Supporting Information

Intermediates Involved in Serotonin Oxidation

Catalyzed by Cu bound A_β Peptides

Arnab Kumar Nath, Arnab Ghatak, Abhishek Dey*, Somdatta Ghosh Dey*

Contents	Page Number
Materials and Methods	3-6
Figure S1	6
Figure S2	7
Figure S3	8
Figure S4	9
Figure S5	10
Figure S6	10
Figure S7	11
Figure S8	11
Figure S9	12
Scheme 1	12
Table 1	13
References	13

Materials and Methods

All reagents were of the highest grade commercially available and were used without further purification. Both A β peptides of 1-16 and 1-40 chain length are used for UV-Vis experiments and kinetic assay experiments for serotonin oxidation. HPLC analysis for serotonin oxidation, EPR and resonance Raman experiments for the reaction of Cu-A β + H₂O₂ is performed with A β peptide of chain length 1-16. All peptides were purchased from Ontores, China with >95% purity. Copper sulfate (CuSO₄), Serotonin and HEPES buffer were purchased from Sigma. Sulphuric acid and NaOH were purchased from Merck. D₂O was purchased from Cambridge Isotope Laboratory.

All of the pH 7 peptide stock solutions were made in 100 mM N-(hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (HEPES) buffer. A β stock solution of 1 mM strength was prepared by dissolving in 100 mM pH 7 HEPES buffer. In all the experiments A β (1-16) peptide is used. The Cu(II)-A β complex was prepared by incubating 0.8 equivalent of CuSO₄ with 1 equivalent of A β for ~1 h. The pH was maintained at 7 by adding H₂SO₄ and 1M NaOH. Strength of serotonin was 7.4 mM (10 eq) and was prepared by dissolving it in 100 mM HEPES buffer. H₂O₂ is prepared by diluting the 10 M stock solution to 1 M by Millipore water and aliquots were added to adjust the final concentration to the desired value (50-1000 eq.).

Physical Methods

Absorption spectra

Absorption spectra were recorded by adding H_2O_2 into ~300 µL of the Cu-A β complex solution in a cuvette of 1 cm path length. Concentration of Cu-A β were 0.16 mM, 0.74 mM and 1.38 mM and that of H_2O_2 were 100 mM, 1 M and 10 M respectively. Concentration of H_2O_2 in the final solution were 1.6 mM (0.16 mM Cu-A β + 10 eqv

 H_2O_2), 7.4 mM (0.74 mM Cu-A β + 10 eqv H_2O_2), 37 mM (0.74 mM Cu-A β + 50 eqv H_2O_2), 69 mM (1.38 mM Cu-A β + 50 eqv H_2O_2). Absorption spectra were obtained by a UV-Vis diode array spectrophotometer (Agilent 8453).

Serotonin Oxidation

Absorption spectra and kinetics of serotonin oxidation was monitored in a UV-vis diode array spectrophotometer (Agilent 8453). The concentration of serotonin solution was 7.4 mM and 13.8 mM respectively. Strength of Cu-A β solutions were 0.16 mM, 0.74 and 1.38 mM and strength of H₂O₂ were 100 mM, 500 mM and 10 M respectively.

Kinetics experiments for serotonin oxidation for Cu-A β (1-16) (0.74 mM) + 50 eqv H₂O₂ were performed in the presence of 50 eqv serotonin Concentrations of Cu-A β , H₂O₂ and 5-HT in the final solution were 0.055 mM, 2.77 mM and 2.77 mM, respectively. Similarly serotonin oxidation for Cu-A β (1-16) (1.38 mM) + 50 eqv H₂O₂ in the presence of 50 eqv serotonin were also performed. Concentrations of Cu-A β , H₂O₂ and 5-HT in the final solution were 0.10 mM, 5.0 mM and 5.0 mM, respectively.

Kinetics experiments for serotonin oxidation for Cu-A β (1-16) (0.74 mM) + 1000 eqv H₂O₂ were performed by adding 50 eqv serotonin. Concentrations of Cu-A β , H₂O₂ and 5-HT in the final solution are 0.055 mM, 55.5 mM and 2.77 mM, respectively.

Comparison of serotonin oxidation for Cu-A β (1-16) and Cu-A β (1-40) was done by following the kinetics at 392 nm keeping Cu-A β : H₂O₂ :5-HT (1:50:50) and final concentrations 0.012 mM, 0.60 mM and 0.60 mM respectively.

EPR

EPR samples were 0.74 mM and 1.38 mM in concentration and 100 μ L in volume and were run at 77 K in a liquid nitrogen finger dewar. EPR spectra were obtained by a JEOL FA200 spectrophotometer with the

following parameters: modulation width, 14 gauss; amplitude, 30; time constant, 300 ms; power, 1 mW; frequency, 9.14 GHz.

Resonance Raman

RR data were obtained using a Trivista 555 spectrograph (Princeton Instruments) using 415.4 nm excitation from a Kr⁺ laser (Coherent, Sabre Innova SBRC-DBW-K). The power on the samples was ~10 mW. The rR samples were 1.38 mM in concentration and were prepared by adding 50 and 1000 equivalents of H_2O_2 to Cu-A β (1-16) and freezing the sample in liquid nitrogen at 77 K. For isotope labelling Cu-A β (1-16) is prepared in HEPES buffer (H₂O and D₂O) and then same protocols as that of H₂O are followed.

HPLC

Oxidation products of 5-HT by Cu–A β complexes were separated by reversed-phase HPLC (RP-HPLC) using a Waters 1525 Separation Module coupled to a diode-array detector (Waters 2487). A SymmetryR C18 reversed-phase column (250 mm X 4.6 mm internal diameter, 5 µm particle size) (SHIMADZU CORP.) was used to separate 5-HT from its oxidation products using the linear gradient method. The mobile phase consisted of eluant A (1 % acetic acid and 1 mM ammonium acetate in water) and eluant B (100 % acetonitrile). The gradients applied were 0–10 min, 98–85 % eluant A; 10–12 min, 85-50 % eluant A; 12-14 min, 50 % eluant A. The flow rate was 0.8 mL/min. For the HPLC assay, 7.4 mM 5-HT was incubated with Cu-A β (0.74 mM) + H₂O₂ (1 M for 50 eqv. and 10 M for 1000 eqv.) aliquot in 100 mM HEPES, pH 8 with a conc. ratio of Cu-A β , H₂O₂ and serotonin to be 1: 50/1000 : 50. At specific time intervals, the oxidation products were analysed by injecting 25 μ L of the reaction mixture into the column. Serotonin and its oxidation products were analysed with a UV-online detector set at 260 nm.

Figure S1. A) Absorption spectrum of serotonin (5-HT), red; for the reaction 0.012 mM Cu-A β (1-16) + 0.60 mM H₂O₂ + 0.60 mM 5-HT (1:50:50), cyan and 0.012 mM Cu-A β (1-40) + 0.60 mM H₂O₂ + 0.60 mM 5-HT (1:50:50), orange;

B) Absorption spectrum of serotonin (5-HT), red; absorption spectrum for the reaction 0.055 mM Cu-A β (1-16) + 2.77 mM H₂O₂ + 2.77 mM 5-HT (1:50:50), black and 0.012 mM Cu-A β (1-16) + 0.60 mM H₂O₂ + 0.60 mM 5-HT (1:50:50) scaled, cyan; in 100 mM HEPES buffer at pH 7.

Figure S2: Separation of the 5-HT and its products by RP-HPLC after its incubation with Cu–A β + 50 eqv. H₂O₂; 5-HT without reaction mixture purple, separated reaction mixture at 5.5 min, 6.2 min and 10.1 min after incubation resulting in major products (peak 1, peak 2 and peak 3), black A) full range, B) elution time from 5 min to 8 min; in 100 mM HEPES buffer at pH 7. The peaks with star marking (*) is the minor product which is other oxidized products of serotonin.

HPLC shows that serotonin in the presence of Cu-A β and H₂O₂ oxidizes to 5-Hydroxy-3-ethylamino-2-oxindole (5-HEO) (peak 1) and tryptamine-4,5-dione (peak 2). In the chromatogram, peak 3 represents 3,3'-bis(2-aminoethyl)-5-hydroxy-[3,7'-bi-1H-indolel]-2,4',5'(3H)-trione which is the dimerized form of the two oxidized products, which correspond to peak 1 and peak 2 and possibly forms through aerial oxidation (Scheme S1).^{1, 2}

Figure S3. Kinetics of serotonin oxidation monitored at 392 nm for the reaction 0.012 mM Cu-A β (1-16) + 0.60 mM H₂O₂ + 0.60 mM 5-HT (1:50:50), blue and 0.012 mM Cu-A β (1-40) + 0.60 mM H₂O₂ + 0.60 mM 5-HT (1:50:50), red; in 100 mM HEPES buffer at pH 7.

Figure S4. A) Absorption spectrum of Cu-A β , blue; for the reaction of 0.74 mM Cu-A β (1-16) + 7.4 mM H₂O₂ (1:10) after 2 hours, black and 0.74 mM Cu-A β (1-16) + 37 mM H₂O₂ (1:50) after 2 hours, green; in 100 mM HEPES buffer at pH 7.

B) Absorption spectrum for the reaction of 0.74 mM Cu-A β (1-16) + 7.4 mM H₂O₂ (1:10), black and 0.16 mM Cu-A β (1-16) + 1.6 mM H₂O₂ (1:10), yellow; in 100 mM HEPES buffer at pH 7.

C) EPR spectra of Cu-A β , blue; for the reaction of 0.74 mM Cu-A β (1-16) + 7.4 mM H₂O₂ (1:10) after 2 hours, black and 0.74 mM Cu-A β (1-16) + 37 mM H₂O₂ (1:50) after 2 hours, green, at 77 K; The arrows indicate the direction of the spectral changes. All data are collected in 100 mM HEPES buffer at pH 7, at 77 K.

Figure S5: The extended spectra of Cu-A β + 50 eq. H₂O₂ (blue) and Cu-A β + 50 eq. D₂O₂ (red) and difference (dashed black). The peaks arising from glass tube and buffer are indicated with *.

Figure S6: Cu-O vibration in Cu-A β + 1000 eq. H₂O₂ (purple) and Cu-A β + 1000 eq. D₂O₂ (red)

Figure S7: Kinetics of 5-HT oxidation catalysed by Cu-A β using 1000 eq. H₂O₂ (purple) and 50 eq. H₂O₂ (black).

Figure S8: Separation of the 5-HT and its products by RP-HPLC after its incubation with Cu–A β + 1000 eqv. H₂O₂; 5-HT without reaction mixture purple, separated reaction mixture at 5.5 min, 6.25 min and 10.7 min after incubation resulting in major products (peak 1, peak 2 and peak 3), black A) full range, B) elution time from 5 min to 8 min; in 100 mM HEPES buffer at pH 7. The peaks with star marking (*) is the minor product which is other oxidized products of serotonin.

Figure S9: Kinetics of 5-HT oxidation catalysed by Cu-A β using Cu-A β (0.74 mM) + 1000 eq. H₂O₂ (purple), Cu-A β (0.74 mM) + 50 eq. H₂O₂ (black) and Cu-A β (1.38 mM) + 50 eq. H₂O₂ (cyan).

Scheme S1: Serotonin oxidation by Cu-A β with H₂O₂ (50 and 1000 H₂O₂) at pH 7

Table S1. Rate of serotonin oxidation for different $Cu-A\beta + H_2O_2$ conditions.

$Cu-A\beta + H_2O_2$ for	Rate const.
10 eq 5-HT	(Sec ⁻¹) × 10 ⁻⁴
Cu-Aβ (0.74 mM) + 1000 eq H ₂ O ₂ at 15 min	6.2 ± 0.1
Cu-Aβ (0.74 mM) + 50 eq H ₂ O ₂ at 100 min	4.0 ± 0.2
Cu-Aβ (1.38 mM) + 50 eq H ₂ O ₂ at 100 min	2.5 ± 0.2

References

- 1. M. Z. Wrona, Z. Yang, M. McAdams, S. O'Connor-Coates and G. Dryhurst, *Journal of Neurochemistry*, 1995, **64**, 1390-1400.
- 2. V. F. Ximenes, G. J. Maghzal, R. Turner, Y. Kato, C. C. Winterbourn and A. J. Kettle, *The Biochemical journal*, 2009, **425**, 285-293.