphere. The reaction mixture was concentrated under reduced pressure to give a crude residue. Purification of the residue was performed by column chromatography on Silica gel $60 \mathrm{~N}\left(\mathrm{H} / \mathrm{Et}_{2} \mathrm{O}=10: 1\right.$ as eluent $)$ to afford 4^{\prime}-methylacetophenone in 74% yield ($497.8 \mathrm{mg}, 3.71 \mathrm{mmol}$).

[^2]
Procedures for Reduction of $\mathbf{2 H}$ and $\mathbf{2 H}-\mathrm{HBF}_{4}$ with Organic Hydride Sources:

$\mathbf{2 H}(3.48 \mathrm{mg}, 0.010 \mathrm{mmol})$ was treated with 2-phenylbenzothiazoline ($2.56 \mathrm{mg}, 0.012 \mathrm{mmol}$) in THF (1.0 mL) at room temperature for 3 h . The reaction mixture was concentrated and the chemical yield of $\mathbf{2 H}-\mathrm{H}_{2}$ was determined to be 40% by ${ }^{1} \mathrm{H}$ NMR analysis (400 MHz) using trimethylsilylbenzene as an internal standard.

To a solution of $\mathbf{2 H}(3.48 \mathrm{mg}, 0.010 \mathrm{mmol})$ and $1,4-\mathrm{CHD}(4.7 \mu \mathrm{~L}, 0.050 \mathrm{mmol})$ in dichloromethane (1.0 mL) was added a 1.0 M solution of methanesulfonic acid in dichloromethane ($1.0 \mu \mathrm{~L}, 0.0010 \mathrm{mmol}$), and the resulting solution was stirred at room temperature for 4 h . After concentration, the chemical yield of $\mathbf{2 H}-\mathrm{H}_{2}$ was determined to be 64% by ${ }^{1} \mathrm{H}$ NMR analysis (400 MHz) using trimethylsilylbenzene as an internal standard.

A solution of $\mathbf{2 H}(3.48 \mathrm{mg}, 0.010 \mathrm{mmol})$ and $1,4-\mathrm{CHD}(4.7 \mu \mathrm{~L}, 0.050 \mathrm{mmol})$ in dichloromethane (1.0 mL) was irradiated with Kessil PR160L-456 Blue LED lamps with fans under argon atmosphere for 1 h . The reaction mixture was concentrated under reduced pressure for determining chemical yield of $\mathbf{2 H}-\mathrm{H}_{2}$ to be 56% by ${ }^{1} \mathrm{H}$ NMR analysis (400 MHz) using trimethylsilylbenzene as an internal standard.

To a solution of $\mathbf{2} \mathbf{H}-\mathrm{HBF}_{4}(4.36 \mathrm{mg}, 0.010 \mathrm{mmol})$ in dichloromethane $(1 \mathrm{~mL})$ was added $1,4-\mathrm{CHD}(4.7$ $\mu \mathrm{L}, 0.050 \mathrm{mmol}$) at room temperature. After 4 h of stirring, the reaction mixture was concentrated and the ${ }^{1} \mathrm{H}$ NMR analysis of the crude residue using trimethylsilylbenzene as an internal standard determined the chemical yield of $\mathbf{2 H}-\mathrm{H}_{2}$ to be 83%.

Absorption Spectroscopy: UV-Vis absorption spectra were recorded on a Shimadzu UV-1800 spectrometer.

Figure S1. Absorption spectra of $\mathbf{1}$ and $\mathbf{2 H}$ in dichloromethane at room temperature.

Figure S2. Absorption spectrum of $\mathbf{2 H}-\mathrm{H}_{2}$ in dichloromethane and irradiation spectrum of Kessil PR160L-456 Blue LED lamp.

Figure S3. Absorption spectra of $\mathbf{2} \mathbf{H}-\mathrm{H}_{2}$ and $\mathbf{2 B r}-\mathrm{H}_{2}$ in dichloromethane at room temperature.

Detection of Hydrogen Peroxide:

Hydrogen peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$ was detected upon treatment with oxo[5,10,15,20-tetra-(4-pyridyl)porphyrinato]titanium (IV) (TiO (tpyp)), which is known to rapidly react with even trace amounts of $\mathrm{H}_{2} \mathrm{O}_{2}$. To a $50 \mu \mathrm{M}$ solution of $\mathrm{TiO}(\mathrm{tpyp})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$ was added $0 \sim 0.8 \mathrm{~mL}$ of a 30% aqueous solution of $\mathrm{H}_{2} \mathrm{O}_{2} .{ }^{7}$ After being stirred for 5 min at room temperature, the mixture was analyzed by UV-Vis absorption spectroscopy measurement (A). A blank solution was prepared in a similar manner except for using distilled water instead of the sample solution and its absorbance was designated as A_{B}. The difference in absorbance was determined as follows: $\Delta A=A_{\mathrm{B}}-A$. An increasing peak at 442 nm suggests the generation of the $\mathrm{Ti}\left(\mathrm{O}_{2}\right)$ (tpyp) complex (Fig. S4).

Figure S4. The difference in absorbance spectrum of the $\mathrm{TiO}($ tpyp $)$ in MeOH with a varied amount of $30 \% \mathrm{H}_{2} \mathrm{O}_{2}$ $a q$.

[^3]

A solution of phenethyl alcohol ($13.42 \mathrm{mg}, 0.10 \mathrm{mmol}$) and $2 \mathrm{Br}-\mathrm{H}_{2}(2.15 \mathrm{mg}, 0.0050 \mathrm{mmol})$ in dichloromethane $(4.0 \mathrm{~mL})$ in a test tube was irradiated with Kessil PR160L-456 Blue LED lamps with fans under oxygen atmosphere for 12 h . Distilled water $(2.0 \mathrm{~mL})$ was added to the reaction mixture, and the aqueous and organic phases were separated. The aqueous phase ($0 \sim 0.8 \mathrm{~mL}$) was introduced to a $50 \mu \mathrm{M}$ solution of $\mathrm{TiO}(\mathrm{tpyp})$ in $\mathrm{MeOH}(2.0 \mathrm{~mL})$. After being stirred for 5 min at room temperature, the solution was analyzed by UV-Vis absorption spectroscopy measurement.

Figure S5. The difference in absorbance spectrum of the $\mathrm{TiO}(\mathrm{tpyp})$ in MeOH with a different amount of an aqueous phase of the reaction mixture.

Computational Details:

DFT Calculation: The density functional theory (DFT) calculations were carried out using the Gaussian 09 Revision D. 01 suite of programs ${ }^{8}$ with default thresholds and algorithms unless otherwise noted. All stationary points were verified by the presence of all positive frequencies for local minima or a single negative frequency corresponding to the process of interest for transition states. Reported electronic energies do not include zero-point energy corrections.

Photoexcitation from $\mathbf{S}_{\mathbf{0}}$ to $\mathbf{S}_{\mathbf{1}}$ States: The first excited state of $\mathbf{2 H}$ is reported below. Geometry optimizations were performed using DFT/time-dependent DFT (TD-DFT) with the CAM-B3LYP range-separated exchange correlation functional ${ }^{9}$ employing the $6-31+G(d)$ basis set (CAM-B3LYP/6-31+G(d)). The dichloromethane solvent effects were taken into account by using the SMD model. ${ }^{10}$

$$
\begin{array}{cccc}
\text { Excited State } 1: & \text { Singlet-A } & 3.2802 \mathrm{eV} & 377.98 \mathrm{~nm} \quad \mathrm{f}=0.2905 \quad<\mathrm{S} * * 2>=0.000 \\
86->93 & 0.10606 & \left(2 \times(0.10606)^{2}=0.02250(2 \% \text { contribution })\right. \\
87->93 & -0.17186 & \left(2 \times(0.17186)^{2}=0.05907(6 \% \text { contribution })\right. \\
89->93 & -0.11793 & \left(2 \times(0.11793)^{2}=0.02781(3 \% \text { contribution })\right. \\
90->93 & 0.12732 & \left(2 \times(0.12732)^{2}=0.03242(3 \% \text { contribution })\right. \\
92->93 & 0.63668 & \left(2 \times(0.63668)^{2}=0.81072(81 \% \text { contribution })\right.
\end{array}
$$

Figure S6. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of $\mathbf{2 H}$ at the geometry optimized in the S_{0} state. The contribution (\%) of the transition and oscillator strength (f) of the excitation is placed over the arrow.

[^4]Photoexcitation from ${ }^{\boldsymbol{T}} \mathbf{S}_{\mathbf{0}}$ to ${ }^{\boldsymbol{t}} \mathbf{S}_{\mathbf{1}}$ States: The first excited state of ${ }^{t} \mathrm{~S}_{0}$ geometry of $\mathbf{2 H}$ is reported below. Geometry optimizations in the ${ }^{t} \mathrm{~S}_{1}$ state were performed at the TD-CAMB3LYP/6-31+G(d) level of theory with QC-SCF method. ${ }^{11}$ The dichloromethane solvent effects were taken into account by using the SMD model.
$\begin{array}{ccccc}\text { Excited State } 1: & \text { Singlet-A } & 0.5826 \mathrm{eV} 2128.27 \mathrm{~nm} \quad \mathrm{f}=0.0001 \quad<S^{* *} 2>=0.000 \\ 92->93 & 0.69367 & \left(2 \times(0.69367)^{2}=0.96236(96 \% \text { contribution })\right.\end{array}$

MO-92 (HOMO)

MO-93 (LUMO)

Figure S7. The highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of $\mathbf{2 H}$ at the geometry optimized in the ${ }^{t} \mathrm{~S}_{0}$ state. The contribution (\%) of the transition and oscillator strength (f) of the excitation is placed over the arrow.

Estimating Triplet Energy of $\mathbf{2 H}-\mathbf{H}_{\mathbf{2}}$: Triplet energy of $\mathbf{2 H}-\mathrm{H}_{2}$ was estimated through calculation of energy difference between ground-state and excited-state energies at the T_{0} geometry of $\mathbf{2 H}-\mathrm{H}_{2}$. Geometry optimization was performed at the UCAMB3LYP/6-31+G(d) level of theory. The dichloromethane solvent effects were taken into account by using the SMD model.
$E\left(\mathrm{~S}^{\mathrm{T}}{ }_{0}\right)=-1078.69522705$ a.u. $\quad E\left(\mathrm{~T}_{0}\right)=-1078.61546284$ a.u.
$\Delta E\left(\mathrm{~T}_{0}-\mathrm{S}^{\mathrm{T}}{ }_{0}\right)=0.07976421$ a.u. $=2.17 \mathrm{eV}$

Cartesian Coordinates of Calculated Structures

$1 E=-960.807292395$ a.u.

C	-0.186246	-2.364114	-0.211571
C	-1.269248	-3.021248	-0.957906
C	-2.513672	-2.515601	-0.987566
C	-2.865971	-1.302071	-0.268169
C	-4.208695	-0.936720	-0.112568
C	-4.559096	0.155617	0.667067
C	-3.558447	0.879615	1.317019
C	-2.222407	0.536738	1.151641
C	-1.846364	-0.533901	0.330984
O	0.855705	-2.972768	0.019186
H	-1.021510	-3.970214	-1.424126
H	-3.310668	-3.046750	-1.502955

[^5]| H | -4.975840 | -1.535315 | -0.597015 | C | 4.725094 | -0.023810 | -0.019999 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| H | -5.602894 | 0.429785 | 0.788049 | H | 5.639817 | -0.529928 | -0.317670 |
| H | -3.820353 | 1.715115 | 1.959835 | C | -0.997108 | 3.753758 | -1.198959 |
| H | -1.462108 | 1.104294 | 1.675785 | H | -1.232610 | 4.787779 | -1.435052 |
| C | 0.600914 | -0.033316 | 0.068386 | C | -3.793220 | 1.535027 | 1.161534 |
| C | 0.384992 | 1.432048 | -0.120749 | H | -4.348812 | 1.704341 | 0.233467 |
| C | -0.420814 | 1.904438 | -1.163022 | H | -3.661153 | 2.497580 | 1.663232 |
| C | -0.578532 | 3.270319 | -1.373149 | H | -4.408661 | 0.919639 | 1.823432 |
| C | 0.058476 | 4.185864 | -0.537886 | C | 3.512455 | -0.717014 | -0.092479 |
| C | 0.870456 | 3.725689 | 0.496871 | C | 4.767707 | 1.278924 | 0.458204 |
| C | 1.045621 | 2.359426 | 0.693048 | H | 5.714334 | 1.807242 | 0.521934 |
| C | 2.041583 | -0.412855 | 0.094417 | C | -1.805010 | 3.050074 | -0.308078 |
| C | 2.880429 | -0.049753 | -0.965400 | H | -2.662357 | 3.552028 | 0.125425 |
| C | 4.241375 | -0.336347 | -0.922528 | C | -1.757839 | 0.693676 | 2.297974 |
| C | 4.789581 | -0.951217 | 0.201096 | H | -2.386180 | 0.075055 | 2.947614 |
| C | 3.966529 | -1.291252 | 1.273147 | H | -1.624398 | 1.669687 | 2.777038 |
| C | 2.600791 | -1.034690 | 1.214896 | H | -0.778823 | 0.214657 | 2.223695 |
| H | -0.920448 | 1.196534 | -1.817259 | C | 2.418999 | -2.903397 | -0.228380 |
| H | -1.200483 | 3.619458 | -2.192579 | H | 2.432750 | -3.979306 | -0.375395 |
| H | -0.069437 | 5.252543 | -0.698829 | C | -2.773232 | -2.914578 | -1.190568 |
| H | 1.376566 | 4.432103 | 1.148794 | H | -2.848929 | -3.833440 | -1.764814 |
| H | 1.690178 | 2.008481 | 1.493778 | C | -2.435902 | 0.868479 | 0.917659 |
| H | 2.461856 | 0.451130 | -1.833905 | C | -3.896086 | -2.373975 | -0.571250 |
| H | 4.875390 | -0.067551 | -1.762740 | H | -4.857968 | -2.873108 | -0.648890 |
| H | 5.854517 | -1.162210 | 0.242646 | C | 3.496959 | -2.131982 | -0.448803 |
| H | 4.387594 | -1.767045 | 2.154398 | H | 4.422737 | -2.569797 | -0.814765 |
| H | 1.960535 | -1.314369 | 2.045111 | C | 3.589043 | 1.888202 | 0.886724 |
| | | | | H | 3.613845 | 2.890972 | 1.303398 |

$\mathbf{2 H}\left(\mathrm{S}_{0}\right) \quad E=-1077.48159482$ a.u.

O	0.396758	-3.000105	0.972543
C	-1.540025	1.715873	0.004143
C	-0.406610	1.109223	-0.565721
C	-2.579614	-0.498177	0.231978
C	1.200990	-2.316116	0.350487
C	-3.797176	-1.172634	0.125990
H	-4.692917	-0.754377	0.569997
C	2.306099	-0.074715	0.261794
C	-0.163225	-0.319784	-0.230838
C	-1.550031	-2.267217	-1.074848
H	-0.675601	-2.680954	-1.566765
C	-1.436958	-1.085262	-0.341499
C	1.039024	-0.840630	0.128201
C	2.373973	1.218953	0.787996
H	1.471233	1.708334	1.133816
C	0.379234	1.805711	-1.485774
H	1.221861	1.307983	-1.955069
C	0.086985	3.125890	-1.805392
H	0.700609	3.659461	-2.525537

$\mathbf{2 H}\left({ }^{t} \mathrm{~S}_{0}\right) \quad E=-1077.45494301$ a.u.

0.012919	0.689991
0.024830	2.062434
0.028100	2.361161
0.018276	1.402467
0.006060	0.015138
-0.006754	-1.008915
-0.018519	-2.374476
-0.017645	-2.736669
-0.006002	-1.764459
0.005127	-0.333316
0.032273	3.006780
0.037358	3.413578
0.019657	1.669726
-0.007351	-0.737968
-0.027668	-3.128700
-0.025720	-3.783286

C	2.713244	2.428411	-0.650089	C	-3.884354	1.308419	-1.110194
H	3.744930	2.448316	-0.979940	C	-3.667873	0.336001	-0.067826
C	0.820890	-1.264246	0.275116	C	-4.758281	-0.262318	0.587616
C	2.167444	1.253572	-0.120350	C	-4.565057	-1.128985	1.646280
C	1.964222	3.595579	-0.763500	C	-3.257822	-1.383986	2.085589
H	2.419027	4.490053	-1.180285	C	-2.176185	-0.802897	1.451195
C	0.081149	-2.444569	0.174828	C	-2.341740	0.037365	0.326785
H	-0.956231	-2.452448	0.493732	O	-0.574081	2.388027	-1.911471
C	1.964620	-3.595223	-0.764772	H	-3.029101	2.733916	-2.436712
H	2.419519	-4.489501	-1.181876	H	-4.909038	1.510746	-1.414822
C	0.080868	2.444390	0.175696	H	-5.763548	-0.016874	0.253714
H	-0.956511	2.452049	0.494607	H	-5.413143	-1.585752	2.147610
C	0.820733	1.264109	0.275557	H	-3.089656	-2.031973	2.941444
C	4.282021	0.000415	-0.768284	H	-1.178884	-0.995226	1.833000
H	4.047015	0.000248	-1.837948	C	0.127271	0.243296	-0.143338
H	4.902757	-0.872094	-0.552078	C	1.177759	1.190636	0.203111
H	4.902189	0.873371	-0.552233	C	0.824893	2.503739	0.592995
C	0.641669	-3.608348	-0.338705	C	1.774988	3.435053	0.947646
H	0.044687	-4.513129	-0.411601	C	3.122828	3.065370	0.951405
C	2.167602	-1.253413	-0.120797	C	3.482172	1.762426	0.649814
C	3.021162	0.000103	0.106055	C	2.528682	0.798432	0.298205
O	-1.226672	-0.001022	3.234067	C	2.986728	-0.634336	0.097002
H	-1.764395	-0.001269	4.046117	C	1.838949	-1.582515	-0.208067
C	2.713518	-2.428015	-0.650953	C	2.143398	-2.932078	-0.434062
H	3.745198	-2.447713	-0.980821	C	1.179640	-3.843351	-0.828475
C	0.641269	3.608412	-0.337425	C	-0.129993	-3.410481	-1.050827
H	0.044194	4.513158	-0.409992	C	-0.451303	-2.089780	-0.826217
C	-2.034152	-0.000671	2.142243	C	0.500437	-1.159490	-0.345129
C	-2.093959	0.000015	-0.353124	C	3.702376	-1.107955	1.386547
C	-3.387301	-0.000656	2.216824	C	3.985413	-0.679696	-1.086769
H	-3.886499	-0.000937	3.182179	H	-0.220912	2.777752	0.625726
C	-3.540357	0.000023	-0.268007	H	1.476628	4.438896	1.233751
C	-2.297821	0.000706	-2.812486	H	3.888655	3.786229	1.223478
H	-1.797966	0.000985	-3.776330	H	4.529727	1.487773	0.703896
C	-4.287088	0.000355	-1.443406	H	3.165039	-3.276157	-0.316780
H	-5.371917	0.000361	-1.377690	H	1.452368	-4.881392	-0.995884
C	-4.160922	-0.000298	1.012567	H	-0.886184	-4.099741	-1.413869
H	-5.244734	-0.000293	1.072493	H	-1.458386	-1.758118	-1.037748
C	-3.660802	0.000695	-2.724322	H	4.049667	-2.138611	1.279597
H	-4.277337	0.000962	-3.618736	H	3.028273	-1.061324	2.247765
				H	4.575450	-0.487258	1.601754
				H	3.503451	-0.363631	-2.017255
2H-Int1 $\left(\mathrm{S}_{0}\right) \quad E=-107$		46848133		H	4.377626	-1.689812	-1.229300
				H	4.834377	-0.017154	-0.898826

$\begin{array}{llll}\mathrm{C} & -1.209378 & 0.689706 & -0.323877 \\ \mathrm{C} & -1.462160 & 1.759479 & -1.301396 \\ \mathrm{C} & -2.861349 & 1.981861 & -1.671141\end{array}$
2H-TS1 $\left(\mathrm{S}_{0}\right) \quad E=-1077.46639587$ a.u.

C	-1.208211	-1.772352	1.221741	C	0.935106	-0.936276	-0.654821
C	-2.478600	-1.894049	1.953366	C	0.854929	-2.420857	-0.455252
C	-3.594131	-1.227919	1.606929	C	1.547410	-2.936847	0.731783
C	-3.623204	-0.362098	0.448451	C	2.556005	-2.236804	1.274713
C	-4.838467	0.136284	-0.044045	C	3.019470	-0.984293	0.690935
C	-4.885163	0.851012	-1.229289	C	4.240196	-0.445374	1.105675
C	-3.704146	1.052060	-1.952526	C	4.774371	0.674125	0.481224
C	-2.497328	0.574422	-1.469138	C	4.087399	1.243476	-0.585967
C	-2.414866	-0.099631	-0.234994	C	2.857848	0.728933	-0.991761
O	-0.260968	-2.494716	1.562491	C	2.276158	-0.363597	-0.344411
H	-2.469359	-2.594001	2.783741	O	0.240964	-3.172550	-1.204677
H	-4.518838	-1.374901	2.160544	H	1.264593	-3.924979	1.082049
H	-5.751166	-0.069765	0.509582	H	3.114788	-2.634987	2.118278
H	-5.831351	1.227355	-1.606536	H	4.779206	-0.931638	1.914554
H	-3.730858	1.574915	-2.904384	H	5.727690	1.080268	0.805861
H	-1.595107	0.719348	-2.055360	H	4.509155	2.091651	-1.117522
C	0.123048	-0.148988	-0.076855	H	2.371602	1.172690	-1.845782
C	1.184970	-1.088261	-0.434647	C	-0.226975	-0.225866	-0.750418
C	0.816852	-2.293722	-1.064657	C	-0.340012	1.259043	-0.686938
C	1.763852	-3.200143	-1.499110	C	0.135079	2.103451	-1.689959
C	3.114266	-2.905678	-1.317698	C	-0.046035	3.481080	-1.605005
C	3.494737	-1.700266	-0.741014	C	-0.715845	4.015635	-0.512128
C	2.548442	-0.763818	-0.314343	C	-1.256232	3.169870	0.456303
C	2.961529	0.554839	0.315639	C	-1.109742	1.786319	0.369012
C	1.873628	1.615881	0.126155	C	-1.810712	0.804438	1.318245
C	2.219045	2.967503	0.250245	C	-2.384385	-0.310071	0.425201
C	1.268410	3.976418	0.260949	C	-3.669145	-0.823642	0.593911
C	-0.081516	3.643060	0.195015	C	-4.187483	-1.776683	-0.282867
C	-0.447075	2.315363	0.080140	C	-3.425809	-2.220912	-1.355495
C	0.503863	1.279120	-0.007573	C	-2.129704	-1.741182	-1.525410
C	4.321066	1.025715	-0.230769	C	-1.593141	-0.816077	-0.629566
C	3.115036	0.326867	1.844289	C	-2.906237	1.495574	2.137173
H	-0.235525	-2.499236	-1.223269	C	-0.799698	0.216194	2.331309
H	1.457724	-4.123598	-1.981228	H	0.612622	1.679500	-2.566324
H	3.876899	-3.604909	-1.649127	H	0.328658	4.126733	-2.393963
H	4.552527	-1.494078	-0.637222	H	-0.854993	5.089577	-0.425466
H	3.258265	3.250124	0.357023	H	-1.822676	3.608492	1.269363
H	1.580374	5.013519	0.344840	H	-4.295911	-0.470316	1.404367
H	-0.847478	4.411456	0.241410	H	-5.196803	-2.150336	-0.134012
H	-1.500051	2.083184	0.057219	H	-3.832098	-2.939730	-2.061302
H	4.656936	1.934278	0.270839	H	-1.531111	-2.081578	-2.359507
H	4.282962	1.218407	-1.307940	H	-3.383194	0.783052	2.815455
H	5.093953	0.278738	-0.042388	H	-3.680847	1.942941	1.506298
H	2.176705	-0.013624	2.291972	H	-2.475639	2.281666	2.763220
H	3.417353	1.256404	2.337550	H	0.035428	-0.293306	1.847864
H	3.880945	-0.432399	2.034035	H	-1.303442	-0.504620	2.984319
				H	-0.391657	1.017363	2.956766

2H-TS2 $\left(\mathrm{S}_{0}\right) \quad E=-1077.46760971$ a.u.

				C	-0.514443	1.023046	-0.802961
		,		C	-0.034655	1.649970	-1.954295
				C	-0.379428	2.968639	-2.225173
		d		C	-1.199624	3.658871	-1.336601
				C	-1.707372	3.020165	-0.205681
				C	-1.395275	1.687803	0.062430
				C	-1.986799	0.873223	1.216302
				C	-2.398497	-0.470011	0.586659
				C	-3.632550	-1.056264	0.861054
				C	-4.068466	-2.187860	0.174188
C	1.051738	-0.909440	-0.360289	C	-3.273592	-2.732309	-0.823759
C	1.267728 1.25	-2.393339	-0.360289	C	-2.015534	-2.193043	-1.078483
C	2.514772	-2.955410	-0.109714	C	-1.538073	-1.102365	-0.347468
C	3.569234	-2.170942	0.362532	C	-3.171282	1.596660	1.864895
C	3.482704	-0.726293	0.290868	C	-0.930366	0.655615	2.325575
C	4.631769	0.003651	0.625588	H	0.619022	1.102815	-2.627585
C	4.610072	1.384114	0.707225	H	-0.006561	3.455041	-3.121772
C	3.400689	2.035154	0.482849	H	-1.466786	4.693429	-1.532818
C	2.259080	1.321225	0.140574	H	-2.371489	3.570002	0.451542
C	2.257116	-0.077202	-0.017803	H	-4.290559	-0.612109	1.598282
O	0.461835	-3.162397	-0.924131	H	-5.042444	-2.613466	0.399310
H	2.567230	-4.038386	0.157931	H	-3.620660	-3.580022	-1.407558
H	4.525207	-2.602163	0.649366	H	-1.403615	-2.618507	-1.857151
H	5.544743	-0.545123	0.841781	H	-3.569697	1.013540	2.699391
H	5.506533	1.940577	0.963579	H	-3.984796	1.787260	1.157853
H	3.333455	3.115254	0.577106	H	-2.845850	2.555313	2.278830
H	1.359117	1.893688	0.003013	H	-0.032824	0.152684	1.961551
C	-0.220332	-0.409341	-0.541123	H	-1.356343	0.044656	3.128551
C	-0.220332	-0.409341	-0.541123	H	-0.630049	1.618806	2.751537

Crystallographic Structure Determination of 1: The single crystal, obtained by the procedure described below, was mounted on MicroMesh. Data of X-ray diffraction were collected at 123 K on a Rigaku FR-X with Pilatus 200K with fine-focus sealed tube $\mathrm{Mo} / \mathrm{K} \alpha$ radiation $(\lambda=0.71075 \AA$). An absorption correction was made using Crystal Structure. The structure was solved by direct methods and Fourier syntheses, and refined by full-matrix least squares on F^{2} by using SHELXL-2014. ${ }^{12}$ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in calculated positions and their isotropic thermal parameters were refined.

Recrystallization of 1: Recrystallization of $\mathbf{1}$ was performed by using a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane solvent system at room temperature.

Crystallographic Structure Determination of 2H: The single crystal, obtained by the procedure described below, was mounted on MicroMesh. Data of X-ray diffraction were collected at 123 K on a Rigaku FR-X with Pilatus 200K with fine-focus sealed tube $\mathrm{Mo} / \mathrm{K} \alpha$ radiation $(\lambda=0.71075 \AA$). An absorption correction was made using Crystal Structure. The structure was solved by direct methods and Fourier syntheses, and refined by full-matrix least squares on F^{2} by using SHELXL-2014. ${ }^{10}$ All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed in calculated positions and their isotropic thermal parameters were refined.

Recrystallization of $\mathbf{2 H}$: Recrystallization of $\mathbf{2 H}$ was performed by using a $\mathrm{Et}_{2} \mathrm{O} /$ hexane solvent system at room temperature in a glove box.

Crystallographic Structure Determination of $\mathbf{2 H}-\mathrm{HBF}_{4}$: The single crystal, which was obtained by the procedure described below, was mounted on MicroMesh. Data of X-ray diffraction were collected at 123 K on a Rigaku MicroMax-007HF with R-AXIS RAPID II with fine-focus sealed tube $\mathrm{Cu} / \mathrm{K} \alpha$ radiation ($\lambda=1.54187 \AA$). An absorption correction was made using RAPID-AUTO. The structure was solved by direct methods and Fourier syntheses, and refined by full-matrix least squares on F^{2} by using SHELXL-2014. ${ }^{10}$ All non-hydrogen atoms were refined with anisotropic displacement parameters. A hydrogen atom bonded to the oxygen atom was located from a difference synthesis and its coordinates and isotropic thermal parameters were refined. The other hydrogen atoms were placed in calculated positions and isotropic thermal parameters were refined.

Recrystallization of $\mathbf{2 H}-\mathbf{H B F}_{4}$: Recrystallization of $\mathbf{2 H}-\mathrm{HBF}_{4}$ was performed by using a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /hexane solvent system at room temperature.

[^6]Table S1. Crystal data and structure refinement for quinone methide $\mathbf{1}$ (CCDC-1993085).

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

C26 H20 O1
348.42

123(2) K
$0.71075 \AA$
monoclinic
P 21/c
$\mathrm{a}=10.294(3) \AA \quad \alpha=90^{\circ}$
$b=16.632(4) \AA \quad \beta=112.274(2)$
$\mathrm{c}=11.319(3) \AA \quad \gamma=90^{\circ}$
1793.3(8) \AA^{3}

4
$1.290 \mathrm{Mg} / \mathrm{m}^{3}$
$0.079 \mathrm{~mm}^{-1}$
648
$0.10 \times 0.070 \times 0.060 \mathrm{~mm}^{3}$
3.0 to 27.5°
$-11<=\mathrm{h}<=9,-12<=\mathrm{k}<=12,-14<=\mathrm{l}<=20$
11456
$2875\left[\mathrm{R}_{\text {int }}=0.0248\right]$
98.7\%

Semi-empirical from equivalents
0.948 and 1.000

Full-matrix least-squares on F^{2}
2875 / 0/217
1.074
$\mathrm{R}_{1}=0.0354, \mathrm{wR}_{2}=0.0765$
$\mathrm{R}_{1}=0.0487, \mathrm{wR}_{2}=0.0836$
0.170 and -0.174 e. \AA^{-3}

Figure S8. Molecular structure of 1. Calculated hydrogen atoms are omitted for clarity. The thermal ellipsoids of non-hydrogen atoms are shown at the 50% probability level. Red $=$ oxygen, black $=$ carbon.

Table S2. Crystal data and structure refinement for quinone methide 2H (CCDC-1993086).

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Largest diff. peak and hole

C23 H16 O1
308.38

123(2) K
$0.71075 \AA$
orthorhombic
P 21/n
$a=9.3347(13) \AA \quad \alpha=90^{\circ}$
$\mathrm{b}=10.0778(14) \AA$
$\beta=101.582(3)$

$$
\mathrm{c}=16.957(3) \AA \quad \gamma=90^{\circ}
$$

1562.7(4) \AA^{3}

4
$1.311 \mathrm{Mg} / \mathrm{m}^{3}$
$0.077 \mathrm{~mm}^{-1}$
736
$0.500 \times 0.260 \times 0200 \mathrm{~mm}^{3}$
3.1 to 27.5°
$-12<=\mathrm{h}<=12,-20<=\mathrm{k}<=20,-13<=\mathrm{l}<=13$
30752
$3334\left[\mathrm{R}_{\text {int }}=0.0141\right]$
99.8\%

Semi-empirical from equivalents
0.938 and 1.000

Full-matrix least-squares on F^{2}
3334 / 0 / 246
1.040
$\mathrm{R}_{1}=0.0332, \mathrm{wR}_{2}=0.0833$
$\mathrm{R}_{1}=0.0448, \mathrm{wR}_{2}=0.0849$
0.255 and -0.170 e. \AA^{-3}

Figure S9. Molecular structure of $\mathbf{2 H}$. Calculated hydrogen atoms are omitted for clarity. The thermal ellipsoids of non-hydrogen atoms are shown at the 50% probability level. Red $=$ oxygen, black $=$ carbon.

Table S3. Crystal data and structure refinement for $\mathbf{2 H}-\mathrm{HBF}_{4}$ (CCDC-1993087).

Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.687^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

C26 H21 B1 F4 O1
436.26

123(2) K
$1.54187 \AA$
monoclinic
P 21/n
$\mathrm{a}=7.49820(10) \AA \quad \alpha=90^{\circ}$
$\mathrm{b}=19.0172(4) \AA \quad \beta=99.675(7)$
$\mathrm{c}=14.6488(3) \AA \quad \gamma=90^{\circ}$
2059.13(8) \AA^{3}

4
$1.407 \mathrm{Mg} / \mathrm{m}^{3}$
$0.911 \mathrm{~mm}^{-1}$
904
$0.10 \times 0.050 \times 0.050 \mathrm{~mm}^{3}$
3.844 to 68.165°
$-9<=\mathrm{h}<=8,-22<=\mathrm{k}<=22,-17<=\mathrm{l}<=17$
22984
$3738\left[\mathrm{R}_{\text {int }}=0.0513\right]$
99.7\%

Semi-empirical from equivalents
0.7492 and 1.000

Full-matrix least-squares on F^{2}
3738 / 0 / 292
1.054
$\mathrm{R}_{1}=0.0408, \mathrm{wR}_{2}=0.1024$
$\mathrm{R}_{1}=0.0589, \mathrm{wR}_{2}=0.1100$
0.169 and -0.243 e. \AA^{-3}

Figure S10. Molecular structure of $\mathbf{2 H}-\mathrm{HBF}_{4}$. Calculated hydrogen atoms and BF_{4}^{-}are omitted for clarity. The thermal ellipsoids of non-hydrogen atoms are shown at the 50% probability level. Red $=$ oxygen, black $=$ carbon.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra:

$2 \mathrm{H}-\mathrm{H}_{2} \mathrm{O}$

[^7]
$\mathbf{2 B r}-\mathrm{H}_{2} \mathrm{O}$

\qquad

$\mathbf{2 H}-\mathrm{H}_{2}$

[^8]
2Br- H_{2}

[^9]

[^10]$\mathbf{2 H}-\mathrm{HOTf}$

$\begin{array}{llllllllllllllllllllllll}210.0 & 200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0 & 130.0 & 120.0 & 110.0 & 100.0 & 90.0 & 80.0 & 70.0 & 60.0 & 50.0 & 40.0 & 30.0 & 20.0 & 10.0 & 0 & -10.0\end{array}$

[^0]: ${ }^{1}$ S. Budweg, Z. Wei, H. Jiao, K. Junge, M. Beller, ChemSusChem, 2019, 12, 2988.
 ${ }^{2}$ Q. Wang, H. Chai, Z. Yu, Organometallics, 2018, 37, 584.
 ${ }^{3}$ M. J. Kim, Y. E. Jung, C. Y. Lee, J. Kim, Tetrahedron Lett., 2018, 59, 2722.

[^1]: ${ }^{4}$ S. Muthaiah, S. H. Hong, Adv. Synth. Catal., 2012, 354, 3045.
 ${ }^{5}$ C. Lei, D. Zhu, V. T. Tangcueco III, J. S. Zhou, Org. Lett., 2019, 21, 5817.

[^2]: ${ }^{6}$ C. Kuhakarn, K. Kittigowittana, M. Pohmakotr, V. Reutrakul, Tetrahedron 2005, 61, 8995.

[^3]: 7 (a) C. Matsubara, N. Kawamoto, K. Takamura, Analyst, 1992, 117, 1781. (b) D. Uraguchi, M. Torii, T. Ooi, ACS Catal., 2017, 7, 2765.

[^4]: ${ }^{8}$ Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ${ }^{9}$ T. Yanai, D. P. Tew, N. C. Handy, Chem. Phys. Lett., 2004, 393, 51.
 ${ }^{10}$ A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B, 2009, 113, 6378.

[^5]: 11 Bacskay, G. B. Chem. Phys. 1981, 61, 385-404.

[^6]: 12 G. M. Sheldrick, Acta Cryst., 2015, C71, 3.

[^7]: | 210.0 | 200.0 | 190.0 | 180.0 | 170.0 | 160.0 | 150.0 | 140.0 | 130.0 | 120.0 | 110.0 | 100.0 | 90.0 | 80.0 | 70.0 | 60.0 | 50.0 | 40.0 | 30.0 | 20.0 | 10.0 |
 | :--- |

[^8]: | 210.0 | 200.0 | 190.0 | 180.0 | 170.0 | 160.0 | 150.0 | 140.0 | 130.0 | 120.0 | 110.0 | 100.0 | 90.0 | 80.0 | 70.0 | 60.0 | 50.0 | 40.0 | 30.0 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^9]: $\begin{array}{llllllllllllllllllll}210.0 & 200.0 & 190.0 & 180.0 & 170.0 & 160.0 & 150.0 & 140.0 & 130.0 & 120.0 & 110.0 & 100.0 & 90.0 & 80.0 & 70.0 & 60.0 & 50.0 & 40.0 & 30.0 & 20.0 \\ 10.0 & 10.0\end{array}$
 -10.0

[^10]: | 210.0 | 200.0 | 190.0 | 180.0 | 170.0 | 160.0 | 150.0 | 140.0 | 130.0 | 120.0 | 110.0 | 100.0 | 90.0 | 80.0 | 70.0 | 60.0 | 50.0 | 40.0 | 30.0 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

